当前位置:文档之家› 湿陷性黄土地基处理论文

湿陷性黄土地基处理论文

湿陷性黄土地基处理论文
湿陷性黄土地基处理论文

湿陷性黄土地基的处理方法

前言

湿陷性黄土是我国一种主要的、分布较为广泛的区域性土,它主要分部于我国黄土高原上。湿陷性黄土是第四纪的一种沉积物,它以粉土颗粒为主,富含碳酸盐,具有大孔隙和垂直节理,以黄色为基本色调,具有湿陷性,故称为湿陷性黄土。

湿陷性黄土的最大特点是:在土的自重压力或土的附加压力与自重压力共同作用下,受水浸湿时将产生大量而急剧的附加下沉,这种现象称为湿陷,它与自重湿陷性黄土一般土受水浸湿时所表现的压缩性稍有增加的现象不同。由于各地区黄土形成时的自然条件差异较大,因此其湿陷性也有较大差别,有些湿陷性黄土受水浸湿后的土的自重压力下就产生湿陷,而另一些黄土受水浸湿后只有在土的自重压力和附加压力共同作用下产生湿陷。前者称为自重湿陷性黄土,后者称为非自重湿陷性黄土,一般将黄土开始湿陷时的相应压力称为湿陷起始压力,可看作黄土受水浸湿后的结构强度。当湿陷性黄土实际所受压力等于或大于土的湿陷起始压力时,土就开始产生湿陷。反之,如小于这一压力,则黄土只产生压缩变形,而不发生湿陷变形。

湿陷变形不同于压缩变形,通常压缩变形在荷载施加后立即产生,随着时间的增长而逐渐趋向稳定。对于大多数湿陷性黄土地基来说,(不包括饱和黄土和新近堆积的黄土),压缩变形在施工期间就能完成一大部分,竣工后三个月到半年即基本趋于稳定。而湿陷变形的特点是:变形量大,常常超过正常压缩变形的几倍甚至几十倍;发生快,一般在浸水1-3小时就开始湿陷。就一般的湿陷事故而言,往往在1-2天内就可能产生20-30cm的变形量,这种量大、速率快而又不均匀的变形往往使建筑物发生严重变形甚至破坏。而湿陷的出现完全取决于受水浸湿的机率,有的建筑物在施工期间即产生湿陷事故,而有的则在几年甚至几十年后才出现湿陷事故。

湿陷性黄土湿陷变形的主要指标:湿陷系数,湿陷的起始压力和湿陷的起始含水量,其中以湿陷系数最为重要。湿陷系数是单位厚度土样在土自重压力或自重压力与附加压力共同作用下浸水所产生的湿陷量。它的大小反映了黄土对水的敏感程度,湿陷系数越大,表示土受水浸湿后的湿陷量越大,因而对建筑物

的危害越大,反之,则小。

1 换填垫层法

1.1 概述

随着人们对建筑物使用要求的发展和建筑技术的进步,重型工业建筑、多层、高层超高层民用和高速公路以及公共建筑日趋增多,且建筑物的荷载越来越大,当天然地基已不能满足支承上部荷载和控制建筑物变形时,必须对地基进行加固,也就是把建筑物支承在经过人工处理的地基上,这种地基称为人工地基。人工地基从处理深度上可分为浅层处理和深层处理。一般认为地基浅层处理的范围大致在地面以下5m深度以内。地基浅层处理与深层处理相比,一般使用比较简便的工艺技术和施工设备,耗费较少量的材料,以下所介绍的换填垫层法就是量大面广,简单、快速和经济的处理方法。

1.2 加固原理

换填垫层法适用于浅层软弱地基及不均匀地基的处理,应根据建筑体型、结构特点、荷载性质、岩土工程条件、施工机械设备及填料性质和来源等进行综合分析,进行换填垫层的设计和选择施工方法。该法是将基础底面以下一定深度范围内的软弱土层挖去,然后以质地坚硬、强度较高、性能稳定、具有抗侵蚀性的填料分层填充,并同时以人工或机械方法分层压、夯、振动,使之达到要求的密实度,成为良好的人工地基。

垫层可以选用的填料有砂石(包括碎石、卵石、圆砾、砾砂、粗砂、中砂或石屑,应级配良好,不含植物残体、垃圾等杂质)、粉质粘土(用于湿陷性黄土的粉质粘土垫层,土料中不得夹有砖、瓦和石块)、灰土(土料宜用粉质粘土,石灰用新鲜的消石灰,其颗粒不得大于5㎜,体积配合比宜为2:8或3:7)、粉煤灰、矿渣(指高炉重矿渣,可分为分级矿渣、混合矿渣及原状矿渣)、其他工业废渣(要求质地坚硬、性能稳定、无腐蚀性和放射性危害)、土工合成材料等。

经该方法处理过的人工地基或垫层,可以把上部荷载扩散到下面的下卧层,以满足上部建筑所需要的地基承载力和减少沉降量的要求。当垫层下面有较软土层时,也可以加速软弱土层的排水固结和强度的提高。此法用于湿陷性黄土

地基可以消除地基的湿陷性。

1.3 设计计算

垫层的设计不但要求满足建筑物对地基变形及稳定性的要求,而且也应符合经济合理的原则。垫层设计的主要内容是确定断面的合理厚度和宽度。

(1) 垫层厚度的确定

垫层厚度一般根据垫层底面处土的自重应力和附加应力之和不大于同一标高处软弱土层的允许承载力。其表达式如下:

z cz az p p f +≤

式中 z p ——相应于荷载效应标准组合时,垫层底面处的附加压力值(kPa );

cz p ——垫层底面处土的自重压力值(kPa );

az f ——垫层底面处经深度修正后的地基承载力特征值(kPa ); 垫层底面处的附加压力值可按下式计算:

条形基础 ()2k c z b p p p b ztg θ

-=+ 矩形基础 ()(2)(2)k c z bl p p p b ztg l ztg θθ-=

++ 式中 b —— 矩形基础或条形基础底面的宽度(m );

l —— 矩形基础底面的长度(m );

k p —— 相应与荷载效应标准组合时,基础底面处的平均压力值(kPa );

c p —— 基础地面处土的自重压力值(kPa );

z —— 基础底面下垫层的厚度(m );

θ—— 垫层压力扩散角(°) 宜通过

试验确定,当无试验资料时,可按表1.1采用。

表1.1

均取θ=0°,必要时,宜由试验确定;

2 当0.25<z/b<0.5时,θ值可内插求得。

(二)垫层宽度的确定

垫层的宽度应满足基础地面应力扩散的要求,可按下式计算或根据当地经验确定:

'2

b b ztgθ

≥+

式中'b——垫层底面宽度(m);

θ——压力扩散角,可按表1.1采用;当z/b<0.25时,仍按表中当z/b=0.25取值整片垫层时的宽度可根据施工的要求适当加宽。

垫层顶面每边宜超出基础底边不小于300mm,或从垫层底面两侧向上按当地开挖基坑经验的要求放坡。

1.4 施工工艺

垫层施工应根据不同的换填料选择施工机械。粉质粘土、灰土宜采用平碾、振动碾或羊足碾,中小型工程也可用蛙式夯、柴油夯。砂石等宜用振动碾。粉煤灰宜采用平碾、振动碾、平板振动器、蛙式夯。矿渣宜采用平板振动器或平碾,也可采用振动碾。其施工要点如下:

(1)垫层施工中关键是将填料加密到设计要求的密实度。

(2)铺筑前,应先行验槽。浮土应清除,边坡必须稳定,防止塌土。

(3)开挖基坑铺设垫层时,必须必须避免扰动软弱土层的表面,否则坑底土的结构在施工时遭到破坏后,其强度会显著降低,以致在建筑物荷重的作用下,将产生很大的附加沉降。因此,基坑开挖后应及时回填,不应暴露过久或浸水,并防止践踏基坑。

(4)垫层底面应铺设在同一标高。

(5)捣实垫层时,应注意不要破坏基坑底面和侧面土的强度。

2 重锤表层夯实法

2.1 概述

我国于20世纪50~60年代中期,在西北、华北等地区,广泛采用重锤表

层夯实法处理湿陷性黄土地基,建造了大量的工业与民用建筑物,许多工程实例说明,经重锤表层夯实处理的地基,没有发生严重湿

陷事故,轻微湿陷事故也罕见。例如: (1)河北保定某厂,地基采用重锤

表层夯实后,在使用期间,建筑物地基曾经受洪水浸泡,没有发生湿陷事故; (2)河南三门峡印染厂的漂染车间,生产大量用水,地面直接受水浸湿,该车间地基属于受水浸湿可能性大,湿陷性黄土层厚度为14m,按基础下5m 计算的分级湿陷量为

27. 9cm,地基采用重锤表层夯实,消除湿陷性的土层厚度为1. 75m,该车间于1965年建成投产以来,地基未发生湿陷事故,建筑物沉降最大值为5cm,一般为1~3cm,使用正常。

2.2 加固原理

重锤表层夯实是在基坑内的基础底面标高以下待夯实的天然土层上进

行的。它与土垫层法相比,可少挖土方工程量,而且不需要回填,其夯实土层与土垫层的作用基本相同。

重锤表层夯实加固原理是将18~30KN 的重锤提高到4~5m 后自由落下,并如此重复夯打,使土的密度增大,土的物理力学性质改善,以减少或消除地基的变形。

在重锤夯实区域附近有建筑物以及正在进行砌筑工程或浇筑混凝土时,应注意防止建筑物、砌体和混凝土因受振动而产生裂缝,应采取适当的措施。

2.3 设计计算

(一)确定基坑底面以上预留土层的厚度

'

1e e S hk e

-=+ 式中 e ——在有效夯实深度内地基土夯实前的平均孔隙比;

'e ——在有效夯实深度内地基土夯实后的平均孔隙比,一般为夯实前的55~65%;

h ——有效夯实深度,m ;

k ——经验系数,一般为1.5~2.0。

(二)确定基坑底面宽度

采用重锤表层夯实地基时,确定基坑底面的宽度,除应考虑基底应力扩散宽度外,同时还应考虑施工特点,防止基坑底面因夯实宽度不足,使地基土产生侧向挤出而降低处理的效果。为此,基坑底面的夯实宽度可按下式确定:

0.82B b h C =++

式中 B ——基坑底面的夯实宽度,m ;

b ——基坑底面的宽度,m ;

h ——有效夯实深度,一般为1.2~1.75m ;

C ——考虑靠近坑壁边角处不便夯打而增设的附加宽度,一般为0.1~0.15m 。

(三)含水量的控制

地基土的含水量是影响夯实质量的重要因素。在最优含水量下进行夯

打,土粒间的阻力较小,颗粒易于滑动,能量可以有效的向纵深方向传递,下部土层较易夯实。因此,每平方米基坑的加水量可按下式计算:

'10(1)OP Q hk γ

ωωω=-+

式中 Q ——每平方米基坑的加水量,3m ;

'OP

ω——土的最优含水量,以小数计 ω——夯实前地基土的平均天然含水量,以小数计;

γ——夯实前地基土的平均天然容重,3/KN m 。

其它符号同前。

2.4 施工工艺

2.4.1 机械设备

重锤表层夯实的主要机械设备有重锤和起重机械(包括钢丝绳、吊钩等)。

夯锤可用金属制作或在现场用C30钢筋混凝土预制。为了使夯锤落下时

保持平稳和垂直,锤的重心应尽量接近锤底,锤底面积宜为圆形。地基夯实的质量除与锤的质量、落距、锤底面积及其静压力有外,同时还与地基土的含水量关系密切。工程实践表明,含水量小于10% ,土呈坚硬状态,表层土容易夯松,深部土层不易夯实,有效夯实厚度小:土的含水量太大,夯击时呈软塑状态,容易出现“橡皮

土”;处于或接近最优含水量的土,夯击时土粒间阻力较小,土颗粒易于互相挤密,夯击能量向纵深方向传递,在相应的夯击次数下,夯击总下沉量和有效夯实厚度均大。

夯锤质量、落距、锤底面积、锤底静压力等参数以及夯击次数及夯实效果均可在现场通过试夯确定,也可根据土性指标和设计所要求的有效夯实厚度确定。

起重机械根据当地条件可采用履带式起重机、打桩机、装有摩擦绞车的挖土机等。也可以采用自治桅杆式起重机或龙门架。各种起重机械的上举高度要大于所要求的落距,其中能力一般大于锤重的3倍。在大面积范围内进行夯实时,使用全回转起重夯实效果较好。

2.4.2 试夯

在重锤表层夯实正式施工前,一般应在建筑地段附近先进行试夯,以查明表层夯实的效果,选定夯锤质量、底面直径和落距,确定最后下沉量以及相应的最小夯击遍数和总下沉量。试夯点数量应根据场地土的性质决定。若土基本均匀,试夯工作可只在一处进行,否则,应在不同地段分别进行。

3 强夯法

3.1 概述

重锤夯实是一种古老的深层加固土的方法,它可以追溯到1936年首次由普洛克提出的击实原理,1957年英格兰的道路研究室第一次将这一技术应用到土的深层压实上。直至20世纪70年代初,在法国梅纳公司的开创下,强夯法这种深层动力夯实技术才真正用于土的加固实践中。

强夯处理技术广泛应用于碎石、砂土、低饱和度的粉土与黏性土、湿陷性黄土、杂填土、素填土等地基。对于饱和度较高的黏土和淤泥

质地基通过辅以置换等措施也可以取得一定的加固效果,如形成硬壳层,可作为工业项目的厂区、道路、一般建筑物地基。关于高饱和度黏土和黏性土等地基,采用夯坑内回填块石,碎石或其它粒径材料进行强夯置换亦取得了一定效果。

强夯法具有以下特点:

(1)处理范围广泛。

(2)加固效果显著。

(3)节省材料,降低工程造价。

(4)施工速度快,工期短。

(5)施工机具简单。

3.2 加固原理

强夯法的加固原理是利用夯锤自由落下产生的冲击波使地基密实。这种冲击引起的振动在土中以波的形式向地下传播。这种振动波可分为体波和面波两大类。体波又包括压缩波和剪切波,面波如瑞利波、乐夫波。

强夯理论认为:压缩波大部分通过液相运动,使孔隙水压力增大,同时使土粒错位,土体骨架解散,而随后的剪切波使土颗粒处于更加密实的状态。

现在一般的看法是,地基经强夯后,其强度提高过程可分为:夯击能量转化,同时伴随强制压缩或振密;土体液化或土体结构破坏;排水固结压密;触变恢复并伴随固结压密。

3.3 设计计算

强夯参数包括:加固深度、单点夯击能、最佳夯击能、夯击遍数、相邻两次夯击遍数的间歇时间、加固范围和夯点布置等。

(一)加固深度

Menard提出的加固影响深度公式为

D=

式中D——加固影响深度,m;

W——锤重,KN;

H——落距,m;

α——系数,其值为0.5~1.0。

太原工业大学分析了16个试验资料后得出如下有效加固深度经验公式

=++

D WH E

5.10220.00890.009361

式中E——单位面积夯击能,KJ。其它符号意义同上。

范维恒等总结了大家的成果后提出有效加固深度的修正公式为

D

式中K——修正系数,其变化范围一般为0.5~0.8。比如软土取0.5,黄土为0.34~0.5。

(二)单点夯击能

单点夯击能等于锤重乘以落距,一般根据加固土层的厚度以及选用吊机的大小。

目前,世界上最大的锤重2000KN,落距25m,其加固深度可达40m。我国所用的锤重为80~250KN,个别的达400KN,落距为8~25米。

(三)夯击遍数的确定

夯击遍数应根据地基土的性质确定,可采用点夯2~3遍,对于渗透性较差的细颗粒土,必要时夯击遍数可适当增加最后再以低能量满夯两遍,满夯可采用轻锤或低落距锤多次夯击,锤印搭接。

夯点的夯击次数,应按现场试夯得到的夯击次数和夯沉量关系曲线确定,并应同时满足下列条件:

(1)最后两击的平均夯沉量不宜大于下列数值:当单击夯击能小于4000KN·m时为50mm;当单击夯击能为4000~6000KN·m时为100mm;当单击夯击能大于6000KN·m时为200mm。

(2)夯坑周围地面不应发生过大的隆起。

(3)不因夯坑过深而发生提锤困难。

(四)加固范围

有的文献记述,加固范围比加固地基的长度L和宽度B各大出加固厚度H,即(L+H)×(B+H) .

3.4施工工艺

3.4.1 强夯法施工要点:

①强夯施工采用带有自动脱钩装置的履带式起重机或其他专用设备。采用履带式起重机时,可在臂杆端部设置辅助门架或采取其他安全措施,防止落锤时机架倾覆。夯锤重不小于10t,单点夯击能大于1200KN-m,其底面采用圆形,对粘性土,锤底面积在3~6m2。夯锤中对称设置若干个上下贯通的气孔。

②夯击点布置,按正方形或梅花形网格排列。其间距可根据击坑的形状、孔隙水压力变化情况及构造物基础结构特点确定,一般为5~15m。按上列形式和间距布置的夯击点,依次夯击完成为第一遍。第二次选用已夯点间隙,依次补点夯击为第二遍,以下各遍均在中间补点,最后一遍锤印彼此搭接,表面平整。

③每一遍内各个夯点的夯击次数,按现场试夯得到的夯击次数与夯沉量关系曲线确定(一般为3~10次),并同时满足:

a、最后两击的平均夯沉量不大于50mm,当单击夯击能量较大时不大于100mm。

b、夯坑周围地面不发生过大的隆起。

c、不因夯坑过深而使起锤困难。

④夯击遍数一般为2~3遍,最后再以低能量满夯一遍。必要时可根据地基土的性质和工程要求适当增加夯击遍数。两遍之间的间歇时间,取决于孔隙水压力的消散,一般不少于7天。地下水位较低和地质条件较好的场地,可以连续夯击。

⑤强夯施工前,先清理、平整场地并查明场地范围内地下构造物和管线的位置及标高,采取必要的措施,防止因强夯施工造成损坏。

⑥强夯大面积施工前按下列顺序进行试夯:

a、根据设计文件提供的地质资料,在施工现场选取一个面积不小于20×20m、地质条件具有代表性的试验区。

b、在试区内进行详细的原位测试,取原状土样测定天然密度等有关数据。

c、选取合适的一组或多组强夯试验参数进行试夯。

d、检验强夯效果。可在最后一遍夯击完成7天以后进行原位测试和室内土工试验,并与强夯前的测试数据对比分析,按设计要求处理深度和标准对强夯加固效果进行判定。

e、当强夯效果不能满足要求时,补夯或调整参数再进行试验。

f、通过强夯前后的试验结果对比,确定正式施工采用的技术参数。

⑦强夯施工必须按试验确定并经监理工程师批准的技术参数进行,以夯击能、夯击遍数和各个夯点的夯击次数为施工控制数值,也可采用试夯确定的沉降量控制。夯击时落锤平稳,夯位准确,如错位或坑底倾斜过大,则用砂土将坑

底整平才能进行下一次夯击。

⑧施工过程中做好下列监测和记录工作:

a、开夯前检查锤重和落距,以保证单击夯击能量符合设计要求。

b、每遍夯击前对夯点放样进行复核。

c、检查每个夯点的夯击次数和每击的夯沉量

3.4.2 施工方法

①清理平整场地,测设路线中边线及平整后地面高程,测定原状土样的天然密度。

②放线布点,采用正三角形布设,并用白灰作出明显的标记。

③起重机就位,使夯锤对准夯点位置,并测设夯前锤顶高程。

④将夯锤起吊到预定高度,待夯锤脱钩自由下落后,放下吊钩,测量锤顶高程,若发现坑底倾斜而造成夯锤歪斜时,应及时将坑底整平。

⑤按设计规定及试夯测试结果控制夯击次数和标准。

⑥推土机推平夯坑,测量场地高程。

⑦在试夯得出的间歇时间后,按上述步骤逐次完成全部夯击遍数,最后用低能满夯,将表层松土夯实,并测量夯后场地高程。

3.4.3施工注意事项

①夯距不易过小,否则相邻夯击点的加固效应将在浅处叠加而形成硬层影响夯击能向深处传递,对于粘性土,如果夯距太近会使产生的裂隙又重新闭合,孔隙水难以逸出,达不到加固效果。

②落夯一定要平稳,夯位准确,若错位或坑底倾斜,要将坑底整平,再重新夯实。

③最后满拍夯时,夯痕应搭接1/2~1/3,以保证施工质量.

④强夯时一定要采用防振、隔振措施。

⑤为防止起重臂在较大仰角下突然释重而可能发生后倾,可在履带起重机的臂杆部设置辅助门架或其他安全措施,防止落锤机架倾覆。

3.4.4结语

强夯法处理湿陷性黄土综合性能好,加固效果显著,强夯变形沉降小,加固影响深度大,而且强夯后的路基不均匀沉降小;施工工艺简单;使用的设备

为工地常备简单设备,易于掌握操作规程,施工费用低。

4 土桩及灰土桩挤密法

4.1 概述

土桩及灰土桩挤密法是利用成孔时的侧向挤压作用,使桩间土得以挤密:随后将桩孔用素土或灰土分层夯填密实,前者称为土桩挤密法,后者称为灰土桩挤密法,其共同点是对土的侧向深层挤密加固。土桩或灰土桩挤密地基均属于人工复合地基,其上部荷载由桩体和桩间挤密土共同承担。土桩和灰土桩法具有原位处理、深层挤密和以土治土的他点,用于处理厚度较大的湿陷性黄土或填土地基时,可获得显著的技术经济效益,在我国西北和华北地区已广泛应用。

土桩和灰土桩法适用于处理地下水位以上的湿陷性黄土、素填土或杂填土地基。处理深度宜为5~15m。当以消除地基土湿陷性为主要目的时,宜选用土桩法,当以提高地基的承载力为主要目的时,宜选用灰土桩法。

4.2 加固原理

在湿陷性黄土地区多采用土桩挤密法。土桩挤密地基是由素土夯填的土桩和桩间挤密土体组合而成。桩孔内夯填的土料多为就近挖运的黄土类土,其土质及夯实的标准于桩间挤密土基本一致,因此它们的物理力学性质也无明显的差异。很显然,土桩挤密法的加固作用主要是增加土的密实度,降低土中孔隙率,从而达到消除地基湿陷性和提高水稳定性的工程效果。

土桩是一种柔性桩,不但桩孔部分夯填土要承受上部荷载,挤密后的桩间土也将分担很大一部分荷载。其主要特点是不需大挖大填,土方量少。

土(灰土)桩挤密法与夯实、碾压等竖向加密方法不同,属于横向加密土层。施工中当套管打入地层时,管周地基土受到了较大的水平向挤密作用,使管周围一定范围内的地基土的工程物理性质得到改善,其密实度增加、压缩性降低、湿陷性全部或部分消除。

4.3 设计计算

土桩挤密法和灰土桩挤密法处理地基时的面积,应大于基础或建筑物底层平面的面积,并应符合下列规定:

(1) 当采用局部处理时,超出基础底面的宽度:对非自重湿陷性黄土、杂填土和素填土等地基,每边不应小于基地宽度的0.25倍,并不应小于0.50m ;对自重湿陷性黄土地基,每边不应小于基底宽度的0.75倍,并不应小于1.00m 。

(2) 当采用整片处理时,超出建筑物外墙基础底面外缘所的宽度,每边不宜小于处理土层厚度的1/2,并不应小于2m 。

(一)桩孔直径

桩孔直径宜为300~450mm ,并可根据所选用的成孔设备或成孔方法确

定。桩孔宜按三角形布置,桩孔间的中心距离,可为桩孔直径的2.0~2.5倍,也可按下式估算:

0.95s =式中 s ——桩孔之间的中心距离,m ;

d ——桩孔直径,m ; max d ρ——桩间土的最大干密度,3/t m ;

d ρ——地基处理前土的平均干密度,3/t m ;

c η——桩土经过成孔挤密后的平均挤密系数,

对重要的工程不宜小于0.93,对一般工程不应小于0.90。

(二) 桩间土的平均挤密系数c η按下式确定:

1max

d c d ρηρ= 式中 1d ρ——在成孔挤密深度内,桩间土的平均干密度(3/t m ),平均试样不应少于6组。

(三)桩孔数量可按下式估算:

e

A n A = 式中 n ——桩孔的数量;

A ——拟处理地基的面积(㎡);

e A ——1根土或灰土挤密桩所承担的处理地基面积(㎡)

,即 24e e d A π=;

e d ——1根桩分担的处理地基面积的等效圆直径(m )

; 桩孔按等边三角形布置 1.05e d s =;

桩孔按正方形布置 1.13e d s =。

(四)桩孔深度

挤密桩孔深度主要取决于湿陷性黄土层的厚度、性质以及成孔机械的性能。最小不得小于3m ,因为深度过小使用土桩挤密不经济。我国目前生产的成孔机械能达到的最大深度是15m ,但随着我国建筑机械性能的进步和施工工艺的改善,成孔深度还可以增加。

4.4 施工工艺

挤密土桩的施工程序位桩孔定位、桩孔成型、桩孔回填夯实。

(一) 桩孔定位

桩孔定位要求偏差不超过5cm 。可用小木桩或粗钢筋打入土中20cm ,拔出后在孔内浇少许石灰水即可。

(二) 桩孔成型

桩孔成型是影响挤密桩地基工程质量的技术关键,也是问题多、操作困难的一道工序。造孔的方法由沉管成孔法、爆扩成孔法和冲击挤密成孔法,本章不再赘述,详细请查看参考文献。

(三) 桩孔回填夯实

使用锤击沉管成孔法于桩孔造成之后,需将打桩机移走,并将土桩夯

实机就位在桩孔上,夯实锤对准桩孔。然后将含水量适中的拌合均匀并过筛的涂料,按要求依量填入桩孔中,夯实之后土桩即筑成。

5 振冲法

5.1 概述

为捣实大坝混凝土,发明了振捣器。后来在振捣器的基础上,Steuerman 构思了利用振动和压力水冲切原理的振冲器。1937年,Steuerman 供职的一家名叫Johann Keller 的德国施工公司首先制成了一台具有现代振冲器形式的雏形振冲器,用于处理柏林一幢建筑物的7.5米的松砂地基,结果将砂基的承载力提高了一倍,相对密度由原来的45%提高到了80%,取得了显著地加固效果。

我国应用振冲法始于1977年。由于大量工业民用建筑和水利、交通工程地基抗震加固的需要,这一方法得到了极大的推广。近年来,电力部北京勘测设计院研制了75kW大功率振冲器,1985年在四川省铜街子水电站工地用这一振冲器穿过厚度达8m的漂卵石夹砂层对下面的细砂进行振密,取得了良好的效果。随着振冲器的进一步发展,其使用也越来越普遍,开始用于湿陷性黄土地基的处理工程中。

5.2 加固原理

振冲法作为一种简单而有效的复合式地基处理加固方法而得到广泛的应用,其原理简单来说是一方面依靠振冲器的强力振动使饱和砂层发生液化,砂粒重新排列,孔隙减少,另一方面依靠振冲器的水平振动力,在加回填料情况下还通过填料使砂层挤压加密,所以这一方法称为振冲密实法。

振冲法加固的记得主要作用机理有以下几个方面:

(1)置换作用

振冲器借助本身的质量和强大的激振力,在高压水的配合下下沉造孔,在振冲孔内填入骨料,经振密,形成一根碎石桩,振冲碎石桩与原地基土共同作用,形成复合地基,可成倍地提高地基复合承载力,减少压缩变形量。

(2)振密、挤密作用

对于砂性土地基,振冲施工时,松散的砂性土在强大的高频振动力和水力作用下产生液化,砂颗粒重新排列致密,若同时在孔内填入粗骨料后,以强大的水平激振力将粗骨料挤入周围土中,使桩间土得以挤密,提高了地基的抗剪强度,使地基土物理、力学性质得以改善,使地基承载力提高,压缩性降低,抗液化性能同时得以改善。

(3)排水减压作用

振冲法加固软土地基时向振冲孔内填碎石或卵石等渗透性良好的粗骨料,在地基土中形成良好的人工竖向排水减压通道,一方面地基受荷后可加快地基土排水固结作用,另一方面可有效地消散和防止超孔隙水压力的增高,从而有效防止砂性土地基在地震作用时产生液化。

(4)砂基预震效应

在振冲法施工时,振动器以强大的激振力和高频振动喷水沉入地基途

中,使地基土在得到振密和挤密的同时获得强烈的预震,预震作用能显著地增强砂土地基的抗液化能力。

5.3 设计计算

(一)一般原则

砂层经用填料造桩挤密后,桩的承载能力比桩间砂土大,但因桩间砂土经振冲挤密后承载力也有很大的提高,常常桩间砂土本身已能满足设计要求的容许承载力。对有抗震要求的松砂地基,要根据砂的颗粒组成、起始密实程度、地下水位、建筑物的抗震设防烈度,计算振冲处理深度、布孔形式、间距合挤密标准。

(二)适用土质

本法主要适用于砂类土,从粉细砂到含砾粗砂,只要小于0.005mm的粘粒含量不超过10%,都可以得到显著的挤密效果;若粘粒含量大于30%,则挤密效果明显降低。

(三)处理范围

砂基振冲的范围如果没有抗液化要求,一般不超出或稍超出基底覆盖面积;但在地震区有抗液化要求,应在基础底面外缘每边放宽不小于5m。

(四)孔位布置和间距

振冲孔位布置常用等边三角形和正方形两种。其间距视砂土的颗粒组成、密实要求、振冲功率而定。当设计大面积砂层挤密处理时,振冲孔间距也可用于下式估算:

=

式中d——振冲孔间距(m);

α——系数,正方形布置为1,等边三角形布置为1.075;

V——单位桩长的平均填料量,一般为0.3~0.5㎡;

p

V——原地基为达到规定密实度单位体积所需的的填料量。

5.4 施工工艺

(一)施工机具

主要机具实振冲器、操作振冲器的吊机和水泵。振冲器的主要原理是

利用电机旋转一组偏心块产生一定频率和振幅的水平向振动。压力通过空心竖轴从振冲器下端喷口喷出。

(二)施工前的现场试验

现场试验的目的一方面是确定正是施工时采用的施工参数,如振冲孔间距、造孔制桩时间、控制电流、填料量等;另一方面是摸清处理效果,为加固设计提供可靠的依据。在试验中,很重要的两个问题是选择控制电流值和确定振冲孔间距。对大面积振冲施工的情况,应尽可能采用较高的控制电流和较大的间距,以减少孔数,加速施工进度。

6 桩基础

湿陷性黄土地区采用桩基础的目的,是将桩穿过湿陷性黄土层,落在其下坚实的非湿陷性土层中,以便安全支承从上部结构传来的荷载,如一旦地基受水浸湿,就可以完全避免湿陷的危害。按施工方法桩可以分为打入、钻孔和爆扩几种,下面分别叙述。

6.1打入预制桩

钢筋混凝土预制桩造价较高,但它的施工机械化程度高、施工速度快、承载力高,所以近几年在一些重要的工程中采用的较多。在湿陷性黄土层较厚或地下水位较高而建筑物的荷载又较大的情况下使用预制桩是特别合适的。

预制混凝土桩为国内使用最多的一种桩型,常用截面有普通混凝土方桩和预应力混凝土管桩两种。尤其是方型桩,生产制作运输堆放都比较方便。有的地区采用三角形截面的空心桩,此桩具有材料耗量的、重量轻、界面周边惯性矩较大的特点。打桩方法有锤击法和振动法等。

6.2 钻孔灌注桩

钻孔灌注桩是高层建筑常用的一种基础形式,它将上部结构的荷载传递至深层稳定的土层或岩层上去,以减少建筑物的不均匀沉降。它能适用于不同的场地和多种地层的施工,在工业与民用建筑及道路桥梁工程中得到普遍的应用。

钻孔灌注桩具有施工工艺和机具设备的多样性,但各种工艺和机具设备同样要受到施工场地的环境、地质条件的约束。工程实际中,时常出现因勘查未详细查明建筑场地岩土工程条件,设计选择不合适的持力层和施工中选择不合理的施工工艺、不合适的灌注混凝土方法、工作人员素质参差不齐、责任心不强而

造成的质量问题。

钻孔灌注桩为非挤土桩。根据成孔工艺可分为取土钻孔灌注桩、冲击钻孔灌注桩、泥浆循环护壁钻孔灌注桩。

6.3 爆扩桩基础

爆扩桩是先用钻机或大直径洛阳铲掏孔(也可用炸药爆扩)形成桩孔,然后在孔底安放炸药包,浇入部分混凝土,将炸药引爆后在桩底形成扩大头空腔,继续浇灌桩身混凝土而成为爆扩桩。爆扩桩施工方便,不需要复杂机具,土方量很少。由于桩段面积扩大,其承载能力可以比一般灌注桩提高1~2倍。

在湿陷性黄土地区采用爆扩桩与其他地区不同的是,应考虑桩基在受水浸湿后成在理的变化。在天然状态下,爆扩桩承载力是由桩周土的摩擦力和桩底扩大头下土的承载力两部分所组成,一般情况下,其承载力都较高。但地基受水浸湿后,摩擦力大部分消失;在自重湿陷性黄土地基上,还可以产生负摩擦力,因此在湿陷性黄土地区,决定爆扩桩承载力时,不应将桩周土的摩擦力考虑在内。

爆扩桩基础的设计包括该桩的设置深度、桩身和扩大头的直径以及桩位的布置。在湿陷性黄土地区,爆扩桩的成孔方法有药管法和药眼法两种。

7 砂石桩法

7.1 概述

碎石桩、砂桩和砂石桩总称为砂石桩,它是指利用振动或冲击形式,在软弱的地基成孔后,填入砂、砾石、卵石、碎石等材料并将其挤入土中,形成较大直径的砂石体而构成的密实桩体。砂石桩最早于1835年有法国工程师设计,用于在海湾沉积软土上建造兵工厂的地基工程中。在此后很长时间内由于缺乏先进的施工工艺和施工设备,没有较适用的设计方法而发展缓慢。二战后,此方法在苏联得到广泛应用并取得较大成就。初期,砂石桩填料主要为砂、石,施工方法采用冲孔填砂捣实法,以后发展了振动水冲施工法,本世纪50年代后期出现了振动式和锤击式施工方法。1958年日本开始采用振动重复压拔管施工方法,这一方法的采用,使砂石桩地基处理技术发展到一个新的水平,使施工质量、施工效率和处理深度都有显著提高。

7.2 加固原理

砂石桩可用于处理松散砂土、粉土、粘性土、素填土及杂填土地基,该方法处理可液化地基是很有效的。其工作机理主要靠桩的挤密和施工中的振动作用使桩周围土的密实度增大,从而使地基的承载力提高,压缩性降低。因软弱的地基土的渗透性较小,灵敏度较大,成桩过程中产生的超孔隙水压力不能迅速消散,挤密效果较差,而且因扰动而破坏了土的天然结构,降低了土的抗剪强度。根据国外的经验,在软弱粘性土中形成砂石桩复合地基后,再对其进行加载预压,以提高地基强度和整体稳定性,并减少工后沉降。国内的实践也表明,如不进行预压,砂石桩施工后的地基在荷载作用下仍有较大的沉降变形,对沉降要求较严格的建筑物难以满足要求。因此,采用砂石桩处理饱和软弱粘性土地基应根据工程对象区别对待,通过现场试验来确定地基处理方法。地基土的土质不同,对砂石桩的作用原理也不尽相同。在松散砂土和粉土地基中,其主要作用有挤密作用、振密作用及抗液化作用;而对于粘性土地基,其作用是置换作用和排水作用。

7.3 设计计算

该方法的设计内容包括以下:

(1)桩的平面布置。可采用三角形或正方形。

(2)桩直径的大小。一般可采用300~800mm。

(3)砂石桩的间距。对粉土和砂土地基,不宜大于砂石桩直径的4.5倍;对粘性土地基不宜大于砂石桩直径的3倍。

(4)砂石桩的长度。取决于需加固处理的软土层的厚度,通常根据地基的稳定和变形验算确定。

(5)砂石桩处理范围应大于基底范围,处理宽度宜在基础外缘扩大1~3排桩。

(6)砂石桩孔内填料量应通过现场试验确定,估算时可按设计桩孔体积乘以充盈系数确定。

(7)桩体材料可用碎石、卵石、角砾、圆砾、砾砂、粗砂、中砂或石屑等硬质材料,含泥量不得大于5%,最大粒径不宜大于50mm。

(8)砂石顶部宜铺设一层厚度为300~500mm的砂石垫层。

(9)砂石桩复合地基的承载力特征值,应通过现场复合地基载荷试验确定。

(10)砂石桩处理地基的变形时,应按规范中的规定进行计算。

7.4 施工要点

砂石桩机包括桩基架、桩管及桩尖、提升设备、挤密装置、上料设备及监测装置等部分。施工前应在现场进行成桩试验,以此检验设计要求和确定施工工艺及施工控制要求,包括砂石量、提升速度、挤压时间等。

以挤密桩为主的砂石桩施工时,应间隔进行,并宜由外侧向中间推进。对粘性土地基,砂石桩主要起置换作用,为了保证设计的置换率,宜从中间向外围或隔排施工。在既有建筑附近施工时,为了减少对临近既有建筑物的振动影响,应背离建筑物方向进行。

8 水泥土搅拌法

8.1 概述

我国地域广大,有各种成因的软土层,其分布范围广、土层厚度大。这类软土的特点是含水量高、孔隙比大、抗剪强度低、渗透性差、沉降稳定时间长。近年来根据工业布局和城市发展规划,经常需要在软土地基上进行建筑施工。由于软土地基不良的建筑性能,因此需要进行人工加固。软土就地加固是基于最大限度的利用原土,经过适当的改性后做为地基,以承受相应的外力。

8.2 加固原理

水泥土搅拌法是利用水泥、石灰等材料做为固化剂,用过特制的搅拌机械,在地基深处就地将软土和固化剂强制搅拌,利用固化剂和土之间所产生的一系列物理化学反应,时软土硬结成具有整体性、水稳定性和一定强度的水泥加固土,进而提高地基土强度和增大变形模量。

在软土地基中搅拌掺入各类固化剂,使软土固化,是一种通用的地基加固方法。常用的固化剂有:

(1)水泥类:普通硅酸盐水泥、矿渣水泥;

(2)石灰类:生石灰、消石灰;

(3)沥青类:地沥青、沥青乳剂;

(4)化学材料类:水玻璃、氯化钙、尿素树脂、丙烯酸盐等。

水泥土搅拌法的基本原理是是基于水泥土的物理化学反应过程。它与混

【免费下载】湿陷性黄土地基处理方法

湿陷性黄土地基处理方法研究 1、概述 定义:黄土受水浸湿后,在上覆土层自重应力作用下发生湿陷的称自重湿陷性黄土;若在自重应力作用下不发生湿陷,而需在自重和外荷共同作用下才发生湿陷的称为非自重湿陷性黄土。 湿陷性黄土是一种十分特殊的土质,俗称大孔土,主要分布于我国陕甘宁等缺水少雨的干旱地区。属砂壤土的范畴,砂壤土的粘土含量为12.50%~25%,壤土的粘土含量为25%~37.50%,而湿陷性黄土的颗粒组成中粘粒的含量为8%~26%,属于砂壤土,但其性质与砂壤土又有所不同:①在天然状态下具有肉眼能看见的大孔隙,孔隙比一般大于1,并常有由于生物作用所形成的管状 孔隙,天然剖面呈竖直节理、颗粒粗,土质干燥;②颜色在干燥时呈淡黄色,稍湿时呈黄色,湿润时呈褐黄色;③土中含有石英、高岭土成分、含盐量大于0.30%,有时含有石灰质结核;④吸水及透水性较强,塑性粘聚力差,水易冲刷成沟,不易粘结,土样浸入水中后,很快崩解,同时有气泡冒出水面;⑤在干燥状态下,有较高的强度和较小的压缩性,由于土质竖直方向分布的小管道几乎能保持竖立,边坡遇水后,土的结构迅速破坏发生显著的附加下沉,产生严重湿陷。这种土质的基础处理与其它土质相比,施工难度大,进度慢,程度复杂,耗用时间长,特别是大面积的土质夯填及水利坝体处理。 黄土湿陷的原因常由于管道漏水,地面积水,生产和生活用水等渗入地下,或由于降水量较大,灌溉渠和水库的泄露或回水使地下水位上升等原因而引起。但受水浸湿只是湿陷发生所必须的外界条件,而黄土的结构特征及物质成分湿产生湿陷性的内在原因。 影响因素: 1、干旱或半干旱的气候是黄土形成的必要条件。 2、黄土受水浸湿后,结合水膜增厚进入颗粒之间。 3、黄土中胶结物的多寡和成分,以及颗粒的组成和分布,对黄土的结构特点和湿陷性的增强有着重要的影响。 4、黄土的湿陷性还和孔隙比,含水率以及所受压力的大小有关。

湿陷性黄土地基处理方案

1、概述 湿陷性黄土地基处理主要取决于湿陷性黄土的特殊性质,湿陷性黄土地基的变形包括压缩和湿陷性两种,当基底压力不超过地基土的容许承载力时,地基的压缩变形很小,大都在其上部结构的容许变形值范围以内,不会影响建筑物的安全和正常使用。湿陷变形是由于地基被水浸湿引起的一种附加变形,往往是局部和突然发生,且不均匀,对建筑物破坏性大,危害严重,因此对湿陷性黄土地区的建筑物不论地基承载力是否达到容许承载力,都应对地基进行处理,前者以消除湿陷为目的,后者以提高承载力为主,同时应消除黄土的湿陷性。 我国湿陷性黄土分布很广,各地区黄土的差别很大,地基处理时应区别对待,并结合以下特点:1)湿陷性黄土的地区差别,如湿陷性和湿陷敏感性的强弱,承载能力及压缩性的大小和不均匀性的程度等;2)建筑物的使用特点,如用水量大小,地基浸水的可能性;3)建筑物的重要性和其使用上对限制不均匀下沉的严格程度,结构对不均匀下沉的适应性;4)材料及施工条件,以及当地的施工经验。湿陷性黄土的地基处理措施是采用机械手段对基础的湿陷性黄土进行加固处理,或更换另一种材料改变其物理性质,达到消除湿陷性、减少压缩和提高承载能力的目的,其中大多以第一个目的即消除湿陷为主。 湿陷性黄土的地基处理,在处理深度和处理范围上区分:1)浅处理,即消除建筑物地基的部分湿陷量;2)深基础处理,即消

除建筑物地基的全部湿陷量,这种方法包括采用桩基础或深基础穿透全部的湿陷性黄土层。 在湿陷性黄土地区设计措施,主要有地基处理措施、防水措施和结构措施三种。 地基处理的常用方法有垫层、重锤夯实、强夯、土(或灰土)桩挤密和深层孔内夯扩等,可以完全或部分消除地基的湿陷性,或采用桩基础或深基础穿透湿陷性黄土层,使建筑物基础坐落在密实的非湿性土层上,保证建筑物的安全和正常使用。 防水措施使用以防止大气降水、生产和生活用水以及浸入地基,其中包括场地排水、地面的防水、排水沟和管道的排水、防水等,是湿陷性黄土地区建筑物设计中不可缺少的措施。 结构措施的作用是使建筑物适应或减少不均匀沉降所造成的危害。 在湿陷性黄土地区,国内外使用较多的地基处理方法:重锤表层夯实、强夯、垫层、挤密桩复合地基、垫处理、预浸水、爆扩桩、化学加固和桩基础等。近年来,深层孔内夯扩挤、高压旋喷注浆法,以及复合载体夯扩桩等也得到推广使用。 目前我国以重锤表层夯实、土(或灰土)垫层、强夯、深层孔内夯扩、高压注浆固结土(或灰土)挤密桩复合地基、桩基础应用较多,经验比较丰富,对于其他的处理方法则应用较少,或未使用过。化学加固则多用于湿陷事故处理,从国外情况来看,与我国不同,保加利亚多采用水泥土垫层、混凝土挤密短桩,俄

湿陷性黄土地基下沉问题的分析及处理方法

湿陷性黄土地基下沉问题的分析及处理方法 摘要湿陷性黄土的湿陷变形是导致地基下沉的重要原因。本文从湿陷性黄土的工程地质特点入手,介绍湿陷性黄土对地基下沉的影响;结合工程实例对现有的几种典型地基处理方法进行了力学分析;阐述了湿陷性地基下沉处理方法的原理;总结……处理此类问题的经验,可供工程设计人员设计、施工时参考。 关键词湿陷性黄土;地基处理; 1 湿陷性黄土的分布及工程性质 1.1 湿陷性黄土的分布 中国北纬33°~47°之间分布着广泛的黄土,尤以34°~45°之间最为发育,总面积约为63.5万平方千米,占世界黄土分布的4.9%左右。其中湿陷性黄土占中国黄土面积的60%左右,主要分布于黄河中、下游地区,厚度最大可达30m 左右,并具有自东向西、自南向北其湿陷性逐渐加剧的规律。湿陷性黄土由于生成时不同的地理环境、气候条件以及次生变化等原因,使其具有一些特殊的工程性质,在实际工程中,如不对其进行处理将会衍生出严重的工程事故。湿陷性黄土的湿陷变形是引起地基下沉的一个重要因素。我们将在下面的内容中分析湿陷性黄土的性质特征以及湿陷变形的机理并讨论其处理方法。 1.2 湿陷性黄土的工程性质 湿陷性黄土是一种特殊性质的土,在一定的压力下,下沉稳定后,受水浸湿,土结构迅速破坏,并产生显著附加下沉。 1.2.1 湿陷性黄土的基本性质及分类 湿陷性黄土的颜色一般为褐色或者灰黄色,颗粒以粉粒为主,孔隙比e≥1.0,一般具有肉眼可见的大空隙,含有较多可溶性盐类,垂直节理发育,能保持直立的天然边坡。 湿陷性黄土按湿陷性的强弱分为3类,采用室内压缩试验的方法分类。 采用公式δs = ( hγ-hγ’)/h0 式中:δs ——湿陷性黄土的湿陷性系数; hγ——试件在试验仪中经加压到规定值时土样压缩稳定后的高度; hγ’——试件在试验仪中经加水浸湿且下沉稳定后的高度; h0——试件在试验仪中未经加压前的原始高度。 分类划分数值依据: (1)弱湿陷性0.02<δs≤0.03 (2)湿陷性0.03<δs≤0.07s (3)强湿陷性δs>0.07s 按土的自重湿陷和外力陷落又分为自重湿陷性黄土和非自重湿陷性黄土。 1.2.2 湿陷性黄土的组成及沉陷机理 湿陷性黄土的结构特征、物质组成以及水和压力分别为黄土产生塌陷的内在于外在因素。湿陷性黄土一般生成于晚更新世或全新世,即距今也就不足l 0 0

湿陷性黄土地基的处理措施

湿陷性黄土地基的处理措施 【摘要】本文通过化学材料加固黄土试验和查阅相关资料分析了湿陷性黄土地基处理技术的进展情况。目前强夯法技术已经比较成熟,而且其造价比较低,但是强夯后的黄土地基不具有抗水的能力;高分子材料固化处理的地基强度高,固化后黄土地基的水稳性好,但是其造价比较高;DDC法的优点有:降低了工程造价、节约材料、节约耕地、保护生态环境等。 【关键词】湿陷性黄土; 地基处理; 强夯; 化学加固; 夯击固化法; DDC法 【abstract 】this paper through the chemical material reinforced loess test and access relevant information analysis the collapsible loess foundation treatment technology progress. At present dynamic compaction method is comparatively mature technology, and the cost is lower, but after the dynamic compaction of loess foundation has not resistant to water ability; Polymer materials with high strength of curing foundation, after curing of the loess foundation better water stability, but the cost is higher; The advantages of the DDC method is: reduce project cost, material saving, saving cultivated land, and protect the ecological environment, etc. 【keywords 】collapsible loess; Foundation treatment; The dynamic compaction; Chemical reinforcement; Ram and curing method; DDC method 引言 在我国的华北、西北地区广泛分布着湿陷性黄土,它们属于非饱和的欠压密土,具有高压缩性、湿陷性、较小的干密度和较大的孔隙率等特性,而且在自重压力和附加压力作用下湿陷性黄土受水浸湿后结构会迅速的被破坏,从而发生显著的下沉现象。因为含水量的增加会影响土体的力学性质,使地基的承载力降低,所以对于湿陷性黄土的地基中选择经济合理的、可行的地基处理方法显得十分重要。 一般湿陷性黄土的强度较低,而压缩性较高。湿陷性黄土在土体自重应力或者自重应力和外部附加应力共同作用下, 受水浸湿之后强度会迅速的降低。如果土体中残余的结构强度不能够抵抗土体中的结构应力, 土体结构就会迅速的被破坏,同时会产生明显的附加沉降。由于受水浸湿具有不确定性,因此土体湿陷对工程建设会产生很大的危害,要确保在正确掌握场地工程地质特性的基础上,严格按国家现行规范进行湿陷性黄土的地基处理。 一、湿陷性黄土及地基处理

砂性土与湿陷性黄土工程特性及分类

砂性土与湿陷性黄土工程特性及分类 一、砂性土的分类及工程特性 (一)砂性土的分类 砂性土(sandy soil)指的是含砂土粒含量较多且具有一定粘性的土。砂性土颗粒间粘聚力比较小,性质松散,主要由0.075 mm~2 mm的颗粒所组成无塑性的土,按粒度组成可分为粗砂、中砂、细砂和粉砂等。砂性土在第四纪沉积物中,以及现代滨海、河流、湖泊、沙漠地带有广泛的分布,其主要矿物成分为石英、长石、云母等,由暴露于地表的各类岩石经物理风化破碎、再经过机械搬运、磨蚀、分选、堆积而形成,其中纯砂,例如石英砂,还必须促使不稳定矿物化学分解才能形成。 砂性土内摩擦力小,不具粘着性和塑性,但透水性极强,其含水量合理范围的空间大,容易压实,压实后水稳性好,强度较高,毛细作用小。由于砂性土既具有一定数量的粗粒组,使路基具有足够的强度和水稳性,又具有一定数量的细颗粒,使土具有一定的粘性,不至于过分松散,因此砂性土的颗粒组成接近于最佳级配[29]。并且砂性土层是良好的含水层,作建筑地基时易压密,沉降量小,砂性土的天然密实程度是控制其工程地质性质的主要因素,因此,砂性土不可避免地成为土方填料的重要来源之一。按密实程度可分为疏松的砂、中密的砂和密实的砂。就填筑路基来说,最合适的是砂砾土、砾土、亚砂土等,用这些土作为路基填料不容易引起路基沉陷。 二、砂性土的工程特性 (1)抗剪强度随着含水量的增加而增加,当强度增加到最大值时,含水量如果还继续增加,则剪切强度就会减小; (2)压缩模量随着法向应力的增加而增加,载荷对砂土的密实起着关键的作用; (3)随着压实度的增加,CBR值明显增加,但浸水状态的CBR值比没有浸水状态要低的多。 苏广和等对级配不太良好的粉土质砂进行了一系列的动力特性分析,得出以下结论 (1)粉细砂的工程特性比较差,在动应力和重复载荷作用下,其抗剪强度有大幅度的衰减,将严重影响路基稳定性; (2)细砂土的累积应变随着加载次数的增加而增大; (3)密度小的粉细砂随着围压的增大,动弹性模量增加趋势明显,密度大的粉细砂随着围压的增加,动弹性模量逐渐减小; (4)动载荷频率在2 Hz~5 Hz之间变化时,频率对动弹性模量大小的影响并不明显,但是,动

【精品】湿陷性黄土处理

湿陷性黄土地基处理 (1)采取拦截、排除地表积水措施,将水引离路基。在排水不良、路基附近有可能积水的地段增设隔水墙。隔水墙用土填筑,压实度不小于9%,隔水墙宽1。2m,深2。0m,隔水墙外侧壁设两布一膜防渗复合土工膜. (2)对路堤或路堑边坡上侧50m,下侧10~20m以内的黄土陷穴采用灌砂、灌浆、开挖回填等措施进行处理.并将陷穴的位置、埋藏深度及大小、所采取的处理措施报监理工程师批准后实施. (3)路堑地段,对开挖后的路床采用冲击式压路机碾压24遍,使碾压后路面底面以下50cm内土的压实度不小于95%,80cm内土的压实度不少于85%。 (4)路基高度小于3m的路堤段,清除表土后采用冲击式压路机碾压40遍,碾压后的地面以下80cm深度内土的压实度不小于85%。 (5)对于填方高度超过8米的路段,按照设计要求对湿陷性黄土地基进行强夯处理,也可采取重锤夯实法、冲击压实法。 (6)强夯法施工 ①强夯施工采用带有自动脱钩装置的履带式起重机或其他专用设备.采用履带式起重机时,可在臂杆端部设置辅助门架或采取其他安全措施,防止落锤时机架倾覆。夯锤重不小于10t,单点夯击能大于1200KN-m,其底面采用圆形,对粘性土,锤底面积在3~6m2。夯锤中对称设置若干个上下贯通的气孔。 ②夯击点布置,按正方形或梅花形网格排列。其间距可根据击坑的形状、孔隙水

压力变化情况及构造物基础结构特点确定,一般为5~15m。按上列形式和间距布置的夯击点,依次夯击完成为第一遍.第二次选用已夯点间隙,依次补点夯击为第二遍,以下各遍均在中间补点,最后一遍锤印彼此搭接,表面平整. ③每一遍内各个夯点的夯击次数,按现场试夯得到的夯击次数与夯沉量关系曲线确定(一般为3~10次),并同时满足:

湿陷性及湿陷性黄土概念及特征介绍

湿陷性及湿陷性黄土概念及特征介绍 在上覆土层自重应力作用下,或者在自重应力和附加应力共同作用下,因浸水后土的结构破坏而发生显著附加变形的土称为湿陷性土,属于特殊土。有些杂填土也具有湿陷性。广泛分布于我国东北、西北、华中和华东部分地区的黄土多具湿陷性。(这里所说的黄土泛指黄土和黄土状土。湿陷性黄土又分为自重湿陷性黄土和非自重湿陷性黄土,也有的老黄土不具湿陷性)。 一、可能造成的危害 在湿陷性黄土地基上进行工程建设时,必须考虑因地基湿陷引起附加沉降对工程可能造成的危害,选择适宜的地基处理方法,避免或消除地基的湿陷或因少量湿陷所造成的危害。 二、湿陷性黄土的工程特性 湿陷性黄土是一种特殊性质的土,其土质较均匀、结构疏松、孔隙发育。在未受水浸湿时,一般强度较高,压缩性较小。当在一定压力下受水浸湿,土结构会迅速破坏,产生较大附加下沉,强度迅速降低。故在湿陷性黄土场地上进行建设,应根据建筑物的重要性、地基受水浸湿可能性的大小和在使用期间对不均匀沉降限制的严格程度,采取以地基处理为主的综合措施,防止地基湿陷对建筑产生危害。 三、湿陷性黄土的颗粒组成 我国湿陷性黄土的颗粒主要为粉土颗粒,占总重量约50~70%,而粉土颗粒中又以0.05~0.01mm的粗粉土颗粒为多,占总重约40.60%,小于0.005mm的粘土颗粒较少,占总重约14.28%,大于0.1mm的细砂颗粒占总重在5%以内,基本上无大于0.25mm的中砂颗粒。从以下表1可见,湿润陷性黄土的颗粒从西北向东南有逐渐变细的规律。

土孔隙中的毛细作用,使水分逐渐集聚到较粗颗粒的接触点处。同时,细粉粒、粘粒和一些水溶盐类也不同程度的集聚到粗颗粒的接触点形成胶结。 试验研究表明,粗粉粒和砂粒在黄土结构中起骨架作用,由于在湿陷性黄土中砂粒含量很少,而且大部分砂粒不能直接接触,能直接接触的大多为粗粉粒。细粉粒通常依附在较大颗粒表面,特别是集聚在较大颗粒的接触点处与胶体物质一起作为填充材料。 粘粒以及土体中所含的各种化学物质如铝、铁物质和一些无定型的盐类等,多集聚在较大颗粒的接触点起胶结和半胶结作用,作为黄土骨架的砂粒和粗粉粒,在天然状态下,由于上述胶结物的凝聚结晶作用被牢固的粘结着,故使湿陷性黄土具有较高的强度,而遇水时,水对各种胶结物的软化作用,土的强度突然下降便产生湿陷。 四、土的湿度和密度 湿陷性黄土之所以在一定压力下受水时产生显著附加下沉,除上述在遇水时颗粒接触点处胶结物的软化作用外,还在于土的欠压密状态,干旱气候条件下,无论是风积或是坡积和洪积的黄土层,其蒸发影响深度大于大气降水的影响深度,在其形成过程中,充分的压力和适宜的湿度往往不能同时具备,导致土层的压密欠佳。接近地表2--3米的土层,受大气降水的影响,一般具有适宜压密的湿度,但此时上覆土重很小,土层得不到充分的压密,便形成了低湿度、高孔隙率的湿陷性黄土。 湿陷性黄土在天然状态下保持低湿和高孔隙率是其产生湿陷的充分条件。我国湿陷性黄土分布地区大部分年平均降雨量约在250~500mm,而蒸发量却远远超过降雨量,因而湿陷性黄土的天然湿度一般在塑限含水量左右,或更低一些。

湿陷性黄土公路路基处理方法

湿陷性黄土公路路基处理方法 法、冲击碾压法、强夯法以及挤密法等地基处理方法处理路基。 1. 湿陷性黄土的性质 湿陷性黄土泛指饱和的结构不稳定的黄色土,在自重压力与附加压力作用下,受水浸湿后,土的结构迅速破坏,发生显著附加下沉的现象。 2. 湿陷性黄土路基的处理 宁夏固原市地处陇东陕北湿陷性黄土地区。地基土除表层30~50cm的耕土外,其下均系第四纪黄土类地层。由黄土状轻亚粘土、黄土状亚粘土、黄土状粘土组成。黄土类土层中,具有大孔性,含明显白色钙盐结晶,居中等至高压缩性,具有强烈的中等湿陷性。在湿陷性黄土地区进行公路建设,应根据湿陷性黄土的特点和工程要求,因地制宜,采取以地基处理为主的综合措施,防止路基湿陷,保证公路的安全与正常使用,做到技术先进,经济合理。 2.1垫层法。 将基底以下湿陷性土层全部挖除或挖至预计的深度,然后以灰土或素土分层回填夯实。垫层厚度一般为1.0~3.0m。它消除了垫层范围内的湿陷性,减轻或避免了地基因附加压力产生的湿陷,可以使地基的自

重湿陷表现不出来。这种方法施工简易,效果显著,是一种常用的地基浅层处理或部分湿陷性处理方法,同时,还要考虑以下几方面的问题: (1)局部土垫层的处理宽度超出基础底边的宽度较小,地基处理后,地面水及管道漏水仍可能从垫层侧向渗入下部未处理的湿陷性土层而引起湿陷,因此,设置局部垫层不考虑起防水、隔水作用,地基受水浸湿可能性大及有防渗要求的建筑物,不得采用局部土垫层处理地基。 (2)整片垫层的平面处理范围每边超出建筑物外墙基础外缘的宽度,不应小于垫层的厚度,即并不应小于2m。 (3)在地下水位不可能上升的自重湿陷性黄土场地,当未消除地基的全部湿陷量时,对地基受水浸湿可能性大或有严格防水要求的建筑物,采用整片土垫层处理地基较为适宜。但地下水位有可能上升的自重湿陷性黄土场地,应考虑水位上升后,对下部未处理的湿陷性土层引起湿陷的可能性。 2.2冲击碾压法。 (1)冲击碾压是压实技术的新发展,冲击压路机由牵引车带动非园形轮滚动,多边形滚轮产生的势能与行驶的动能相结合,沿地面进行静压、搓揉、冲击的连续冲击碾压作业,形成高振幅、低频率的冲击压实作用。高能量冲击力周期性连续冲击地面,产生强烈的冲击波,向下

湿陷性黄土地基处理探讨

湿陷性黄土地基处理探讨 湿陷性黄土地基处理探讨 摘要:灰土挤密桩成桩时为横向挤密,能达到所要求加密处理后的最大干密度要求,可以消除地基的湿陷性,提高承载力,降低压缩性,处理球度可选l 5 m,可就地取村、降低工程造价;机具简单、施工方便、功效高。本文通过某厂房地基为湿陷性黄土为例,计算了其地基承载力,已经测量了地基沉降量,得出结论,运用灰土挤密桩法处理湿陷性黄土地基是完全可行的,并可以得到广泛应用。 关键词:灰土挤密桩;湿陷性黄土;地基承载力 中图分类号:TU475+.3文献标识码: A 文章编号: 1前言 湿陷性黄土是我国西北地区比较普遍的工程地质条件,其土质特点和工程危害表现为遇水浸湿时使黄土发生增湿软化效应,土的强度显著降低在附加压力或在附加压力与土的自重压力下引起湿陷变形,是一种下沉量大、下沉速度快的黄土。湿陷性黄土的失稳性变形对建筑物的危害极大,在上覆土层自重应力作用下,或者在自重应力和附加应力共同作用下,因浸水后土的结构破坏而发生显著附加变形的土称为湿陷性土,属于特殊土。有些杂填土也具有湿陷性[1]。 试验研究表明,粗粉粒和砂粒在黄土结构中起骨架作用,由于在湿陷性黄土中砂粒含量很少,而且大部分砂粒不能直接接触,能直接接触的大多为粗粉粒。细粉粒通常依附在较大颗粒表面,特别是集聚在较大颗粒的接触点处与胶体物质一起作为填充材料。粘粒以及土体中所含的各种化学物质如铝、铁物质和一些无定型的盐类等,多集聚在较大颗粒的接触点起胶结和半胶结作用,作为黄土骨架的砂粒和粗粉粒,在天然状态下,由于上述胶结物的凝聚结晶作用被牢固的粘结着,故使湿陷性黄土具有较高的强度,而遇水时,水对各种胶结物的软化作用,土的强度突然下降便产生湿陷。 2湿陷性黄土地基处理的方法 当建筑物所选取的地点下是湿陷性黄土,那么一旦降雨,地基和

湿陷性黄土地基处理方法

湿陷性黄土地基处理方法 目录 摘要 (1) 1. 处理范围的确定 (1) 1.1 处理厚度的确定 (1) 1.2 处理宽度的确定 (2) 2. 湿陷性黄土地基的处理方法 (2) 2.1 垫层法 (2) 2.2 夯实法 (3) 2.3 挤密桩法 (3) 2.4 桩基础 (3) 2.5 预浸水法 (4) 3. 工程实例 (4) 3.1 叠合垫层法 (4) 3.2 强夯法 (5) 3.3 挤密桩法 (6) 4. 结论 (6) 参考文献 (6)

湿陷性黄土地基处理方法 摘要 黄土是第四纪堆积物,按其颗粒成分属于细粒土(或粉土、粘性土)。其中,部分黄土具有不同于普通细粒土的特殊成分与性质。浸水会发生显著下沉变形,称为湿陷性黄土,工程界普遍视为特殊土。黄土的湿陷性是指其在一定压力下压缩稳定后,因浸水而发生下沉变形的性质。湿陷性是湿陷性黄土的特殊性质,湿陷性黄土在一定压力作用下受水浸蚀结构迅速破坏而发生显著下沉,因此在建筑上研究湿陷性黄土地基的处理十分重要。湿陷性黄土的变形包括压缩变形和湿陷变形两种。压缩变形是在土的天然含水量下由于建筑物的负荷所引起的,一般地基的压缩变形很小,大部分在其上部结构的允许变形值范围以内。不会影响建筑物的安全和正常使用。湿陷变形是由于地基被水浸湿所引起的一种附加变形,往往是局部和突然发生的。而且很不均匀,对建筑物的影响很大,危害性很严重。因此,在湿陷性黄土地区的建筑物设计中,为了保证建筑物的安全和正常使用,往往需要采取相应的地基处理措施。 1. 处理范围的确定 地基处理中首先要考虑的问题是处理地基到多大范围才能既经济又能获得明显的效果。由土的饱和自重压力所引起的自重湿陷与其湿陷性和黄土层厚度有关.其变形范围往往包括全部自重湿陷性黄土的厚度。根据湿陷变形范围,地基的处理厚度(从基础底面算起)可分为处理全部湿陷变形范围和部分湿陷变形两种。前者的处理目的是消除建筑物地基的全部湿陷量,而后者只是消除部分湿陷量。 1.1 处理厚度的确定[1] (1)消除建筑物地基全部湿陷量的处理厚度。在非自重湿陷性黄土场地,一般情况下,地基的湿陷量只发生于压缩层以内。试验资料表明,该湿陷量大部分

湿陷性黄土地区常见地基处理方式及选用

湿陷性黄土地区常见地基处理方式及选用 摘要:由于科技迅速发展,新型建筑施工材料的出现和广泛应用,使得湿陷性黄土地也能施工建设,建筑高层建筑物,对黄土地地基的处理方法也越来越繁多,效果也越来越明显,本文探讨湿陷性黄土地的湿陷机理以及对地基的处理方法介绍。 关键词: 湿陷性黄土; 地基; 处理; 方法 湿陷性黄土地基主要是指结构不稳定的黄色土层,遇到水浸湿后,在自重压力或者附加压力作用下,出现显著的下沉现象。这种特性会对土层上方结构物造成极大的危害,导致路基或者结构物出现大幅度沉降,倾斜等现象,严重影响安全使用。 一、湿陷性黄土地区地基处理的重要意义及一般处理方法 我国是世界上黄土分布最广泛的国家之一,其中约占四分之三的黄土,为湿陷性黄土。其最主要的特性是受水浸湿后,在土的自重压力或自重压力与附加压力共同作用下,产生大量而急剧的沉陷,给构造物带来不同程度的危害,使结构物大幅度沉降、坼裂、倾斜,严重影响其安全和使用。鉴于湿陷性黄土的这种特性,在该地区建筑物的设计及施工中,必须采用合理的基础型式或消除沉陷的地基处理方式,才能满足建筑物的使用要求。 我国湿陷性黄土分布很广,各地区黄土的差别很大,地基处理难度大,开展对湿陷性黄土地基处理技术的研究有重要的实用意义。在我国,有很多地方的土质均属于湿陷性黄土,而不同地区的黄土又存在着一定差异,所以在对湿陷性黄土地的地基进行处理时我们要考虑多方面因素,不同地方,区别对待。在对湿陷性黄土地区的地基进行处理时,要考虑的因素有很多,通常,我们以以下几个方面为主要参考点。一是地域性的差别,不同地域的黄土湿陷性以及湿陷敏感性的强弱也许会有很大差别,土层的承载能力以及土质的可压缩的程度及均匀程度等。二是建筑物的用途,建筑物内用水量的大小水渗入地基的可能性等。三是建筑物施工时用料和施工条件,以及丰富的施工经验。四是建筑物的重要程度,是一级建筑还是二级建筑等,建筑物结构对对由于黄土的湿陷性造成的地基不均匀下沉的适应能力。 湿陷性黄土的独有的性质,决定了湿陷性黄土地区的地基的处理要采用什么方法。那么湿陷性黄土的独有性质是什么呢,研究表明,湿陷性黄土地基的形变由两种因素引起,一是土壤压缩,一是土质湿陷。当地基承载的压力没超过地基的允许承载能力时,地基所产生的压缩变形很小,几乎不会对建筑物的正常使用造成影响。土壤的湿陷性在当地基被水浸湿时,会引起土壤的附件变形,这种情况,即使地基所承载的压力并没有超过地基的允许承载能力,也要对地基进行处理,避免发生对建筑物的安全和正常使用造成造成危害。在湿陷性黄土地区设计措施,主要有地基处理措施、防水措施和结构措施三种。

湿陷性黄土地基湿陷机理

分析湿陷性黄土地基湿陷机理、湿陷性评价及地基处理方法【摘要】湿陷性黄土易在压力环境下出现浸湿,一旦土层结构被浸湿,会迅速失去稳定结构,并且呈现明显的下沉情况。由于湿陷性黄土的特性会对建筑结构带来较大危害,所以本文对湿陷性黄土地基的湿陷机理进行评价,并且提出了有效的地基处理方法,希望为提高建筑安全性做出贡献。 湿陷性黄土是饱和后结构失衡的黄色土,在压力与水浸湿的环境下,土壤结构会遭到破坏,出现明显的下沉现象。建筑物一旦在黄土地基上施工,就会留下较大危险,随着下沉现象的加剧,就会导致建筑物发生裂缝或倾斜问题,甚至影响建筑物的使用安全性。我国西部开发规模不断增加,西北地区已经成为我国重要的建设区域,而西北地区黄土地段较多,采取适当的地基处理方法,对保证建筑安全性有着非常重要的作用。 一、黄土湿陷性机理 黄土地区常年维持半干旱或干旱状态,在降雨量较少的环境中,水分蒸发量较大,土壤中的水分不断下降,盐类物质出现胶体凝结状态,使土壤粘聚力上升。在土壤湿度较低的情况下,土层无法抗拒土壤粘聚力,就会形成一种欠压型状态,在土壤被水浸湿后,土壤粘聚力下降,就会出现湿陷问题。因此,在选择黄土地基处理方法时,必须正确了解湿陷性黄土的湿陷机理,才能找出针对性的解决方法。 二、黄土地基湿陷性评价 (一)湿陷系数 标准湿陷系数以S s进行计算,它代表了土层在单位厚度情况 下的浸水湿陷量,其定量直接表示了黄土地基的实际湿陷程度。

(二)黄土湿陷性 在黄土湿陷系数S s < 0.015 时,黄土形式属于非湿陷性黄土;在黄土湿陷性系数S s > 0.015时,则可以将黄土性质划分为湿陷性黄土。在湿陷程度维持在0.015 < S s < 0.04时,属于轻微性湿陷;在湿陷程度维持在0.04< S s < 0.08时,属于中度湿陷;在湿陷程度S s > 0.08 时,则可以划分为高度湿陷。 (三)湿陷性黄土地基类型 在湿陷量实际测量值与计算结果w 70mm时,可以将其定义为非自重湿陷黄土地基;在湿陷量实际测量值与计算结果>70mm时,可以 将其定义为自重湿陷黄土地基;在实际测量值与计算结果发生冲突时,需要根据实际测量值进行测定。 三、湿陷性黄土地基处理方法处理湿陷性黄土地基是为了优化土壤形式,降低黄土地基渗水性与压缩性,避免湿陷性问题再次发生,或者完全消除黄土地基的湿陷性。由于不同黄土地基的实际性质差别较大,尤其是黄土成因、区域、年代、厚度、等级、类别上的差异,决定了选择地基处理方法时,必须根据实际土壤情况决定解决方法。在明确地基厚度与湿陷等级后,需要采取针对性解决措施,以此满足黄土地基的使用要求,提高建筑的安全性。 虽然目前可以使用的黄土地基处理措施很多,但是所有方法都无法解决全部的问题,不同的地区地基土质存在很大差别,而不同的建筑结构,对地基造成的压力也是不同的,如果固定使用一种处理方法,根本无法解决所有的湿陷性黄土地基问题。在勘察阶段,需要及时进行现场取样,通过详细的分析后,确定黄土地基的性质、厚度,明确湿陷性黄土属于自重型或是非自重型,在详细的类比后,综合分析施工时间、施工周期、经济效益等多种因素,选择其中最为合理的处理方法,通过优化设计,使黄土地基可以满足建筑施工所需的承载力与变形要求。

湿陷性黄土地基的处理方法

湿陷性黄土地基的处理方法 在西北、华北地区常会遇到黄土地基处理问题,通常包括低湿度湿陷性黄土以消除或减小湿陷变形危害为主要目的,同时需提高地基承载力的地基处理问题,以及高湿度软弱黄土(尤其是饱和黄土,多由湿陷性黄土饱水转化而成,饱和度Sr﹥80%)以提高地基承载力、减少有害压缩变形为目的的地基处理问题。由于后者的工程特性多与一般粘性土类似,主要应考虑地基的压缩变形,可按软弱粘性土对待,而前者则主要应考虑地基受水浸湿后的湿陷变形。 一、垫层法 垫层法是先将基础下的湿陷性黄土一部分或全部挖除,然后用素土或灰土分层夯实做成垫层,以便消除地基的部分或全部湿陷量,并可减小地基的压缩变形,提高地基承载力,可将其分为局部垫层和整片垫层。当仅要求消除基底下1~3m湿陷性黄土的湿陷量时,宜采用局部或整片土垫层进行处理;当同时要求提高垫层土的承载力或增强水稳性时,宜采用局部或整片灰土垫层进行处理。 垫层的设计主要包括垫层的厚度、宽度、夯实后的压实系数和承载力设计值的确定等方面。垫层设计的原则是既要满足建筑物对地基变形及稳定的要求,又要符合经济合理的要求。同时,还要考虑以下几方面的问题: 1.局部土垫层的处理宽度超出基础底边的宽度较小,地基处理后,地面水及管道漏水仍可能从垫层侧向渗入下部未处理的湿陷性土层而引起湿陷,因此,设置局部垫层不考虑起防水、隔水作用,地基受水浸湿可能性大及有防渗要求的建筑物,不得采用局部土垫层处理地基。 2.整片垫层的平面处理范围,每边超出建筑物外墙基础外缘的宽度,不应小于垫层的厚度,即并不应小于2m。 3.在地下水位不可能上升的自重湿陷性黄土场地,当未消除地基的全部湿陷量时,对地基受水浸湿可能性大或有严格防水要求的建筑物,采用整片土垫层处理地基较为适宜。但地下水位有可能上升的自重湿陷性黄土场地,应考虑水位上升后,对下部未处理的湿陷性土层引起湿陷的可能性。 二、重锤表层夯实及强夯 重锤表层夯实适用于处理饱和度不大于60%的湿陷性黄土地基。一般采用~的重锤,落距~,可消除基底以下~黄土层的湿陷性。在夯实层的范围内,土的物理、力学性质获得显著改善,平均干密度明显增大,压缩性降低,湿陷性消除,透水性减弱,承载力提高。非自重湿陷性黄土地基,其湿陷起始压力较大,当用重锤处理部分湿陷性黄土层后,可减少甚至消除黄土地基的湿陷变形。因此在非自重湿陷性

湿陷性及湿陷性黄土概念及特征介绍

湿陷性及湿陷性黄土概念及特征介绍因浸水后土的结或者在自重应力和附加应力共同作用下,在上覆土层自重应力作用下,广有些杂填土也具有湿陷性。构破坏而发生显著附加变形的土称为湿陷性土,属于特殊土。(这里所说的黄土泛指泛分布于我国东北、西北、华中和华东部分地区的黄土多具湿陷性。也有的老黄土不湿陷性黄土又分为自重湿陷性黄土和非自重湿陷性黄土,黄土和黄土状土。。具湿陷性)一、可能造成的危害在湿陷性黄土地基上进行工程建设时,必须考虑因地基湿陷引起附加沉降对工程可能选择适宜的地基处理方法,避免或消除地基的湿陷或因少量湿陷所造成的危害。造成的危害,二、湿陷性黄土的工程特性在未受水浸湿结构疏松、孔隙发育。湿陷性黄土是一种特殊性质的土,其土质较均匀、时,一般强度较高,压缩性较小。当在一定压力下受水浸湿,土结构会迅速破坏,产生较大地基强度迅速降低。故在湿陷性黄土场地上进行建设,应根据建筑物的重要性、附加下沉,采取以地基处理为主的受水浸湿可能性的大小和在使用期间对不均匀沉降限制的严格程度,综合措施,防止地基湿陷对建筑产生危害。三、湿陷性黄土的颗粒组成,而粉土颗粒中又以~70%我国湿陷性黄土的颗粒主要为粉土颗粒,占总重量约50的粘土颗粒较少,.005mm,小于00.01mm的粗粉土颗粒为多,占总重约40.60%0.05~的25mm以内,基本上无大于0.,大于0.1mm的细砂颗粒占总重在5%占总重约14.28% 可见,湿润陷性黄土的颗粒从西北向东南有逐渐变细的规律。中砂颗粒。从以下表1 专业文档供参考,如有帮助请下载。.

中土孔隙土中水分不断蒸发,黄土是干旱或半干旱气候条件下的沉积物,在生成初期,的毛细作用,使水分逐渐集聚到较粗颗粒的接触点处。同时,细粉粒、粘粒和一些水溶盐类也不同程度的集聚到粗颗粒的接触点形成胶结。由于在湿陷性黄土中砂粒含量试验研究表明,粗粉粒和砂粒在黄土结构中起骨架作用,细粉粒通常依附在较大而且大部分砂粒不能直接接触,能直接接触的大多为粗粉粒。很少,颗粒表面,特别是集聚在较大颗粒的接触点处与胶体物质一起作为填充材料。多集聚在较大颗铁物质和一些无定型的盐类等,粘粒以及土体中所含的各种化学物质如铝、由于上述在天然状态下,胶结作用,作为黄土骨架的砂粒和粗粉粒,粒的接触点起胶结和半水对而遇水时,胶结物的凝聚结晶作用被牢固的粘结着,故使湿陷性黄土具有较高的强度,各种胶结物的软化作用,土的强度突然下降便产生湿陷。四、土的湿度和密度除上述在遇水时颗粒接触点湿陷性黄土之所以在一定压力下受水时产生显著附加下沉,无论是风积或是坡积和还在于土的欠压密状态,干旱气候条件下,处胶结物的软化作用外,充分的压力和在其形成过程中,其蒸发影响深度大于大气降水的影响深度,洪积的黄土层,米的土层,受大气降2--3适宜的湿度往往不能同时具备,导致土层的压密欠佳。接近地表便形土层得不到充分的压密,水的影响,一般具有适宜压密的湿度,但此时上覆土重很小,成了低湿度、高孔隙率的湿陷性黄土。我国湿陷性黄湿陷性黄土在天然状态下保持低湿和高孔隙率是其产生湿陷的充分条件。,而蒸发量却远远超过降雨量,因而湿陷~250500mm土分布地区大部分年平均降雨量约在性黄土的天然湿度一般在塑限含水量左右,或更低一些。 专业文档供参考,如有帮助请下载。.

湿陷性黄土处理施工方案

doc 乌鲁木齐东二环公路工程第一合同段 特殊路基施工方案 中交二航局乌鲁木齐东二环道路工程一标项目经理部 二零一二年四月

目录 第一章编制依据 (1) 1.1编制依据 (1) 1.2编制原则 (1) 1.3编制说明 (2) 第二章工程概述 (2) 2.1工程概况 (2) 2.2 主要工程数量 (3) 第三章资源配置 (3) 3.1人员配置 (4) 3.2机械设备配置 (5) 第四章施工准备 (5) 4.1人员组织 (5) 4.2技术准备 (6) 4.3 试验准备 (6)

第五章施工方案 (7) 5.1处治原则 (7) 5.2处治措施 (8) 5.3施工准备 (8) 5.4技术要求 (9) 5.5试夯段布置 (10) 5.6强夯施工流程 (12) 5.6施工要求 (13) 5.7施工步骤 (14) 5.8施工注意事项 (17) 5.9成品保护 (17) 5.10雨季施工保证措施 (18) 5.11质量保证措施 (18) 5.11.1技术控制 (18) 5.11.2施工过程控制 (20) 第六章工程质量保证体系 (21)

第七章安全文明施工 (24) 7.1安全施工措施 (24) 7.2文明施工措施 (25) 7.3生态环境的保护措施 (26) 7.4 施工机械安全保障措施 (27) 7.5现况地下管线与高空缆线安全保护措施 (28) 7.6 认真执行安全检查制度 (28)

第一章编制依据 1.1编制依据 1、《公路路基施工技术规范》JTG F10-2006; 2、《公路工程施工安全技术规程》JTJ 076-95; 3、《公路工程质量检验评定标准》JTG F80/1-2004; 4、《公路土工试验规程》JTJ051-93; 5、《中华人民共和国交通运输部公路工程标准施工招标文件(2009)年版》; 6、《建筑地基处理技术规范》(JGJ79-2002); 7、《湿陷性黄土地区建筑规范》(GB50025-2004); 9、乌鲁木齐东二环道路工程第一合同段《投标文件》及总体性实施施工组织设计; 10、乌鲁木齐东二环道路工程第一合同段两阶段施工图设计。 1.2编制原则 1、遵循招标文件、合同文件原则。 2、遵循设计和验标的原则,正确组织施工,保证工程质量优良。

湿陷性黄土地基处理技术

湿陷性黄土地基处理技术 摘要:湿陷性黄土广泛分布于我国东北、西北、华中和华东部分地区,在湿陷性黄土地基上进行工程建设时,必须考虑因地基湿陷引起的附加沉降对工程可能造成的危害。本文分析了湿陷性黄土的特点,并针对湿陷性黄土地基的实际情况提出了一些处理的方法,从而有利于减轻湿陷性黄土地基对工程建设的影响,提高工程质量,获得良好的经济效益和社会效益。 关键词:湿陷性黄土地基处理方法 一、引言 湿陷性黄土地基处理主要取决于湿陷性黄土的特殊性质,湿陷性黄土地基的变形包括压缩和湿陷性两种,当基底压力不超过地基土的容许承载力时,地基的压缩变形很小,大都在其上部结构的容许变形值范围以内,不会影响建筑物的安全和正常使用。湿陷变形是由于地基被水浸湿引起的一种附加变形,往往是局部和突然发生,且不均匀,对建筑物破坏性大,危害严重,因此对湿陷性黄土地区的建筑物不论地基承载力是否达到容许承载力,都应对地基进行处理,前者以消除湿陷为目的,后者以提高承载力为主,同时应消除黄土的湿陷性。 二、正文 2.1 湿陷性黄土的特点 在土的自重压力或土的附加压力与自重压力共同作用下,受水浸湿时将产生大量而急剧的附加下沉,这种现象称为湿陷,它与自重湿陷性黄土一般土受水浸湿时所表现的压缩性稍有增加的现象不同。由于各地区黄土形成时的自然条件差异较大,因此其湿陷性也有较大差别,有些湿陷性黄土受水浸湿后的土的自重压力下就产生湿陷,而另一些黄土受水浸湿后只有在土的自重压力和附加压力共同作用下产生湿陷。前者称为自重湿陷性黄土,后者称为非自重湿陷性黄土,一般将黄土开始湿陷时的相应压力称为湿陷起始压力,可看作黄土受水浸湿后的结构强度。当湿陷性黄土实际所受压力等于或大于土的湿陷起始压力时,土就开始产生湿陷。反之,如小于这一压力,则黄土只产生压缩变形,而不发生湿陷变形。 湿陷变形不同于压缩变形,通常压缩变形在荷载施加后立即产生,随着时间的增长而逐渐趋向稳定。对于大多数湿陷性黄土地基来说,(不包括饱和黄土和

湿陷性黄土路基施工

湿陷性黄土路基施工 【摘要】以临午改建工程为例,对湿陷性黄土路基的施工措施工程应用进行介绍。 【关键词】湿陷性黄土;路基;处理;施工 湿陷性黄土是一种在干燥情况下,具有较高强度和较低压缩性,遇水后在一定外力作用或在自重作用下强度骤降的一种特殊岩土。它广泛分布于我国甘肃、宁夏、陕西和山西等黄土高原地区。其中以03马兰组黄土最具有代表性。湿陷性黄土对公路工程的工程危害主要表现为遇水后的不均匀沉降,引起公路路面大面积开裂、下陷,从而引起其他次生公路病害,进一步加剧黄土地基的湿陷性,引起恶性循环。所以公路工程中的湿陷性黄土路基的施工质量直接影响整个公路的施工质量以及后期运营期养护工程。 省道临午线位于山西省临汾市西北地区,公路等级为23m宽的四车道一级公路,设计行车速度为60km/h。设计荷载100kN.m。沿线经过汾河阶地、昕水河阶地和山前台地。在河流阶地以及山前台地地表覆盖有厚度达5m~9m厚湿陷性黄土,湿陷等级为Ⅱ级自重湿陷。因此,湿陷性黄土地区路基的施工措施恰当与否对整个项目的工程质量至关重要。 省道临午线K15+900~K17+100段为山前台地,地表覆盖9m厚Ⅱ级自重湿陷性黄土,地表冲沟、陷穴发育。设计中对填方路段原地面清表后采用1000 kN.m夯击能强夯处理消除湿陷性,对于挖方路段挖至距离路床后采用1000kN.m夯击能强夯处理消除湿陷性并设置30cm后灰土封层。对于高挡土墙及桥台地段则采用灰土挤密桩消除整个湿陷性土层的湿陷性。施工过程中根据规范要求、设计图纸及当地实际情况,对不同段落分别采取了措施。具体如下: 1填方路段 黄土路段施工过程中应严格做好防排水,避免施工场地排水不畅或浸水。对各个处置措施的施工工艺均应设置试验段,以确定各施工参数。 1.1填方路基基底处理 在路基填筑前,应对原地面进行处置,处置宽度应大于路基坡脚外1/2湿陷性黄土层厚,并不小于2m。 根据设计要求,路基基底采用1000kN.m强夯处理,对于重要建筑物附近,且建筑物具有一定抗震能力的,路基基底清表后采用冲击碾碾压40遍。桥台及高挡墙段落则需消除整个湿陷性土层的湿陷性。对距离抗震能力差的民房较近的段落,采用50cm的5%灰土垫层(外掺、重量比)。 选用强夯处理时,应先进行现场实验,强夯地基的黄土饱和度不应大于80%;强夯位置距离居民区不小于150m;横路基向强夯范围至征地边界;对于黄土饱和度大于80%或距离居民区小于150m的路段,按设计文件中要求考虑使用灰土桩处理或换填50cm后5%灰土处理。一般路基强夯范围为用地界,夯点间距4m,正三角形布置,间隔挑夯,单击夯能视地基湿陷性类型,湿陷等级以及湿陷性黄土厚度综合确定,单击最后两击夯沉量不大于5mm。点夯以后将地面平整,以1000 kN.m夯击能满夯,夯印彼此搭接,满夯两遍,每次满夯后都应将地面重新平整。点夯次数、沉降量由试验段施工确定。施工时满夯结束平整后,以每100m 2 不少于1点的频率检验沉降值。 当采用灰土桩时,桩径应采用40cm,三角形布置,路基基底处理桩心距为1.5m,桥台及台后灰土桩桩心距根据承载力要求采用1.0m~1.3m,桩体灰与土体积配合比2:8,压实度不小于97%,桩间土平均压实度不小于93%。桩孔深度视填土高度,地基湿陷类型、湿陷等级以及湿陷性黄土厚度综合确定,地基处理宽度为护坡道外缘。施工过程中,工艺控制、数据指标均应通过试验段施工来确定。施工结束后,由施工单位和监理进行数点不小于3%的点挖验检测。

相关主题
文本预览
相关文档 最新文档