当前位置:文档之家› 遥感信息获取与影像特征遥感平台与遥感影像特征

遥感信息获取与影像特征遥感平台与遥感影像特征

遥感信息获取与影像特征遥感平台与遥感影像特征
遥感信息获取与影像特征遥感平台与遥感影像特征

第三章遥感信息获取与影像特征

遥感影像即遥感平台上的遥感器远距离对地表扫描或者摄影获得的影像,根据一定的标准可分为不同类型。不同的遥感技术系统既保证了遥感影像的获取又决定了遥感影像的特征。了解遥感影像的获取过程及遥感影像的特征,对于影像解译、应用具有重要的意义。本章将从遥感平台、传感器等技术系统出发,介绍遥感影像的获取过程和遥感影像的特征。

本章重点是掌握遥感器与遥感影象特征的关系,了解常见的遥感信息获取系统。

图3-1

第一节遥感平台与遥感影像特征

3.1.1 遥感平台

遥感平台指放置遥感传感器的运载工具,是遥感中“遥”字的体现者。遥感平台按高度及载体的不同可分为地面平台、航空平台、航天平台三种。

图3-2

(1) 近地平台指遥感器搭载的遥感平台距离地面高度在800m以下,包括系留气球(500-800m)、50m至500m 的牵引滑翔机和无线遥控飞机遥感、遥感铁塔(30m -400m)、遥感吊车(5-50m)、地面遥感测量车等遥感平台。(2) 航空平台指遥感器搭载的遥感平台为航空器。它包括距离地面高度小于 1000 米的航空摄影测量, 2000~20000 米中空飞机遥感、20000米以上的高空飞机遥感。

(3) 航天平台,其遥感器搭载的遥感平台为航天器。其中:航天飞机和天空实验室轨道高度在240-350千米,军事侦察卫星在150-300km,陆地卫星或地球观测卫星轨道高度在700-900千米,其获取的地面图像的地面分辨率为1-80米不等,地球静止卫星的轨道高度在36000千米左右,其获取的卫星影象的地面分辨率偏低。

选择遥感平台的主要依据是遥感图像空间分辨率。一般说来,近地遥感地面分辨率高,但观测范围小;

航空遥感地面分辨率中等,其观测范围较广。航天遥感地面分辨率低,但覆盖范围广。

3.1.2 卫星轨道

随着遥感技术的发展,各种地球资源卫星提供了越来越多的卫星遥感图像(简称卫星图象)。卫星图像有几个优点:宏观性好,成本低,周期性好。卫星运行轨道对卫星图象具有多种影响,有必要加以了解。根据开普勒定律,人造地球卫星在空间的位置可以用几个特定数据来确定,这些数据称为轨道参数,如图(3-3) 。对地观测卫星轨道一般为椭圆形,轨道有6个参数:①半长轴a,即卫星离地面的最大高度,它用来确定卫星轨道的大小;②偏心率e,决定卫星轨道的形状;③轨道面倾角i,地球赤道平面与卫星轨道平面间的夹角;④升交点赤经W,卫星轨道与地球赤道面有两个交点,卫星由南向北飞行时与地球赤道面的交点称为升交点,卫星由北向南飞行时与地球赤道面的交点称为降交点;⑤近地点角距w,升交点向径与轨道近地点向径之间的夹角;⑥卫星过近地点的时刻T,对于卫星的跟踪和预报来说,上述参数中最重要的轨道参数是轨道倾角ī和升交点赤径?,它们确定了卫星的轨道相对于地球的方位,但还必须知道椭圆轨道半长轴的方向。

3.1.3 遥感平台与遥感影像的关系

1. 遥感平台与遥感影像的关系主要表现在以下方面:

1.1 平台的运行高度影响着遥感影像的空间分辨率。

1.2 获取同一地区影像的周期称为遥感影像的时间分辨率。平台的运行周期决定着遥感影像的时间分辨率。1.3 平台的运行时刻(或卫星星下点的地方时)决定着探测区域的太阳高度,从而间接决定着遥感影像的色调及阴影。

1.4 平台运行稳定状况决定着所获取遥感影像的质量。

1.5 特殊的遥感任务对遥感平台有特殊的要求。

2. 平台轨道面倾角与覆盖范围

一般遥感卫星i约为 90°,为近极轨卫星。轨道面倾角的大小决定了卫星可能飞越地面的覆盖范围,例如Landsat的轨道面倾角为99°,地面覆盖范围为81°S~81°N(南纬81°到北纬81°)。

3. 平台轨道与对地观测时间

遥感卫星通常都采用太阳同步轨道。所谓太阳同步轨道指卫星轨道面与太阳地球连线之间的夹角不随地球绕太阳公转而改变。太阳同步轨道可以使卫星通过任意纬度的平均地方时保持不变。从而使卫星能够在太阳光照角基本相同的条件下对地观测,这样给遥感资料的处理带来很大的方便,比如能够方便遥感图象的色调对比等。

第二节遥感器与遥感影像特征

3.2.1 遥感器的一般组成与特征

图3-3

遥感器一般由采集单元、分光单元、探测与信号转化单元、记录或通信单元组成。

1. 采集单元:把来自地面的电磁波采集起来的功能单元。不同的遥感器有不同的采集元件。基本的采集元件是透镜、反射镜和天线。

2. 分光单元:把混合光分解为不同波段光谱的功能单元。

3. 探测与信号转化单元:探测分光后的电磁波并把它们转换成其他形式信号的功能单元。

4. 记录或通信单元:遥感器的记录单元是将探测到的电磁波信息用适当的介质记录下来。记录的介质有:胶片、磁带、和磁盘等。通信单元是将探测到的电磁波信息传输到异地的接收装置。

3.2.2 遥感器特性与遥感构像参数

本节以扫描成像类型的遥感器为例,讨论遥感器的特性与遥感构像的关系。遥感器特性决定着遥感构像的特征。遥感器收集与记录地球表面观测目标的反射、辐射能量,遥感器的以下特性影响着遥感构像:

1. 遥感器探测阵列单元的尺寸决定了遥感构像的空间分辨率。在使用扫描仪探测地面目标时,载着地物分布信息和属性信息的电磁波,通过大气层进入遥感器,遥感器内部的探测单元阵列对地物分布进行成像。此时的图像空间分辨率是指遥感器中探测阵列能把两个目标作为两个清晰的实体记录下来的两目标间的最小距离,它可以采用图像视觉清晰度来衡量。

2. 遥感器探测元件的辐射灵敏度和有效量化级决定了遥感构像的辐射分辨率。辐射分辨率是指遥感器探测元件在接收电磁辐射信号时能分辨的最小辐射度差。探测分光后的电磁波并把它转换成电信号的元件称为探测元件,其作用是光电变换并在实现这种变换的过程中完成信息的传递。

3. 在遥感器设计中,波谱分辨率设计必然要考虑的因素是:

l. 使用多少波谱波段;

2. 如何确定所用波段在总光谱范围中的位置;

3. 如何确定所用的各个波段的波谱带宽度。

上述三个问题,都与遥感器设计目的和制造遥感器的工艺技术水平有关。遥感器设计目的和制造遥感器的工艺技术水平(分光及滤光系统能力、探测器阵列和不同波段间配准)决定了遥感构像的波谱分辨率。波谱分辨率是指遥感器在接收目标辐射的波谱时能分辨的最小波长间隔。间隔愈小,波谱分辨率愈高,反之则低。

随着制造遥感器的工艺技术水平的进步,遥感器使用的波谱波段正在迅速增加。成像光谱仪在可见光 - 红外波段范围内,被分割成几百个窄波段,具有很高的光谱分辨率,从其近乎连续的光谱曲线上,可以分辨出不同物体光谱特征的微小差异,有利于识别更多的目标。对于高光谱遥感来说,不同波段之间的相关系数将随着波长间隔距离的增加而单调地减少。

确定一个波段在总光谱范围中的位置,需要考虑使用该波段对地观测的特点,根据地物反射或辐射特性来选择最佳位置。如探测地物自身热辐射,应在 8-12μm 波长范围选择最佳位置,而探测森林火灾等则应在 3-5μm 波长范围选择最佳位置,才能取得好效果。此外,确定一个波段位置,还要考虑波段与波段之间的平衡分布,作为一个通用遥感器,还需要考虑与已有遥感器兼容。

第三节常见的遥感信息获取系统

3.3.1 光学成像类型

光学照相机是最早的一种遥感器,也是今天常见的一种遥感器。它的工作波段在近紫外到近红外(0.32 ~ 1.3 微米)之间,对不同波段的感应决定于相机的分光单元和胶片类型。空间分辨率决定于光学系统的空间分辨率和胶片里所含银盐颗粒的大小。空间分辨率高是光学相机获取的遥感影像的普遍特性。用于遥感的光学相机有以下几种类型:分幅式摄影机、全景摄影机、多光谱摄影机等。

3.3.2 扫描成像类型

1. 光学-机械扫描仪

光学一机械扫描(简称光机扫描)成像系统,一般在扫描仪的前方安装可转动的光学镜头,并依靠机械传动装置使镜头摆动,形成对地面目标的逐点逐行扫描。遥感器光谱分辨率依赖于不同分光器和探测元件,其辐射分辨率取决于探测元件的灵敏度。在光机扫描所获得的影像中,每条扫描带上影像宽度与图像地面分辨率分别受到总视场和瞬时视场的影响。总视场 (FOV) 是遥感器能够受光的范围,决定成像宽度。瞬

时视场角 (IFOV) 决定了每个像元的视场。一般说来,瞬间视场角对应的地面分辨单元是一个正方形,该正方形是瞬间视场角对应的地表面积。严格说来,光机扫描中瞬间视场角对应的每个像元是个矩形。光机扫描成像时每一条扫描带都有一个投影中心,一幅图象由多条扫描带构成,因此遥感影像为多中心投影。每条扫描带上影像的几何特征服从中心投影规律,在航向上影像服从垂直投影规律。

2. 推帚式扫描仪

推帚式扫描采用线列(或面阵)探测器作为敏感元件,线列探测器在垂直于飞行方向上做 X 向排列,当飞行器向前飞行完成 Y 向扫描时,线列探测器就向刷子扫地一样实现带状扫描,推帚式扫描由此而得名。与光学-机械扫描相比,推帚式扫描代表了更为先进的遥感器扫描方式。它具有感受波谱范围宽、元件接受光照时间长,无机械运动部件,系统可靠性高、噪声低、畸变小、体积小、重量轻、动耗小、寿命长等一系列优点。 SPOT 卫星上搭载的高分辨率传感器( HRV )采用就是推帚式扫描系统。 SPOT 图像上空间分辨率由相邻光敏元件中心点间距确定(像素分辨率),卫星在标准轨道高度上飞行时, SPOT 图像上像素分辨率在全色波段为 13 微米,多光谱波段为 26 微米,对应地面分辨率分别为 10×10 和 20×20 平方米,其空间分辨率高于陆地卫星上的 TM 图像。 SPOT-5 卫星于 2002 年 5 月 3 日晚上由阿里亚娜 4 型火箭送入太空。它与前 4 颗 SPOT 卫星相比, SPOT-5 卫星有较大改进,并携带有新的仪器设备。其中包括:①高分辨率立体成像仪,这是新增加的最重要的仪器设备,它能同时获取两幅图像,因此可用于制作更为精确的地形图和高程图;②两台高分辨率几何成像仪,通过把 2 张 5 米分辨力图像相叠加的技术,可把全色图像分辨力提高到 2.5 米分辨率;③植被相机,几乎每天可实现全球覆盖,图像的分辨率为1千米。

3.3.3 成像光谱仪

成像光谱仪是遥感领域中的新型遥感器,它把可见光、红外波谱分割成几十个到几百个波段,每个波段都可以取得目标图像,同时对多个目标图像进行同名地物点取样,取样点的波谱特征值随着波段数愈多愈接近于连续波谱曲线。这种既能成像又能获取目标光谱曲线的 “ 谱像合一 ” 的技术称为成像光谱技术,按该原理制成的遥感器称为成像光谱仪。

这类成像光谱仪的特点是,探测器积分时间长,像元的凝视时间增加,可以提高系统灵敏度或空间分辨率;在可见光波段,由于目前器件成熟,集成程度高,光谱维的分辨率也可以提高到 1—2nm 的水平;成像部件无需机械运动,仪器体积比较小。目前在可见光、近红外波段,此类成像光谱仪很多,有的已经达到商品化的水平。其主要不足之处是,受器件限制,短波红外灵敏度还不理想,热红外暂时不可能。具有代表性的面阵推帚型机载成像光谱仪是加拿大的 CASI 系统,中国研制的成像光谱仪 PHI 也属于这种类型。成像光谱仪影像的光谱分辨率高,每个成像波段的宽度可以精确到 0.01mm ,有的甚至到0.001mm 。成像光谱仪获得的数据不是传统意义上某个多光谱波段内辐射量的总和,它可以看成是对地物连续光谱中抽样点的测量值如图 3-11 。一些在宽度波段遥感中不可探测的物质,在高光谱遥感中有可能被探测出来。

3.3.4 微波成像系统

在电磁波谱中,波长在 1mm 到 1m 的波段范围称为微波。微波遥感是研究微波与地物相互作用机理以及利用微波遥感器获取来自目标地物发射或反射的微波辐射,并进行处理分析与应用的技术。微波遥感分为主动微波遥感与被动微波遥感。微波成像系统主要以成像雷达为代表,它属于主动微波遥感。

( 1 )真实孔径侧视雷达( Real Aperture Radar , RAR ) 孔径( aperture )的原意是光学相机中打开快门的直径。在成像雷达中沿用这个术语,含义变成了雷达天线的尺寸。真实孔径侧视雷达,是按雷达具有的特征来命名的,它表明雷达采用真实长度的天线接收地物后向散射并通过侧视成像。

RAR 工作原理在最简单的实现方法中,距离分辨率是利用发射的脉冲宽度或持续时间来测定的,最窄的脉冲能产生最优的分辨率。在典型的二维微波图像中,距离是沿雷达平台的航迹测量的,雷达通过天线发射微波波束,微波波束的方向是垂直于航线方向,投在一侧形成窄长的一条辐射带。波束遇到地物后发生后向散射,雷达上的接收机通过雷达天线按时间顺序先后接收到后向散射信号,并按次序记录下后向能量的强度,在此基础上计算机算出距离分辨率。方位与距离保持垂直,方位分辨率与波束锐度成正比关

系。正如光学系统需要大的透镜或镜像来获得较优分辨率一样,工作在它们极低频率上的雷达也需要较大的天线或孔径来产生高分辨率的微波图像。

( 2 ) 合成孔径侧视雷达(Synthetic Aperture Radar , SAR) 合成孔径雷达就是利用雷达与目标的相对运动把尺寸较小的真实天线孔径用数据处理的方法合成一个较大的等效天线孔径的雷达。合成孔径雷达是对真实孔径侧视雷达( RAR )的技术创新的产物。

利用合成孔径替代真实孔径,提高雷达的方位向分辨率。合成孔径的设计思想就是通过一定的信号处理方法,使得合成孔径雷达的等效孔径长度相当于一个很长的真实孔径雷达的天线。由于合成孔径等于目标处于同波束内雷达所行进的距离,因此它是一个虚拟的天线长度,合成孔径雷达提高了方位分辨率。

通过合成孔径技术可以提高方位分辨率,但无法解决距离分辨率提高的问题。距离分辨率是根据区分相邻两点之间的回波延时和多普勒频移来实现的。于是 RAR 和 SAR 利用线性调频技术,解决时带的矛盾,进而提高距离分辨率。

目前,加拿大 Radarsat 卫星提供的 SAR 图象已经进入商业运营。 Radarsat-1 卫星于 1995 年 11 月4 日发射成功,设计寿命 5 年,至今仍在正常运行, Radarsat-2 计划在近期内发射。卫星高度 790 ~800km ,倾角 98.5° ,太阳同步轨道,雷达采用 C 波段(波长 5.6cm ), HH 极化,波束入射角在 0 ~ 60° 范围内可调(表 4- ),用户可根据应用要求和地形条件选择合适的角度来获取图像。宽束模式 Scan SAR 可以降低分辨率而得以频繁地获取同一地区的图像。不同成像模式为用户提供分辨率从 10m 到 100m 的图像数据,以便于用户将 Radarsat 数据与其他传感器数据进行复合。

第四节遥感构像的几何特征

3.4.1 分幅式航空摄影仪构像的几何特征

分幅式航空摄影仪拍摄的航空照片是对于地面点的中心投影像片。所谓中心投影,就是平面上各点的投影光线均通过一个固定点(投影中心或透视中心),投射到一平面(投影平面)上形成的透视关系。

3.4.2 全景摄影机构像的几何特征

在全景摄影机构像中,随着物镜筒的转动,地表物体在后方向弧形胶片上聚焦成像。对于每条狭缝的形成,其几何关系等效于一个画幅式航空摄影机沿旁向倾斜一个扫描角θ后,以中心线( y=0 )成像的情况,同样,多光谱扫描仪获取的影象也存在投影变形。由于在动态扫描的情况下,其构像方程都是对应于一个扫描瞬间(相对于某一象素或某一条扫描线)而建立的,不同成像瞬间的传感器外方位元素可能各不相同,因而相应的变形误差方程式只能表达该扫描瞬间像幅上相应点、线所在位置的局部变形,整个图像的变形将是所有瞬间局部变形的综合结果。

3.4.3 连续航带缝隙式摄影机构像的几何特征

连续航带缝隙摄影机垂直于航行方向,当飞行器以速度向前运行时,感光底片也同时以速度同向卷动,从而使底片被缝隙连续暴光形成航带影像。连续航带缝隙式摄影机摄影所用的狭窄缝隙与飞行器的飞行方向垂直,在每条缝隙曝光的瞬间,其构像的几何形态为中心投影,在垂直成像条件下,CCD 线列推帚式遥感器与连续航带缝隙式摄影机成像方式相同,影象在旁向属于中心投影,在航向上属于以时间为参数的正射投影,因此,连续航带缝隙式摄影机构像共线方程和附加构像方程同样适用于 CCD 线列推帚式遥感器,但此时,附加构像方程中的 vf 代表扫描行间隔的电子采样记录速度,而不代表卷片速度。

3.4.4 侧视成象雷达构像的几何特征

侧视雷达采用斜距投影,它与摄像机中心投影方式完全不同。其构像方程根据侧视雷达工作方式分为以下两种:平面扫描斜距构像方程和圆锥扫描斜距构像方程,由侧视雷达构像方程可知:侧视雷达在方位向和距离向用不同的方法记录影像。在方位向上,当地物目标通过照射波束时,雷达记录一个特征条带;在距离向,雷达测量从飞机到地形目标的距离。在侧视雷达构成的微波影像中, RAR 真实孔径雷达分辨率是由成象雷达的斜距分辨率和方位向分辨率决定的,它们分别由脉冲的延迟时间和波束宽度来控制。对于合成孔径雷达来说,微波影像方位向分辨率与波束宽度和多普勒频移的识别精度等有关。这点不同于摄影成象的分辨率与扫描影像的分辨率。

3.4.5 立体观测构像

目前,在已发射和计划发射的一些遥感卫星具备立体观测功能(主要的立体观测卫星及观测参数见表3-11),早期立体观测与航空立体摄影相似,用摄影机进行,如 Spacelab 上的 RMKA30/23相机和SIS-41G 次航天飞机上的LFC大像幅相机的立体摄影。后来在航天遥感使用的CCD 相机上附加能左右步进旋转的平面镜,可以在相邻轨道间进行立体摄影(旁向倾斜摄影)。由于邻轨在不同日期过境,时间、光照、姿态的差异及气象条件的制约,往往要求的时间内很难获得理想的立体像对。一些卫星开始利用二台或多台CCD相机进行同轨立体观测(前后向),将CCD 相机设计成前视、下视和后视(或平面镜前后步进式旋转),卫星过境时获取三幅互相间能构成立体的影像。

遥感数据特征

常用遥感数据特征总结 按照遥感平台类型,遥感技术可以分为航宇遥感、航天遥感、航空遥感、地面遥感四类。其中航天遥感平台发展最快,应用最广。很据航天遥感平台的服务内容,可以将其分为气象卫星系列、陆地卫星系列和海洋卫星系列。不同的卫星系列所获得的遥感数据有着不同的特征,常常应用于不同的应用领域,在进行检测研究时,常常根据不同的卫星资料特点,选择不同的遥感数据。下文简单总结了几种常用的航天遥感数据特征。 1 气象卫星系列 气象卫星是最早发张起来的环境卫星。从1960年美国发射第一颗实验性气象卫星(TIROS)以来,已经有多种实验性或者业务性气象卫星进入不同轨道。气象卫星资料已经在气象预报、气象研究、资源调查海洋研究等方面显示出了强大的生命力。 气象卫星主要有以下几种系列:60年代——TIROS系列、ESSA系列、Nimus 系列;70年代——ITOS系列、NOAA系列、SMS系列、GOES系列、MeteopII、GMS、Meteosat;80年代后,主要以NOAA系列为代表。我国的气象卫星发展比较晚,FY-1是我国发射的第一颗1988年9月7日发射成功。气象卫星主要有以下特征。 (1)轨道。气象卫星轨道可以分为两种,低轨和高轨。低轨是近极低太阳同步轨道,简称极地轨道,轨道高度800~1600km,南北向绕地球运转。对东西宽约2800km的带状地域进行观测,由于与太阳同步,使卫星每天在固定的时间经过每个地方的上空,资料获得时具有相同的照明条件。高轨是指地球同步轨道,轨道高度36000km左右,相对于地球静止,能够观测地球1/4的面积,有3—4颗卫星形成观测网,对某一固定地区,每隔20~30min获取一次资料,由于它相对于地球静止,可以作为通讯中继站,用于传送各种天气资料。 (2)短周期重复观测。地球同步卫星观测周期为0.5小时一次,极轨卫星为约为0.5~1天/次,时间分辨率较高。有助于对地面快速变化的动态检测。 (3)成像面积大,有助于获得宏观同步信息,减少数据处理容量。 (4)资源来源连续、实时性强、成本低 NOAA系列。 NOAA-11卫星:发射日期1988年9月24日,正式运行日期1988年11月8日,轨道高度841公里,轨道倾角98.9度,轨道周期:101.8分。 NOAA-12卫星:发射日期1991年5月14日,正式运行日期1991年9月17日轨道高度804公里,轨道倾角98.6度,轨道周期101.1分。 NOAA-14卫星:发射日期1994年12月30日,正式运行日期1985年4月10日,轨道高度845公里,轨道倾角99.1度,轨道周期101.9分。 NOAA-15卫星:发射日期1998年5月13日,正式运行日期1998年12月15日轨道高度808公里,轨道倾角98.6度,轨道周期101.2分。 NOAA-16卫星:发射日期2000年9月12日,正式运行日期2001年3月20日,轨道高度850公里,轨道倾角98.9度,轨道周期102.1分。

6-遥感图像特征和解译标志

上次课主要内容 4.4简单自然地物可识别性分析 4.5复杂地物识别概率(重点理解) ①要素t 的价值②要素总和(t 1,t 2,…,t m )t 的价值 K -K E ∑ = ③复杂地物识别概率的计算理解p70~71例子

第五章遥感图像特征和解译标志 5.1 解译标志的定义和分类 5.2 遥感图像特征与解译标志的关系 5.3 遥感图像的时空特性 5.4 遥感图像中的独立变量 5.5 地物统计特征的构造

第五章遥感图像特征和解译标志 地物特征 电磁波特性 影像特征 遥感图像记录过程 n 图像解译就是建立在研究地物性质、电磁波性质 及影像特征三者的关系之上 n 图像要素或特征,分“色”和“形”两大类:?色:色调、颜色、阴影、反差; ?形:形状、大小、空间分布、纹理等。“形”只有依靠“色”来解译才有意义。

第五章遥感图像特征和解译标志 5.1 解译标志的定义和分类 n两个定义: ?解译标志定义:遥感图像光谱、辐射、空间和时间特征决定 图像的视觉效果、表现形式和计算特点,并导致物体在图像上 的差别。 l给出了区分遥感图像中物体或现象的可能性; l解译标志包括:色调与色彩、形状、尺寸、阴影、细部(图 案)、以及结构(纹理)等; l解译标志是以遥感图像的形式传递的揭示标志; ?揭示标志定义:在目视观察时借以将物体彼此分开的被感知 对象的典型特征。 l揭示标志包括:形状、尺寸、细部、光谱辐射特性、物体的阴 影、位置、相互关系和人类活动的痕迹; l揭示标志的等级决定于物体的性质、他们的相对位置及与周围 环境的相互作用等;

第五章遥感图像特征和解译标志 5.1 解译标志的定义和分类 n解译标志和揭示标志的关系: ?解译标志是以遥感图像的形式传递的揭示标志; ?虽然我们是通过遥感图像识别地物目标的,但是大多数情况 下,基于遥感图像识别地物并作出决定时,似乎并不是利用解 译标志,而是利用揭示标志。 例如,很多解译人员刚看到图像就差不多在脑海中形成地物的形象, 然后仅仅分析这个形象就能作出一定的决定。实际上,有经验的解译人 员,在研究图像的解译标志并估计到传递信息的传感系统的影响以后, 思想中就建立起地物的揭示标志,并在这些标志的基础上识别被感知物 体。解译人员在实地或图像上都没见过的地物或现象是例外。 n解译标志和揭示标志可以按两种方式进行划分:?直接标志和间接标志; ?永久标志和临时标志;

数字图像的特征提取

呵呵,看了半天,原来你只不过要求进行边缘检测就可以,然后再做阈值化而已,太简单了。按照下面做即可: void RobelEdgeDetect(LPBYTE lpDibTemp, LPBYTE lpDibSave,int width,int height) { int i,j; float R; float RCos,RSin; for(j=1;j =128) //阈值化 lpDibSave[j*width+i]=255; else lpDibSave[j*width+i]=0; } } ok,一切完成!!!其中,阈值化时,要跟你的图像具体情况而定,当然可以使用自适应阈值最 好了。

遥感影像判读

南京信息工程大学复习参考资料—— 遥感影像判读 第一章绪论 遥感影像判读既是一门学科,又是图像处理的一个过程: 1.作为一门学科,遥感影像判读的目的是为了从遥感图像上得到地物信息所进行的基础理 论和实践方法的研究 2.作为一个过程,它完成地物信息的传递并起到揭示遥感图像内容的作用,其目的是取得 地物各组成部分和存在于其他地物的内涵的信息 分为计算机辅助判读和人工目视判读 遥感影像判读的任务与实施 任务 根据应用范围:巨型、大型、中型和小型地物与现象的判读 实施(组织方法): 野外判读、飞行器目视判读、室内判读、综合判读 遥感信息的利用方式(5个) 1.瞬时信息的定性分析:确定相关目标是否存在 2.空间信息的定位:空间分布规律 3.瞬时信息的定量分析:定量反演目标参数 4.时间信息的趋势分析:地表物质能量迁移规律 5.多源信息的综合分析 遥感信息的技术支撑(6个) 1.观察与测量仪器的改变 2.产品形式的改变 3.生产工艺的改变 4.新一代传感器的研制 5.地理信息系统的支持 6.遥感应用模型的深化 遥感影像判读的质量要求:分为用户精度(正确分类/所有分为该类制图精度 )和制图者精度(正确分类/参考数据中的该类) 1.判读结果的完整性(详细性):与给定任务的符合程度,用质量指标评价 2.判读的可靠性:与实际的符合程度,用质量和数量指标评价 3.判读的及时性:资料及时;指定限期完成 4.判读结果的明显性:便于理解和应用 第二章遥感影像判读的理论基础 地物的电磁辐射特性—— 地物的电磁辐射特性概念: 1.从近紫外到中红外(0.3-6μm)波段区间能量最集中而且相对来说较稳定 2.被动遥感主要利用可见光、红外等稳定辐射 3.对流层:地表到平均高度12km处,航空遥感活动区,侧重研究电磁波在该层内的传输 特性;

遥感专题讲座——影像信息提取(四、面向对象特征提取)

面向对象的影像分类技术 “同物异谱,同谱异物”会对影像分类产生的影响,加上高分辨率影像的光谱信息不是很丰富,还有经常伴有光谱相互影响的现象,这对基于像素的分类方法提出了一种挑战,面向对象的影像分类技术可以一定程度减少上述影响。 本小节以ENVI中的面向对象的特征提取FX模块为例,对这种技术和处理流程做一个简单的介绍。 本专题包括以下内容: ??●面向对象分类技术概述 ??●ENVI FX简介 ??●ENVI FX操作说明 1、面向对象分类技术概述 面向对象分类技术集合临近像元为对象用来识别感兴趣的光谱要素,充分利用高分辨率的全色和多光谱数据的空间,纹理,和光谱信息来分割和分类的特点,以高精度的分类结果或者矢量输出。它主要分成两部分过程:影像对象构建和对象的分类。

影像对象构建主要用了影像分割技术,常用分割方法包括基于多尺度的、基于灰度的、纹理的、基于知识的及基于分水岭的等分割算法。比较常用的就是多尺度分割算法,这种方法综合遥感图像的光谱特征和形状特征,计算图像中每个波段的光谱异质性与形状异质性的综合特征值,然后根据各个波段所占的权重,计算图像所有波段的加权值,当分割出对象或基元的光谱和形状综合加权值小于某个指定的阈值时,进行重复迭代运算,直到所有分割对象的综合加权值大于指定阈值即完成图像的多尺度分割操作。 影像对象的分类,目前常用的方法是“监督分类”和“基于知识分类”。这里的监督分类和我们常说的监督分类是有区别的,它分类时和样本的对比参数更多,不仅仅是光谱信息,还包括空间、纹理等信息。基于知识分类也是根据影像对象的熟悉来设定规则进行分类。 目前很多遥感软件都具有这个功能,如ENVI的FX扩展模块、易康(现在叫Definiens)、ERDAS的Objective模块、PCI的FeatureObjeX(新收购)等。 表1为三大类分类方法的一个大概的对比。 类型基本原理影像的最小单元适用数据源缺陷 传统基于光谱的分类方 法地物的光谱信息 特征 单个的影像像元 中低分辨率多光谱 和高光谱影像 丰富的空间信息利 用率几乎为零 基于专家知识决策树根据光谱特征、空 间关系和其他上 下文关系归类像 元 单个的影像像元多源数据知识获取比较复杂 面向对象的分类方法几何信息、结构信 息以及光谱信息 一个个影像对象 中高分辨率多光谱 和全色影像 速度比较慢

遥感卫星影像数据信息提取.

北京揽宇方圆信息技术有限公司 、 遥感卫星影像数据信息提取 北京揽宇方圆信息技术有限公司中科院企业,卫星影像数据服务全国领先。业务包括遥感数据获取与分发、遥感数据产品深加工与处理。按照遥感卫星数据一星多用、多星组网、多网协同的发展思路,根据观测任务的技术特征和用户需求特征,重点发展光学卫星影像、雷达卫星影像、历史卫星影像三个系列,构建由 26个星座及三类专题卫星组成的遥感卫星系统,逐步形成高、中、低空间分辨率合理配置、多种观测技术优化组合的综合高效全球观测和数据获取能力形成卫星遥感数据全球接收与全球服务能力。 (1光学卫星影像系列。 面向国土资源、环境保护、防灾减灾、水利、农业、林业、统计、地震、测绘、交通、住房城乡建设、卫生等行业以及市场应用对中、高空间分辨率遥感数据的需求,提供 worldview1、worldview2、worldview3、worldview4、quickbird、geoeye、 ikonos、pleiades、spot1、spot2、spot3、spot4、spot5、spot6、spot7、landsat5(tm、 landsat(etm、 rapideye、alos、Kompsat 卫星、北京二号、资源三 号、高分一号、高分二号等高分辨率光学观测星座。围绕行业及市场应用对基础地理信息、土地利用、植被覆盖、矿产开发、精细农业、城镇建设、交通运输、水利设施、生态建设、环境保护、水土保持、灾害评估以及热点区域应急等高精度、高重访观测业务需求,发展极轨高分辨率光学卫星星座,实现全球范围内精细化观测的数据获取能力。像国产的中分辨率光学观测星座。围绕资源调查、环境监测、防灾减灾、碳源碳汇调查、地质调查、水资源管理、农情监测等对大幅宽、快速覆盖和综合观测需求,建设高、低轨道合理配置的中分辨率光学卫星星座,实现全球范围天级快速动态观测以及全国范围小时级观测。

遥感卫星影像数据特点

北京揽宇方圆信息技术有限公司 遥感卫星影像数据特点 北京揽宇方圆信息技术有限公司的卫星遥感影像以其快速、覆盖范围广、周期性等独特的优势,已成为现代遥感卫星影像数据源的最重要的数据源之一,为各行各业遥感数据应用提供充足数据支撑的重担。随着我国资源三号、高分系列等遥感卫星的成功发射,为用户提供0.3米卫星影像-30米卫星影像数据数据源打下了坚实的数据基础。然而随着各行各业的遥感用户工作范围、工作内容、技术手段等多个方面都新的要求,对我国卫星影像数据的获取和保障能力形成巨大的挑战,如何利用我国现有的和规划中的卫星资源,提升卫星影像获取和保障能力,以满足新型基础测绘的需要,成为北京揽宇方圆遥感卫星影像部门一项刻不容缓的工作。 遥感卫影像数据为遥感数据应用提供更加充足、更加高效、更加精准的数据支撑。 1)覆盖范围广。遥感影像数据不仅要覆盖我国陆地国土面积,还要能够覆盖海洋、周边乃至全球,覆盖范围急剧扩大,影像数据要实现全覆盖将具有一定的挑战性。 2)空间分辨率高。便新遥感卫星影像数据为常规工作内容,只有空间分辨率较高的影像数据才能满足基础测绘的精度要求。 3)时效性强。新型基础测绘服务内容由基本比例尺地图纸质图件向多样化数字产品、定制化制图服务以及地理国情监测、数字城市、应急测绘等个性化服务转变。而诸如此类的个性化服务对数据的时效性要求较高,尤其像应急测绘等服务,更是对影像数据提出了准实时化的要求。 4)覆盖频次要求高。200多颗遥感卫星影像对于重点区域动态更新的频率较高,对影像数据的覆盖频次具有较高要求,可以实现卫星影像对研究区域的定制化要求 5)区域性差异大。不同区域的基础测绘任务对影像数据的需求具有较大的差别,由于不同地区的地物变化频率、地物复杂程度、地域气候状况等要素的影响,使得该区域对影像数据的空间分辨率、时效性、覆盖频次等方面的需求也不尽相同。 为什么购买遥感卫星数据服务选择北京揽宇方圆 信誉超级好:多年的遥感卫星数据数据经营品牌公司,行业用户的实力选择,国家高新技术企业,国家A级纳税人企业,1800多个行业用户的选择。 遥感数据正版:卫星影像数据来源正规版权,提供正规的遥感数据查询服务。

遥感特征提取物具体步骤

1遥感影像通过亮度值或像元值的高低差异(反映地物的光谱信息)及空间变化(反映地物的空间信息)来表示不同地物的差异,这是区分不同影像地物的物理基础。目前影像都是基于数字,影像信息的提取方法的发展历程可分为如图1所示,目前这四类方法共存。 图1 影像信息提取发展阶段 非监督分类步骤监督分类步骤 2三大分类方法的对比 利用传统的遥感影像分类方法, 如监督分类或非监督分类, 易造成分类精度降低, 空间数据大量冗余以及资源的浪费,面向对象的分类方法正是为了处理这些问题而出现, 面向对象的分类方法是一种智能化的自 动影像分析方法,它的分析单元不再是单个像素,而是由若干个像素组成的像素群,即目标对象。面向对象的方法利用遥感影像结构信息和光谱信息, 并建立这些特征之间的层次关系的基础上, 对影像进行分类。面向对象分类方法的关键在于图像分割, 而图像分割方法多种多样, 如何选择科学合理的图像分割方法十分重要,实验证明多尺度图像分割方法综合了图像的光谱!形状!结构!纹理!相关布局等信息, 是目前较为理想的图像分割方法。(采用面向对象分类的方法,可使用专业遥感图像分类软件eCognition4.0) 3面向对象的分类方法

面向对象的技术流程图 3Envi_ENVI FX简介 全名叫“面向对象空间特征提取模块—Feature Extraction”,基于影像空间以及影像光谱特征,即面向对象,从高分辨率全色或者多光谱数据中提取信息,该模块可以提取各种特征地物如车辆、建筑、道路、桥、河流、湖泊以及田地等。该模块可以在操作过程中随时预览影像分割效果。该项技术对于高光谱数据有很好的处理效果,对全色数据一样适用。对于高分辨率全色数据,这种基于目标的提取方法能更好的提取各种具有特征类型的地物。一个目标物体是一个关于大小、光谱以及纹理(亮度、颜色等)的感兴趣区域。 应用于:1】从影像中尤其是大幅影像中查找和提取特征 2】添加新的矢量层到地理数据库 3】输出用于分析的分类影像 4】替代手工数字化过程 ENVI FX的操作可分为两个部分:发现对象(Find Object)和特征提取(Extract features),如图所示

遥感影像信息提取与分析_沈占锋

计算机世界/2006年/7月/31日/第B15版 技术专题 Taries软件主要应用于对高分辨率遥感影像的各种信息的处理、提取与分析,是具有自主知识产权的软件产品。 遥感影像信息提取与分析 沈占锋 近年来,一系列高分辨率卫星的相继上天,高分辨率卫星遥感的应用也因此成为可能,也凸现出遥感影像数据处理的重要性日益显现。遥感影像数据处理的主要内容就是对遥感数据(主要是高分辨率遥感影像数据)进行自动(半自动)图像处理分析,从而获取人们需要的信息。 Taries软件是具有自主知识产权的软件产品,由中科院遥感所国家遥感应用工程技术研究中心下属的空间信息关键技术研发部开发。Taries软件主要应用于对高分辨率遥感影像的各种信息的处理、提取与分析,其功能包括影像的预处理、影像分割、影像分类、特征提取与表达、特征分析、目标识别等。它是集矢量和栅格于一体化的软件系统。 Taries主要功能 1. 影像处理 (1)采用几何精纠正方法:建立基于空间投影理论与有限控制点的全局自适应方法,并建立基于控制点、线、面特征的局部自适应相结合的影像几何精纠正模型。 (2)实现多源遥感影像信息的特征级融合: 在像元级、高精度的多源遥感信息分析技术基础上,发展了各种特征估计器和融合评判规则,建立特征级的多源遥感信息融合的方法以及相应的算法。 2. 影像信息提取 (1)在复杂环境中的目标信息增强: 采用具有空间自适应能力的目标特征的信息增强模型与方法,特别是弱目标信息的增强方法,并对无关背景信息进行抑制。 (2)高分辨率影像分割: 基于空间特征(包括纹理特征、形状特征和动态特征)以及高维统计特征,采用面向特征的高分辨率影像分割技术(如基于模糊集理论、EM模型、Markov模型、MCMC模型、小波分析等)。 (3)基于智能计算模型的目标特征提取: 基于神经网络、支撑向量机等智能计算模型,研究和发展针对目标的纹理特征、结构特征的提取方法,并实现相应算法。 (4)目标识别与提取系统原型: 采用组件技术,研制开发目标识别与提取软件系统原型,包括影像精处理、目标单元分割与特征提取、目标识别等模块。 3. 矢量数据显示、处理与分析 (1)兼容ArcGIS SHP等矢量数据存储格式,能够采用系统的矢栅一体化数据模型对相应的矢量数据进行读取与显示。 (2)基于底层数据模型,能够实现基于Taries软件的矢量数据的修改功能,包括基本对象(点、线、面)的增、删、改等操作。 (3)基于相应的矢量数据建立拓扑关系,并在此基础上进行相应的空间分析功能(如最优路径查询分析等)。 (4)具有常规的矢量数据显示软件的基本功能,并可在此基础开发进一步的应用(如移动目标定位与车辆跟踪系统等)。 关键技术

遥感成像原理与遥感图像特征

第三章遥感成像原理与遥感图像特征 目的与要求:掌握可见光、近红外、热红外和SAR成像机理,遥感器的类型及其特性对遥感影像的影响,评价遥感影像的主要指标等。 重点及难点:遥感器与遥感成像特性,评价遥感影像的主要指标;遥感成像机理。教学法:讲授法、演示法 教学过程: 第一节传感器 一、传感器的定义和功能 传感器是收集、探测、记录地物电磁波辐射信息的工具。 它的性能决定遥感的能力,即传感器对电磁波段的响应能力、传感器的空间分辨率及图像的几何特征、传感器获取地物信息量的大小和可靠程度。 二、传感器的分类 按工作方式分为: 主动方式传感器:侧视雷达、激光雷达、微波辐射计。 被动方式传感器:航空摄影机、多光谱扫描仪(MSS)、TM、ETM、HRV、红外扫描仪等。 三、传感器的组成 收集器:收集地物的辐射能量。 探测器:将收集的辐射能转变成化学能或电能。 处理器:将探测后的化学能或电能等信号进行处理。 输出器:将获取的数据输出。 四、传感器的工作原理 收集、量测和记录来自地面目标地物的电磁波信息的仪器,是遥感技术的核心部分。 ?根据传感器的工作方式分为:主动式和被动式两种。 主动式:人工辐射源向目标物发射辐射能量,然后接收目标物反射回来的能量,如雷达。 被动式:接收地物反射的太阳辐射或地物本身的热辐射能量,如摄影机、多光谱扫描仪(MSS、TM、ETM、HRV)。 ?传感器按照记录方式 1)非成像方式:探测到地物辐射强度,以数字或者曲线图形表示。 如:辐射计、雷达高度计、散射计、激光高度计等。 2)成像方式:地物辐射(反射、发射或两个兼有)能量的强度用图象方式表示。如:摄影机、扫描仪、成像雷达。 五、摄影型传感器 1、航空摄影机:是空中对地面拍摄像片的仪 器,它通过光学系统采用感光材料记录地物 的反射光谱能量。记录的波长范围以可见光~ 近红外为主。 2、成像原理:由于地物各部分反射的光线强 度不同,使感光材料上感光程度不同,形成 各部分的色调不同所致。 涉及的概念

第四章 遥感图像的特征

第四章遥感图像的特征 一空间分辨率 二光谱分辨率 三时间分辨率 四辐射分辨率 五遥感系统的信息容量 一空间分辨率 空间分辨率(s p a t i a l r e s o l u t i o n),又称地面分辨率 ●前者是针对传感器或图像而言的,指图像上能够详细区分的最小单元的尺寸 或大小; ●后者是针对地面而言,指可以识别的最小地面距离或最小目标物的大小。 空间分辨率的三种表示法: (1)象元(p i x e l) (2)线对数 (3)瞬时视场 空间分辨率的三种表示法: (1)象元(p i x e l),指瞬时视域内所对应的地面面积,即与一个象元大小相当的地面尺寸,单位为米(m)。 如L a n d s a t T M一个象元相当地面28.5×28.5m的范围,简称空间分辨率30m……。 象元是扫描影像的基本单元,是成像过程中或用计算机处理时的基本采样点。 (2)线对数(L i n e P a i r s),对于摄影系统而言,影像最小单元的确定往往通过l毫米间隔内包含的线对数,单位为线对/毫米(1/m m)。 所谓线对指一对同等大小的明暗条纹或规则间隔的明暗条对 (3)瞬时视场(I F O V),指遥感器内单个探测元件的受光角度或观测视野,单位为毫弧度(m r a d)。

I F O V越小,最小可分辨单元(可分像素)越小,空间分辨率越高。 一个瞬时视场内的信息,表示一个象元 遥感数据的概括能力 地面目标是个多维的真实模型,是个无限、连续的信息源(时空尺度上);遥感数据是对地面信息源有限化、离散化的二维平面记录。 像元的大小反映了离散化程度。 从地面原型到遥感信息,即把地面信息有限化、离散化过程必然要损失部分信息,这本身就是一种概括能力。其概括程度是随着空间分辨率的增大而增加的。这种概括能力对于宏观概念的建立是有意义的 几何特性 每张遥感图像与所表示的地表景观特征之间有特定的几何关系。这种几何关系是由遥感仪器的设计、特定的观测条件、地形起伏和其它因素决定的。 地面目标均有其一定的空间分布特征(位置、形状、大小、相互关系)。 从地面原型经遥感过程转为遥感信息后,受大气传输效应和传感器成像特征的影响,这些地面目标的空间特征被部分歪曲,发生变形 全景摄影图像的几何畸变 常规象片(A)与扫描图象(B)几何畸变比较 二光谱分辨率 光谱分辨率——指传感器在接收目标辐射的波谱时能分辨的最小波长间隔。 ●决定了传感器所选用的波段数量的多少、各波段的波长位置、及波 长间隔的大小 光谱分辨率越高,专题研究的针对性越强,对物体的识别精度越高,遥感应用分析的效果也就越好。 但是,多波段信息直接地综合解译是较困难的,而多波段的数据分析,可以改善识别和提取信息特征的概率和精度

遥感图像信息提取方法综述

遥感图像信息提取方法综述 遥感图像分析 遥感实际上是通过接收(包括主动接收和被动接收方式)探测目标物电磁辐射信息的强弱来表征的,它可以转化为图像的形式以相片或数字图像表现。多波段影像是用多波段遥感器对同一目标(或地区)一次同步摄影或扫描获得的若干幅波段不同的影像。 在遥感影像处理分析过程中,可供利用的影像特征包括:光谱特征、空间特征、极化特征和时间特性。在影像要素中,除色调/彩色与物体的波谱特征有直接的关系外,其余大多与物体的空间特征有关。像元的色调/彩色或波谱特征是最基本的影像要素,如果物体之间或物体与背景之间没有色调/彩色上的差异的话,他们的鉴别就无从说起。其次的影像要素有大小、形状和纹理,它们是构成某种物体或现象的元色调/彩色在空间(即影像)上分布的产物。物体的大小与影像比例尺密切相关;物体影像的形状是物体固有的属性;而纹理则是一组影像中的色调/彩色变化重复出现的产物,一般会给人以影像粗糙或平滑的视觉印象,在区分不同物体和现象时起重要作用。第三级影像要素包括图形、高度和阴影三者,图形往往是一些人工和自然现象所特有的影像特征。 1、遥感信息提取方法分类 常用的遥感信息提取的方法有两大类:一是目视解译,二是计算机信息提取。 1.1目视解译 目视解译是指利用图像的影像特征(色调或色彩,即波谱特征)和空间特征(形状、大小、阴影、纹理、图形、位置和布局),与多种非遥感信息资料(如地形图、各种专题图)组合,运用其相关规律,进行由此及彼、由表及里、去伪存真的综合分析和逻辑推理的思维过程。早期的目视解译多是纯人工在相片上解译,后来发展为人机交互方式,并应用一系列图像处理方法进行影像的增强,提高影像的视觉效果后在计算机屏幕上解译。 1)遥感影像目视解译原则 遥感影像目视解译的原则是先“宏观”后“微观”;先“整体”后“局部”;先“已知”后“未知”;先“易”后“难”等。一般判读顺序为,在中小比例尺像片上通常首先判读水系,确定水系的位置和流向,再根据水系确定分水岭的位置,区分流域范围,然后再判读大片农田的位置、居民点的分布和交通道路。在此基础上,再进行地质、地貌等专门要素的判读。 2)遥感影像目视解译方法 (1)总体观察 观察图像特征,分析图像对判读目的任务的可判读性和各判读目标间的内在联系。观察各种直接判读标志在图像上的反映,从而可以把图像分成大类别以及其他易于识别的地面特征。(2)对比分析 对比分析包括多波段、多时域图像、多类型图像的对比分析和各判读标志的对比分析。多波段图像对比有利于识别在某一波段图像上灰度相近但在其它波段图像上灰度差别较大的物体;多时域图像对比分析主要用于物体的变化繁衍情况监测;而多各个类型图像对比分析则包括不同成像方式、不同光源成像、不同比例尺图像等之间的对比。 各种直接判读标志之间的对比分析,可以识别标志相同(如色调、形状),而另一些标识不同(纹理、结构)的物体。对比分析可以增加不同物体在图像上的差别,以达到识别目的。(3)综合分析 综合分析主要应用间接判读标志、已有的判读资料、统计资料,对图像上表现得很不明显,或毫无表现的物体、现象进行判读。间接判读标志之间相互制约、相互依存。根据这一特点,可作更加深入细致的判读。如对已知判读为农作物的影像范围,按农作物与气候、地貌、土质的依赖关系,可以进一步区别出作物的种属;河口泥沙沉积的速度、数量与河流汇水区域

数字图像处理题库

一、基本题目 1. 加色图像的三基色是指:红 、 绿 、 蓝 2. HSI 模型中,H 表示色调(Hue),S 表示饱和度(Saturation), I 表示亮度(Intensity) 3. CMYK 模式的原色为青色(Cyan)、品红色(Magenta)、黄色(Yellow)和黑色 (Black )。 4. 常见的数字图像文件格式有:BMP 、JPEG 、GIF 、TIFF 、PNG 等 5. 图像按其亮度等级的不同,可以分成二值图像(只有黑白两种亮度等级)和灰度图像(有多种亮度等级)两种。 6. 数字图像对图像进行采集、量化后得到的。图像在空间上的离散化过程称为取样或抽样。被选取的点成为取样点、抽样点或样点,这些点也称为像素。 7. 数字图像显示质量的主要由空间分辨率和灰度分辨率两个因素决定。 8. 存储一幅大小为M ×N ,灰度级为2g 级的图像需要M ×N ×g (bit )大小的 存储空间。 9. 图像退化是图像形成、传输和记录的过程中,由于成像系统、传输介质和设备的不完善,而引起图像质量的下降。图像退化的典型表现为图像模糊、失真、噪声等。 10. 图像边缘是指图像中象素灰度值有阶跃变化或屋顶状变化的那些象素的集 合。我们常常利用灰度变换曲线的导数在边缘 取极值和零交叉的特点来进行图像的边缘检测。 11. 用函数b kr s +=来对图像象素进行拉伸变换,其中r 表示待变换图像象素灰 度值,若系数0,1>>b k ,则输出图像的象素灰度值范围被 拉伸 (拉伸或压缩),图像变 暗 (暗或者亮)。 12. 广义的图像处理包含三个层次:图像变换处理,图像分析,图像理解。 13. 图像按其色调不同,可分为无色调的灰度(黑白)图像和有色调的彩色图像 两种。 14. 图像的一般可以用多变量函数来表示(,,,,)I f x y z t λ= 15. 对每个取样点灰度值的离散化过程称为量化。量化等级越多(多 少),所得图像层次越丰富,灰度分辨率越高(高 低),质量越好,但数据量越大。 16. 频率域法是在图像的变换域(或频率域)上进行处理,增强我们感兴趣的频率分量,然后进行反变换,便得到增强了的图像。 17. 图像退化的典型表现为图像模糊、失真、噪声等,我们针对退化进行图像复 原的一般过程是:分析退化原因->建立退化模型->反向推演->恢复图像 18. 灰度直方图反映一幅图像中各灰度级象素出现的频率之间的关系,以灰度级

遥感提取特征点

遥感影像特征点提取

一、 基于Moravec 算子的特征点提取 1. Moravec 算子的原理及算法公式 该算子是通过逐像元量测与其邻元的灰度差,搜索相邻像元之间具有高反差的点,具体方法有以下几种。 (1)计算各像元的有利值,如图所示,在5×5的窗口内沿着图示四个方向分别计算相邻像元间灰度差之平方和V 1,V 2,V 3,及V 4,取其中最小值作为该像元的有利值: 其中: 式中, j i G ,代表像元j i P ,的灰度值,W 为以像元计的窗口大小,如图所示,n m W ,5,=为像元在整块影像中位置序号。 (2)给定一个阈值,确定待定点的有利点。如果有利值大于给定的阈值,则将该像元作为候选点。阈值一般为经验值。 (3)抑制局部非最大。在一定大小窗口内(例如5×5,7×7,,9×9像元等),将上一步所选的候选点与其周围的候选点比较,若该像元的有利非窗口中最大值,则去掉;否则,该像元被确定为特征点,这一步的目的在于避免纹理丰富的区域产生束点,用于抑制局部非最大的窗口大小取决于所需的有利点密度。 综上所述,Moravec 算子是在四个主要方向上选择具有最大—最小灰度方差的点作为特征点。 2. 基于MATLAB 的算法编程 clear all;close all;clc img=double(imread('1001.jpg')); [h w]=size(img); imshow(img,[]) imgn=zeros(h,w); n=4; for y=1+n:h-n for x=1+n:w-n sq=img(y-n:y+n,x-n:x+n); V=zeros(1,4); }V ,V ,V ,min{V 4321min =IV ∑+-=i j i j i G G V 21-,1,4)(∑++-=i j i j i G G V 21,1,3)(∑+-=i j i j i G G V 21,,2)(∑+-=i j i j i G G V 2,1,1)(;1,,-+-=k m k m i ;1,,-+-=k n k n j 。2/W k =

遥感影像判读

实习一卫星遥感影像目视解译 一、实习目的 目视判读是卫星图像应用的最基本方法,用计算机进行自动分类时,训练样本的选择以及自动分类决策等,也都需要目视判读作为基础。了解卫星遥感影像的波段特性以及对应的地物波谱特性;建立遥感影像解译标志,从影像中目视解译出耕地、林地、草地、水体、居民地、盐碱地、沼泽地等土地利用类型。二、原理与方法 原理 地物光谱特性(标题为小四,宋体,加粗) 在以遥感图像中识别地物和现象的属性及其研究它们之间的关系和演化变化规律时,必须首先了解和掌握地物的光谱特性,以及它们空间和时间特性的变化。不同地物在不同波段反射率存在着差异。因此,在不同波段的遥感图像上即呈现出不同的色调。同类地物的反射光谱是相似的,但随着该地物的内在差异而有所变化。这种变化是由于多种因素造成的,如物质成分、内部结构、表面光滑程度、颗粒大小、几何形状、风化程度、表面含水量及色泽等差别。这就是判读识别各种地物的基础和依据。 方法 (一)直接判定法 在卫星图像上直接判定一般是依据其色调标志和图型标志进行直接判定,色调(或色彩)标志在卫星图像直接判定中的重要性,对色调分析必须要结合具体的图形或图像特征,即“色”要附于一定的“形”上,色调才具有实际意义,才可能判定识别地物。 (二)对比分析法 对比分析法是对卫星图像不同波段、不同时相的图像进行对比分析,以 及与地面已知资料或实地进行对比。对比的目的在于建立卫星图像与实地地 物和现象的对应关系,总结判读经验,发现图像异常,以便从卫星图像上提 取更多信息,使判读成果更为准确可靠。 (三)逻辑推理法

基于卫星图像的特点判读时更多的是应用地学规律的相关分析和实际经验,进行逻辑推理法的判读,即借助各种地物和自然现象间内在联系,结合图像上表现出的特征,用专业知识的逻辑推理方法,判定某一地物和现象的存在及其属性。卫星图像的视域宽广,能显示较大区域的地物和现象的空间分布。根据地物和现象在自然界中固有的相互依存关系和规律,运用逻辑推理法,就能从易被人们忽视,或难于发现的潜在的或微小的图像差异中,寻找出识别地物的依据,从而提取更多有用的信息。 三、实习仪器与数据 计算机、ENVI和ARCVIEW GIS软件,TM4、3、2波段合成标准假彩色合成图像。 表1 TM 遥感影像的波段划分及其光谱效应 四、实习步骤 1、建立解译标志 指在遥感图像上能具体反映和判别地物和现象的影像特征。根据土地利

数字图像处理实验报告_图像边缘检测和特征提取

华南师范大学实验报告 一、实验目的 1、.掌握边缘检测的Matlab实现方法 2、了解Matlab区域操作函数的使用方法 3、了解图像分析和理解的基本方法 4、了解纹理特征提取的matlab实现方法 二、实验平台 计算机和Matlab软件环境 三、实验内容 1、图像边缘检测 2、图像纹理特征提取 四、实验原理 1、图像边缘检测 图像理解是图像处理的一个重要分支,它研究的是为完成某一任务需要从图像中提取哪些有用的信息,以及如何利用这些信息解释图像。边缘检测技术对于处理数字图像非常重要,因为边缘是所要提取目标和背景的分界线,提取出边缘才能将目标和背景区分开来。在图像中,边界表明一个特征区域的终结和另一个特征区域的开始,边界所分开区域的内部特征或属性是一致的,而不同的区域内部的特征或属性是不同的,边缘检测正是利用物体和背景在某种图像特性上的差异来实现的,这些差异包括灰度,颜色或者纹理特征。边缘检测实际上就是检测图像特征发生变化的位置。 由于噪声和模糊的存在,检测到的边界可能会变宽或在某些点处发生间断,因此,边界检测包括两个基本内容:首先抽取出反映灰度变化的边缘点,然后剔除某些边界点或填补边界间断点,并将这些边缘连接成完整的线。边缘检测的方法大多数是基于方向导数掩模求卷积的方法。 导数算子具有突出灰度变化的作用,对图像运用导数算子,灰度变化较大的点处算得的值比较高,因此可将这些导数值作为相应点的边界强度,通过设置门限的方法,提取边界点集。 一阶导数 f x ? ? 与 f y ? ? 是最简单的导数算子,它们分别求出了灰度在x和y方向上的变化率, 而方向α上的灰度变化率可以用下面式子计算:

数字图像处理课程设计之图像特征提取

河南农业大学《数字图像处理》 题目:图像特征提取 学院: 专业: 班级: 学号: 姓名: 指导教师: 成绩: 时间:年月日至年月日

一、目的与要求 图像特征提取的目的让计算机具有认识或者识别图像的能力,即图像识别。特征选择是图像识别中的一个关键问题。特征选择和提取的基本任务是如何从众多特征中找出最有效的特征。根据待识别的图像,通过计算产生一组原始特征,称之为特征形成。原始特征的数量很大,或者说原始样本处于一个高维空间中,通过映射或变换的方法可以将高维空间中的特征描述用低维空间的特征来描述,这个过程就叫特征提取。特征是一个数字图像中“有趣”的部分,它是许多计算机图像分析算法的起点。因此一个算法是否成功往往由它使用和定义的特征决定。因此特征提取最重要的一个特性是“可重复性”:同一场景的不同图像所提取的特征应该是相同的。 二、设计的内容 能对图像文件(进bmg、 jpg、 tiff、 gif等)进行打开、保存、另存、打印、退出等功能操作; (一)图像预处理功能: 数字图像的增强处理功能:空域中的点运算、直方图的均衡化、各种空间域平滑算法(如局部平滑滤波法、中值滤波等)。 (二)图像特征提取 区域图的面积、周长的统计;区域单元的个数统计等。 三、总体方案设计 (一)图像特征提取的算法 我们知道一幅图像可定义为一个二维函数f(x,y),这里x和y是空间坐标,而在任何一对空间坐标(x,y)上的幅值f称为该图像的强度或灰度。当x,y和幅值f 为有限的离散数值时,称该图像为数字图像。而图像的特征提取主要有以下几种方法:边界特征法,傅里叶形状描述符法,几何参数法,形状不变矩法等。 而区域的周长及面积的算法如下: (1)面积S:图像中的区域面积S可以用同一标记的区域内像素的个数总和来表示。

数字图像处理实验报告-图像边缘检测和特征提取

数字图像处理实验报告-图像边缘检测和特征提取

华南师范大学实验报告 一、实验目的 1、.掌握边缘检测的Matlab实现方法 2、了解Matlab区域操作函数的使用方法 3、了解图像分析和理解的基本方法 4、了解纹理特征提取的matlab实现方法 二、实验平台 计算机和Matlab软件环境 三、实验内容 1、图像边缘检测 2、图像纹理特征提取 四、实验原理 1、图像边缘检测 图像理解是图像处理的一个重要分支,它研究的是为完成某一任务需要从图像中提取哪些有用的信息,以及如何利用这些信息解释图像。边缘检测技术对于处理数字图像非常重要,因为边缘是所要提取目标和背景的分界线,提取出边缘才能将目标和背景区分开来。在图像中,边界表明一个特征区域的终结和另一个特征区域的开始,边界所分开区域的内部特征或属性是一致的,而不同的区域内部的特征或属性是不同的,

边缘检测正是利用物体和背景在某种图像特性上的差异来实现的,这些差异包括灰度,颜色或者纹理特征。边缘检测实际上就是检测图像特征发生变化的位置。 由于噪声和模糊的存在,检测到的边界可能 会变宽或在某些点处发生间断,因此,边界检测包括两个基本内容:首先抽取出反映灰度变化的边缘点,然后剔除某些边界点或填补边界间断点,并将这些边缘连接成完整的线。边缘检测的方法大多数是基于方向导数掩模求卷积的方法。 导数算子具有突出灰度变化的作用,对图像 运用导数算子,灰度变化较大的点处算得的值比较高,因此可将这些导数值作为相应点的边界强度,通过设置门限的方法,提取边界点集。 一阶导数f x ??与f y ??是最简单的导数算子,它们分别求出了灰度在x 和y 方向上的变化率,而方向α上的灰度变化率可以用下面式子计算: cos sin (cos sin )f f f G i j x y ααααα???=+=+??? 对于数字图像,应该采用差分运算代替求 导,相对应的一阶差分为: (,)(,)(1,) (,)(,)(,1) x y f i j f i j f i j f i j f i j f i j ?=--?=--

相关主题
文本预览
相关文档 最新文档