当前位置:文档之家› 城市垃圾焚烧厂基本工艺参数与物料平衡设计

城市垃圾焚烧厂基本工艺参数与物料平衡设计

城市垃圾焚烧厂基本工艺参数与物料平衡设计
城市垃圾焚烧厂基本工艺参数与物料平衡设计

城市垃圾焚烧厂

基本工艺参数与物料平衡设计

学院:

专业:环境工程

指导老师:

姓名:

学号:

二〇一三年一月二十四日

前言 (1)

第一章概论 (1)

1.1城市生活垃圾处理与利用 (1)

1.1.1卫生填埋法 (1)

1.1.2堆肥与垃圾再生利用 (2)

1.1.3垃圾焚烧法 (2)

1.2设计背景 (3)

1.2.1国内垃圾焚烧厂的现状 (3)

1.2.2国内的垃圾焚烧设备现状 (4)

1.3设计标准 (4)

1.4设计目的 (5)

第二章方案选定 (5)

2.1设计原则 (5)

2.1.1技术原则 (5)

2.1.2污染控制项目 (6)

2.2余热利用 (7)

2.3烟气净化工艺 (7)

第三章设计计算 (8)

3.1城市生活垃圾成分分析 (8)

3.2燃烧空气的计算 (9)

3.2.1理论空气需要量 (9)

3.2.2实际空气需要量 (10)

3.2.3燃烧产物的烟气量 (10)

3.2.4绝热火焰温度的计算 (11)

3.2.5焚烧过程的物质平衡计算 (12)

3.2.6焚烧过程的能量平衡 (14)

第四章焚烧炉炉型选择及计算 (18)

4.1概述及原则 (18)

4.2机械炉排焚烧炉 (18)

4.3焚烧炉选择 (19)

4.4炉排机械负荷和热负荷计算 (20)

第五章结论及建议 (22)

第六章设计小结 (23)

参考文献 (25)

城市生活垃圾是指在城市居民日常生活中或为城市日常生活提供服务的活动中产生的废弃物或丢弃物,是固体废物的一种。城市生活垃圾具有产量大、增长快、危害重等特点,已经广泛引起人们的普遍关注。我国目前的城市生活垃圾处理处置技术最常用的为卫生填埋和露天堆放,占总处理量的79.2%,其次为堆肥化,占18.8%,仅2%的生活垃圾采用的处理方式是焚烧技术,见图1。

图1城市生活垃圾处理与处置方式饼状图

垃圾焚烧方法与其它处方法理相比较, 能更好地达到垃圾处理无害化、减量化、资源化的目标, 且具有占地面积小,运行稳定、卫生、可靠,对周边环境影响小等优点。城市生活垃圾焚烧技术在美国、日本等发达国家已得到广泛应用, 并产生了良好的环保和经济效益。焚烧垃圾、回收能源的方法是我国处理城市生活垃圾的一个主要发展方向。

第一章概论

1.1城市生活垃圾处理与利用

城市生活垃圾的填埋、堆肥及焚烧三种工艺的简介及优缺点的比较。

1.1.1卫生填埋法

卫生填埋法是国内外应用最为广泛的垃圾处理方法,此方法处理量大,方便易行,但填埋场占用大量的土地资源,不发达国家和发展中国家由于经济落后,大多采用简易填埋法,其产生的垃圾渗滤液对地下水和地表水造成严重的二次污染。

卫生填埋是指能对填埋场气体和渗滤液进行控制的填埋方式,卫生填埋与简

易填埋的根本区别主要在于卫生填埋过程中采取了底、侧层防渗与废气收集处理,垃圾表层覆盖压实作业等措施,从而避免了目前采用的简易填埋方式下产生的二次污染。在我国卫生填埋是垃圾处理必不可少的最终处理手段,也是现阶段我国垃圾处理的主要方式。

卫生填埋优点:技术成熟,运行管理简单,处理量大,灵活性强,适用范围广,投资及运行费用较低。

卫生填埋缺点:选址较困难、减容效果差、占地面积大、对周围环境会有一定影响。

1.1.2堆肥与垃圾再生利用

堆肥是使垃圾中的有机质在微生物的作用下进行生物化学反应,最后形成腐殖质,可作肥料或土壤改良剂。堆肥包括好氧发酵和厌氧发酵两种方式。一般常用好氧发酵工艺,周期短、无害化效果好。堆肥法依靠自然界中广泛存在的细菌、放线菌、真菌等微生物,人为地、可控制地促进可被生物降解的有机物向稳定的腐殖质转化的生物化学过程。通过堆肥化我们可以把有机物转化为有机肥料,这种有机肥料作为最终产物不仅稳定,而且不危害环境。

堆肥法的优点:投资较低,技术简单、有机物分解后可作为肥料再利用从而达到资源的循环利用,垃圾减量明显。

堆肥法的缺点:对垃圾分类要求高、有氧分解过程中产生的臭味会污染环境,堆肥成本过高或质量不佳影响堆肥产品销售。

1.1.3垃圾焚烧法

焚烧法是将垃圾中的可燃成分在高温(800℃~1000℃)条件下经过燃烧反应,可燃成分充分氧化,最终成为无害稳定的灰渣。焚烧法一般可使垃圾大幅度减容,大大减少了占地并能回收热能用于生活取暖和发电。焚烧是目前世界上—些经济发达国家广泛采用的一种城市生活垃圾处理技术。

焚烧处理的优点有:

(1)圾焚烧处理后,垃圾中的病原休被彻底消灭,燃烧过程中产生的有毒有害气体和烟尘经处理达标后排放,无害化程度高;

(2)经过焚烧,垃圾中可燃成分被高温分解后一般可减容80%~90%,减容效果好,可节约大量填埋场占地,经分选后的垃圾焚烧效果更好;

(3)垃圾被作为能源来利用,垃圾焚烧所产生的高温烟气,其热能被转变为蒸汽,用来供热及发电,还可回收铁磁性金属等资源,可以充分实现垃圾处理的资源化;

(4)垃圾焚烧厂占地面积小,尾气经净化处理后污染较小,可以靠近市区建厂。既节约用地又缩短了垃圾的运输距离,对于经济发达的城市,可因地制宜,发展以焚烧、减容为主的综合处理。

(5)焚烧处理可全天候操作,不易受天气影响;

焚烧处理的缺点有:

(1)焚烧法投资大,占用资金周期长;

(2)焚烧对垃圾的热值有一定要求,一般不低5000kJ/kg,限制了它的应用范围。

(3)焚烧过程中产生的二噁英问题,必须有很大的资金投入才能进行有效处理。

因此,卫生填埋方法适用于选址容易、生活垃圾混装的城市。堆肥法适用于卫生填埋场地缺乏,城市生活垃圾垃圾分类系统较完善且生活垃圾中可生物降解的有机物含量大于40%的城市。焚烧处理方法适用于卫生填埋场地缺乏、生活垃圾热值高、经济条件较发达的城市。

1.2设计背景

1.2.1国内垃圾焚烧厂的现状

2009年,我国大陆地区已经运行的垃圾焚烧厂为93座,日处理总规模71,253t,单位厂日处理规模766.16t,实际日处理量55,396t,实际单位厂日处理量595.66t,焚烧设施利用率77.75%。与欧盟、日本、美国等其他国家的垃圾焚烧厂建设运行情况比,我国单位垃圾焚烧厂处理规模最大,结合历年垃圾处理情况,说明我国垃圾焚烧厂的建设规模趋于大型化。此外2010年垃圾焚烧厂达到106座,表明我国垃圾焚烧项目正在高速发展中。从年等效利用时数与焚烧设施利用率看,我国垃圾焚烧厂的运行状况处于偏低水平,表明需进一步提高我国垃圾焚烧厂的运行管理水平。另一原因是,我国的垃圾焚烧技术是炉排型与流化床型(处理规模占30%以上)焚烧炉技术共同发展。其中,采用流化床焚烧锅炉的多属于大中型垃圾焚烧厂,但等效利用时数及焚烧设施利用率低于炉排型焚烧

炉,需提高其设施的可靠度。

1.2.2国内的垃圾焚烧设备现状

我国炉排型焚烧炉装备国产化的路线图是:引进—消化—吸收—创新。至今,国际公认的优秀焚烧技术设备都已引进到我国,各项可靠性指标都较高,对我国垃圾特征的适应性基本良好,但DCS尚不能充分发挥功能。在消化吸收过程中,引进技术国产化设备的类型有5(已运行)+1(未运行)种,技术原型有MATIN、CITY2000、VON ROLL、SIGHERS、WATERLUE及VOLUND。全面引进技术、结构、制造、组装、调试等的国产化设备运行良好;但无全面引进的设备需注意防止重大故障发生。在焚烧设备国产化进程中,炉排片铸造质量与钢结构加工精度达到引进技术的要求甚至高于了引进部件的要求;设备装配精度仍有进一步提高空间;液压缸的质量与国际先进水平尚有差距。我国一些企业自主研发的垃圾焚烧装备主要以小型设备为主,大部分可靠性较低,一些环保不达标的企业已被关停。

1.3设计标准

垃圾焚烧技术应用的首要标准是使垃圾无害化,其次是减量化和资源化。为达到无害化的目的,在垃圾焚烧厂的设计、施工和运行过程中都必须依据有关法律和标准,严格控制二次污染。

焚烧过程中可能产生的二次污染主要是烟气。烟气由两部分组成,一部分是颗粒很小的飞灰,如余热锅炉排灰、喷雾反应器排灰、袋式除尘器排灰等。另一部分是气体污染物,如氯化氢、氮氧化物、二噁英、碳氢化合物等。飞灰是一类浸取毒性很大的复杂颗粒物,含有重金属和有机物等。对于这类固体污染物的处理指标,其毒性的浸取实验应符合地表水水质标准。通常采用的处理方法有安全填埋法、水泥和沥青固化法。另外一种方式是用水泥适当固化后,在专有的安全填埋场进行填埋,固化标准按接纳固化物的填埋场的要求执行。飞灰总量约占焚烧垃圾量的3%。城市生活焚烧厂应严格执行《生活垃圾焚烧处理工程技术规范》。

●生活垃圾焚烧污染控制标准(GB18485-2001)

●城市生活垃圾焚烧处理工程项目建设标准(建标[2001]213号)

●生活垃圾焚烧处理工程技术规范(CJJ90-2009)

●生活垃圾焚烧厂运行维护与安全技术规范(CJJ128-2009)

1.4设计目的

设计背景来源于某市垃圾焚烧发电工程,计划建设2台500t/d垃圾处理能力的机械炉排焚烧炉,配套设置22MW汽轮发电机组。主要处理江北西部城市生活垃圾,服务区内人口90万人,人均垃圾产生量为1.2 kg/d.p,服务区总垃圾量为1000 t/d。焚烧厂设计日处理能力1000吨,项目总投资39145万元,其中环保投资3267万元。

本设计的设计任务是完成垃圾焚烧厂焚烧工况设计与物料平衡、热量平衡图计算,并绘制焚烧系统关键设备工艺图。

第二章方案选定

2.1设计原则

2.1.1技术原则

焚烧厂的建设规范,应根据焚烧厂服务范围的垃圾产量、成分特点以及变化趋势等因素综合考虑确定;并应根据处理规模合理确定生产线数量和单台处理能力。焚烧厂建设规模分类与生产线数量宜符合表1的规定。

表1 建设规范分类与生产线数量

类型额定日处理能力

(t/d)生产线条数(条)

I类1200以上3~4

II类600~1200 2~4

III类150~600 2~3

IV类50~150 1~2

注:①Ⅳ类中1条生产线的生产能力不宜小于50d/t;

②Ⅲ类中1条生产线的生产能力不宜小于75d/t;

③额定日处理能力分类中,Ⅱ、Ⅲ类含上限值,不含下限值。

焚烧厂建设项目由焚烧厂主体工程与设备、配套工程、生产管理与生活服务设施构成。

具体包括下列内容:

一、焚烧厂主体工程与设备主要包括:

(1) 受料及供料系统:包括垃圾计量、卸料、储存、给料等设施;

(2)焚烧系统:包括垃圾进料、焚烧、燃烧空气、启动点火及辅助燃烧等设

施;

(3)烟气净化系统:包括有害气体去除、烟尘去除及排放等设施;

(4) 余热利用系统:包括余热锅炉、空气预热器、发电或供热等设施;

(5)灰渣处理系统:包括炉渣处理系统与飞灰处理系统,炉渣处理系统主要包括出渣、冷却、碎渣、输送、储存和除铁等设施;

飞灰处理系统主要包括飞灰收集、输送、储存等设施;

(6)仪表与自动化控制系统。

二、配套工程主要包括:总图运输、供配电、给排水、污水处理、消防、通信、暖通空调、机械维修、监测

化验、计量、车辆冲洗等设施。

三、生产管理与生活服务设施主要包括:办公用房、食堂、浴室、值班宿舍、绿化等设施。

焚。烧炉选择应符合下列要求:

(1)对垃圾特性适应性强,在确定的垃圾特性范围内,保持额定处理能力;(2)焚烧炉内烟气温度和停留时间应满足国家有关技术标准的规定;

(3)炉渣热灼减率不应大于5%。

2.1.2污染控制项目

焚烧厂必须设置烟气净化系统,烟气净化系统应符合下列要求:

(1)净化后排放的烟气应达到国家现行有关排放标准的规定;

(2)应对烟气中不同污染物采用相应治理措施;在选择治理方案时应充分考虑垃圾特性和焚烧后各种污染物的物理、化学性质的变化;

(3)袋式除尘器作为烟气净化系统的末端设备,应优先选用,同时应充分注意对滤袋材质的选择;

(4)氯化氢、硫氧化物和氟化氢的去除宜用碱性药剂进行中和反应,并宜优先采用半干法烟气净化工艺;

(5)应采取相应措施,严格控制二噁英类和重金属对环境的污染;

(6)氮氧化物的去除宜采用燃烧方式进行控制,在此基础上再考虑是否设置氮氧化物去除装置;

(7)烟气净化系统与燃烧系统应同步连续运转。

焚烧炉大气污染物排放应达到表2要求。

表2焚烧炉大气污染物排放限值

项目单位数值含义限值

烟尘mg/m3测定均值80 烟气黑度林格曼黑度.级测定值 1

一氧化碳mg/m3小时均值150

氮氧化物mg/m3小时均值400

二氧化硫mg/m3小时均值260

氯化氢mg/m3小时均值75 汞mg/m3测定均值0.2

镉mg/m3测定均值0.1

铅mg/m3测定均值 1.6 二噁英类ng TEQ/m3测定均值 1.0

注:①本表规定的各项标准限值,均以标准状态下含11%氧气的干烟气为参考值换算;

②烟气最高黑度时间,在任何1h内累计不得超过5min。

焚烧厂灰渣处理系统应根据炉渣与飞灰的产量、特性、综合利用方式、当地自然条件、运输条件,通过技术经济比较后确定。焚烧产生的炉渣与飞灰必须分别进行处理与处置。

2.2余热利用

焚烧厂余热利用系统应符合下列要求:

(1)余热利用方式可根据垃圾特性、工程规模及当地具体情况,经过技术经济比较后确定;

(2)利用焚烧垃圾余热发电或供电、供热、供冷联合生产,新建工程的发电机组不宜超过2台(套);

(3)利用焚烧垃圾余热生产饱和蒸汽或热水,除满足工厂自用外,有条件时可直接外供或将蒸汽转换成热水外供。

2.3烟气净化工艺

生活垃圾焚烧厂的烟气净化系统主要可分为干法、半干法和湿法3种,以下建议可供设计时参考:

(1)湿法和半干法对污染物的去除效率高于干法;

(2)湿法效果可靠,但需设废水处理系统,工程投资及运行费用较高;

(3)半干法设计简单,工程投资较低,但对管理的要求较高;

(4)干法操作简单,工程投资及运行费用均较低。

本设计方案推荐采用半干法工艺。

第三章设计计算

3.1城市生活垃圾成分分析

●垃圾组分分析(湿重%)

厨余纸张果皮塑料动物性成分橡胶皮革

12.93 5.81 3.83 11.50 3.35 0.00

纺纤草木煤炭玻璃金属陶瓷砖瓦

16.53 38.74 4.31 0.00 0.30 2.69

●工业分析(湿重%)

项目水分W 挥发分V 灰分A 固定碳FC 混合垃圾50.57 34.24 9.66 5.53

可燃组分50.61 36.68 7.23 5.48

●元素分析(%)

项目N C H S O Cl

混合垃圾0.76 19.48 7.85 0.19 11.49 1.04

可燃组分0.68 21.59 9.33 0.19 10.37 0.55

●热值分析(kJ/kg)

项目高位发热量低位发热值混合垃圾7300 5647

可燃组分8850 6470

●其它设计参数(kJ/kg)

项目垃圾密度热灼减率空气过剩系数n

单位t/m3% \

设计值0.35 5.5 1.4~1.9

3.2燃烧空气的计算 3.2.1理论空气需要量

就生活垃圾的燃烧而言,可以把生活垃圾看成是由C 、H 、N 、S 、Cl 、O 元素和灰分(矿物质)共同组成的一种固体燃料,生活垃圾的焚烧过程,实质上就是垃圾中这些元素发生剧烈的氧化反应的过程,它首先产生大量的热量和燃烧产物(CO 2和H 2O 等),其次是污染物如SO 2和HCl 等。

根据生活垃圾应用基的质量分数:

%100)()()()()()()()(=+++++++W A Cl S N O H C ωωωωωωωω 按化学反应完全燃烧方程式,其中: 碳燃烧时为

22CO O C =+

氢燃烧时为

O H O H 22222=+

硫燃烧时为

22SO O S =+

氯反应时为

HCl H Cl 222=+

由此可得,1kg 垃圾完全燃烧时所需要的氧气量(质量)为

kg C O S H C L O /m 100

)l (158.0)(7.0)(7.0)(56.5)(866.13

,02ωωωωω--++=

所以

kg

m L O /7192.0100

04

.1158.049.117.019.07.085.756.548.19866.1302=?-?-?+?+?=

空气中氧气的体积含量为21%,所以1kg 生活垃圾完全燃烧所需的理论空气量为

21

.02,00O L L =

将垃圾元素分析数据代入上式中,即可得每kg 垃圾所需的理论空气量L 0。

kg m L L O /4248.321

.07192

.021

.03002==

=

, 3.2.2实际空气需要量

为了保证垃圾中可燃成分完全燃烧,实际供入焚烧炉内的空气量一定要大于理论空气量。实际消耗量为:

0L n L n ?=

式中n 为空气消耗系数,当n >1时,称为空气过剩系数。

在炉排型垃圾焚烧炉的垃圾焚烧过程中,烟气含氧量通常控制在6%~10%,最大到12%,过量空气系数为1.4~1.9,最大到2.3。针对低热值垃圾,对传统的焚烧炉,烟气含氧量一般取8%~11%,对低氧燃烧的焚烧炉,烟气含氧量一般取5%~6%,表3给出了烟气含氧量与过量空气系数的对应关系。

表3 含氧量与空气过剩系统的对应关系

O 2 5 6 7 8 9 10 11 12 13

n

1.3125 1.400 1.500 1.6154 1.7500 1.9091

2.1000 2.3333 2.6250 设计中,则实际空气消耗量计算值为L n 。

烟气含氧量为7%,空气过剩系数n=1.500,则实际消耗空气量为:

kg m L n L n /1372.55.14248.330=?=?=

3.2.3燃烧产物的烟气量

垃圾燃烧产物的生成量及成分是根据燃烧反应的物质平衡进行计算的。垃圾完全燃烧后生成烟气的主要成分是CO 2、SO 2、H 2O 、N 2和O 2,其中O 2是当n >1时才会有的。而其他成为所占容积比例很小,量级在10-2以下,故计算烟气量时忽略不计。当n ≠1时,称实际烟气量(V n );当n =1时,称理论烟气量(V 0)。

实际燃烧烟气量V n 为

kg m V V V V V V V /3HCl O N O H SO CO n 22222+++++=

式中HCl O N O H SO CO ,,,,,22222V V V V V V 分别是燃烧产物中所包含的CO 2、SO 2、H 2O 、N 2、O 2和HCl 的数量。其中

C V CO 01867.02=

S V SO 007.02=

n O H L W H V ??++=g 00161.0)(0124.0)(106.02ωω

n N L N V 79.0)(008.02+=ω )(21.002L L V n O -=

)(006.0Cl V HCl ω=

故生活垃圾在n >1时,完全燃烧后的实际烟气量为

kg

m L n g N Cl W H S C V n /)21.0n 00161.0()(008.0)(006.0)(0124.0)(106.0)(007.0)(01867.030-+??++++++=ωωωωωω 按我国锅炉计算标准,干空气的含湿量g =10g/kg ;将空气过剩系数n 代入上式,可得垃圾燃烧产生的烟气量V n 。

kg

m V n /2627.64248.3)21.05.15.11000161.0(78.0008.004.1006.057.500124.085.7106.019.0007.048.1901867.03

=?-+??+?+?+?+?+?+?=

3.2.4绝热火焰温度的计算

实现垃圾持续、稳定焚烧的基本特征参数是生活垃圾的“垃圾临界热值”,即在无辅助燃料的条件下,实现垃圾持续、稳定燃烧的下限垃圾低位热值(Q d )。世界银行关于采用焚烧技术处理垃圾垃圾的投资决策指导意见认为,垃圾年平均低位热值至少应达到7000kJ/kg (1672kcal/kg ),且任何季节不低于6000kJ/kg (1433kcal/kg ),否则热能回收量少,需要高额的外加燃料才能维持运行,当低位热值从9000kJ/kg 降低至6000kJ/kg 时,垃圾处理费增加30%.

垃圾燃烧温度的特征参数是“绝热火焰温度”ta ,指的是焚烧释放的全部热量加热焚烧产物所能达到的温度,对于一定的生活垃圾,生活垃圾的绝热火焰温度随着空气过剩系数的增加而明显降低,随着空气预热温度的上升而迅速升高。

绝热火焰温度的计算有精确法和近似计算法两种。由于生活垃圾的成分和热值波动性比性能稳定的煤、油和燃气要大得多,精确计算过于繁琐,工程上可采用近似加以计算。以1kg 生活垃圾为基准,根据热平衡可用下式计算绝热火焰温度。

a

py a py air pk d t C t C L n t C L n Q ?+???=???+00

式中,Q d 为生活垃圾低位热值,kJ/kg ;n 为空气过剩系数;L 0为垃圾理论空气需要量,m3/kg ;C pk 为空气平均比热容,1.32kJ/(kg·℃);C py 为烟气平均比热容,kg/(kg·℃),近似可取1.23 kJ/(kg·℃);t a 为绝热火焰温度,℃;t air 为空气预热温度,℃。

则t a 由下式可计算得出。

py

py air

pk dw a C C L n t C L n Q t +?????+=

00

所以,根据生活垃圾低位热值Q dw ,空气过剩系数n 和空气预热温度t air 等参数就可以由上式求出生活垃圾的绝热火焰温度t a 。

℃88423

.123.105.46154.1200

32.105.46154.16470=+?????+=

a t

日本田贺博士根据热平衡原理,提出燃烧温度模型:

[]100

/491.0)100/1(847.0)100/1(8.0898.5)6239.0(W W n W n t W W Q t air d a +--?+-+=

式中,Q d 为垃圾低位热值,kJ/kg ;W 为垃圾含水量,%,用百分数表示;t air 为空气预热温度,℃,设计值为200℃;n 空气过剩系数。

()()[]℃

18125061

.0491.0)5061.01(6154.1847.05061.016154.12008.05061.0898.55061.066470239.0=?+-??-???+?-?+?=

a t

3.2.5焚烧过程的物质平衡计算

城市生活垃圾焚烧工厂的物料平衡是根据生活垃圾特性、焚烧炉型、余热利用方式、环境保护标准等设计条件来计算。计算的基础是理论上的生活垃圾燃烧、烟气处理和水处理的方式、化学反应式、过量空气系数、投入的化学药品量等。下图为生活垃圾焚烧系统物料的输入与输出概念图。

根据质量守恒定律,输入燃烧系统的物料质量等于输出的物料质量。其计算公式如下:

出出出出出入入入入5,4,3,2,1,,4,3,21,M M M M +M =M +M +M +M +++

式中,M 1,入表示进入生活垃圾焚烧系统的垃圾质量,kg/d ;M 2,入表示焚烧系统实际空气供给量,kg/d ;M 3,入表示焚烧系统的用水量,kg/d ;M 4,入表示投入焚烧系统所有化学试剂质量,kg/d ;M 1,出焚烧系统排放的干烟气质量,kg/d ;M 2,出焚烧系统排放的水蒸气质量,kg/d ;M 3,出焚烧系统排放的干烟气质量,kg/d ;M 4,

焚烧系统排放的飞灰质量,kg/d ;M 5,出焚烧系统排放的炉渣质量,kg/d 。 一般情况下,城市生活垃圾焚烧系统的物料输入量可以简化为生活垃圾量G

垃圾

(t/h )、供给空气量G 空(t/h )两个主要项,而输出量则以干烟气量m y (t/h )、

飞灰质量a fh (t/h )、炉渣a h (t/h )三个主要项,以此进行简化物料平衡计算参数。城市生活垃圾焚烧厂生活垃圾。

生活垃圾量:h t /7.4124

1000

G ==

垃圾

实际空气量:空空ρ?=n L G ,空ρ为空气相对密度(t/m 3)

h t G /86.2562410001.21372.5=÷??=空气

炉渣质量)

1(a LOI A G hz -?=

垃圾,A 为垃圾中灰分的含量(%),LOI 为垃圾的热灼

减率(%),本设计中按5.5%含量取值。

h t a hz /2626.4055

.010966

.07.41=-?=

飞灰质量%2a ?=垃圾G fh ,一般飞灰含量为处理垃圾量的0.5~5%,本设计中可按2%取值。

h t a fh /834.002.07.41=?=

根据质量平衡可求得生活垃圾焚烧厂的排烟量

)(空垃圾fh hz y a a G G +-+=)(m

h t m y /466.293)834.027.4()86.2567.41(=+-+=

综合以上数据列出物料平衡表(表4)。

表4物料平衡表

收入项

支出项

符号

项目

数值

百分比

符号

项目

数值 百分比 t/h

%

t/h

%

G 垃圾 垃圾量 41.7 13.96 m y 排烟量 293.466 98.29 G 空气 空气 256.86 86.04 a hz 炉渣量 4.263 1.43 a fh 飞灰量 0.834 0.28 ΣG

合计

298.56

100

ΣG

合计

298.56

100

3.2.6焚烧过程的能量平衡

一般情况下,城市生活垃圾焚烧系统的热输入项可以简化为生活垃圾燃烧所产生热、助燃空气带入物理热的两个主要项,而热输出项则以烟气带走物理热、产生蒸汽或热水的有效热、炉渣及飞灰带走的物理热和炉体散热四个主要项,以此进行简化热平衡计算参数。

● 供入热和带入热 垃圾燃烧热Q 1入

d Q G Q ?=垃圾入1

h kJ Q /1023529210564724

1000

331?=??=

入 生活垃圾发热量Q 1入(kJ/h )为垃圾的处理量G 垃圾(t/h )乘以其低位热值Q d (kJ/kg )

空气带入的物理热Q 2入

02t ??=pk k C V Q 入

式中,V k 为空气流量,m 3/h ;C pk 为空气平均比热容,kJ/(kg·℃);t 0为供入空气的环境温度,t 0取值为20℃。

由于以环境温度为基准点,空气带入的物理热为02=入Q ● 支出热

余热利用有效热Q 1出

余热利用有效热为高温烟气与冷水换热产热或蒸汽的过程的交换热,有效热利用的高低也就是热水的吸热量的大小。在焚烧过程中,垃圾中含能可用于供热或发电的实际能量转化率分别为60%~82%和20%~27%,考虑到垃圾焚烧的实际情况,设计中垃圾能量利用率选用η=40%,则,

入出11Q Q ?=η

h kJ Q /1094117102352924.0331?=??=出

排烟热损失Q 2出

烟气经过余热利用后,还带有部分物理热随烟气排到大气中,排烟热损失就是指这一部分热量,可用下式计算:

)(02t t C m Q y py y -??=出

h kJ Q /101479952043023.110466.293332?=-???=)(出

式中,m y 为烟气流量,t/h ,已通过物料平衡计算得出;C py 为烟气平均比热容,kg/(kg·℃),近似可取1.23 kJ/(kg·℃);t y 为排烟口温度,设定急冷前烟气平均温度为430℃;t 0为供入空气的环境温度,t 0取值为20℃。

不完全燃烧热损失Q 3出

包括气体不完全燃烧热损失和固体不完全燃烧热损失。

计算气体不完全热时,忽略H 2、CH 4的不完全燃烧热损失,只计算烟气中CO 不完全燃烧热损失。设计时气体不完全燃烧损失量按供入量的1.0%取值。计算固体不完全燃烧热损失量时按热供入量的4%取值。

入出)(13%5%1Q Q ?+=

h kJ Q /10141171023529206.0333?=??=出

灰渣、飞灰物理热损失Q 4出

垃圾焚烧炉排渣为固态排渣,具有较高的温度,灰渣的量因垃圾中的灰分含量而异,具有一定的热损失,而飞灰的温度与灰渣的相差不多,比热容却不大,量也不多,热损失也在1%以下,故飞灰的热损失可以忽略不计,而将质量计入灰渣总量中。

)(a 04t t C a Q hz hz fh hz -??+=)(出

h kJ Q /10122120600413.010834.027.4334?=-???+=)()(出

式中,a hz 和a fh 分别表示灰渣和飞灰的量(t/h );C hz 表示灰渣的比热容,取值0.413 kJ/(kg·℃);t hz 为灰渣排放的平均温度,取值600℃;t 0为供入空气的环境温度,t 0取值为20℃。

炉体散热损失Q 5出

可根据经验数据计算,在生活垃圾焚烧炉中一般按供入热量的3%~5%计,炉体散热损失取供入热的5%,则有

入出)(15%5Q Q ?=

h kJ Q /10117641023529205.0335?=??=出

相对误差应小于5%,按下式计算是否符合要求

入Q Q Q i ∑=-=

?51i δ

%5.4%10045

.211.001.014.037.193.0045.2(=?++++-+=

?)

()δ

有效利用热为

出有效Q Q Q 41+=

η

%4.38%10045

.2.01

.093.0=?+=

有效η

综合以上数据列出热平衡表(表5)。

表5 焚烧炉热平衡表

收入项

支出项

项目

数值

百分比

符号

项目

数值 百分比 kJ/h

%

kJ/h

%

Q 1入 垃圾燃烧热 81045.2? 100% Q 1出 余热利用有效热 81093.0? 36.3% Q 2入 空气带入热 0 0 Q 2出

排烟热损失

81037.1? 53.5%

Q 3出 不完全燃烧热损失

81014.0?

5.5%

Q4出灰渣物理热损失8

.0?0.4%

10

01

Q5出炉体散热损失8

10

.0? 4.3%

11

ΔQ误差8

.0? 4.5%

11

10

ΣG合计8

56

.2?100%

10

.2?100% ΣG合计8

45

10

第四章焚烧炉炉型选择及计算

4.1概述及原则

用于垃圾焚烧处理的常见炉型有机械式炉排焚烧炉、热解焚烧炉、旋转窑焚烧炉和流化床焚烧炉等。从焚烧方式看, 循环流化床有很多优点, 但在用于处理

我国低热值城市生活垃圾时存在入炉垃圾需要分拣、要求入炉垃圾热值较高等问

题, 并且为了提高垃圾热值和稳定焚烧,还需要添加一定比例的辅助燃料, 因此

需审慎采用;旋转窑焚烧炉主要适宜处理危险废物, 且容量较小, 在城市垃圾的

处理中应用不多;用热解气化炉来处理生活垃圾是一种新型的燃烧技术。

应根据垃圾特性选择合适的焚烧炉炉型,Ⅲ类(含Ⅲ类)以上焚烧厂宜优先选用炉排型焚烧炉,审慎采用其他形式的焚烧炉。严禁选用不能达到污染物排放

标准的焚烧炉。

焚烧炉选择应符合下列要求:

(1)对垃圾特性适应性强,在确定的垃圾特性范围内,保持额定处理能力;

(2)焚烧炉内烟气温度和停留时间应满足国家有关技术标准的规定;

(3)炉渣热灼减率不应大于5%。

4.2机械炉排焚烧炉

机械炉排焚烧技术起源于欧洲和美国,在垃圾焚烧领域得到广泛利用,已成为垃圾焚烧的主要炉型。机械炉排焚烧炉按炉排运动的方式主要分为:脉冲抛动

式炉排炉、往复逆推式炉排炉和滚筒式炉排炉。

(一)脉冲抛动式炉排炉

道斯脉冲抛动式炉排炉是该炉型的典型代表。垃圾在炉内主要经历四个阶段:干燥热解、燃烧、燃尽和排渣。垃圾由给料装置送入干燥架,在干燥架上

垃圾受炉内辐射热量的作用,水分迅速蒸发,完成干燥过程。垃圾温度迅速上升

至300℃~400℃,此处送风量较少,其中的轻质成分热解,以热解气的形式挥发

AO工艺设计计算公式

A/O工艺设计参数 ①水力停留时间:硝化不小于5~6h;反硝化不大于2h,A段:O段=1:3 ②污泥回流比:50~100% ③混合液回流比:300~400% ④反硝化段碳/氮比:BOD 5 /TN>4,理论BOD消耗量为1.72gBOD/gNOx--N ⑤硝化段的TKN/MLSS负荷率(单位活性污泥浓度单位时间内所能硝化的凯氏氮):<0.05KgTKN/KgMLSS·d ⑥硝化段污泥负荷率:BOD/MLSS<0.18KgBOD 5 /KgMLSS·d ⑦混合液浓度x=3000~4000mg/L(MLSS) ⑧溶解氧:A段DO<0.2~0.5mg/L O段DO>2~4mg/L ⑨pH值:A段pH =6.5~7.5 O段pH =7.0~8.0 ⑩水温:硝化20~30℃ 反硝化20~30℃ ⑾ 碱度:硝化反应氧化1gNH 4+-N需氧4.57g,消耗碱度7.1g(以CaCO 3 计)。 反硝化反应还原1gNO 3 --N将放出2.6g氧, 生成3.75g碱度(以CaCO 3 计) ⑿需氧量Ro——单位时间内曝气池活性污泥微生物代谢所需的氧量称为需氧量 (KgO 2 /h)。微生物分解有机物需消耗溶解氧,而微生物自身代谢也需消耗溶解氧,所以Ro应包括这三部分。 Ro=a’QSr+b’VX+4.6Nr a’─平均转化 1Kg的BOD的需氧量KgO 2 /KgBOD b’─微生物(以VSS 计)自身氧化(代谢)所需氧量KgO 2 /Kg VSS·d。

上式也可变换为: Ro/VX=a’·QSr/VX+b’ 或 Ro/QSr=a’+b’·VX/QSr Sr─所去除BOD的量(Kg) Ro/VX─氧的比耗速度,即每公斤活性污泥(VSS)平均每天的耗氧量KgO 2 /KgVSS·d Ro/QSr─比需氧量,即去除1KgBOD 的需氧量KgO 2 /KgBOD 由此可用以上两方程运用图解法求得a’ b’ Nr—被硝化的氨量kd/d 4.6—1kgNH 3-N转化成NO 3 -所需的氧 量(KgO 2 ) 几种类型污水的a’ b’值 ⒀供氧量─单位时间内供给曝气池的氧量,因为充氧与水温、气压、水深等因素有关,所以氧转移系数应作修正。 ⅰ.理论供氧量 1.温度的影响 KLa(θ)=K L(20)×1.024Q-20 θ─实际温度 2.分压力对Cs的影响(ρ压力修正系数) ρ=所在地区实际压力(Pa)/101325(Pa) =实际Cs值/标准大气压下Cs值

物料平衡计算公式

物料平衡计算公式 This model paper was revised by the Standardization Office on December 10, 2020

物料平衡计算公式: 每片主药含量 理论片重= 测得颗粒主药百分含量 1.原辅料粉碎、过筛的物料平衡 物料平衡范围: %~100 % 物料平衡= %100?+a c b a-粉筛前重量(kg) b-粉筛后重量(kg) c-不可利用物料量(kg) 2.制粒工序的物料平衡 物料平衡范围: %~ % 制粒工序的物料平衡= a d c b ++×100% 制粒工序的收率=a b ×100% a-制粒前所有原辅料总重(kg) b-干颗粒总重(kg) c-尾料总重(kg) d-取样量(kg) 3.压片工序的物料平衡范围: %~ % 压片工序的物料平衡=a d c b ++×100% 压片工序的收率=a b ×100%

a-接收颗粒重量(kg) b-片子重量(kg) c-取样重量(kg) d-尾料重量(kg) 4.包衣工序的物料平衡 包衣工序的物料平衡范围: %~ % 包衣工序的物料平衡 = b a e d c +++ 包衣工序的收率 = b a c + a-素片重量(kg) b-包衣剂重量(kg) c- 糖衣片重量(kg) d-尾料重量(kg) e-取样量(kg) 5.内包装工序物料平衡 内包装工序物料平衡范围: %~ % 包材物料平衡=%100?++++A a d c b B a- PTP 领用量(kg) b- PTP 剩余量(kg) A- PVC 领用量(kg) B- PVC 剩余量(kg) c-使用量(kg) d- 废料量(kg) 片剂物料平衡=%100?++a d c b a :领用量(Kg) b :产出量(Kg) c :取样量(Kg) d :废料量(Kg) 6.外包装工序的物料平衡

气焊和气割主要工艺设计参数

在多层焊时,第一、二层应选用较细的焊丝,以后各层可采用较粗的焊丝。一般平焊应比其它焊接位置选用粗一号的焊丝,右焊法比左焊法选用的焊丝要适当粗一些。 2.火焰性质的选择 一般来说,需要尽量减少元素的烧损时,应选用中性焰;对需要增碳及还原气氛时,应选用碳化焰;当母材含有低沸点元素[如锡(Sn)、锌(Zn)等]时,需要生成覆盖在熔池表面的氧化物薄膜,以阻止低熔点元素蒸发,应选用氧化焰。总之,火焰性质选择应根据焊接材料的种类和性能。 由于气焊焊接质量和焊缝金属的强度与火焰种类有很大的关系,因而在整个焊接过程中应不断地调节火焰成分,保持火焰的性质,从而获得质量好的焊接接头。 不同金属材料的气焊所采用焊接火焰的性质参照表2—1。 3.火焰能率的选择 火焰能率指单位时间内可燃气体(乙炔)的消耗量,单位为L/h。火焰能率的物理意义是单位时间内可燃气体所提供的能量。 火焰能率的大小是由焊炬型号和焊嘴号码大小来决定的。焊嘴号越大火焰能率也越大。所以火焰能率的选择实际上是确定焊炬的型号和焊嘴的号码。火焰能率的大小主要取决于氧、乙炔混合气体中,

氧气的压力和流量(消耗量)及乙炔的压力和流量(消耗量)。流量的粗调通过更换焊炬型号和焊嘴号码实现;流量的细调通过调节焊炬上的氧气调节阀和乙炔调节阀来实现。 火焰能率应根据焊件的厚度、母材的熔点和导热性及焊缝的空间位置来选择。如焊接较厚的焊件、熔点较高的金属、导热性较好的铜、铝及其合金时,就要选用较大的火焰能率,才能保证焊件焊透;反之,在焊接薄板时,为防止焊件被烧穿,火焰能率应适当减小。平焊缝可比其它位置焊缝选用稍大的火焰能率。在实际生产中,在保证焊接质量的前提下,应尽量选择较大的火焰能率。 4.焊嘴倾斜角的选择 焊嘴的倾斜角是指焊嘴中心线与焊件平面之间的夹角。详见图2—4。焊嘴的倾斜角度的大小主要是根据焊嘴的大小、焊件的厚度、母材的熔点和导热性及焊缝空间位置等因素综合决定的。当焊嘴倾斜角大时,因热量散失少,焊件得到的热量多,升温就快;反之,热量散失多,焊件受热少,升温就慢。 一般低碳钢气焊时,焊嘴的倾斜角度与工件厚度的关系详见图2—4。一般说来,在焊接工件的厚度大、母材熔点较高或导热性较好的金属材料时,焊嘴的倾斜角要选得大一些;反之,焊嘴倾斜角可选得小一些。 图2-4焊嘴倾斜角与焊件厚度的关系

垃圾焚烧尾气处理方案

3、烟气净化及排烟系统 根据《医疗废物集中焚烧处置工程建设技术要求》(HJ/T176-2005)的要求及参考国内医废焚烧装置已成功运行的经验,确定烟气净化采用药液脱酸+石灰粉脱酸+喷活性炭粉+袋式除尘器+填料吸收塔的组合工艺。 包括半干式中和反应塔、石灰粉脱酸及喷活性炭粉、袋式除尘器、填料吸收塔、引风机及其附属设备。 3.1半干式中和反应塔 包括:脱酸碱溶液的制备及供给装置。 半干式中和反应塔主要用于去除烟气中的酸性气态污染物,是半干法烟气净化系统的主要设备。入口烟气温度600℃,出口烟气温度<200℃。采用喷氢氧化钠溶液的方式,脱除烟气中的大部分酸性物质;吸收塔材质采用Q235-A钢+耐酸胶泥。 或NaOH碱液为净化吸收剂,烟气从下部进入吸收塔吸收塔以10%左右的Ca(OH) 2 内,在喷嘴下方区域与雾化的吸收剂浆液充分混合。 雾化喷头靠压缩空气完成浆液雾化,其结构为双层夹套管,吸收剂浆液走内管,压缩空气走外管,浆液与压缩空气在喷嘴处强烈混合后从雾化器喷嘴喷出,使浆液雾化为细小的颗粒,与烟气进行充分接触吸收。 酸性气体的去除分两个阶段,第一阶段:烟气在塔内与石灰浆液雾滴混合,烟气中的酸性气体与液态的石灰发生化学反应;第二阶段:烟气的热量使浆液雾滴中的水分蒸发,浆液中石灰和反应生成物成为固态的颗粒物,这些颗粒物在塔的下部和后续的袋式除尘器内,再次与气态污染物发生化学反应,使总的污染物净化反应效率提高。 本装置的烟气急冷时间为小于1S。为了保证喷入塔内的浆液完全蒸发、防止浆液粘壁及防止腐蚀,内部采用双层结构,与烟气接触面为防腐耐火砖材料,中间为隔热层。采用硅酸铝纤维板。 脱酸碱溶液的制备及供给装置包括脱酸碱溶液的中间贮槽及输送设备。外购件的熟石灰(纯度90%,粒度200目)由石灰贮槽经螺旋给料机送到石灰浆槽。在石灰浆槽内,加水搅拌配制成一定浓度的石灰浆。石灰浆经药液泵压送到吸收塔顶部的雾化器喷头,同时在压缩空气的作用下使石灰浆充分雾化。 吸收塔采用喷水直接冷却的方式,流经塔内的烟气直接与雾化后喷入的液体接触,传质速度和传热速度较快,喷入的液体迅速汽化带走大量的热量,烟气温度得以迅速降温,

高炉冶炼物料平衡计算

高炉冶炼综合计算 1.1概述 组建炼铁车间(厂)或新建高炉,都必须依据产量以及原料和燃料条件作为高炉冶炼综合计算包括配料计算、物料平衡计算和热平衡计算。从计算中得到原料、燃料消耗量及鼓风消耗量等,得到冶炼主要产品(除生铁以外)煤气及炉渣产生量等基本参数。以这些参数为基础作炼铁车间(厂)或高炉设计。 计算之前,首先必须确定主要工艺技术参数。对于一种新的工业生产装置,应通过实验室研究、半工业性试验、以致于工业性试验等一系列研究来确定基本工艺技术参数。高炉炼铁工艺已有200余年的历史,技术基本成熟,计算用基本工艺技术参数的确定,除特殊矿源应作冶炼基础研究外,一般情况下都是结合地区条件、地区高炉冶炼情况予以分析确定。例如冶炼强度、焦比、有效容积利用系数等。 计算用的各种原料、燃料以及辅助材料等必须作工业全分析,而且将各种成分之总和换算成100%,元素含量和化合物含量要相吻合。 将依据确定的工艺技术参数、原燃料成分计算出单位产品的原料、燃料以及辅助材料的消耗量,以及主、副产品成分和产量等,供车间设计使用。配料计算也是物料平衡和热平衡计算的基础。 依据质量守恒定律,投入高炉物料的质量总和应等于高炉排出物料的质量总和。物料平衡计算可以验证配料计算是否准确无误,也是热平衡计算的基础。物料平衡计算结果的相对误差不应大于0.25%。 常用的热平衡计算方法有两种。第一种是根据热化学的盖斯定律,即按入炉物料的初态和出炉物料的终态计算,而不考虑炉内实际反应过程。此法又称总热平衡法。它的不足是没有反应出高炉冶炼过程中放热反应和吸热反应所发生的具体空间位置,这种方法比较简便,计算结果可以判断高炉冶炼热工效果,检查配料计算各工艺技术参数选取是否合理,它是经常采用的一种计算方法。 第二种是区域热平衡法。这种方法以高炉局部区域为研究对象,常将高炉下部直接还原区域进行热平衡计算,计算其中热量的产生和消耗项目,这比较准确地反应高炉下部实际情况,可判断炉内下部热量利用情况,以便采取相应的技术措施。该计算比较复杂。要从冶炼现场测取大量工艺数据方可进行。 1.2配料计算 一.设定原料条件 1、矿石成分: 表 1-1原料成分,%

垃圾焚烧发电工艺流程

垃圾焚烧发电工艺流程图

工艺流程简述: 1、垃圾接收、贮存及运输系统 垃圾接收、储存及输送系统是指垃圾进厂到垃圾焚烧炉给料斗入口之间的所有工艺和设备。系统流程:满载垃圾运输车进厂“时经检视、称重,按指定路线和信号灯指示驶向垃圾倾卸平台卸料。运输车倒行至指定的垃圾卸料门前,从开启的卸料门处,在重力作用下将垃圾卸入垃圾储坑。垃圾经过垃圾起重机搅拌、充分混合、脱除一定的渗滤液之后,送入垃圾焚烧炉给料斗。系统主要包括以下设施:电子汽车衡、垃圾卸料大厅(垃圾卸料平台)、垃圾卸料门、垃圾贮坑、垃圾起重机。 (1)垃圾接收 车辆入厂称重前,由厂内专职人员根据《垃圾供应与运输协议》要求进行车辆检查,车辆需符合要求才能引导称重。 经称量后的垃圾运输车按指定路线和信号灯指示通过栈桥驶入卸料大厅,运输栈桥起于厂外,顶部采用弧形顶棚,由于栈桥为卸料大厅及垃圾坑补风入口,栈桥可自然维持负压。垃圾卸料大厅供垃圾车辆的驶入、倒车、卸料和驶出,以及车辆的临时抢修。垃圾卸料大厅为密闭式布置,卸料区为室内布置了气幕机,以防止卸料区臭气外逸以及苍蝇飞虫进入。为了保障安全,在垃圾卸料口设置阻位拦坎,以防垃圾车翻入垃圾池。卸车平台在宽度方向有1%坡度,坡向垃圾仓侧,垃圾运输车洒落的渗沥液,流至垃圾仓门前的地漏,汇集到管道中,导入渗沥液收集池。 垃圾卸料平台设垃圾卸料门,卸料门前装有红绿灯的操作信号,指示垃圾车卸料,为保证卸料门开启与垃圾抓斗作业相协调,卸料门]的开启信号传至垃圾抓斗操作室。卸料门可防止有害噪音、臭气及粉尘从垃圾池扩散至大气。 在卸料平台的相应部位设置供水栓,以利于清洗卸料时污染的地面,卸料平台设计有一定的坡度使之易于排出清洗污水;在卸料大厅进、出口处设置空气幕,以防臭气外逸。在停炉检修时,设置除臭风机抽取垃圾贮坑臭气,经活性炭除臭装置处理达标后经排气简排入大气。 (2)垃圾贮存 垃圾贮存设施主要是垃圾贮坑,为半地下结构,它不仅能贮存垃圾,而且能

关键质量属性和关键工艺设计参数

关键质量属性关和键工艺参数(CQA&CPP) 1、要求: 生产工艺风险评估的重点将由生产工艺的关键质量属性(CQA)和关键工艺参数(CPP)决定。 生产工艺风险评估需要保证能够对生产工艺中所有的关键质量属性(CQA)和关键工艺参数(CPP)进行充分的控制。 2、定义: CQA关键质量属性:物理、化学、生物学或微生物的性质或特征,其应在适当的限度、范围或分布内,以保证产品质量。 CPP关键工艺参数:此工艺参数的变化会影响关键质量属性,因此需要被监测及控制,确保产产品的质量。 3、谁来找CQA&CPP 3.1 Subject Matter Experts(SME)在某一特定领域或方面(例如,质量部门,工程学,自动化技术,研发,销售等等),个人拥有的资格和特殊技能。 3.2 SME小组成员:QRM负责/风险评估小组主导人、研发专家、技术转移人员(如适用)、生产操作人员、工程人员、项目人员、验证人员、QA、QC、供应商(如适用)等。 3.3 SME小组能力要求矩阵: 4、如何找CQA&CPP 4.1 在生产工艺中有很多影响产品关键质量属性的因素,每个因素都存在着不同的潜在的风险,必须对每个因素充分的进行识别分析、评估,从而来反映工艺的一些重要性质。

4.2 列出将要被评估的工序步骤。工艺流程图,SOP或批生产记录可以提供这些信息。评估小组应该确定上述信息的详细程度来支持风险评估。 例:

文件资源:保证在评估之前已经具备所有必要的文件。 良好培训:保证在开展任何工作之前所有必要的风险评估规程、模板和培训已经就位。 评估会议:管理并规划所有要求的风险评估会议。 例:资料需求单 ICH Q8(R2)‐ QbD‐系统化的方法、 ICHQ9‐质量风险管理流程图 CQA&CPP风险评估工具‐FMEA

干燥过程的物料平衡与热平衡计算

干燥过程的物料与热平衡计算 1、湿物料的含水率 湿物料的含水率通常用两种方法表示。 (1)湿基含水率:水分质量占湿物料质量的百分数,用ω表示。 100%?= 湿物料的总质量 水分质量 ω (2)干基含水率:由于干燥过程中,绝干物料的质量不变,故常取绝干物料为基准定义水分含量。把水分质量与绝干物料的质量之比定义为干基含水率,用χ表示。 100%?= 量 湿物料中绝干物料的质水分质量 χ (3)两种含水率的换算关系: χ χ ω+= 1 ω ω χ-= 1 2、湿物料的比热与焓 (1)湿物料的比热m C 湿物料的比热可用加与法写成如下形式: w s m C C C χ+= 式中:m C —湿物料的比热,()C kg J ?绝干物料/k ; s C —绝干物料的比热,()C kg J ?绝干物料/k ; w C —物料中所含水分的比热,取值4、186()C kg J ?水/k (2)湿物料的焓I ' 湿物料的焓I '包括单位质量绝干物料的焓与物料中所含水分的焓。(都就是以0C 为基准)。 ()θθχθχθm s w s C C C C I =+=+='186.4 式中:θ为湿物料的温度,C 。

3、空气的焓I 空气中的焓值就是指空气中含有的总热量。通常以干空气中的单位质量为基准称作比焓,工程中简称为焓。它就是指1kg 干空气的焓与它相对应的水蒸汽的焓的总与。 空气的焓值计算公式为: ()χ1.88t 24901.01t I ++= 或()χχ2490t 1.881.01I ++= 式中;I —空气(含湿)的焓,绝干空气kg/kg ; χ—空气的干基含湿量,绝干空气kg/kg ; 1、01—干空气的平均定压比热,K ?kJ/kg ; 1、88—水蒸汽的定压比热,K ?kJ/kg ; 2490—0C 水的汽化潜热,kJ/kg 。 由上式可以瞧出,()t 1.881.01χ+就是随温度变化的热量即显热。而χ2490则就是0C 时kg χ水的汽化潜热。它就是随含湿量而变化的,与温度无关,即“潜热”。 4、干燥系统的物料衡算 干燥系统的示意图如下: (1)水分蒸汽量W 按上述示意图作干燥过程中的0水量与物料平衡,假设干燥系统中无物料损失,则: 2211χχG LH G LH +=+ 水量平衡 G 1

片剂中物料平衡计算

片剂物料平衡的计算 (1)整粒终混平衡的计算 A=总投料量(kg) B=合格颗粒量(kg) C=不合格颗粒量(kg) D=取样量(kg) B + C + D 平衡= --------------------×100% 应为95%~102% A (2)整粒终混得率的计算 得率=B/A×100% (3)压片平衡的计算 A=合格颗粒重量(kg) B=不合格品重量(kg) C=合格片重量(kg) D=取样量(kg) B + C + D 平衡=------------------×100% 应为95%~100% A (4)压片得率的计算 得率=C/A×100% (5)包装平衡的计算 A:领取素片重量(kg) B:包装数量(片) C:平均片重(kg) D:内包装不合格品量(kg) E:外包装不合格品量(kg)

平衡=(B×C÷1000+D+E)/A×100% 应为95%~102%(6)包装得率的计算 得率=(B×C÷1000)/A×100% (7)批平衡的计算 A:总投料量(kg) B:包装数量(片) C:制粒不合格品量(kg) D:制粒取样量(kg) E:压片不合格品量(kg) F:压片取样量(kg) G:内包装不合格品量(kg) H:外包装不合格品量(kg) B×平均片重÷1000+C+D+E+F+G+H 平衡=-------------------------------- ×100% (应为95%~102%) A (8)批得率的计算 得率=B×平均片重÷1000/A×100% (9)内包材平衡的计算 A:使用量(kg) B:合格药板数量(板) C:不合格药板数量(板) D:未冲裁报废铝箔(米) E:铝塑板的宽(米)

垃圾焚烧工艺流程图

本系统从垃圾投入开始到最后的出灰,整个系统全部自动程序控制。这不仅减少了操作人员,而且保障了系统安全稳定运行,达到最好的垃圾处理效果。 The system is mainly about the disposal of urban household garbage and non-toxic&harmless industrial trashthrough the advanced, reliable, mature production technology and technical equipment. After the comprehensive implementation, we can realize the purpose of changing the reduced garbage into resources in a harmless way. Also,the heat energy generated out of garbage incineration can be used in heating and power supply. The chemical equilibrium and fludic analysis of gas as well as the precise equipment selection and temperature enaction shall be executed according to garbage contents at the design stage. From primary garbage input to final ash output , the whole system is controlled by automatic program, which not only cuts the workforce, but also ensures the system safety and steady operation, thus achieving the best garbage disposal effect.

AO工艺设计参数

污水处理A/O工艺设计参数 1.HRT水力停留时间:硝化不小于5~6h;反硝化不大于2h,A段:O段=1:3 在 A/O工艺中,好氧池的作用是使有机物碳化和使氮硝化;缺氧池的作用是反硝 化脱氮,故两池的容积大小对总氮的去除率极为重要。A/O的容积比主要与该废 水的曝气分数有关。缺氧池的大小首先应满足NO3--N利用有机碳源作为电子供体,完成脱氮反应的需要,与废水的碳氮比,停留时间、回流比等因素相应存在一定的关系。借鉴于类似的废水以及正交试验,己内酷胺生产废水的A/0容积比确定在1:6左右,较为合适。 而本设计的A/ 0容积比为亚:2,缺氧池过大,导致缺氧池中的m(BOD)/m (NO3--N)比值下降,当比值低于1.0时,脱氮速率反趋变慢。另外,缺氧池过大,废水停留时间过长,污泥在缺氧池内沉积,造成反硝化严重,经常出现大块上浮死泥,影响后续好氧处理。后将A/O容积比按1:6改造,缺氧池运行平稳。 1.1、A/O除磷工艺的基本原理 A/O法除磷工艺是依靠聚磷菌的作用而实现的,这类细菌是指那些既能贮存聚磷(poly—p)又能以聚β—羟基丁酸(PHB)形式贮存碳源的细菌。在厌氧、好氧交替条 件下运行时,通过PHB与poly—p的转化,使其成为系统中的优势菌,并可以过 量去除系统中的磷。其中聚磷是若干个基团彼此以氧桥联结起来的五价磷化合物,亦被称为聚磷酸盐,其特点是:水解后生成溶解性正磷酸盐,可提供微生物生长繁殖所需的磷源;当积累大量聚磷酸盐的细菌处于不利环境时,聚磷酸盐可分解释放能量供细菌维持生命。聚β—羟基丁酸是由多个β—羟基丁酸聚合而成的大分子聚 合物,当环境中碳源物质缺乏时,它重新被微生物分解,产生能量和机体生长所需要的物质。这一作用可分为两个过程:厌氧条件下的磷释放过程和好氧条件下的磷吸收过程。 厌氧条件下,通过产酸菌的作用,污水中有机物质转化为低分子有机物(如醋酸等),聚磷菌则分解体内的聚磷酸盐释放出磷酸盐及能量,同时利用 水中的低分子有机物在体内合成PHB,以维持其生长繁殖的需要。研究发现,厌 氧状态时间越长,对磷的释放越彻底。 好氧条件下,聚磷菌利用体内的PHB及快速降解COD产生的能量,将污水中的磷 酸盐吸收到细胞内并转变成聚磷贮存能量。好氧状态时间越长,对磷的吸收越充分。由于好氧状态下微生物吸收的磷远大于厌氧状态下微生物释放出的磷,随着厌氧—好氧过程的交替进行,微生物可以在污泥中形成稳定的种类并占据一定的优势,磷就可以通过系统中剩余污泥的排放而去除(见图1)。

物料平衡计算公式:

物料平衡计算公式: 每片主药含量 理论片重= 测得颗粒主药百分含量 1.原辅料粉碎、过筛的物料平衡 物料平衡范围:97.0 %~100 % 物料平衡= %100?+a c b a-粉筛前重量(kg) b-粉筛后重量(kg) c-不可利用物料量(kg) 2.制粒工序的物料平衡 物料平衡范围:98.0 %~104.0 % 制粒工序的物料平衡= a d c b ++×100% 制粒工序的收率=a b ×100% a-制粒前所有原辅料总重(kg) b-干颗粒总重(kg) c-尾料总重(kg) d-取样量(kg) 3.压片工序的物料平衡范围:97.0 %~100.0 % 压片工序的物料平衡= a d c b ++×100% 压片工序的收率=a b ×100% a-接收颗粒重量(kg) b-片子重量(kg) c-取样重量(kg) d-尾料重量(kg) 4.包衣工序的物料平衡 包衣工序的物料平衡范围:98.0 %~100.0 % 包衣工序的物料平衡 = b a e d c +++ 包衣工序的收率 = b a c +

a-素片重量(kg) b-包衣剂重量(kg) c-糖衣片重量(kg) d-尾料重量(kg) e-取样量(kg) 5.内包装工序物料平衡 内包装工序物料平衡范围:99.5 %~100.0 % 包材物料平衡=%100?++++A a d c b B a- PTP 领用量(kg) b- PTP 剩余量(kg) A- PVC 领用量(kg) B- PVC 剩余量(kg) c-使用量(kg) d-废料量(kg) 片剂物料平衡=%100?++a d c b a :领用量(Kg) b :产出量(Kg) c :取样量(Kg) d :废料量(Kg) 6.外包装工序的物料平衡 包装材料的物料平衡范围:100% 包装材料物料平衡=%100?+++e a d c b e-上批结存 a-领用量 b-使用量 c-剩余量 d-残损量 7.生产成品率 成品率范围:90%~102% 片剂收率= %100?++a d c b a-计划产量 b-入库量 c-留样量 d-取样量

污水处理中AO工艺的设计参数

A/O生物除磷工艺是由厌氧和好氧两部分反应组成的污水生物处理系统。污水进入厌氧池后,与回流污泥混合。活性污泥中的聚磷菌在这一过程中大量吸收污水中的BOD,并将污泥中的磷以正磷酸盐的形式释放到混合液中。混合液进入好氧池后,有机物被氧化分解,同时聚磷菌大量吸收混合液中的正磷酸盐到污泥中。由于聚磷菌在好氧条件下吸收的磷多于厌氧条件下释放的磷,因此污水经过“厌氧-好氧”的交替作用和二沉池的污泥分离达到除磷的目的。一般情况下,TP的去除率可达到85%以上。 A/O工艺设计参数 ①水力停留时间:硝化不小于5~6h;反硝化不大于2h,A段:O段=1:3 ②污泥回流比:50~100% ③混合液回流比:300~400% ④反硝化段碳/氮比:BOD5/TN>4,理论BOD消耗量为1.72gBOD/gNOx--N ⑤硝化段的TKN/MLSS负荷率(单位活性污泥浓度单位时间内所能硝化的凯氏氮):<0.05KgTKN/KgMLSS·d ⑥硝化段污泥负荷率:BOD/MLSS<0.18KgBOD5/KgMLSS·d ⑦混合液浓度x=3000~4000mg/L(MLSS) ⑧溶解氧:A段DO<0.2~0.5mg/L O段DO>2~4mg/L ⑨pH值:A段pH =6.5~7.5 O段pH =7.0~8.0 ⑩水温:硝化20~30℃ 反硝化20~30℃ ⑾碱度:硝化反应氧化1gNH4+-N需氧4.57g,消耗碱度7.1g(以CaCO3计)。 反硝化反应还原1gNO3--N将放出2.6g氧,生成3.75g碱度(以CaCO3计) ⑿需氧量Ro——单位时间内曝气池活性污泥微生物代谢所需的氧量称为需氧量(KgO2/h)。微生物分解有机物需消耗溶解氧,而微生物自身代谢也需消耗溶

污水处理AO工艺主要设计参数

污水处理中A/O工艺主要设计参数经验总结加简单计算 ①HRT水力停留时间:硝化不小于5~6h;反硝化不大于2h,A段:O段=1:3 ②污泥回流比:30~100%,具体根据污泥生长所处阶段确定,保证污泥浓度在设计浓度左右 ③混合液回流比:300~400%,混合液回流主要目的是将硝化作用下产生的氨氮送到A段进行反硝化,生成氮气,从而降低总排水氨氮浓度。所以回流比除要调节平衡污泥浓度外,还有促进反硝化反应顺利进行的目的。 ④反硝化段碳/氮比:BOD5/TN>4,理论BOD消耗量为1.72gBOD/gNOx--N ⑤硝化段的TKN/MLSS负荷率(单位活性污泥浓度单位时间内所能硝化的凯氏氮): <0.05KgTKN/KgMLSS·d ⑥硝化段污泥负荷率:BOD/MLSS<0.18KgBOD5/KgMLSS·d ⑦混合液浓度x=3000~4000mg/L(MLSS)普通生活废水取高值,部分生化性能较差工业废水,MLSS取值3000以下 ⑧溶解氧(重点项目):A段DO<0.2~0.5mg/L ???? O段DO>2~4mg/L ⑨pH值:A段pH =6.5~7.5 ?????O段pH =7.0~8.0 ⑩水温:硝化20~30℃ ????????????????? 反硝化20~30℃ ⑾碱度:硝化反应氧化1gNH4+-N需氧4.57g,消耗碱度7.1g(以CaCO3计)。???????????????? 反硝化反应还原1gNO3--N将放出2.6g氧,生成3.75g碱度(以CaCO3计)

⑿需氧量Ro——单位时间内曝气池活性污泥微生物代谢所需的氧量称为需氧量(KgO2/h)。微生物分解有机物需消耗溶解氧,而微生物自身代谢也需消耗溶解氧,所以Ro应包括这三部分。 ??????????????????????? Ro=a’QSr+b’VX+4.6Nr ?????????????????????????? a’─平均转化1Kg的BOD的需氧量KgO2/KgBOD ????????????????????????? b’─微生物(以VSS计)自身氧化(代谢)所需氧量KgO2/KgVSS·d。 ??????? 上式也可变换为: ???????????????????? Ro/VX=a’·QSr/VX+b’ 或Ro/QSr=a’+b’·VX/QS r ???????????????????? Sr─所去除BOD的量(Kg) ???????????????????? Ro/VX─氧的比耗速度,即每公斤活性污泥(VSS)平均每天的耗氧量KgO2/KgVSS·d ??????????????????? Ro/QSr─比需氧量,即去除1KgBOD的需氧量KgO2/KgBOD 由此可用以上两方程运用图解法求得a’ b’ Nr—被硝化的氨量kd/d???????? 4.6—1kgNH3-N转化成NO3-所需的氧量(KgO2) 几种类型污水的a’ b’值 ⒀供氧量─单位时间内供给曝气池的氧量,因为充氧与水温、气压、水深等因素有关,所以氧转移系数应作修正。

垃圾焚烧发电工艺设计参数的计算方法

垃圾焚烧发电工艺设计参数的计算方法 浙江旺能环保股份有限公司作者:周玉彩 摘要:本文介绍了垃圾焚烧发电炉排炉、汽轮机组工艺设计的参数计算方法。 关键词:参数、垃圾、焚烧、炉排、汽轮机组。 前言: 生活垃圾焚烧发电应用于环境保护领域,实现城市生活垃圾的无害化、减量化、减容化和资源化、智能化处理,达到节能减排之目的。在生活垃圾焚烧发电工艺设计流程中首先进行垃圾焚烧发电炉排炉工艺设计参数的计算,为后续设计提供参数依据。 一、生活垃圾焚烧炉排炉工艺设计参数的计算 1、待处理生活垃圾的性质 1.1待处理生活垃圾主要组成成分 表1:待处理生活垃圾的性质 表2:待处理生活垃圾可燃物的元素分析(应用基)% 表3:要求设计主要参数 1.2 根据垃圾元素成分计算垃圾低位热值: LHV=81C+246H+26S-26O-6W (Kcal/Kg) =81*20.6+246*0.9+26*0.12-26*0.12-6*47.4=1388(Kcal/Kg)*4.18=5800(KJ/Kg)。 1.3根据垃圾元素成分计算垃圾高位热值: HHV={LHV+600*(W+9H)}*4.18={1388+600(0.474+9*0.009)}*4.18=7193.78(KJ/Kg)。 2、处理垃圾的规模及能力 焚烧炉3台: 每台炉日处理垃圾350t;

处理垃圾量: 1000t/24h=41.67(t/h); 炉系数:(8760-8000)/8000=0.095; 实际每小时处理生产能力:41.67*(1+0.095)=45.6(t/h); 全年处理量: 45.6*8000=36.5*104t; 故:每台炉每小时处理垃圾量:350/24*1.05=15.3(t/h)。 3、设计参数计算: 3.1垃圾仓的设计和布置 已知设计中焚烧炉长度L=75.5米,宽D=18.5米,取垃圾仓内壁与炉长度对齐,T=5d,垃圾的堆积密度取0.35t/m3 求:垃圾的容积工程公式:V=a*T 式中: V----垃圾仓容积m3; a--- 容量系数,一般为 1.2~1.5,考虑到由于垃圾仓存在孔角,吊车性能和翻 仓程度以及有效量的缺陷,导致垃圾仓可利用的有效容积小于几何容积; T--- 存放时间,d;根据经验得出适合燃烧存放天数,它随地区及季节稍有变化; V=a*T=1.2*5*1000/0.35=17142.86(m3 )。 故:垃圾仓的容积设计取18000(m3)。 垃圾仓的深度为Hm Hm=L*D/V=18000/75.5*18.5=12.88(m)。 故:垃圾池全封闭结构,长75.5米,宽18.5米,总深度以6米卸料平台为基准负13米。 3.2焚烧炉的选择与计算 (1)焚烧炉的加料漏斗 焚烧炉的加料漏斗挂在加料漏斗层,通过垃圾吊车将间接垃圾供料变为均匀加料,漏斗的容积要能满足“1h”内最大焚烧量。 垃圾通过竖溜槽送到给料机,垃圾竖溜槽可通过液压传动闸板关闭,竖溜槽的尺寸选择要满足溜槽中火焰密封闭合,给料机根据要求向焚烧炉配送垃圾,每台炉安装配合给料机传动用液压汽缸,液压设备由每台炉生产线控制中心控制。 料斗的容积V D V D=G/24*Kx/ρL 式中: V D---料斗的容积(m3); G--- 每台炉日处理垃圾的量,(t/h);

GCr9物料平衡计算

一、物料平衡计算 (1) 1、计算所需原始数据 (1) 2、物料平衡基本项目 (2) 3、计算步骤 (2) 二、热平衡计算 (9) 1、计算热收入Q s (9) 2、计算热支出Q z (11) 三、电弧炉炉型及主要参数 (12) 参考文献 (15)

一、物料平衡计算 1、计算所需原始数据 基本原始数据:冶炼钢种及成分(见表1);原材料成分(见2);炉料中元素烧损率(见表3);其他数据(见表4) 表1 冶炼钢种及其成分 钢种 成分(%) 备注C Si Mn P S Cr Fe GCr9 1.00~ 1.10/1.05 0.15~ 0.35/0.25 0.20~0.40 ≤0.027 ≤0.020 0.90~ 1.20 余量氧化法 注:分母系计算时的设定值,取其成分中限。 表2 原材料成分(%) 名称C Si Mn P S Cr Al Fe H2O灰分挥发分碳素废钢0.18 0.25 0.55 0.030 0.030 余量 炼钢生铁 4.20 0.80 0.60 0.200 0.035 余量 焦炭81.50 0.58 12.40 5.52 电极99.00 1.00 名称CaO SiO2MgO Al2O3CaF2Fe2O3CO2H2O P2O5S 石灰88.00 2.50 2.60 1.50 0.50 4.64 0.10 0.10 0.06 铁矿石 1.30 5.75 0.30 1.45 89.77 1.20 0.15 0.08 火砖块0.55 60.80 0.60 36.80 1.25 高铝砖 1.25 6.40 0.12 91.35 0.88 镁砂 4.10 3.65 89.50 0.85 1.90 焦炭灰分 4.40 49.70 0.95 26.25 18.55 0.15 电极灰分8.90 57.80 0.10 33.10 表3 炉料中元素烧损率 成分C Si Mn P S 烧损率(%)熔化期25~40,取30 70~95,取 85 60~70,取 65 40~50,取 45 可以忽略 氧化期0.06①全部烧损20 0.015②25~30,取27 ①按末期含量比规格下限低0.03%~0.10%(取0.06%)确定(一般不低于0.03%的脱碳量); ②按末期含量0.015%来确定

生活垃圾焚烧处理工程技术规范 CJJ

中华人民共和国行业标准 生活垃圾焚烧处理工程技术规范 Technical code for Projects of Municipal Waste Incineration CJJ90—2009 批准部门:中华人民共和国建设部 前言 根据建设部建标[2007] 号文的要求,规范编制组在广泛调查研究,认真总结实践经验,参考有关国际标准和国内外先进标准,并在广泛征求意见的基础上,对《生活垃圾焚烧处理工程技术规范》CJJ90-2002进行了修订。 本次修订主要在下列方面对上一版(CJJ90-2002, J184-2002)进行了较大修订: 1 对术语进行了充实和完善; 2 本着节约用地的原则,提出了对厂区道路设计和绿地率要求; 3 在垃圾焚烧系统章节中,修改了一些不确切条款,增加了一些适应节能减排新形势要求的条款; 4 对烟气净化系统工艺增加了干法和湿法的内容; 5根据修订的《生活垃圾填埋场污染控制标准》,对飞灰的处理增加了可进入生活垃圾卫生填埋场处理的条件; 6 为适应新技术的发展和新形势的要求,对电气和仪表控制章节进行了一些修改; 7 为了节约用水,对给排水和消防章节进行了调整和部分修改; 8 与修改条文相适应,对相应的条文说明进行了修改和补充。 本规范由建设部负责管理和对强制性条文的解释,由主编单位负责具体技术内容的解释。

本规范主编单位:城市建设研究院(地址:北京市朝阳区惠新里3号;邮政编码:100029)、五洲工程设计研究院(地址:北京市西便门内大街85号;邮政编码:100053)。 本规范参加单位:上海日技环境技术咨询有限公司、深圳市环卫综合处理厂、上海市环境工程设计科学研究院。 本规范主要起草人: 徐文龙孙振安郭祥信陈海英白良成梁立军杨宏毅云松陈恩富朱先年滕清张益 王敬民龙吉生金福青吕德彬陈峰蒋旭东卜亚明闫磊张小慧龚柏勋蔡辉张国辉翟力新李万修徐海云孙彦曹学义岳优敏姜宗顺程义军骞瑞欢康振同安淼 目录 1 总则 2 术语 3 垃圾产生量与特性分析 垃圾处理量 垃圾特性分析 4 垃圾焚烧厂总体设计 垃圾焚烧厂规模 厂址选择 全厂总图设计 总平面布置

物料平衡

题目:物料平衡管理制度 制定人:年月日编码:GLSC00500 审核人:年月日颁发部门:质量管理部 批准人:年月日执行时间:年月日 分发部门:生产管理部、前处理车间、制剂车间、档案室: 目的:加强物料平衡的管理,防止差错和混淆事故的发生。 范围:适用于每批产品生产过程中的物料平衡管理。 职责:生产管理部、各生产车间、QA员、生产操作工。 内容: 一、制剂生产必须按照批生产指令所要求的处方量的100%(标示量)投料。 二、进行物料平衡检查是避免或及时发现差错与混淆的有效方法之一,每批产品应按产量和数量平衡。 三、物料平衡是产品(或物料)的理论产量(或理论用量)与实际产量(或实际用量)之间的比较,并有可允许的正常偏差。 四、生产过程的关键工序进行物料平衡检查,检查结果必须符合物料平衡规定的限度。 需要进行物料平衡检查的工序: 固体制剂:制粒、总混、压片(块)、分装、包衣、贴签、包装后成品。 液体制剂:配制、灌装、灭菌、灯检、包装。 提取:净制、浓缩。 五、物料平衡规定限度是根据生产实际情况、产品工艺验证、生产消耗定额等确定的一个适当的百分比值范围。 六、每批产品生产作业完成后进行物料平衡检查,若超过规定限度,必须进行偏差分析,查明原因,在得出合理解释确认无潜在质量事故后,方可按正常产品处理。 七、物料平衡计算公式: 实际值 ×100% 理论值 实际值:为生产过程中实际产出量(包括本工序产出量、收集废品量、取样量、留样量及丢弃的不合格物量);

理论值:为按照所用的原料(或包装材料)在生产中无任何损失或差错情况下得出的最大数量; 八、物料平衡的计算单位 (1)固体制剂进行物料平衡计算时以重量计算。 (2)液体制剂: 第1 页共2 页 ①包装前以体积计算 ②包装后以“万支”计算 ③分装过程: 分装药液体积(ml) = 支 平均装量(ml) (3)中药前处理、提取: ①固体以重量计算 ②液体以体积计算。 九、物料平衡计算结果经QA员复核,确认结果符合规定的限度范围,方可移交下工序。 十、各工序物料平衡检查种类及正常的偏差限度要求遵照工艺规程。

污水处理中AO工艺的设计参数

工艺设计参数 ①水力停留时间:硝化不小于5~6h;反硝化不大于2h,A段段=1:3 ②污泥回流比:50~100% ③混合液回流比:300~400% ④反硝化段碳/氮比:5>4,理论消耗量为1.72 ⑤硝化段的负荷率(单位活性污泥浓度单位时间内所能硝化的凯氏氮): <0.05·d ⑥硝化段污泥负荷率:<0.185·d ⑦混合液浓度3000~4000() ⑧溶解氧:A段<0.2~0.5 O段>2~4 ⑨值:A段=6.5~7.5 O段=7.0~8.0 ⑩水温:硝化20~30℃ 反硝化20~30℃ ⑾碱度:硝化反应氧化14需氧4.57g,消耗碱度7.1g(以3计)。 反硝化反应还原13将放出2.6g氧,生成3.75g碱度(以3计) ⑿需氧量——单位时间内曝气池活性污泥微生物代谢所需的氧量称为需氧量(2)。微生物分解有机物需消耗溶解氧,而微生物自身代谢也需消耗溶解氧,所以应包括这三部分。 ’’4.6 a’─平均转化1的的需氧量2 b’─微生物(以计)自身氧化(代谢)所需氧量2·d。 上式也可变换为: ’·’或’’·

─所去除的量() ─氧的比耗速度,即每公斤活性污泥()平均每天的耗氧量2·d ─比需氧量,即去除1的需氧量2 由此可用以上两方程运用图解法求得a’ b’ —被硝化的氨量 4.6—13-N转化成3-所需的氧量(2) 几种类型污水的a’ b’值 ⒀供氧量─单位时间内供给曝气池的氧量,因为充氧与水温、气压、水深等因素有关,所以氧转移系数应作修正。 ⅰ.理论供氧量 1.温度的影响 (θ)(20)×1.02420 θ─实际温度 2.分压力对的影响(ρ压力修正系数) ρ=所在地区实际压力()/101325()=实际值/标准大气压下值 3.水深对的影响 2·(0.101321) ─曝气池中氧的平均饱和浓度() ─曝气设备装设深度()处绝对气压() 9.81×10-3H ─当地大气压力() 21·(1)/[79+21·(1)]?? ─扩散器的转移效率 ─空气离开池子时含氧百分浓度 综上所述,污水中氧的转移速率方程总修正为: α(20)(βρθ×1.024θ-20 {理论推出氧的转移速率α(β)} 在需氧确定之后,取一定安全系数得到实际需氧量

3.3.3物料平衡计算的方法和步骤

三、物料平衡计算的方法和步骤 (一)水泥厂的物料平衡计算 1.烧成车间生产能力和工厂生产能力的计算 (1)年平衡法 计算步骤是:按计划任务书对工厂规模(水泥年产量的要求),先计算要求的熟料年产量,然后选择窑型、规格,标定窑的台时产量,选取窑的年利用率,计算窑的台数,最后再核算出烧成系统和工厂的生产能力。 ①要求的熟料年产量可按式(3-1)计算: Q y = p e d ---100100G y (3-1) 式中 Q y ——要求的熟料年产量(t/a ); G y ——工厂规模(t/a ); d ——水泥重视高的掺入量(%); e ——水泥中混合材的掺入量(%); p ——水泥的生产损失(%),可取为3%~~5%。 当计划书任务书规定的产品品种有两种或两种以上,但所用的熟料相同时,可按下式分别求出每种水泥要求的熟料年产量,然后计算熟料年产量的总和。 Q y1=p e d ---1001001 1G y1 (3-2) Q y2= p e d ---1001002 2G y2 (3-3) Qy=Q y1+Q y2 (3-4) 式中 Q y1,Q y2——分别表示每种水泥要求的熟料年产量(t/a ); G y1,G y2——分别表示每种水泥年产量(t/a ); d 1,d 2——分别表示每种水泥中石膏的渗入量(%); e 1,e 2——分别表示每种水泥中混合材的渗入量(%); Q y ——两种熟料年产量的总和(t/a )。 ②窑的台数可按式(3-5)计算: n= 1 .8760 h Q Qy η (3-5) 式中 n ——窑的台数; Q y ——要求的熟料年产量(t/a ); Q h.1——所选窑的标定台时产量【t/(台·h)】; η——窑的年利用率,以小数表示。不同窑的年利用率可参考下列数值:湿法窑0.90,传统干法窑0.85,机立窑0.8~0.85,悬浮预热器窑、预分解窑0.85; 8760——全年日历小时数。 算出窑的台数n 等于或略小于整数并取整数值。例如,n=1.9,取为两台,此时窑的能力稍有富余,这是允许的,也是合理的。如n 比某整数略大,取该整数值。例如n=2.1或

相关主题
文本预览
相关文档 最新文档