当前位置:文档之家› 材料力学答案第十一章

材料力学答案第十一章

材料力学答案第十一章
材料力学答案第十一章

材料力学答案第十一章

第十一章 能量方法

第十一章答案

11.1 图示桁架各杆的材料相同,截面面积相等。试求在F 力作用下,桁架的变形能。

12,2N N F F F ==

32

N F F = 2

22222()2222N F F l l F x V dx EA EA EA

ε???? ?????==+?

2234F l EA

=.

11.2计算图示各杆的应变能。

(a) 2223244F l F l F l V EA EA EA

ε=+=. (b) 22

12/32/3120022e e l l M M x x l l V dx dx EI EI

ε????

? ?????=+??

11.5在外伸梁的自由端作用力偶矩

跨度中点C 的挠度w c 。

(见课本下册p40例12-4)

11.6 图示刚架的各杆的EI 皆相等,试求截面A 、B 的位移和截面C 的转角。

(a) A 点:在A 点加一个向下的单位力。M (x 1)=0, M (x 2)=Fx 2, M (x 3)=Fb

11()M x x =,22()M x Fx =,3()0M x = 3330

()()h

M x M x Fabh

dx EI EI

?==-?

.

C 点:在C 加一个逆时针的力偶矩为1的单位力偶。2()1

M x =,

3()1M x =

33

22230

0()

()()()b

h M x M x M x M x dx dx EI EI

?=+?

?2

2Fb Fbh

EI EI =+.

(b) A

点:在A 点加一个向下的单位力。2()22ql qx M x x =-, 1

()2

M x x =

24/20122252384l qlx qx x ql dx EI EI

??

- ????==?.

B 点:在B 点加一个向右的单位力。()M x h =

230()2212l qlx qx h ql h dx EI EI

-?==?. 11.7 处的水平位移和

垂直位移。

杆号

1 2 3 4 5 F N

F -F -2F

F 0 N F 水平 0 0 2-1 0 N F 垂直

0 0 0

-1 0 l

l

l

2l

l

l

水平位移:

122 n

Ni Ni i i F F l EA Fl Fl EA

=?==∑ (122) 3.828Fl Fl

EA

+==-.

垂直位移:

Fl EA

?=-

. 11.8 图中绕过无摩擦滑轮的钢索的截面面积为76.36mm 2,E 索 = 177GPa 。F = 20kN ,(a) 假设横梁ABCD 为刚体,求C 点的垂直位移。(2) 若不把ABCD 假设为刚体,且已知其抗弯刚度为EI = 1440kN.m 2,试再求C 点的垂直位移。 (1) 420.87.891033F EA -?

?=

=???

m. 2F

C B

A

D

F

l

l

D C

F A

B 60

° 60 ° 800 400

400

C

F B A R

B

F O

R

A F

(2) 2

0.4

40

47.89102Fx dx EI

-?=?+?

4447.8910 1.48109.3710---=?+?=?m .

11.9 等截面曲杆BC 的轴线为四分之三的圆周。

若AB 杆可视为刚性杆,试求在F 力作用下,截面B 的水平位移及垂直位移。

水平位移:M (θ)=FR cos θ, ()sin M R θθ=

333

20

sin cos 2FR FR d EI EI

π

θθθ?==?

.

垂直位移:()(1cos )M R θθ=--

333

20

cos (1cos )(43)4FR FR d EI EI

πθθπθ-+?==?

3

3.36FR EI

=.

11.10 图示圆弧形小曲率杆,平均半径为R 。力F 垂直于圆环中线所在的平面。试求两个F 力作用点的相对线位移。

M (θ)=FR sin θ, ()sin M R θθ= T (θ)=FR (1-cos θ), )(1cos )T R θθ=-

3232

220

0sin (1cos )p

FR FR d d EI GI π

πθ

θθθ-?=+?

?

R

F

O B

3

3

3p

FR FR EI GI ππ=+

.

11.11 图示圆弧形小曲率杆,平均半径为R 。在横截面A 与B 处受一对集中力F 作用。力F 在圆环中线所在的平面内。试求两个F 力作用点的相对线位移。 M (θ)=FR sin θ, ()sin M R θθ=

323

20

sin FR FR d EI EI

πθπθ?==?

.

11.12 图示轴线为水平面内四分之一圆周的曲杆,在自由端B 作用垂直荷载F ,设EI 和GI P 为已知,试求在F 力作用下端面B 的垂直位移。

M (θ)=FR sin θ, ()sin M R θθ= T (θ)=FR (1-cos θ), ()(1cos )T R θθ=-

F O R θ B

F A

3232

/2

/20

0sin (1cos )p

FR FR d d EI GI ππθ

θθθ-?=+?

?

3

3(38)44p

FR FR EI GI ππ-=+

.

工程材料力学性能

《工程材料力学性能》(第二版)课后答案 第一章材料单向静拉伸载荷下的力学性能 一、解释下列名词 滞弹性:在外加载荷作用下,应变落后于应力现象。 静力韧度:材料在静拉伸时单位体积材科从变形到断裂所消耗的功。 弹性极限:试样加载后再卸裁,以不出现残留的永久变形为标准,材料能够完全弹性恢复的最高应力。 比例极限:应力—应变曲线上符合线性关系的最高应力。 包申格效应:指原先经过少量塑性变形,卸载后同向加载,弹性极限(σP)或屈服强度(σS)增加;反向加载时弹性极限(σP)或屈服强度(σS)降低的现象。 解理断裂:沿一定的晶体学平面产生的快速穿晶断裂。晶体学平面--解理面,一般是低指数,表面能低的晶面。 解理面:在解理断裂中具有低指数,表面能低的晶体学平面。 韧脆转变:材料力学性能从韧性状态转变到脆性状态的现象(冲击吸收功明显下降,断裂机理由微孔聚集型转变微穿晶断裂,断口特征由纤维状转变为结晶状)。 静力韧度:材料在静拉伸时单位体积材料从变形到断裂所消耗的功叫做静力韧度。是一个强度与塑性的综合指标,是表示静载下材料强度与塑性的最佳配合。 二、金属的弹性模量主要取决于什么?为什么说它是一个对结构不敏感的力学性能指标? 答案:金属的弹性模量主要取决于金属键的本性和原子间的结合力,而材料的成分和组织对它的影响不大,所以说它是一个对组织不敏感的性能指标,这是弹性模量在性能上的主要特点。改变材料的成分和组织会对材料的强度(如屈服强度、抗拉强度)有显著影响,但对材料的刚度影响不大。 三、什么是包辛格效应,如何解释,它有什么实际意义? 答案:包辛格效应就是指原先经过变形,然后在反向加载时弹性极限或屈服强度降

材料力学习题册答案-第1章 绪论

第一章
一、选择题
绪论
1. 根据均匀性假设,可认为构件的( C )在各处相同。 A. 应力 B. 应变 C. 材料的弹性系数 D. 位移 2. 构件的强度是指( C ) ,刚度是指( A ) ,稳定性是指( B ) 。 A. 在外力作用下构件抵抗变形的能力 B. 在外力作用下构件保持原有平衡状态的能力 C. 在外力作用下构件抵抗强度破坏的能力 3. 单元体变形后的形状如下图虚线所示, A 点剪应变依次为图 ( A ) 图 ( C ) 则 (a) , (b) , 图(c) B ) ( 。
(a)
(b)
A. 0 B. 2r C. r 4. 下列结论中( C )是正确的。 A. 内力是应力的代数和; B. 应力是内力的平均值; C. 应力是内力的集度; D. 内力必大于应力; 5. 两根截面面积相等但截面形状和材料不同的拉杆受到同样大小的轴向拉力,它们的应力 是否相等( B ) 。 A. 不相等; B. 相等; C. 不能确定; 6..c
(c) D. 1.5r
二、填空题
1.材料力学对变形固体的基本假设是 连续性假设 , 均匀性假设 , 各向同性假设 。 2.材料力学的任务是满足 强度 , 刚度 , 稳定性 的要求下,为设计经济安全的构件提供 必要的理论基础和计算方法。 3.外力按其作用的分布方式可以分为 表面力 和 体积力 , 按载荷随时间的变化情况可以分 为 静载荷 和 动载荷 。 4.度量一点变形过程的两个基本量是 应变ε 和 切应变 γ 。
三、判断题
1. 因为构件是变形固体,在研究构件平衡时,应按构件变性后的尺寸进行计算。 ( × ) 2. 外力就是构件所承受的载荷。 ( × ) 3. 用截面法求内力时,可以保留截开后构件任意一部分进行平衡计算。 ( √ )
1

工程力学材料力学答案-第十章

10-1 试计算图示各梁指定截面(标有细线者)的剪力与弯矩。 解:(a) (1) 取A +截面左段研究,其受力如图; 由平衡关系求内力 0SA A F F M ++== (2) 求C 截面内力; 取C 截面左段研究,其受力如图; 由平衡关系求内力 2 SC C Fl F F M == (3) 求B -截面内力 截开B -截面,研究左段,其受力如图; 由平衡关系求内力 SB B F F M Fl == q B (d) (b) (a) SA+ M A+ SC M C A SB M B

(b) (1) 求A 、B 处约束反力 e A B M R R l == (2) 求A +截面内力; 取A +截面左段研究,其受力如图; e SA A A e M F R M M l ++=-=- = (3) 求C 截面内力; 取C 截面左段研究,其受力如图; 22 e e SC A A e A M M l F R M M R l +=-=- =-?= (4) 求B 截面内力; 取B 截面右段研究,其受力如图; 0e SB B B M F R M l =-=- = (c) (1) 求A 、B 处约束反力 e M A+ M C B R B M B

A B Fb Fa R R a b a b = =++ (2) 求A +截面内力; 取A +截面左段研究,其受力如图; 0SA A A Fb F R M a b ++== =+ (3) 求C -截面内力; 取C -截面左段研究,其受力如图; SC A C A Fb Fab F R M R a a b a b --== =?=++ (4) 求C +截面内力; 取C +截面右段研究,其受力如图; SC B C B Fa Fab F R M R b a b a b ++=-=- =?=++ (5) 求B -截面内力; 取B -截面右段研究,其受力如图; 0SB B B Fa F R M a b --=-=- =+ (d) (1) 求A +截面内力 取A +截面右段研究,其受力如图; A R SA+ M A+ R A SC- M C- B R B M C+ B R B M q B M

材料力学答案

第二章轴向拉压应力与材料的力学性能 2-1试画图示各杆的轴力图。 题2-1图 解:各杆的轴力图如图2-1所示。 图2-1 2-2试画图示各杆的轴力图,并指出轴力的最大值。图a与b所示分布载荷均沿杆轴均匀分布,集度为q。 题2-2图 (a)解:由图2-2a(1)可知, =2 ( ) F- x qx qa N 轴力图如图2-2a(2)所示,

qa F 2m ax ,N = 图2-2a (b)解:由图2-2b(2)可知, qa F =R qa F x F ==R 1N )( 22R 2N 2)()(qx qa a x q F x F -=--= 轴力图如图2-2b(2)所示, qa F =m ax N, 图2-2b 2-3 图示轴向受拉等截面杆,横截面面积A =500mm 2 ,载荷F =50kN 。试求图示斜截面 m -m 上的正应力与切应力,以及杆内的最大正应力与最大切应力。 题2-3图 解:该拉杆横截面上的正应力为 100MPa Pa 1000.1m 10500N 105082 63=?=??==-A F σ 斜截面m -m 的方位角, 50-=α故有

MPa 3.41)50(cos MPa 100cos 22=-?== ασσα MPa 2.49)100sin(MPa 502sin 2 -=-?== ασ τα 杆内的最大正应力与最大切应力分别为 MPa 100max ==σσ MPa 502 max == σ τ 2-5 某材料的应力-应变曲线如图所示,图中还同时画出了低应变区的详图。试确定 材料的弹性模量E 、比例极限p σ、屈服极限s σ、强度极限b σ与伸长率δ,并判断该材料属于何种类型(塑性或脆性材料)。 题2-5 解:由题图可以近似确定所求各量。 220GPa Pa 102200.001 Pa 10220ΔΔ96=?=?≈=εσE MPa 220p ≈σ, MPa 240s ≈σ MPa 440b ≈σ, %7.29≈δ 该材料属于塑性材料。 2-7 一圆截面杆,材料的应力-应变曲线如题2-6图所示。若杆径d =10mm ,杆长 l =200mm ,杆端承受轴向拉力F = 20kN 作用,试计算拉力作用时与卸去后杆的轴向变形。

材料力学习题册-参考答案(1-9章)

第一章绪论 一、选择题 1.根据均匀性假设,可认为构件的(C)在各处相同。 A.应力 B.应变 C.材料的弹性系数 D.位移 2.构件的强度是指(C),刚度是指(A),稳定性是指(B)。 A.在外力作用下构件抵抗变形的能力 B.在外力作用下构件保持原有平衡状态的能力 C.在外力作用下构件抵抗强度破坏的能力 3.单元体变形后的形状如下图虚线所示,则A点剪应变依次为图(a) (A),图(b) (C),图(c) (B)。 A.0 B.r2 C.r D.1.5r 4.下列结论中( C )是正确的。 A.内力是应力的代数和; B.应力是内力的平均值; C.应力是内力的集度; D.内力必大于应力; 5. 两根截面面积相等但截面形状和材料不同的拉杆受同样大小的轴向拉力,它们的应力 是否相等(B)。 A.不相等; B.相等; C.不能确定; 6.为把变形固体抽象为力学模型,材料力学课程对变形固体作出一些假设,其中均匀性假设是指(C)。 A. 认为组成固体的物质不留空隙地充满了固体的体积; B. 认为沿任何方向固体的力学性能都是相同的; C. 认为在固体内到处都有相同的力学性能; D. 认为固体内到处的应力都是相同的。 二、填空题 1.材料力学对变形固体的基本假设是连续性假设,均匀性假设,各向同性假设。

2.材料力学的任务是满足强度,刚度,稳定性的要求下,为设计经济安全的构件提供必要的理论基础和计算方法。 3.外力按其作用的方式可以分为表面力和体积力,按载荷随时间的变化情况可以分为静载荷和动载荷。 4.度量一点处变形程度的两个基本量是(正)应变ε和切应变γ。 三、判断题 1.因为构件是变形固体,在研究构件平衡时,应按变形后的尺寸进行计算。(×)2.外力就是构件所承受的载荷。(×)3.用截面法求内力时,可以保留截开后构件的任一部分进行平衡计算。(√)4.应力是横截面上的平均内力。(×)5.杆件的基本变形只是拉(压)、剪、扭和弯四种,如果还有另一种变形,必定是这四种变形的某种组合。(√)6.材料力学只限于研究等截面杆。(×)四、计算题 1.图示三角形薄板因受外力作用而变形,角点B垂直向上的位移为0.03mm,但AB和BC 仍保持为直线。试求沿OB的平均应变,并求AB、BC两边在B点的角度改变。 解:由线应变的定义可知,沿OB的平均应变为 =(OB'-OB)/OB=0.03/120=2.5× 由角应变的定义可知,在B点的角应变为 =-∠A C=-2(arctan) =-2(arctan)=2.5×rad

材料力学11-第十一章静不定结构解析

第十一章静不定结构

目录 第十一章静不定结构 (3) §11.1 静不定结构概述 (3) 一、基本构件 (3) 二、静不定结构 (3) §11.2 用力法解静不定结构 (4) 一、只有一个多余约束的情况 (4) 二、有多个多余约束情况 (5) §11.3 对称及反对称性质的利用 (7) §11.4 连续梁及三弯矩方程 (8)

第十一章 静不定结构 §11.1 静不定结构概述 一、 基本构件 1. 桁架:直杆通过铰节点连接,何载作用在节点上,每一杆件只承受拉伸或压缩。 2. 刚架:直杆通过刚节点连接,每一杆件可以承受拉伸、压缩、弯曲和扭转。 3. 连续梁:连续跨过若干支座的梁。 二、 静不定结构 1. 静不定结构:支座反力不能完全由静力平衡方程求出的结构。分外力静不定结构和内力静不定结构。 2. 几何(运动)不变结构:结构只存在由变形所引起的位移。 3. 多余约束:结构中超过使体系保持几何不变结构的最少约束的约束。 桁架(内力静不定结构) 刚架1(内力静不定结构) 连续梁(外力静不定结构) 维持结构几何不几何可变

多余约束 多余约束用 4. 静不定次数的判断:去掉多余约束使原结构变成静定结构,去掉多余约束的个数为静不定的次数。 多余约束 R R 解除一个活动铰,相当于解除一个约束;解除一连杆,相当于解除一个约束;解除单铰,相当解除两个约束 5. 基本静定系:解除静不定结构的某些约束后得到的静定结构。 6. 静不定结构的基本解法:力法和位移法。 §11.2 用力法解静不定结构 一、只有一个多余约束的情况 如图所示结构,求其约束反力 解:1. 将约束解除得到基本静定系 B 1X F R2F R2

材料力学习题册答案-第10章 动载荷

第十章动载荷 一、选择题 1、在用能量法计算冲击应力问题时,以下假设中( D )是不必要的。 A 冲击物的变形很小,可将其视为刚体; B 被冲击物的质量可以忽略,变形是线弹性的; C 冲击过程中只有应变能、势能和动能的变化,无其它能量损失; D 被冲击物只能是杆件。 2.在冲击应力和变形实用计算的能量法中,因不计被冲击物的质量,所以计算结果与实际情况相比( D )。 A 冲击应力偏大,冲击变形偏小; B 冲击应力偏小,冲击变形偏大; C 冲击应力和冲击变形均偏大; D 冲击应力和冲击变形均偏小。 3.四种圆柱及其冲击载荷情况如图所示,柱C上端有一橡胶垫。其中柱( D )内的最大动应力最大。 A B C D 二、计算题 1、重量为P的重物从高度H处自由下落到钢质曲拐上,试按第三强度准则写出危险点的相 当应力。

解:在C 点作用静载荷P 时,BC 段产生弯曲变形,AB 段产生弯扭组合变形,C 点的静位移: a GI Pal EI Pl EI Pa a f f PAB AB BC AB B C st ?++=?++=?3333? st d H K ?++=211 式中,b h I BC 123=,644d I AB π=,32 4d I PAB π= 危险点在A 截面的上下端,静应力为: Z Z r W l a P W T M 2 2223+=+=σ 式中,323 d W Z π= 则动应力为: Z d r d d W l a P K K 223+=?=σσ 2、图示横截面为m m 25m m 75?=?h b 的铝合金简支梁,在跨中增加一刚度kN/m 18=K 的 弹簧支座,重量为N 250=P 的重物从高度mm 50=H 自由下落到梁的中点C 处。若铝合金的弹性模量GPa 70=E ,试求冲击时梁内的最大正应力。 解:在C 点作用静载荷P 时,AB 梁为静不定问题,变形协调条件为梁中点变形等于弹簧变形,故有:

材料力学部分答案

第一章 绪论 一、是非判断题 1.1 材料力学的研究方法与理论力学的研究方法完全相同。 ( × ) 1.2 内力只作用在杆件截面的形心处。 ( × ) 1.3 杆件某截面上的内力是该截面上应力的代数和。 ( × ) 1.4 确定截面内力的截面法,适用于不论等截面或变截面、直杆或曲杆、基本变形或组合变形、横截面或任 意截面的普遍情况。 ( ∨ ) 1.5 根据各向同性假设,可认为材料的弹性常数在各方向都相同。 ( ∨ ) 1.6 根据均匀性假设,可认为构件的弹性常数在各点处都相同。 ( ∨ ) 1.7 同一截面上正应力ζ与切应力η必相互垂直。 ( ∨ ) 1.8 同一截面上各点的正应力ζ必定大小相等,方向相同。 ( × ) 1.9 同一截面上各点的切应力η必相互平行。 ( × ) 1.10 应变分为正应变ε和切应变γ。 ( ∨ ) 1.11 应变为无量纲量。 ( ∨ ) 1.12 若物体各部分均无变形,则物体内各点的应变均为零。 ( ∨ ) 1.13 若物体内各点的应变均为零,则物体无位移。 ( × ) 1.14 平衡状态弹性体的任意部分的内力都与外力保持平衡。 ( ∨ ) 1.15 题1.15图所示结构中,AD 杆发生的变形为弯曲与压缩的组合变形。 ( ∨ ) 1.16 题1.16图所示结构中,AB 杆将发生弯曲与压缩的组合变形。 ( × ) 二、填空题 1.1 材料力学主要研究 受力后发生的 1.2 拉伸或压缩的受力特征是 ,变形特征是 。 1.3 剪切的受力特征是 ,变形特征是 。 1.4 扭转的受力特征是 ,变形特征是 。 1.5 弯曲的受力特征是 ,变形特征是 。 1.6 组合受力与变形是指 。 1.7 构件的承载能力包括 , 和 三个方面。 1.8 所谓 ,是指材料或构件抵抗破坏的能力。所谓 ,是指构件抵抗变形的能力。所 B 题1.15图 题1.16图 外力的合力作用线通过杆轴线 杆件 沿杆轴线伸长或缩短 受一对等值,反向,作用线距离很近的力的作用 沿剪切面发生相对错动 外力偶作用面垂直杆轴线 任意二横截面发生绕 杆轴线的相对转动 外力作用线垂直杆轴线, 外力偶作用面通过杆轴线 梁轴线由直线变为曲线 包含两种或两种以上基本变形的组合 强度 刚度 稳定性 强度 刚度

工程力学材料力学答案-第十一章解析

11-6 图示悬臂梁,横截面为矩形,承受载荷F 1与F 2作用,且F 1=2F 2=5 kN ,试计算梁内的 最大弯曲正应力,及该应力所在截面上K 点处的弯曲正应力。 解:(1) 画梁的弯矩图 (2) 最大弯矩(位于固定端): max 7.5 M kN = (3) 计算应力: 最大应力: K 点的应力: 11-7 图示梁,由No22槽钢制成,弯矩M =80 N.m ,并位于纵向对称面(即x-y 平面)内。 试求梁内的最大弯曲拉应力与最大弯曲压应力。 解:(1) 查表得截面的几何性质: 4020.3 79 176 z y mm b mm I cm === (2) 最大弯曲拉应力(发生在下边缘点处) ()30max 8 80(7920.3)10 2.67 17610x M b y MPa I σ -+-?-?-?===? 6max max max 22 7.510176 408066 Z M M MPa bh W σ?====?6max max 33 7.51030 132 ******** K Z M y M y MPa bh I σ????====? x M 1 z M M z

(3) 最大弯曲压应力(发生在上边缘点处) 30max 8 8020.3100.92 17610 x M y MPa I σ ---???===? 11-8 图示简支梁,由No28工字钢制成,在集度为q 的均布载荷作用下,测得横截面C 底 边的纵向正应变ε=3.0×10-4,试计算梁内的最大弯曲正应力,已知钢的弹性模量E =200 Gpa ,a =1 m 。 解:(1) 求支反力 31 44 A B R qa R qa = = (2) 画内力图 (3) 由胡克定律求得截面C 下边缘点的拉应力为: 49max 3.010******* C E MPa σε+-=?=???= 也可以表达为: 2 max 4C C z z qa M W W σ+== (4) 梁内的最大弯曲正应力: 2 max max max 993267.5 8 C z z qa M MPa W W σσ+ = === q x x F S M

材料力学习题解答[第三章]

3-1求图中所示杆各个横截面上的应力,已知横截面面积A=400mm 2。 解a): MPa MPa 100400 10400 50400 10203 323 1=?==-=?-=σσσ 题3-1a)图 解b): MPa MPa MPa 25400 10 105050400 10203 223 1=?= -=-=?-=右左σσσ MPa MPa 125400 105025333=?==右 左σσ 题3-1b)图 3-2图中为变截面杆,如果横截面面积A 1=200mm 2,A 2=300mm 2,A 3=400mm 2,求杆内各横截面上的应力。 解a ): MPa MPa MPa 100400 10407.6630010205020010103 33 23 1=?=-=?-==?=σσσ 题3-2a)图 解b): MPa MPa 75400 10303.3330010100 3 33 21-=?-==?==σσσ 题3-2b)图 20kN 30kN

3-3 图示杆系结构中,各杆横截面面积相等,即A=30cm 2,载荷F=200kN 。试求各杆横截面上的应力。 解:(1)约束反力: kN F F kN F F kN F F AX AY Dy 2001504 3 15043 ====== (2)各杆轴力 ) (250150200) (150)(200)(150222 2压压拉拉kN F F F kN F F kN F F kN F F NCD NAC NAC D NCD AX NAC AY NAB =+=+======= 题3-3图 (3)各杆的正应力 ) (3.83300 10250,)(5030010150) (7.66300 10200,)(50300101503 33 3压压拉拉MPa MPa MPa MPa AC CD AC AB -=?-=-=?-==?==?=σσσσ 3-4钢杆CD 直径为20mm ,用来拉住刚性梁AB 。已知F=10kN ,求钢杆横截面上的正应力。 解: ) (7.112204 104.3544.3545cos 1) 5.11(23 2拉MPa d F kN F F NCD CD o NCD =??===?+=ππσ 题3-4图 3-5图示结构中,1、2两杆的横截面直径分别为10mm 和20mm ,试求两杆内的应力。设结构的横梁为刚体。 解:取BC 段分析, 题3-5图 kN F F F M BY Cy Cx B 10,0,0, 0====∑ 取AB 段分析: kN F kN F M B 20,10, 021=-==∑ CX F A F By

材料力学(金忠谋)第六版答案第09章

第九章 强度理论 习 题 9-1 脆性材料的极限应力+b σ=40MPa ,- b σ=130MPa ,从受力物体内取下列三个单元 体(a)、(b)、(c),受力状态如图示。试按(1)第一强度理论,(2)第二强度理论,判断何者已到达危险状态,设30.0=μ。 解:按第一强度理论 (a ):114540xd σσ==>,危险。其余安全。 按第二强度理论 (b )()2 12335120350.312071xd b σσμσσμσ+ =-+=+?=+?=>,危险。其余安全。 9-2 塑性材料的极限应力σs =200 MPa ,从受力物体内取下列三个单元体(a )、(b )、(c ),受力状态如图示。试按(1)第三强度理论,(2)第四强度理论,判断何者已达到危险状态。 解:按第三强度理论: (a )3 1316060220xd s σσστ=-=+=>危险。其余安全。 按第四强度理论:按下列公式计算 4xd σ= 全部都不安全。

9-3 工字钢梁受载荷时,某一点处的受力情况表示如下: σ=120MPa ,τ=40MPa 。若[σ]=140MPa ,试按第四强度理论作强度校核。 解: [] 4138xd MPa σσ=< 所以安全。 9-4 某梁在平面弯曲下,已知危险截面上作用有弯矩M =50.9 m kN ?,剪力F S =134.6 kN ,截面为No. 22b 工字钢,[σ]=160 MPa ,试根据第三强度理对梁作主应力校核。 解:A 点: 3 max 6 31350.910156.6232510 156.62xd M MPa W MPa σσσσ-?===?=-= C 点: [] 2 42 2 26 4 1.5xd pD t t p MPa σσσ= ?==≤???= ==3 23 3134.61075.7618.7109.510 2151.53xd QS MPa Jt MPa τστ--?===???== B 点: 题 9-3 图

工程材料力学性能-第 版答案 束德林

《工程材料力学性能》束德林课后答案 机械工业出版社 2008第2版 第一章单向静拉伸力学性能 1、解释下列名词。 1弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。 2.滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。 3.循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。 4.包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。 5.解理刻面:这种大致以晶粒大小为单位的解理面称为解理刻面。6.塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。 韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。 7.解理台阶:当解理裂纹与螺型位错相遇时,便形成一个高度为b的台阶。 8.河流花样:解理台阶沿裂纹前端滑动而相互汇合,同号台阶相互汇合长大,当汇合台阶高度足够大时,便成为河流花样。是解理台阶的一种标志。

9.解理面:是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,因与大理石断裂类似,故称此种晶体学平面为解理面。 10.穿晶断裂:穿晶断裂的裂纹穿过晶内,可以是韧性断裂,也可以是脆性断裂。 沿晶断裂:裂纹沿晶界扩展,多数是脆性断裂。 11.韧脆转变:具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆性断裂,这种现象称为韧脆转变 12.弹性不完整性:理想的弹性体是不存在的,多数工程材料弹性变形时,可能出现加载线与卸载线不重合、应变滞后于应力变化等现象,称之为弹性不完整性。弹性不完整性现象包括包申格效应、弹性后效、弹性滞后和循环韧性等 2、 说明下列力学性能指标的意义。 答:E 弹性模量 G 切变模量 r σ规定残余伸长应力 2.0σ屈服强度 gt δ金属材料拉伸时最大应力下的总伸长率 n 应变硬化指 数 【P15】 3、 金属的弹性模量主要取决于什么因素?为什么说它是一个对 组织不敏感的力学性能指标? 答:主要决定于原子本性和晶格类型。合金化、热处理、冷塑性变形等能够改变金属材料的组织形态和晶粒大小,但是不改变金属原子的本性和晶格类型。组织虽然改变了,原子的本性和晶格

材料力学性能复习重点汇总

第一章 包申格效应:指原先经过少量塑性变形,卸载后同向加载,弹性极限(σP)或屈服强度(σS)增加;反向加载时弹性极限(σP)或屈服强度(σS)降低的现象。 解理断裂:沿一定的晶体学平面产生的快速穿晶断裂。晶体学平面--解理面,一般是低指数,表面能低的晶面。 解理面:在解理断裂中具有低指数,表面能低的晶体学平面。 韧脆转变:材料力学性能从韧性状态转变到脆性状态的现象(冲击吸收功明显下降,断裂机理由微孔聚集型转变微穿晶断裂,断口特征由纤维状转变为结晶状)。 静力韧度:材料在静拉伸时单位体积材料从变形到断裂所消耗的功叫做静力韧度。是一个强度与塑性的综合指标,是表示静载下材料强度与塑性的最佳配合。 可以从河流花样的反“河流”方向去寻找裂纹源。 解理断裂是典型的脆性断裂的代表,微孔聚集断裂是典型的塑性断裂。 5.影响屈服强度的因素 与以下三个方面相联系的因素都会影响到屈服强度 位错增值和运动 晶粒、晶界、第二相等 外界影响位错运动的因素 主要从内因和外因两个方面考虑 (一)影响屈服强度的内因素 1.金属本性和晶格类型(结合键、晶体结构)

单晶的屈服强度从理论上说是使位错开始运动的临界切应力,其值与位错运动所受到的阻力(晶格阻力--派拉力、位错运动交互作用产生的阻力)决定。 派拉力: 位错交互作用力 (a是与晶体本性、位错结构分布相关的比例系数,L是位错间距。)2.晶粒大小和亚结构 晶粒小→晶界多(阻碍位错运动)→位错塞积→提供应力→位错开动→产生宏观塑性变形。 晶粒减小将增加位错运动阻碍的数目,减小晶粒内位错塞积群的长度,使屈服强度降低(细晶强化)。 屈服强度与晶粒大小的关系: 霍尔-派奇(Hall-Petch) σs= σi+kyd-1/2 3.溶质元素 加入溶质原子→(间隙或置换型)固溶体→(溶质原子与溶剂原子半径不一样)产生晶格畸变→产生畸变应力场→与位错应力场交互运动→使位错受阻→提高屈服强度(固溶强化)。 4.第二相(弥散强化,沉淀强化) 不可变形第二相 提高位错线张力→绕过第二相→留下位错环→两质点间距变小→流变应力增大。 不可变形第二相 位错切过(产生界面能),使之与机体一起产生变形,提高了屈服强度。 弥散强化:

材料力学(金忠谋)第六版答案第10章

第十章 组合变形的强度计算 10-1图示为梁的各种截面形状,设横向力P 的作用线如图示虚线位置,试问哪些为平面弯曲?哪些为斜弯曲?并指出截面上危险点的位置。 (a ) (b) (c) (d) 斜弯曲 平面弯曲 平面弯曲 斜弯曲 ? 弯心 () ()弯心 ? ? 弯心 ()() 斜弯曲 弯扭组合 平面弯曲 斜弯曲 “×”为危险点位置。 10-2矩形截面木制简支梁AB ,在跨度中点C 承受一与垂直方向成?=15°的集中力P =10 kN 作用如图示,已知木材的弹性模量MPa 100.14 ?=E 。试确定①截面上中性轴的

位置;②危险截面上的最大正应力;③C 点的总挠度的大小和方向。 解:66.915cos 10cos =?== ?P P y KN 59.215sin 10sin =?== ?P P z KN 43 1012 2015=?=z J 4cm 3310cm W z = 33 562512 1520cm J y =?= 3 750cm W y = 25.74 3 66.94 max =?= = l P M y z KN-M 94.14 3 59.24max =?== l P M z y KN-M M P a W M W M y y z z 84.9107501094.110101025.763633max max max =??+??=+ =--σ 中性轴: 47.2515tan 562510tan tan tan 411=??? ? ??-=?? ?? ??-=--?αy z J J 2 849333105434.010 1010104831066.948--?=??????== z y y EJ l P f m 2 8 933310259.010 562510104831059.248--?=??????==y z z EJ l P f m 602.0259.05434.022=+=f cm 方向⊥中性轴: 47.25=α

材料力学性能考试答案

《工程材料力学性能》课后答案 机械工业出版社 2008第2版 第一章 单向静拉伸力学性能 1、 试述退火低碳钢、中碳钢和高碳钢的屈服现象在拉伸力-伸长曲线图上的区别?为什么? 2、 决定金属屈服强度的因素有哪些?【P12】 答:内在因素:金属本性及晶格类型、晶粒大小和亚结构、溶质元素、第二相。 外在因素:温度、应变速率和应力状态。 3、 试述韧性断裂与脆性断裂的区别。为什么脆性断裂最危险?【P21】 答:韧性断裂是金属材料断裂前产生明显的宏观塑性变形的断裂,这种断裂有一个缓慢的撕裂过程,在裂纹扩展过程中不断地消耗能量;而脆性断裂是突然发生的断裂,断裂前基本上不发生塑性变形,没有明显征兆,因而危害性很大。 4、 剪切断裂与解理断裂都是穿晶断裂,为什么断裂性质完全不同?【P23】 答:剪切断裂是在切应力作用下沿滑移面分离而造成的滑移面分离,一般是韧性断裂,而解理断裂是在正应力作用以极快的速率沿一定晶体学平面产生的穿晶断裂,解理断裂通常是脆性断裂。 5、 何谓拉伸断口三要素?影响宏观拉伸断口性态的因素有哪些? 答:宏观断口呈杯锥形,由纤维区、放射区和剪切唇三个区域组成,即所谓的断口特征三要素。上述断口三区域的形态、大小和相对位置,因试样形状、尺寸和金属材料的性能以及试验温度、加载速率和受力状态不同而变化。 6、 论述格雷菲斯裂纹理论分析问题的思路,推导格雷菲斯方程,并指出该理论的局限性。 【P32】 答: 212?? ? ??=a E s c πγσ,只适用于脆性固体,也就是只适用于那些裂纹尖端塑性变形可以忽略的情况。 第二章 金属在其他静载荷下的力学性能 一、解释下列名词: (1)应力状态软性系数—— 材料或工件所承受的最大切应力τmax 和最大正应力σmax 比值,即: () 32131max max 5.02σσσσσστα+--== 【新书P39 旧书P46】 (2)缺口效应—— 绝大多数机件的横截面都不是均匀而无变化的光滑体,往往存在截面的急剧变化,如键槽、油孔、轴肩、螺纹、退刀槽及焊缝等,这种截面变化的部分可视为“缺口”,由于缺口的存在,在载荷作用下缺口截面上的应力状态将发生变化,产生所谓的缺口效应。【P44 P53】 (3)缺口敏感度——缺口试样的抗拉强度σbn 的与等截面尺寸光滑试样的抗拉强度σb 的比值,称为缺口敏感度,即: 【P47 P55 】 (4)布氏硬度——用钢球或硬质合金球作为压头,采用单位面积所承受的试验力计算而得的硬度。【P49 P58】 (5)洛氏硬度——采用金刚石圆锥体或小淬火钢球作压头,以测量压痕深度所表示的硬度【P51 P60】。 (6)维氏硬度——以两相对面夹角为136。的金刚石四棱锥作压头,采用单位面积所承

材料力学性能课后答案(时海芳任鑫)解析

第一章 1.解释下列名词①滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。②弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。③循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。④包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。⑤塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。⑥韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。 脆性:指金属材料受力时没有发生塑性变形而直接断裂的能力 ⑦加工硬化:金属材料在再结晶温度以下塑性变形时,由于晶粒发生滑移, 出现位错的缠结,使晶粒拉长、破碎和纤维化,使金属的强度和硬度升高,塑性和韧性降低的现象。⑧解理断裂:解理断裂是在正应力作用产生的一种穿晶断裂,即断裂面沿一定的晶面(即解理面)分离。 2.解释下列力学性能指标的意义弹性模量);(2)ζ p(规定非比例伸长应力)、ζ e(弹性极限)、ζ s(屈服强度)、ζ 0.2(屈服强度);(3)ζ b (抗拉强度);(4)n(加工硬化指数); (5)δ (断后伸长率)、ψ (断面收缩率) 4.常用的标准试样有5 倍和10倍,其延伸率分别用δ 5 和δ 10 表示,说明为什么δ 5>δ 10。答:对于韧性金属材料,它的塑性变形量大于均匀塑性变形量,所以对于它的式样的比例,尺寸越短,它的断后伸长率越大。 5.某汽车弹簧,在未装满时已变形到最大位置,卸载后可完全恢复到原来状态;另一汽车弹簧,使用一段时间后,发现弹簧弓形越来越小,即产生了塑性变形,而且塑性变形量越来越大。试分析这两种故障的本质及改变措施。答:(1)未装满载时已变形到最大位置:弹簧弹性极限不够导致弹性比功小;(2)使用一段时间后,发现弹簧弓形越来越小,即产生了塑性变形,这是构件材料的弹性比功不足引起的故障,可以通过热处理或合金化提高材料的弹性极限(或屈服极限),或者更换屈服强度更高的材料。 6.今有45、40Cr、35CrMo 钢和灰铸铁几种材料,应选择哪种材料作为机床机身?为什么?答:应选择灰铸铁。因为灰铸铁循环韧性大,也是很好的消

材料力学第10章答案

第10章 疲劳强度的概念 思考题 10-1 什么是交变应力?举例说明。 答 随时间作周期性变化的应力称交变应力。如下图所示的圆轴以角速度ω匀速转动,轴上一点A 的位置随时间变化,从A 到A ′,再到A ′′,再到A ′′′,又到A 处,如此循环往复。 轴上该点的正应力A σ也从0到,再到0,再到,又到0,产生拉压应力循环。该点的应力即为交变应力。 +max σ?max σ 10-2 疲劳失效有何特点?疲劳失效与静载失效有什么区别?疲劳失效时其断口分成几个区域?是如何形成的? 答 (1)疲劳失效时的应力σ远低于危险应力u σ(静载荷下的强度指标);需要经过一定的应力循环次数;构件(即使是塑性很好的材料)破坏前和破坏时无显著的塑性变形,呈现脆性断裂破坏特征。 (2)疲劳失效的最大工作应力σ远低于危险应力u σ;静载失效的最大工作应力σ为危险应力u σ。 (3)疲劳失效时其断口分成2个区域:光滑区域和颗粒状粗糙区域。 (4)构件在微观上,其内部组织是不均匀的。在足够大的交变应力下,金属中受力较大或强度较弱的晶粒与晶界上将出现滑移带。随着应力变化次数的增加,滑移加剧,滑移带开裂形成微观裂纹,简称“微裂纹”。另外,构件内部初始缺陷或表面刻痕以及应力集中处,都可能最先产生微裂纹。这些微裂纹便是疲劳失效的起源,简称“疲劳源”。 微裂纹随着应力交变次数的继续增加而不断扩展,形成了裸眼可见的宏观裂纹。在裂纹的扩展过程中,由于应力交替变化,裂纹两表面的材料时而互相挤压、时而分离,这样就形成了断口表面的光滑区。宏观裂纹继续扩展,致使构件的承载截面不断被削弱,类似在构件上形成尖锐的“切口”。这种切口造成的应力集中,使局部区域内的应力达到很大数值。最终在较低的应力水平下,由于累积损伤,致使构件在某一次载荷作用时突然断裂。断口表面的颗粒状区域就是这种突然断裂造成的,所以疲劳失效的过程可以理解为裂纹产生、扩展直至构件断裂的一个过程。 10-3 什么是对称循环?什么是脉冲循环? 答 对称循环是指最大应力与最小应力大小相等, 正负号相反的应力循环。如下图所示: 脉冲循环是指最小应力值等于零,应力的正负号不发生变化的应力循环,如下图所示:

第一章 材料的力学性能

第一章材料的力学性能 一、填空题 1、钢筋混凝土及预应力混凝土中所用的钢筋可分为两类:有明显屈服点的钢筋和无明显屈服点的钢筋,通常分别称它们为___________ 和。 2、对无明显屈服点的钢筋,通常取相当于残余应变为时的应力作为假定的屈服点,即。 3、碳素钢可分为、和。随着含碳量的增加,钢筋的强度、塑性。在低碳钢中加入少量锰、硅、钛、铬等合金元素,变成为。 4、钢筋混凝土结构对钢筋性能的要求主要是、、 、。 5、钢筋和混凝土是不同的材料,两者能够共同工作是因为 、、 6、光面钢筋的粘结力由、、三个部分组成。 7、钢筋在混凝土中应有足够的锚固长度,钢筋的强度越、直径越、混凝土强度越,则钢筋的锚固长度就越长。 8、混凝土的极限压应变包括和两部分。 部分越大,表明变形能力越,越好。 9、混凝土的延性随强度等级的提高而。同一强度等级的混凝土,随着加荷速度的减小,延性有所,最大压应力值随加荷速度的减小而。 10、钢筋混凝土轴心受压构件,混凝土收缩,则混凝土的应力,钢筋的应力。 11、混凝土轴心受拉构件,混凝土徐变,则混凝土的应力,钢筋的应力。 12、混凝土轴心受拉构件,混凝土收缩,则混凝土的应力,钢筋的应力。 二、判断题 1、混凝土强度等级是由一组立方体试块抗压后的平均强度确定的。 2、采用边长为100mm的非标准立方体试块做抗压试验时,其换算系数是0.95。 3、混凝土双向受压时强度比其单向受压时强度降低。 4、线性徐变是指徐变与荷载持续时间之间为线性关系。 5、对无明显屈服点的钢筋,设计时其强度标准值取值依据是条件屈服强度。 6、强度与应力的概念完全一样。 7、含碳量越高的钢筋,屈服台阶越短、伸长率越小、塑性性能越差。 8、钢筋应力应变曲线下降段的应力是此阶段拉力除以实际颈缩的断面积。 9、有明显流幅钢筋的屈服强度是以屈服下限为依据的。 10、钢筋极限应变值与屈服点所对应的应变值之差反映了钢筋的延性。 11、钢筋的弹性模量与钢筋级别、品种无关。 12、钢筋的弹性模量指的是应力应变曲线上任何一点切线倾角的正切。 13、硬钢在应力达到假定屈服点时,塑性应变为0.002。 14、冷拉与冷拔一样,可同时提高钢筋的抗拉及抗压强度。 15、冷拔低碳钢丝本身是硬钢,其母材为软钢。 16冷拔钢丝的冷拔次数越多则延性越差。 17、边长200mm的混凝土立方体抗压强度为18MPa,则标准立方体强度为18.9MPa。 18、若混凝土立方强度与的试验方法由在试块表面不涂油改为涂油,三种边长尺寸100mm、150mm、200mm的试块强度是相同的。 19、高宽比为3的棱柱体抗压强度可以代替高宽比为5的棱柱体抗压强度。

材料力学习题集(有答案)汇总

绪论 一、 是非题 1.1 材料力学主要研究杆件受力后变形与破坏的规律。 ( ) 1.2 内力只能是力。 ( ) 1.3 若物体各点均无位移,则该物体必定无变形。 ( ) 1.4 截面法是分析应力的基本方法。 ( ) 二、选择题 1.5 构件的强度是指( ),刚度是指( ),稳定性是指( )。 A. 在外力作用下构件抵抗变形的能力 B. 在外力作用下构件保持其原有的平衡状态的能力 C. 在外力作用下构件抵抗破坏的能力 1.6 根据均匀性假设,可认为构件的( )在各点处相同。 A. 应力 B. 应变 C. 材料的弹性常数 D. 位移 1.7 下列结论中正确的是( ) A. 内力是应力的代数和 B. 应力是内力的平均值 C. 应力是内力的集度 D. 内力必大于应力 参考答案: 1.1 √ 1.2 × 1.3 √ 1.4 × 1.5 C,A,B 1.6 C 1.7 C 轴向拉压 、选择题 1. 等截面直杆 CD 位于两块夹板之间,如图示。杆件与夹板间的摩擦力与杆件自重保持平 衡。设杆 CD 两侧的摩擦力沿轴线方向均匀分布,且两侧摩擦力的集度均为 q ,杆 CD 的横 截面面积为 A ,质量密度为 ,试问下列结论中哪一个是正确的? (A ) q gA ; (B ) 杆内最大轴力 F Nmax ql ; (C ) 杆内各横截面上的轴力 F N gAl ; 2 (D ) 杆内各横截面上的轴力 F N 0 。 (D ) 在试样拉断前都适用。 ACB ,绳索上悬挂物重 P ,如图 2. 低碳钢试样拉伸时,横截面上的应力公式 F N A 适用于以下哪一种情况 ? (A ) 只适用于 ≤ p ; (B ) 只适用于 ≤ e ; (C ) 只适用于 ≤ s ;

材料力学第二章习题【含答案】

浙江科技学院2015-2016学年第一学期考试试卷 A 卷 考试科目材料力学考试方式闭完成时限 2 小时拟题人陈梦涛审核人批准人2015 年9 月17 日建工学院2014 年级土木工程专业 一、单项选择题(每小题3分,计30分) 1. 对于塑性材料来说,胡克定律(Hooke's law)使用的范围是。 A. p σσ <; B. p σσ >; C. s σσ <; D. s σσ > 2.实心圆截面杆直径为D,受拉伸时的绝对变形为mm l1 = ?。仅当直径变为2D时,绝对变形l?为。 A.1mm B.1/2 mm C.1/4 mm D.2mm 3. 下列有关受压柱截面核心的说法中,正确的是。 A.当压力P作用在截面核心内时,柱中只有拉应力。 B.当压力P作用在截面核心内时,柱中只有压应力。 C.当压力P作用在截面核心外时,柱中只有压应力。 D.当压力P作用在截面核心外时,柱中只有拉应力。 4. 构件的强度、刚度和稳定性。 A.只与材料的力学性质有关; B.只与构件的形状尺寸关; C.与二者都有关; D.与二者都无关。 5. 如右图所示,设虚线表示为单元体变形后的形状,则该单元体的剪 应变为。 A. α; B.π/2-α; C.π/2-2α; D.2α 6. 图示一杆件的拉压刚度为EA,在图示外力作用下其 应变能U的下列表达式是。 7.应力-应变曲线的纵、横坐标分别为σ=FN /A,ε=△L / L,其中。 A.A 和L 均为初始值; B.A 和L 均为瞬时值; C.A 为初始值,L 为瞬时值; D.A 为瞬时值,L 均为初始值。 8. 设一阶梯形杆的轴力沿杆轴是变化的,则发生破坏的截面上。 题5图 题6图

相关主题
文本预览
相关文档 最新文档