当前位置:文档之家› 压电薄膜传感器的设计

压电薄膜传感器的设计

压电薄膜传感器的设计

压电薄膜传感器的设计

加速度计可以用在仪表中,测量加速度(速度对时间的变化率)和测量倾斜度(物体的纵轴和与地球表面相切的平面的垂线之间形成的倾角)。倾斜度测量可以被看成直流或稳态测量。在理论上,加速度可以是稳态的,但在实际应用当中,加速度通常是一个短期的暂时现象。

在非倾斜应用(短时加速)中,可以将压电检波器或压电薄膜传感器用作传感器。任何类型的压电传感器都有一个与电容串联的交流电压源等效电路(加上其他会产生二阶效应的电抗元件,不在此进行分析)。典型的容值为几百皮法到几纳法。电压源的电容耦合就是为什么器件不能提供稳态的倾斜度测量的原因。上面提到的等效电容,再加上输入或后继的放大或缓冲电路的分流电阻就构成了一个单极高通滤波器(HPF)。在最好的情况下,如果分流电阻越大,高通滤波器中极点的时间常数越长。这就意味着,在时间常数效应削弱测量前,可以对加速度进行测量的时间较长。

从实用性的角度出发(考虑到器件的可用性),可以选用1GΩ的阻值。由于这个电阻值很大,所使用的放大器必须具有非常低的偏置或泄漏电流,最好能达到1pA 的级别。

图1 是一个实用电路的电路图。压电薄膜传感器是器件X1。在原型设计当中,使用了测量专用的LDTM-028K 器件。这个传感器的一端已经施加了一个很小的重力,在这端再增加大的重力,可以提高灵敏度。传感器通过R1 连到运放U1 的非反向输入端,R1 可防止过压对运放的输入造成损害。如果传感器承受的加速度非常高(如重击),就很可能发生这种情况。R1 也可以用来减小来自X1 的信号幅值。这个电路中的R1 是1GΩ。R2 是输入分流电阻,1pA 的泄漏电流会流过R2,其数值也是1GΩ,产生1mV 的偏置电压

压电式传感器的应用

压电式压力传感器原理及应用 解宝存 201120204038摘要: 压电式压力传感器可以用来测量发动机内部燃烧压力的测量与真空度的测量。也可以用于军事工业,例如用它来测量枪炮子弹在膛中击发的一瞬间的膛压的变化和炮口的冲击波压力。它既可以用来测量大的压力,也可以用来测量微小的压力。本文主要讨论压电式压力传感器原理及压电式压力传感器的光纤传输技术应用在内弹道试验研究中的使用。 关键词:压电式传感器压力内弹道试验 压电式压力传感器(piezoelectric type pressure transducer) 1.0 压电效应 某些离子型晶体电介质(如石英、酒石酸钾钠、钛酸钡等)沿着某一个方向受力而发生机械变形(压缩或伸长)时,其内部将发生极化现象,而在其某些表面上会产生电荷。当外力去掉后,它又会重新回到不带电的状态,此现象称为“压电效应”。压电式传感器的原理是基于某些晶体材料的压电效应。 1.1 压电式压力传感器的特点 压电式压力传感器是基于压电效应的传感器。是一种自发电式和机电转换式传感器。它的敏感元件由压电材料制成。压电材料受力后表面产生电荷。此电荷经电荷放大器和测量电路放大和变换阻抗后就成为正比于所受外力的电量输出。压电式压力传感器用于测量力和能变换为力的非电物理量,如压力、加速度等(见压电式压力传感器、加速度计)。压电式压力传感器是利用压电材料的压电效应将被测压力转换为电信号的。由压电材料制成的压电元件受到压力作用时产生的电荷量与作用力之间呈线性关系:Q=kSp 式中 Q为电荷量;k为压电常数;S为作用面积;p为压力。通过测量电荷量可知被测压力大小。 压电式压力传感器的工作原理与压电式加速度传感器和力传感器基本相同,不同的是弹性元件是由膜片等把压力转换成集中力,再传给压电元件。为了保证静态特性及稳定性,通常多采用压电晶片并联。在压电式压力传感器中常用的压电材料有石英晶体和压电陶瓷,其中石英晶体应用得最为广泛。下面是采用石英晶片的膜片式压电压力传感器图。

压电传感器课程设计

压电式传感器的应用 一:概述 传感器是指那些对被测对象的某一确定的信息具有感受与检出功能, 并使之按照一定规律转换与之对应有用输出信号的元器件或装置,是新技术革命和信息社会的重要技术基础,是现代科技的开路先锋,美国早在80年代就声称世界已进入传感器时代,日本则把传感器技术列为十大技术之创立。 压电式传感器是典型的有源传感器。当压电材料受力作用而变形时,其表面会有电荷产生,从而实现非电量测量。压电式传感器具有体积小,重量轻,工作频带宽等特点,因此在各种动态力,机械冲击与振动的测量,以及声学,医学,力学,宇航,军事等方面都得到了非常广泛的应用。本文就压电传感器的工作原理和应用做相关介绍。 二:基本原理 压电式传感器的工作原理是基于某些介质材料的压电效应。是一种自发电式和机电转换式传感器,它的敏感元件由压电材料制成。压电材料受力后表面产生电荷。此电荷经电荷放大器和测量电路放大和变换阻抗后就成为正比于所受外力的电量输出。压电式传感器用于测量力和能变换为力的非电物理量。它的优点是频带宽、灵敏度高、信噪比高、结构简单、工作可靠和重量轻等。缺点是某些压电材料需要防潮措施,而且输出的直流响应差,需要采用高输入阻抗电路或电荷放大器来克服这一缺陷。 三:应用原理 压电式传感器的应用原理就是利用压电材料的压电效应这个特性,即当有力作用在压电元件上时,传感器就有电荷输出。由于外力作用在压电材料上产生的电荷只有在无泄漏的情况下才能保存,故需要测量回路具有无限大的输入阻抗,这实际上是不可能的,因此压电式传感器不能用于静态测量。 压电元件作为压电式传感器的核心,在受外力作用时,其受力和变形方式大

压电式传感器的发展与应用

HEFEI UNIVERSITY 自动检测技术报告 题目压电式传感器的应用与发展 系别 ***级自动化 班级 **班 姓名 ********************** 指导老师***** 完成时间 2011-11-28

前言:压电式传感器是以某些电介质的压电效应为基础,在外力作用下,在电介质的表面上产生电荷,从而实现非电量测量。压电传感元件是力敏感元件,所以它能测量最终能变换为力的那些物理量,例如力、压力、加速度等。压电式传感器具有响应频带宽、灵敏度高、信噪比大、结构简单、工作可靠、重量轻等优点。近年来,由于电子技术的飞速发展,随着与之配套的二次仪表以及低噪声、小电容、高绝缘电阻电缆的出现,使压电传感器的使用更为方便。因此,在工程力学、生物医学、石油勘探、声波测井、电声学等许多技术领域中获得了广泛的应用。本文重点介绍压电式传感器的工作原理,在航空发动机中的应用及发展趋势。 关键字:传感器压电效应测振 正文:压电式传感器的发展及应用压电式传感器是一种自发电式和机电转换式传感器。它的敏感元件由压电材料制成。压电材料受力后表面产生电荷。此电荷经电荷放大器和测量电路放大和变换阻抗后就成为正比于所受外力的电量输出。压电式传感器用于测量力和能变换为力的非电物理量。它的优点是频带宽、灵敏度高、信噪比高、结构简单、工作可靠和重量轻等。缺点是某些压电材料需要防潮措施,而且输出的直流响应差,需要采用高输入阻抗电路或电荷放大器来克服这一缺陷。 压电效应可分为正压电效应和逆压电效应。正压电效应是指:当晶体受到某固定方向外力的作用时,内部就产生电极化现象,同时在某两个表面上产生符号相反的电荷;当外力撤去后,晶体又恢复到不带电的状态;当外力作用方向改变 时,电荷的极性也随之改变;晶体受力所产生的电荷量 与外力的大小成正比。压电式传感器大多是利用正压电 效应制成的。逆压电效应是指对晶体施加交变电场引起 晶体机械变形的现象,又称电致伸缩效应。用逆压电效 应制造的变送器可用于电声和超声工程。压电敏感元件 的受力变形有厚度变形型、长度变形型、体积变形型、 厚度切变型、平面切变型5种基本形式(见图)。压电 晶体是各向异性的,并非所有晶体都能在这5种状态下产生压电效应。例如石英晶体就没有体积变形压电效应,但具有良好的厚度变形和长度变形压电效应。 压电效应是压电传感器的主要工作原理,压电传感器不能用于静态测量,因为经过外力作用后的电荷,只有在回路具有无限大的输入阻抗时才得到保存。实际的情况不是这样的,所以这决定了压电传感器只能够测量动态的应力。 压电传感器主要应用在加速度、压力和力等的测量中。压电式加速度传感器是一种常用的加速度计。它具有结构简单、体积小、重量轻、使用寿命长等优异的特点。压电式加速度传感器在飞机、汽车、船舶、桥梁和建筑的振动和冲击测量中已经得到了广泛的应用,特别是航空和宇航领域中更有它的特殊地位。压电式传感器也可以用来测量发动机内部燃烧压力的测量与真空度的测量。也可以用于军事工业,例如用它来测量枪炮子弹在膛中击发的一瞬间的膛压的变化和炮口的冲击波压力。它既可以用来测量大的压力,也可以用来测量微小的压力。 压电式传感器也广泛应用在生物医学测量中,比如说心室导管式微音器就是由压电传感器制成的,因为测量动态压力是如此普遍,所以压电传感器的应用就非常广泛。

传感器课程设计压电陶瓷

东北石油大学 课程设计 2015年7 月8日

任务书 课程传感器课程设计 题目压电陶瓷传感器应用电路设计 专业测控技术与仪器姓名王辰学号120601240217 主要内容: 本课题针对生活安全性能要求日益提高以及新型材料的日益发展设计应用压电陶瓷传感器的原理制成的声传感器,并以此为基础组合成声控报警器件,分析传感器原理及相应辅助电路原理,计算有关参数,并加以总结。设计内容包括压电陶瓷的原理,压电陶瓷制成声传感器的方式以及进一步对声控报警器的组合。通过声控报警器可以使个人防盗不仅局限于楼道车库等场所,更趋向于精密化来减小体积使其适用于更有针对性的地方。 基本要求: 1.掌握传感器的工作原理及相应辅助电路的设计方法; 2.独立设计原理图及相应硬件电路; 3.设计格式规范、层次合理、重点突出、并有详细的原理图。 主要参考资料: [1] 谢嘉奎,电子线路[M].北京:高等教育出版社,199 7.10 [2]刘润华,刘立山.模拟电子技术[M].山东:石油大学出版社,2003.6 [3]阎石.数字电子技术基础[M].北京:高等教育出版社,1999.7 [4] 方大千.实用电子制作精选[M].科学技术文献出版社,2003.1 完成期限2015.7.4—2015.7.8 指导教师 专业负责人 2015年7 月1 日

摘要 压电陶瓷是一种具有压电效应的多晶体,由于它的生产工艺与陶瓷的生产工艺相似因而得名。压电陶瓷传感器是以压电陶瓷的压电效应为基础,在外力作用下,在其表面上产生电荷,从而实现非电量测量。 压电陶瓷传感器的特点是具有:转换性能、机械性能、电性能、环境适应性和时间稳定性,由于它的压电性以及由此引起的机电性能的多样性获得了广泛应用。一般可将这些应用分成两大类,即作为压电振子使用和作为换能器使用。作为压电振子使用时要求压电陶瓷材料有好的频率温度稳定性及较高的机械品质因数(表示振动转换时材料内部能量消耗的程度);作为换能器使用时要求有较高的机械藕合系数等于机械转变为电能/输入机械能,或电能转变为机械能/输入电能)和较大的相对介电常数,本文将介绍几种压电陶瓷传感器的应用。 关键词:压电陶瓷传感器;声控报警;电子打火;压电变压器

压电式压力传感器(带信号放大解调滤波电路)

题目:压电式压力传感器的设计 姓名:刘福班级:3 学号:1003030321 专业:测控技术与仪器 目录 引言 第一章传感器基本原理 第二章传感器的基本要求 第三章传感器的结构设计 第四章传感器的参数计算 第五章测量电路信号处理电路 总结 参考文献

一、引言 此次压电式力传感器主要阐述了压电式力传感器的具体设计过程。 设计过程主要包括设计格式、设计要求及设计过程中有关压电式力传感器的设计,还有在整个设计过程中的有关计算、与传感器相连的测试电路。 本压电式传感器采用压缩型单项里传感器结构,利用纵向压电效应进行工作,在设计中压电材料采用石英晶体。由于安装中需施加预紧力,以保证该传感器的线性度良好,故留出一定的过载量,本设计中重点考虑了各部分的面积、刚度等参数,未讨论预紧力的选用范围,可能还存在一些其他因素,如安装误差等可以影响设计传感器的性能,属于正常范围内,使用中可忽略。 压电式传感器的设计,主要是让同学们了解传感器的设计过程,知道如何计算一些参数,如何设计尺寸,如何选择材料,把自己学到的知识熟练灵活的运用起来,活学活用,加深对传感器这门课程的认知。

第一章传感器基本原理 1、基本原理:压电效应 压电式传感器是基于压电效应的传感器。是一种自发电式和机电转换式传感器。它的敏感元件由压电材料制成。压电材料受力后表面产生电荷。此电荷经电荷放大器和测量电路放大和变换阻抗后就成为正比于所受外力的电量输出。常见有以下几种压电效应模型(见图1) 图1 压电效应可分正压电效应和逆压电效应。正压电效应是指:当晶体受到某固定方向外力的作用,内部就产生电极化,同时在某两个表面上产生符号相 反的电荷;当外力撤去后,晶体又恢复到不带电的状态;当外力作用方向改变时,电荷的极性也随之改变;晶体受力所产生的电荷量与外力的大小成正比。压电式传感器大多是利用正压电效应制成的。逆压电效应是指对晶体施加交变电场引起晶体机械变形的现象,又称电致伸缩效应。用逆压电效应制造的变送器可用于电声和超声工程。压电敏感元件的受力变形有厚度变形型、长度变形型、体积变形型、厚度切变型、面切变型5种形式。

设计压电传感器的电荷放大、滤波、电压放大电路的

压电传感器前置放大电路的设计 姓名:陈贤波 学号:SX1201139 一:电荷放大电路 电荷放大器原理:电荷变换是该电荷放大器的核心部分,是一个具有电容负反馈的,输入阻抗极高的高增益运算放大器。它与压电式传感器及其电缆构成的等效电路如图-1所示。 图-1压电式传感器及其电缆构成的等效电路 其中:a C 为压电传感器的等效电容,a R 为压电式传感器的等效绝缘漏电阻,Cc 为电缆等效电容,i C 为放大器的输入电容,i R 为放大器的输入阻抗,f C 为反馈电容,n U 是等效输入噪声电压,off U 是等效输入失调电压。如将f C 折算到输入端,其等效电容为(1+K ) f C ,K 为运放的开环增益。由于反馈电容、传感器电容、电缆电容及放大器电容并联,不 计算噪声和失调电压的影响,电荷放大器的输出电压为 () 运算放大器的开环增益K 很大(约为104 ~106 ),故f R K /)1(+远大于+,f C K )1(+远 大于,此时, , , 和都可以忽略不计,即压电传感器本身的电容大小和电缆长短对电荷放大器输出的影响可以忽略。 (1)o f KQ U C K C =- ++ () 式中C=a C +Cc +i C 因为放大器是高增益的,K >>1,所以一般情况下(1+K )f C >>C,则有 o f Q U C ≈- ()

上式表明,当反馈电容f C 一定时,电荷放大器的输出电压与传感器产生电荷成正比,在实际电路中,考虑到电压灵敏度和量程的问题,一般f C 的值在100~10000pF 范围内选择。 ,本设计选定10000pF ,即10nF 。 当开环增益A 很大,f R K /)1(+远大于+,f C K )1(+远大于不能忽略,(2..19)式可表示为: jw G C Q C K jw R K jwKQ U f f f +-= +++-= f 0)1(1 () 当频率够低时,jw G f 就不能忽略。因此式()是表示电荷放大器的低频响应。F 越 低,f f C w G =时,其输出电压幅值为: 可以看出,这是截止频率点电压值电压输出值,即相对应的下限截止频率为 f f H C R f π21 = 若忽略运放的输入电容和输入电导,同时忽f G ,则上限频率为: ) (21 c S C L C C R f += π () 其中C R 为输入电缆直流电阻,本设计设为30Ω。 本设计选用f R 为1000MEG,经计算z L H f 016.0=。 传感器参数:压电传感器PZT 压电常数 d 33=450PC/N, d 31=-265PC/N, 相对介电常数2100 ,故压电传感器固有电容为: nF S C r s 717.30== δ εε 若传感器输入电缆分布电容为m pF 100,设有100m ,则nF C c 10=。=H f ×5 10z H 。 要测的信号频率范围:1Hz~5KHz ,故满足要求。

智能压力传感器的设计

密级: NANCHANG UNIVERSITY 学士学位论文 THESIS OF BACHELOR (2009—2013年) 题目智能化压力传感器的设计 学院:环化学院系测控系 专业班级:测控技术与仪器093班 学生姓名:钟刚学号: 5801209114 指导教师:刘诚职称:讲师 起讫日期: 2013.3.15—2013.6.6 南昌大学 学士学位论文原创性申明 本人郑重申明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究作出重要贡献的个人和集体,均已在文中以明确方式表明。本人完全意识到本申明的法律后果由本人承担。

作者签名:日期: 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权南昌大学可以将本论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 保密□,在年解密后适用本授权书。 本学位论文属于 不保密□。 (请在以上相应方框内打“√”) 作者签名:日期: 导师签名:日期:

传感器及转换器形成系统的“前端”,没有它,许多现代化的电子系统都无法正常工作。传感器已广泛的应用于工业控制系统和能源工业装置当中(如石油和天然气的生产、配电工业)。它们也是制造录音机和录像机这些原始设备产品的重要内在组成部分。大多数这些数字电子系统之所以具有普遍性和强大优势是得益于传感器广泛应用于这些电子电路中。 本课题将深入研究智能压力传感器系统理论及其在压力测试方面的应用,对新型智能压力传感器系统的智能化功能、智能化软件和硬件配置进行全面的设计。提出了一种差动电容式传感器的前置电路,基于电容/ 电压转换的原理,对微小电容变化量进行测量。电路输出的直流电压与差动电容变化量成线性关系,且能对偏差电容和电路的漂移进行自动补偿。 完善智能化软件,实现温度补偿、自动校准、总线数字通讯、自动增益控制等多种智能化特性,使智能化程度尽可能的提高。 关键词:传感器;压力;智能化。

压电式传感器

摘要 (1) 一、引言 (1) 二、压电式传感器原理 (1) 2.1压电传感器所应用的原理 (1) 2.2压电效应的产生 (2) 2.3石英晶体的压电效应 (3) 三、压电传感器在汽车上的应用 (4) 3.1压电式爆震传感器 (4) 3.1.1共振型压电式爆震传感器 (4) 3.1.2非共振型压电式传感器 (5) 3.2碰撞传感器 (6) 3.3压电式加减速传感器 (6) 四、压电式传感器的发展趋势 (7) 参考文献 (7)

压电式传感器及应用 摘要 近年来,由于电子技术的飞速发展,随着与之配套的二次仪表以及低噪声、小电容、高绝缘电阻电缆的出现,使得压电传感器在工程力学、生物医学、石油勘探、声波测井、电声学等许多技术领域中获得了广泛的应用。本文将以压电式传感器的应用与发展为核心,首先对压电效应的原理进行介绍,紧接着是在行业、具体工程方面尤其是在汽车领域的应用以及应用的方法,最后介绍了压电式式传感器未来的发展趋势。 关键字:压电式传感器;压电效应;应用;发展 一、引言 传感器是指那些对被测对象的某一确定的信息具有感受与检出功能, 并使之按照一定规律转换与之对应有用输出信号的元器件或装置,是新技术革命和信息社会的重要技术基础,是现代科技的开路先锋,美国早在80年代就声称世界已进入传感器时代,日本则把传感器技术列为十大技术之创立。 压电式传感器是基于压电效应的传感器。是一种自发电式和机电转换式传感器它的敏感元件由压电材料制成。压电材料受力后表面产生电荷。此电荷经电荷放大器和测量电路放大和变换阻抗后就成为正比于所受外力的电量输出。压电式传感器用于测量力和能变换为力的非电物理量。它的优点是频带宽、灵敏度高、信噪比高、结构简单、工作可靠和重量轻等。缺点是某些压电材料需要防潮措施,而且输出的直流响应差,需要采用高输入阻抗电路或电荷放大器来克服这一缺陷。 二、压电式传感器原理 2.1压电传感器所应用的原理 压电式传感器所采用的是压电效应,即,当沿着一定方向对某些物质加力而使其变形时,

传感器原理及工程应用设计

传感器原理及工程应用设计

传感器原理及工程应用设计(论文) 压电传感器在动平衡测量系统中的设计与应用 学生姓名:李梦娇 学号:20094073231 所在学院:信息技术学院 专业:电气工程及其自动化(2)班 中国·大庆 2011年12月

摘要 传感器是动平衡测量系统中的重要元件之一, 是一种将不平衡量产生的振动信号不失真地转变成电信号的装置。利用压电式力传感器作为动平衡测量系统中的敏感元件来测量不平衡质量引起的振动。重点阐述了该压电式力传感器的结构设计、安装位置设计及振动信号检测中的关键问题。同时, 详细分析了该传感器的信号调理电路特点。现场实验结果表明, 设计的压电式力传感器在动平衡测量中的性能良好。动平衡处理是旋转部件必须采取的工艺措施之一, 以单片机为核心的动平衡测量系统将逐步取代常规动平衡仪。 关键词:动平衡振动信号压电式力传感器调理电路测量系统单片机

ABSTRACT As one of the important elements in the dynamic balancing measurement system, transducer is the device that converts the vibration signal caused by the mi balance into electrical signal without distortion. The piezoelectric pressure transducer is app lied to dynamic balancing measurement system formeasuring the vibration caused by mi balanced mass. The structure design and the installation location of the piezoelectric force transducer and the critical issues in vibration signal detection are expounded. The characteristics of the signal conditioning circuit of this transducer are analyzed in detail. The experimental results show that the performance of the piezoelectric pressure transducer offers excellent performance in dynamic balancing measurement. The dynamic equilibration measurement is one of the main technological steps to betaken for all the swiveling part s. T he conventional dynamic equilibration measurement system is being replaced by a new o ne based on a monolithic computer. Keyword:dynamic balance vibration signal Piezoelectric force transducer Conditioning circuit Measurement system Monolithic computer

压电式传感器论文

自动检测换技术 相关知识: 电感式传感器的概述; 电感式传感器的基本工作原理; 电感式传感器的测量转换电路; 典型事例; 电感式传感器的应用领域;

电感式传感器 电感式传感器是一种利用线圈自感或互感的变化来实现测量的一种传感器装置,常用来测量位移、振动、力、应变、流量、加速度等物理量。 电感式传感器是基于电磁感应原理来进行测量的。 电感式传感器的分类 自感型——变磁阻式传感器; 互感型——差动变压器式传感器; 涡流式传感器——自感型和互感型都有; 高频反射式——自感型; 低频透射式——互感型电感式传感器; 电感式传感器的概述: 由铁心和线圈构成的将直线或角位移的变化转换为线圈电感量变化的传感器,又称电感式位移传感器。这种传感器的线圈匝数和材料导磁系数都是一定的,其电感量的变化是由于位移输入量导致线圈磁路的几何尺寸变化而引起的。当把线圈接入测量电路并接通激励电源时,就可获得正比于位移输入量的电压或电流输出。常用电感式传感器有变间隙型、变面积型和螺管插铁型。在实际应用中,这三种传感器多制成差动式,以便提高线性度和减小电磁吸力所造成的附加误差。 为什么电感式传感器,一般采用差动形式?

采用差动式结构:1、可以改善非线性、提高灵敏度,提高了测量的准确性。2、电源电压、频率的波动及温度变化等外界影响也有补偿作用,作用在衔铁上的电磁力,由于是两个线圈磁通产生的电磁力之差,所以对电磁吸力有一定的补偿作用,提高抗干扰性。 目录 1 简介 2 特点 3 种类

电感式传感器- 简介 由铁心和线圈构成的将直线或角位移的变化转换为线圈电感量变化的传感器,又称电感式位移传感器。这种传感器的线圈匝数和材料导磁系数都是一定的,其电感量的变化是由于位移输入量导致线圈磁路的几何尺寸变化而引起的。当把线圈接入测量电路并接通激励电源时,就可获得正比于位移输入量的电压或电流输出。 电感式传感器- 特点 ①无活动触点、可靠度高、寿命长; ②分辨率高; ③灵敏度高; ④线性度高、重复性好; ⑤测量范围宽(测量范围大时分辨率低); ⑥无输入时有零位输出电压,引起测量误差; ⑦对激励电源的频率和幅值稳定性要求较高; ⑧不适用于高频动态测量。电感式传感器主要用于位移测量和可以转换成位移变化的机械量(如力、张力、压力、压差、加速度、振动、应变、流量、厚度、液位、比重、转矩等)的测量。 电感式传感器- 种类 常用电感式传感器有变间隙型、变面积型和螺管插铁型。在实际应用中,这三种传感器多制成差动式,以便提高线性度和减小电磁吸

压电传感器的应用

压电传感器的应用 摘要:传感器是获取自然和生产领域中信息的主要途径与手段。在现代工业生产尤其是自动化生产过程中,要用各种传感器来监视和控制生产过程中的各个参数,使设备工作在正常状态或最佳状态,并使产品达到最好的质量。传感器的种类非常广泛,其中压电传感器是基于材料的压电效应而制成的器件,其有较长的发展历史。压电材料的种类由最初的压电晶体发展到压电陶瓷、进而发展到压电聚合物及其复合材料。随着物理学、材料科学与各个学科的交叉发展,压电材料被用以研制成了多种用途的传感器,被广泛应用于工程技术各领域,在测量技术中被用来测量力和加速度。 Abstract:Sensor is the main ways and means to obtain information in the field of natural and production . In modern industrial production, especially automated production process, useing a variety of sensors to monitor and control the production process of various parameters,which enable the device to work in a normal state or the best condition, and to achieve the best quality products. Types of sensors is very broad, of which the piezoelectric sensor is based on the piezoelectric effect devices made of material which has a long history of development. Types of piezoelectric material from the initial development of the piezoelectric ceramic piezoelectric crystal, and thus the development of piezoelectric polymers and their composites. With the development of cross-physics, materials science and various disciplines, piezoelectric materials are used for research into a variety of uses sensors are widely used in various

压电传感器SC0073脉搏测量仪设计讲解

大连民族学院机电信息工程学院 自动化系 单片机系统课程设计报告 题目:脉搏测量仪设计 专业:自动化 班级:自动化103 学生姓名:王宏刚,勾延伟,金文杰 指导教师:陈晓云,张秀春 设计完成日期:2012年11月28日

目录 1任务分析和性能指标 (1) 1.1任务分析 (1) 1.2性能指标 (1) 2总体方案设计 (2) 2.1硬件方案 (2) 2.1.1传感器 (2) 2.1.2 信号处理 (2) 2.1.3 单片机 (2) 2.1.4 电源 (2) 2.2软件方案 (2) 3硬件设计与实现 (4) 3.1前置放大电路 (4) 3.2二阶有源滤波电路 (4) 3.3波形整形电路 (5) 3.4单片机接口电路 (6) 4软件设计与实现 (7) 4.1主程序 (7) 5 调试及性能分析 (8) 5.1调试分析 (8) 总结 (9) 参考文献 (10) 附录1 元器件清单 (11) 附录2 调试系统照片 (12) 附录3源代码 (13)

1任务分析和性能指标 1.1任务分析 医院的护士每天都要给住院的病人把脉记录病人每分钟脉搏数,方法是用手按在病人腕部的动脉上,根据脉搏的跳动进行计数。为了节省时间,一般不会作1分钟的测量,通常是测量10秒钟时间内心跳的数,再把结果乘以6即得到每分钟的心跳数,即使这样做还是比较费时,而且精度也不高。为了提高脉搏测量的精确与速度,多种脉搏测量仪被运用到医学上来,从而开辟了一条全新的医学诊断方法。 随着科学技术的发展,脉搏测量技术也越来越先进,对脉搏的测量精度也越来越高,国内外先后研制了不同类型的脉搏测量仪,而其中关键是对脉搏传感器的研究。 动态微压传感器是一种高性能、低成本的压电式小型压力传感器,产品采用压电薄膜作为换能材料,动态压力信号通过薄膜变成电荷量,在经传感器内部放大电路转换成电压输出。该传感器具有灵敏度高,抗过载及冲击波能力强,抗干扰性好、操作简便、体积小、重量轻、成本低等特点,广泛应用于医疗、工业控制、交通、安全防卫等领域。但人体的生物信号多属于强噪声背景下的低频的弱信号, 脉搏波信号更是低频微弱的非电生理信号,因此必需经过放大和后级滤波以满足采集的要求。 1.2性能指标 系统能准确测量人的脉搏次数,一分钟误差不超过1次,有直观的显示系统。系统要求有自己设计电路部分。

压电式测力传感器

压电式测力传感器的原理及应用 摘要:伴随着电子工程、机械工程、物理学及生物学的发展和需求,传感器微电子技术也逐步的成熟起来,成为一个独立的,设计生物、物理、化学、材料、工程学等领域的新学科。它也将延伸到我们生活的各行各业、方方面面。由于传感器技术的空前发展,其应用领域也不断深入,人们对这方面知识的需求愈显迫切,各种特性,功能各异的传感器也应运而生,例如生物传感器,红外传感器,压电式传感器……,对于这形色功能各异的传感器我们怎样去认识、熟悉它也是一个需要解决的难题,本文将带领我们进入这个新奇的世界,…… 关键词:微电子技术,传感器,压电式测力传感器 1引言:生活中的声控开关、商场中的智能大门、时下正热的红外遥感技术,对这一切就 时时刻刻发生我们身边和应用到我们生活中的随口拖出的“神秘”东西,对于这些智能的生活用具到底怎样工作的呢?在这之中我们不得不提到一个重要的幕后操纵者——传感器,什么是传感器,传感器的工作原理及其性能是什么,……,本文将通过介绍传感器中的一种压电式传感器带领我们进入这个神秘的世界,并通过实例的解析去认识它 2 传感器的综述 2.1 传感器的专业术语及系统介绍 传感器:(广义)凡能外界信息并按一定规律转换成便于测量和控制的信息的装置;(狭义)只有将外界信息按一定规律转换成电量的装置。 传感器的总特性:主要指传感器以及被测对象和后接仪器组成的测量系统的输入和输出的匹配、传感器的机械特性以及其工作特性。 静态特性:表示传感器在被测量各值处于稳定状态时的输入-输出的关系,其指标是灵敏度、线性度、稳定度迟滞等。 动态特性:指输入随时间变化的特性,它表示传感器对随时间变化的输入量的响应特性。它取决于传感器本身,另外与被测量的形式有关。 传感器的组成:通常,传感器由敏感元件,传感元件和其他辅助件组成,又是也将信号调节与转换电路、辅助电源作为传感器的组成部分。如下图: 敏感元件:直接感受被测量(一般为非电量),并输出与被测量成确定关系的其他量(一般为电量)的元件。如应变式压力传感器的弹性膜片、热电偶等都为敏感元件。 传感元件:又称变换器,它一般情况下不直接感受被测量,而是将敏感元件的输出量转换为电量输出的元件。如应变式传感器中的应变片等。 信号调节与辅助电路:能把传感元件输出的电信号转换为便于显示、记录、处理和控制的有

压电式力传感器

压电式力传感器 学生学号 学生姓名 专业班级 指导教师 起止日期

设计目的:

目录5力传感器 5.3压电式力传感器 5.3.1压电式传感器工作原理 5.3.2压电式传感器测量电路 5.3.3压电式传感器的结构 5.3.4压电式传感器的应用

5.3.1压电式传感器工作原理 1.压电效应 (1)正压电效应 (2)逆压电效应 利用逆压电效应可制成多种超声波发生器和压电扬声器。 如图所示是压电效应的示意图。 2.压电材料的分类及特性 压电式传感器中的压电元件材料一般有三类:一类是压电晶体(单晶体);另一类是经过极化处理的压电陶瓷(多晶体);第三类是高分子压电材料。 (1)石英晶体 (2)水溶性压电晶体 (3)铌酸锂晶体 (4)压电陶瓷 1)钛酸钡压电陶瓷 2)锆钛酸铅系压电陶瓷 3)铌酸盐系压电陶瓷 (5)压电半导体 (6)高分子压电材料 3.压电元件常用的结构形式 在压电传感器中,常用两片或多片组合在一起使用。如图所示。

在以上两种连接方式中,并联法输出电荷大,本身电容大,因此时间常数也大,适用于测量缓变信号,并以电荷量作为输出的场合。串联法输出电压高,本身电容小,适用于以电压作为输出量以及测量电路输入阻抗很高的场合。 4.压电材料的选择 (1)具有较大的压电常数。 (2)压电元件的机械强度高、刚度大并具有较高的固有振动频率。 (3)具有高的电阻率和较大的介电常数,以期减少电荷的泄露以及外部分布电容的影响,获得良好的低频特性。 (4)具有较高的居里点。。 (5)压电材料的压电特性不随时间蜕变,有较好的时间稳定性。 5.3.2压电式传感器测量电路 1.压电式传感器的等效电路 压电式传感器在受外力作用时,在两个电极表面将要聚集电荷,且电荷相等,极性相反。这时它相当于一个以压电材料为电介质的电容器,其电容量为: 因此,可以把压电式传感器等效成一个与电容相并联的电荷源,如图a所示,也可以等效成一个电压源,如图b所示。 压电式传感器与测量仪表连接,还必须考虑电缆电容Cc,放大器的输入电阻Ri 和输入电容Ci以及传感器的泄露电阻Ra。如图所示压电式传感器完整的等效电路。

压电式力传感器的设计

设计任务书 一、题目:压电式力传感器的设计 二、设计要求: 1.小型低频的单向力传感器 2.最大测力为400千克 3.压电材料采用石英晶体 三、设计成果要求: 1.设计说明书一份 2.设计参数合理,设计步骤完整。结果标准,论述充分,思路清楚,有条理, 给出相应的参考文献。

设计摘要 此次压电式力传感器设计说明书是按照长春理工大学材料科学与工程学院2010年教学计划的要求设计编写的,其中主要阐述了压电式力传感器的具体设计过程。 设计过程主要包括设计格式、设计要求及设计过程中有关压电式力传感器的设计,还有在整个设计过程中的有关计算、与传感器相连的测试电路。 本压电式传感器采用压缩型单项里传感器结构,利用纵向压电效应进行工作,在设计中压电材料采用石英晶体。由于安装中需施加预紧力,以保证该传感器的线性度良好,故留出一定的过载量,本设计中重点考虑了各部分的面积、刚度等参数,未讨论预紧力的选用范围,可能还存在一些其他因素,如安装误差等可以影响设计传感器的性能,属于正常范围内,使用中可忽略。

目录 引言 (1) 第一章传感器的结构设计 (2) 第二章传感器的参数计算 (3) 第三章测量电路 (6) 总结 (7) 参考文献 (8)

引言 压力传感器是工业实践中最为常用的一种传感器,其广泛应用于各种工业自控环境,涉及水利水电、铁路交通、智能建筑、生产自控、航空航天、军工、石化、油井、电力、船舶、机床、管道等众多行业,在工业中有着不可少的作用。压电式传感器也广泛应用在生物医学测量中,比如说心室导管式微音器就是由压电传感器制成的,因为测量动态压力是如此普遍,所以压电传感器的应用就非常广泛。 传感器原理与应用作为一门课程,我们在认真学好理论课程的同时,还要与实际结合起来,只有这样才能对压电式传感器的使用有更好的理解。 通过对传感器的设计来加深对理论课程的理解,这是学院要求我们进行课程设计的目的。做到理论联系实际,从而学会正确分析传感器使用过程中出现的问题,不断总结经验,进而用来来指导实践,这样我们才能将学好的知识得到很好的应用。也为我们日后再该领域的进一步研究打下坚实的基础。

压电式力传感器的设计

机械工程测试课程设计 学院:xxxxxx 专业班级:xxxxxx 学号:xxxxxx 姓名:xxx

《力的测量课程设计》 目录 设计摘要 (1) 引言 (1) 第一章传感器的结构设计 (2) 第二章传感器的参数计算 (3) 第三章测量电路 (5) 总结 (6) 参考文献 (6)

设计摘要 设计过程主要包括设计格式、设计要求及设计过程中有关压电式力传感器的设计,还有在整个设计过程中的有关计算、与传感器相连的测试电路。 本压电式传感器采用压缩型单项里传感器结构,利用纵向压电效应进行工作,在设计中压电材料采用石英晶体。由于安装中需施加预紧力,以保证该传感器的线性度良好,故留出一定的过载量,本设计中重点考虑了各部分的面积、刚度等参数,未讨论预紧力的选用范围,可能还存在一些其他因素,如安装误差等可以影响设计传感器的性能,属于正常范围内,使用中可忽略。 引言 压电式力传感器是工业实践中最为常用的一种传感器,其广泛应用于各种工业自控环境,涉及水利水电、铁路交通、智能建筑、生产自控、航空航天、军工、石化、油井、电力、船舶、机床、管道等众多行业,在工业中有着不可少的作用。压电式传感器也广泛应用在生物医学测量中,比如说心室导管式微音器就是由压电传感器制成的,因为测量动态压力是如此普遍,所以压电传感器的应用就非常广泛。 传感器原理与应用作为一门课程,我们在认真学好理论课程的同时,还要与实际结合起来,只有这样才能对压电式传感器的使用有更好的理解。 通过对传感器的设计来加深对理论课程的理解,这是王伟老师要求我们进行课程设计的目的。做到理论联系实际,从而学会正确分析传感器使用过程中出现的问题,不断总结经验,进而用来来指导实践,这样我们才能将学好的知识得到很好的应用。也为我们日后再该领域的进一步研究打下坚实的基础。

压电薄膜传感器设计及电路图详解

压电薄膜传感器设计及电路图详解 加速度计可以用在仪表中,测量加速度(速度对时间的变化率)和测量倾斜度(物体的纵轴和与地球表面相切的平面的垂线之间形成的倾角)。倾斜度测量可以被看成直流或稳态测量。在理论上,加速度可以是稳态的,但在实际应用当中,加速度通常是一个短期的暂时现象。 在非倾斜应用(短时加速)中,可以将压电检波器或压电薄膜传感器用作传感器。任何类型的压电传感器都有一个与电容串联的交流电压源等效电路(加上其他会产生二阶效应的电抗元件,不在此进行分析)。典型的容值为几百皮法到几纳法。电压源的电容耦合就是为什么器件不能提供稳态的倾斜度测量的原因。 上面提到的等效电容,再加上输入或后继的放大或缓冲电路的分流电阻就构成了一个单极高通滤波器(HPF)。在最好的情况下,如果分流电阻越大,高通滤波器中极点的时间常数越长。这就意味着,在时间常数效应削弱测量前,可以对加速度进行测量的时间较长。 从实用性的角度出发(考虑到器件的可用性),可以选用1G的阻值。由于这个电阻值很大,所使用的放大器必须具有非常低的偏置或泄漏电流,最好能达到1pA的级别。 图1是一个实用电路的电路图。压电薄膜传感器是器件X1。在原型设计当中,使用了测量专用的LDTM-028K器件。这个传感器的一端已经施加了一个很小的重力,在这端再增加大的重力,可以提高灵敏度。传感器通过R1连到运放U1的非反向输入端,R1可防止过压对运放的输入造成损害。如果传感器承受的加速度非常高(如重击),就很可能发生这种情况。R1也可以用来减小来自X1的信号幅值。这个电路中的R1是1G。R2是输入分流电阻,1pA的泄漏电流会流过R2,其数值也是1G,产生1mV的偏置电压(加到运放的实际偏置电压上)。R2接2.5V的参考电压,设定运放的静态输出电压。运放是ISL28158(或任何其他具有超低输入偏置/泄漏电流的器件)。运算放大器使用+5V DC电源供电。直流增益由R3和R4设定,在这个电路中是+2V/V。1F的电容器(C3)构成了低通滤波器,减小了电路对更高频振动的响应。这里最好用薄膜电容器,因为陶瓷电容器可能引入附加的讨厌的压电效应(即常说的颤噪效应)。如果需要额外的低通滤波,在运放的输出端,即图中

压电式传感器实验报告

压电式传感器测振动实验 一、实验目的:了解压电传感器的测量振动的原理和方法。 二、基本原理:压电式传感器由惯性质量块和受压的压电片等组成。(观察实验用压电加 速度计结构)工作时传感器感受与试件相同频率的振动,质量块便有正比于加速度的交变力作用在晶片上,由于压电效应,压电晶片上产生正比于运动加速度的表面电荷。三、需用器件与单元:振动台、压电传感器、检波、移相、低通滤波器模板、压电式传感 器实验模板。双踪示波器。 四、实验步骤: 1、压电传感器装在振动台面上。 2、将低频振荡器信号接入到台面三源板振动源的激励源插孔。 3、将压电传感器输出两端插入到压电传感器实验模板两输入端,与传感器外壳相连的接线端接地,另一端接R1。将压电传感器实验模板电路输出端V o1,接R6。将压电传感器实验模板电路输出端V02,接入低通滤波器输入端Vi,低通滤波器输出V0与示波器相连。

3、合上主控箱电源开关,调节低频振荡器的频率和幅度旋钮使振动台振动,观察示波器 波形。 4、改变低频振荡器的频率,观察输出波形变化。

光纤式传感器测量振动实验 一、实训目的:了解光纤传感器动态位移性能。 二、实训仪器:光纤位移传感器、光纤位移传感器实验模块、振动源、低频振荡器、通信接口(含上位机软件)。 三、相关原理:利用光纤位移传感器的位移特性和其较高的频率响应,用合适的测量电路即可测量振动。 四、实训内容与操作步骤 1、光纤位移传感器安装如图所示,光纤探头对准振动平台的反射面,并避开振动平台中间孔。 2、根据“光纤传感器位移特性试验”的结果,找出线性段的中点,通过调节安装支架高度将光纤探头与振动台台面的距离调整在线性段中点(大致目测)。 3、参考“光纤传感器位移特性试验”的实验连线,Vo1与低通滤波器中的Vi相接,低通输出Vo接到示波器。 4、将低频振荡器的幅度输出旋转到零,低频信号输入到振动模块中的低频输入。

基于压电传感器的交通违章检测系统设计

淮海工学院 课程设计报告书 课程名称:《传感器原理及应用》课程设计题目:基于压电传感器的交通违章检测 系统设计 系(院):电子工程学院测控系 学期:2015-2016-1 专业班级:测控131 姓名: 学号:

基于压电传感器的交通违章检测系统设计 一、设计目的 1. 能较全面地巩固和应用“传感器及检测技术”课程中所学的基本理论和基本方法,并初步掌握小型数字系统设计的基本方法。 2. 通过《传感器及检测技术》课程设计,掌握传感器及检测系统设计的方法和设计原则及相应的硬件调试的方法。进一步理解传感器及检测系统的设计和应用。 3. 培养独立思考、独立准备资料、独立设计规定功能的数字系统的能力。 4. 培养书写综合设计报告的能力。 二、具体设计要求 压电式交通信息调查系统是一种满足交通流量调查和动态称重调查的多用途系统。系统是一种在不中断交通的情况下记录交通信息的高性价比的设备。⒈系统概述: 这种系统在每一车道安装2条压电轴载称重传感器及1个地感应线圈。系统控制器设备安装在路边机箱内并与道路上传感器连接。控制器可监测到车辆通过压电传感器时所产生的信号,此信号可以用来计算轴负荷,车速及车辆轴距,并进一步计算出车型、车速、轴载等指标。地感线圈的信号主要用以判定车辆的存在信息,也可用来判定车辆底盘长度,同时还可以被系统用于区分前后车辆之间的间隔 ⒉系统设计要求: 当正常行驶的车辆,其轮胎压过铺设在车道路面中的压电膜称重传感器时,会产生一个与施加到传感器上的压力成正比的模拟信号,并且输出的周期与轮胎停留在传感器上的时间相同,通过信号线缆传向路侧的中央数据采集控制器。中央数据采集控制器通过高速A/D转换器将模拟信号转换成数字信号,经程序处理,计算出车辆的触发时间、轴载荷及车辆总重;通过前后布置的两条压电膜称重传感器进一步计算出车辆的行驶速度;安装在道路两侧的激光传感器能够检测车高,辅助判断车型;两条压电膜传感器之间的线圈检测器,通过内部电路处理,能够检测车辆的底盘高度等特征信息,并提供车辆收尾信号。车辆收尾以后,中央数据采集控制器对车辆的轴距、车长、车辆底盘高度、车高等信息进行集中处理,并对数据进行存储、打包,按照交通运输部规定的数据处理周期将统计的数据通过网络上传。

相关主题
文本预览
相关文档 最新文档