当前位置:文档之家› 感光性高分子的应用(精)

感光性高分子的应用(精)

感光性高分子的应用(精)
感光性高分子的应用(精)

感光性高分子的应用

学校名称:华南农业大学

院系名称:材料与能源学院

时间:2017年2月27日

感光性高分子材料的应用:光敏涂料、射线固化涂料、感光性油墨、光致抗蚀剂、印刷制版用感光性树脂、射线固化胶粘剂、光降解塑料、其他方面的应用。

1.光敏涂料和射线固化涂料

传统的涂料是溶剂型的,有些涂料中溶剂的含量高达50%以上。这些涂料在干燥成膜的过程中一是靠溶剂的自身的蒸发,二是依靠烘烤,它们都是引起大气污染的主要祸首之一。不仅这些溶剂作为资源不能再生利用,烘烤涂料又消耗了能源。随着各国环保法规的制订和实施日益严格,溶剂型涂料的产量比重逐渐在下降,取而代之的新型涂料主要有四种:高固化涂料、水性涂料、粉末涂料及光射线固化涂料。其中射线固化涂斜是一种公认的四E染到即具有优异的性能(excellence of finish)、符合生态保护要求(Ecology)、节省能源(Energy)、具有经济性(Economy)。

射线固化涂料的应用领域

(1)木材加工:填充腻子,表面涂层:装饰纸贴面的涂层。

(2)塑料加工:PVC地板表面耐磨涂层;有机玻璃板,聚碳酸酯板材表面增硬涂层,塑料件表面蒸铝的预处理层,塑料件表面装饰涂层,增强塑科件表面装饰涂层。

(3)金属加工:防锈涂层,干法电镀的底涂层,金属制品的装饰涂层。

(4)光导纤维的增强涂层。

(5)纸张、印刷品加工:纸张防水涂层,印刷品上光涂层,高级纸张制造。

(6)电子电氧:半导体管总芯、集成电路芯片、电子元器件表面涂层;太阳能电池、发光元件防潮绝缘涂料。

(7)医学:口腔防龈涂料(牙齿颌面点隙裂沟封密剂),四环素齿的表面涂料。

2.感光性油墨

用感光性树脂制成的油墨能用紫外光和电子束快速地使之干燥,而且,整个过程是在室温和低温下进行,不会造成印刷品的挠曲、变形。

感光性油墨的优点及用途

3.印刷制版用感光性树脂

感光性树脂直接通过感光作用制成浮雕深度至少在0.2毫米以上的

印版,代替了金属。由于其吸墨、耐磨性都比金属好,而且和先进的电子排版、新闻传真技术可以联用,满足了印刷工业向高速、精细化发展的需要。这种印刷版称为感光树脂版。

4.UV固化胶粘剂

组成:UV固化胶粘剂的组成和UV涂料基本相同,只是为了获得较高的强度活性,稀释剂用量较少,为了使粘合界面有强的粘结力,配方中常添加偶联剂和丙烯酸磷酸酯。

UV固化胶粘剂的主要用途:

(1)首饰的水钻粘接、工艺品粘接(水晶、玻璃等材料)

(2)光学棱镜组合,远视、近视双光镜片的粘接:

(3)彩色玻璃和闪光铝箔的粘合:

(4)注射针头和塑料针筒的粘合:

(5)电子元件的固定:

(6)液晶屏的粘合、密封:

(7)光导纤维成束、成带、连接:

(8)钻石粒、螺帽、螺栓的固定粘接:

(9)防粘纸的涂层(主要应用丙烯酸有机聚硅氧烷)

5.EB固化胶粘剂

EB固化胶粘剂和W固化胶粘剂在组成上基本相同,只是前者不使用光引发和光增感剂。

EB固化胶粘剂的主要用途为:

①磁带制造工艺中作为磁粉的粘接:

②金属化纸的制造:

③耐热性差的多种塑料薄膜复合作为包装材料:

④无水、无溶剂型防粘涂层,作为高精度的剥离纸用。

6.其它方面的应用

1、可见光聚合型齿科用修复材料

2、紫外光固化技术应用于三维立体模型的制造

3、光刻涂料在导光照明仪表板上的应用。

光敏高分子材料的研究进展

光敏高分子材料的研究进展 骆海强,重庆大学化学化工学院应用化学2班 摘要:由于当今材料科学技术的快速更迭,高分子材料逐渐成为材料科学领域中极具发展潜力的一类材料。在可利用能源不断缩减的今天,光敏高分子材料的研究力度大大提升,逐渐成为现代生活中不可或缺的部分。本文分别对光敏高分子材料的四大类——感光性高分子材料、光能转化高分子材料、光功能高分子材料及高分子非线性光学材料本身的特性及应用进行了综述性概括,以便快捷了解光敏高分子材料的特点。 0前言 随着材料科学技术相关研究人员在该领域的不断探索,高分子材料无论是在科研领域还是社会生活中,都扮演着极为重要的角色。在光电材料研究风气盛行的当下,太阳能电池、太阳能汽车等光能利用、转化设备普及的大环境下,光敏高分子材料的研究力度渐渐增加,也得到了许多理想的科研成果, 1光敏高分子材料概述 在光照下能表现出特别性能的高分子聚合物即为光敏高分子材料,是材料科学里一类主要的功能高分子材料,所触及范畴也较为普遍,如光致抗蚀剂、光导电高分子、高分子光敏剂等功能材料。 光敏高分子材料根据其自身在光照条件下所产生的反应类型及其展现出的特征性能,可以分成如下四类:感光性高分子材料、光能转化高分子材料、光功能高分子材料及高分子非线性光学材料。 现基于以上分类,对各种材料进行阐述。 2 感光性高分子材料 在光照下可以进行光化学反应的高分子材料常被称为感光性高分子材料。

根据其用途可分为光敏涂料和光刻胶。 2.1光敏涂料 2.1.1光敏涂料的作用机理 光敏涂料具有光敏固化功能,可以利用光交联反应或光聚合反应,使其中的低聚物聚合成膜或网状。经过恰当波长照射后,光敏涂料会快速固化,获得膜状物。因为固化过程较为稳定不易挥发溶剂,从而降低了排放,提高了材料利用,保障了安全性。而且由于是在覆盖之后才发生的交联,使图层交联度更好,机械强度也更稳固。 2.1.2光敏涂料的中常见低聚物的类型 以铁酸锌环氧酯错误!未找到引用源。错误!未找到引用源。涂料为一类的环氧树脂型低聚物,在紫外光的处理下,给电冰箱表面上漆,能够是冰箱表面具有很好的柔顺性且不宜脱落。以含氟丙烯酸酯预聚物错误!未找到引用源。为一类的不饱和聚酯型低聚物,与光引发剂等结合后形成的混合型涂料,其硬度、耐挂擦力、附着力等性能大大提高。此外还有聚氨酯型低聚物错误!未找到引用源。及聚醚型低聚物。 2.2光刻胶(光致抗蚀剂) 2.2.1光刻胶的作用机理 生产集成电路的现有工艺中,通常会用这类感光性树脂覆盖在氧化层从而避免其被活性物质腐蚀。将设计好的图案曝光、显影,改变了其溶解性,其中树脂发生化学反应后去除了易溶解的物质,氧化层表面留下不溶部分,从而避免氧化层被活性物质腐蚀。 2.2.2光刻胶的分类 正性光刻胶和负性光刻胶错误!未找到引用源。是根据曝光前后涂膜的溶解性来分类的。其中正性光刻胶受光后会降解,被显影液所消融;而与之相反,在光照后,负性光刻胶获得的图形恰好与掩膜板图形互补,即曝光处会发生交链反应形成不溶物残余在表面形成图像,而非曝光处则如正性光刻胶同样被消融,。 根据光刻胶所吸收的光的紫外波长,还可将其分为深紫外(i-线,g-线)光刻胶,远紫外(193 nm)光刻胶和极紫外(13. 5nm)光刻胶错误!未找到引用源。。Lawrie等错误!未找到引用源。经过多次实践合成了一种感光灵敏度为4~6 mJ/cm2、分辨率为22.5 nm的

导电高分子材料

导电高分子材料 高分子材料自问世至今,已经有一百多年的历史。1856年硝化纤维作为第一个塑料专利问世,20世纪60年代;许多性能优良的工程塑料相继投入工业化生产;20世纪80年代,材料科学已渗透各个领域,可以说已经进入高分子时代。 大多数高分子材料都是不导电的,因而高分子材料被广泛地作为绝缘材料使用。1862年,英国Letheby在硫酸中电解苯胺而得到少量导电性物质;1954年,米兰工学院G.Natta用 Et3Al-Ti(OBu)4为催化剂制得聚乙炔;1970年,科学家发现类金属的无机聚合物聚硫氰(SN)x具有超导性,有机高分子与无机高分子导电聚合物的开发研究合在一起开始了探寻之旅。1974年日本筑波大学H.Shirakawa在合成聚乙炔的实验中,偶然地投入过量1000倍的催化剂,合成出令人兴奋的有铜色的顺式聚乙炔薄膜与银白色光泽的反式聚乙炔。1980年,英国Durham大学的W.Feast得到更大密度的聚乙炔。1983年,加州理工学院的H.Grubbs以烷基钛配合物为催化剂将环辛四烯转换了聚乙炔,其导电率达到35000S/m,但是难以加工且不稳定。1987年,德国康采思巴斯夫公司BASF科学家N.Theophiou对聚乙炔合成方法进行了改良,得到的聚乙炔电导率与铜在同一数量级,达到107S/m。导电高分子材料的研究和发展开始逐渐走向成熟,并且亟待着可以走向应用领域,导电高分子材料已经在功能高分子材料及导电体中占有重要的地位。 一.导电高分子的定义与导电机理 导电高分子又称为导电聚合物,是由具有共轭π键的高分子经化学或电化学“掺杂”使其由绝缘体转变为导体的一类高分子材料。导电高分子材料是一类兼具高分子特性及导电体特征的高分子材料。按结构和制备方法不同,可将导电高分子材料(CPs)分为复合型与本征(结构)型两大类。结构性导电高分子本身具有“固有”的导电性,由聚合物结构提供导电载流子(包括电子、离子或空穴)。这类聚合物经掺杂后,电导率可大幅度提高,其中有些甚至可达到金属的导电水平。复合型导电高分子是在本身不具备导电性的高分子材料中掺混入大量导电物质,如炭黑、金属粉、箔等,通过分散复合、层积复合、表面复合等方法构成的复合材料。 根据电荷载流子的种类,导电聚合物被分为电子导电聚合物和离子导电聚合物:以自由电子或空穴为载流子的导电聚合物称为电子导电聚合物,电子导电型聚合物的共同特征是分子内含有大的线性共轭π电子体系。以正、负离子为载流子的导电聚合物被称为离子导电聚合物。离子导电聚合物的分子具有亲水性、柔性好,允许体积较大的正、负离子在电场作用下在聚合物中迁移的特性。

粘度法测定水溶性高聚物相对分子量

实验:黏度法测定水溶性高聚物相对分子量 一、目的要求 1. 测定聚乙二醇的平均相对分子量 2. 掌握乌氏黏度计的原理及使用方法 3. 了解溶剂、温度、浓度对黏度的影响 二、基本原理 黏度是指液体对流动所表现的助力,这种助力反抗液体相邻部分的相对移动,可看作由液体内部分子间的内摩擦而产生。 相距为ds 的两液层以不同速度(v 和v dv +)移动时,产生的流速梯度为dv ds 。建立平稳流动时,维持一定流速所需要的力/ f 与液层的接触面积A 以及流速梯度dv ds 成正比: / dv f A ds η=?? 若以f 表示单位面积的阻力,则 上式称为牛顿黏度定律表示式,比例系数η称为黏度系数,简称黏度,单位:a p s ?。 溶液黏度的各种定义及表达式: 相对黏度:0 r η ηη= (0η为溶剂黏度) 特性黏度:[]0 0ln lim lim sp r C C C C ηηη→→==

[]η的数值与高聚物平均相对分子质量M 之间的半经验麦克非线性方程: 聚乙二醇水溶液在35℃时,316.610K L Kg -=??,0.82α= 在毛细管黏度计中,液体在重力的作用下流动符合泊肃叶定律: 488hgr t V m lV lt ηπρπ=- 对同一支黏度计而言,令 4 8hgr lV πα= ,8mV l βπ= , 则上式可改写为: t t ηβ αρ=- 式中1β,当100t s 时,等式右边第二项可省略,则 t η αρ =, 对于溶剂:000t ηαρ= 设溶液的密度ρ与溶剂的密度0ρ近似相等,由两式可得 这样,通过分别测定溶液和溶剂的流出时间t 和0t ,就可求出r η。进而分别求出 sp η、sp η、 ln r C η的值。配制不同浓度溶液分别进行测定,分别作 sp C C η和 ln r C C η两条直线, 用外推法得到[]η,然后代入[]K M α η=?,即可求出M 。

感光高分子的研究现状和发展

感光高分子的研究现状与发展 【摘要】感光高分子是当今材料发展的一个重要课题,本文就感光高分子的研究现状及应用领域作了概述,并对其未来发展进行展望。 【关键词】感光性印刷工业电子工业 一、引言 当今世界上几乎所有的高分子化合物, 不管是天然的还是人工合成的, 都能在强烈的光线辐射下,缓慢地或快速地发生化学变化。“感光性高分子’堤专指那些在一定能量的光线照射下, 很快地发生变化的高分子材料。“光反应性高聚物”和“感光性树脂”以及“感光性高分子’提同义词, 中国更习惯称谓“感光性高分子”。其研究对象主要包括那些能够产生光聚合、光交联、光分解、光改性作用的高分子树脂和光反应预聚体, 以及受光照射后能够产生引发作用的光引发剂和增加感光性高分子感度的增感剂。 二、感光高分子的简介 2.1感光高分子概述 感光性高分子是指在吸收了光能后,能在分子内或分子间产生化学、物理变化的一类功能高分子材料。而且这种变化发生后,材料将输出其特有的功能。在光作用下能迅速发生化学和物理变化的高分子,或者通过高分子或小分子上光敏基团所引起的光化学反应(如聚合、二聚、异构化和光解等)和相应的物理性质(如溶解度、颜色和导电性等)变化而获得的高分子材料。 2.2感光性高分子材料的基本性能 对光的敏感性、成像性、显影性、膜的物理化学性能等。但对不同的用途,要求并不相同。如作为电子材料及印刷制版材料,对感光高分子的成像特性要求特别严格;而对粘合剂、油墨和涂料来说,感光固化速度和涂膜性能等则显得更为重要。

2.3感光高分子的分类 2.3.1根据光反应的类型分为光交联型、光聚合型、光氧化还原型、光分解型、光二聚型等; 2.3.2根据感光基团的种类分未重氮型、叠氮型、肉桂酰型、丙烯酸酯型等; 2.3.3根据物性变化分为:光致不溶型、光致溶解型、光降解型等; 2.3.4根据骨架聚合物种类分为:聚乙烯醇型、聚酯型、尼龙型、丙烯酸酯型、环氧型、氨基甲酸酯型等; 2.3.5据聚合物的形态和组成分类:感光性化合物(增感剂)+ 高分子型,带感光基团的聚合物型,光聚合型等。 2.4应用现状 随着现代科学技术的发展,感光性高分子发展成了功能高分子中用途最广的一种。这与感光性高分子作为新材料在各种领域中得到广泛应用有关。特别是近年来信息科学和信息工业的发展有力地促进了光物理和光化学科学研究的进步,而信息科学所涉及的印刷图像术、复制技术和微细加工及光刻技术等不断对感光高分子及有关材料提出新的要求,有力地推动了感光性高分子的发展。最近不但在成像材料,如照相、复印、印刷、集成电路中获得重要应用,在塑料、纤维、医疗、生物化学、涂料和胶黏剂等方面也都取得了重要地位。 三、感光高分子应用领域 3.1感光性高分子在印刷工业的应用 无论从过去、现在和将来的角度来看印刷工业,它都将是感光性高分子的主要应用方面。感光性高分子材料可用于制备光固化型纸张上光油和光固化油墨。用感光性高分子制作的印刷版材不仅分辨力高而且使用方便,已逐步代替传统的铅字和铜锌版。现在用酚醛树脂和双叠氮化台物的混合物来制备的Ps版,其分辨力可达l~2 u m。现在利用激光一次性直接制版已成为印刷工业的主攻方向。 3.2感光性高分子在电子工业的应用 感光性高分子在电子工业及微电子工业的应用极广,这主要是光刻胶在制造大规模集成电路被开发和应用以后发展起来的。传统的光刻胶有重铬酸系抗蚀

导电高分子材料的简介

导电高分子材料的简介、应用和发展前景 摘要:与传统导电材料相比较,导电高分子材料具有许多独特的性能。导电高聚物可用作雷达吸波材料、电磁屏蔽材料、抗静电材料等。介绍了导电高分子材料的结构、种类及导电机理、合成方法、导电高分子材料的应用、研究现状及发展趋势。 关键词:导电高分子制备方法导电机理性能应用发展趋势 1.简介 高分子材料在很长一段时期都被用作电绝缘材料.随着不同应用领域的需要以及为进一步拓宽高分子材料的应用范围,一些高分子材料被赋予某种程度的导电性以致成为导电高分子材料。导电高分子又称导电聚合物,自从1976年,美国宾夕法尼亚大学的化学家Mac Diarmid领导的研究小组首次发现掺杂后的聚乙炔(Poly acetylene,简称PA)具有类似金属的导电性(导电高分子的导电性如图);1977年,日本白川英树等人才发现用五氟化砷或碘掺杂的聚乙炔薄膜具有金属导电的性质,电导率达到10S/m。这是第一个导电的高分子材料。人们对共轭聚合物的结构和认识不断深入。以后,相继开发出了聚吡咯、聚苯硫醚、聚酞菁类化合物、聚苯胺、聚噻吩等能导电的高分子材料。这个新领域的出现不仅打破了高分子仅为绝缘体的传统观念,而且它的发现和发展为低维固体电子学,乃至分子电子学的建立和完善作出重要的贡献,进而为分子电子学的建立打下基础,而具有重要的科学意义。 现有的研究成果表明,发展导电高分子兼具有机高分子材料的性能及半导体和金属的电性能, 具有密度小,易加工成各种复杂的形状,耐腐蚀,可大面积成膜及可在十多个数量级的范围内进行调节等特点,因此高分子导电材料不仅可作为多种金属材料和无机导电材料的代用品,而且已成为许多先进工业部门和尖端技术领域不可缺少的一类材料。 1.1导电高分子材料的分类 按结构和制备方法不同将导电高分子材料分为复合型与结构型两大类。复合型导电材料是由高分子和导电剂(导电填料)通过不同的复合工艺而构成的材料。结构型结构型导电高分子又称本征型导电高分子(Intrinsically conducting polymer,简称ICP),是指高分子材料本身或经过少量掺杂处理而具有导电性能的材料,其电导率可达半导体甚至金属导体的范围。 1.2 高分子导电材料的制备方法 复合型导电高分子所采用的复合方法主要有两种:一种是将亲水性聚合物或结构型导电高分子进行混合,另一种则是将各种导电填料填充到基体高分子中。结构型导电聚合物一般用电子高度离域的共轭聚合物经过适当电子给体或受体进行掺杂后制得。 1.3 导电机理

黏度法测定水溶性高聚物分子量

华南师范大学实验报告 学生姓名甘汉麟学号 028 专业化学(教育)年级、班级 2011 级 5 班 课程名称物理化学实验实验项目粘度法测定水溶性高聚物分子量实验类型□验证□设计□综合试验时间 2014 年 3 月 19 日实验指导老师肖信实验评分 一.实验目的 1. 测定多糖聚合物-右旋糖苷的平均分子量; 2.掌握用乌式黏度计测定黏度的原理和方法。 二.实验原理 高聚物相对分子质量是表征聚合物特征的基本参数之一,相对分子质量不同,高聚物的性能差异很大。所以不同材料,不同的用途对分子质量的要求是不同的。测定高聚物的相对分子质量对生产和使用高分子材料具有重要的实际意义。本实验采用的右旋糖苷分子是目前公认的优良血浆代用品之一,它是一种水溶性的多糖类聚合物,在中等分子量时,它能提高血浆渗透压,扩充血容量;在低分子量时,它能降低血液粘稠度,改善微循环以及有抗血栓形成的作用;但在高分子量时,则会引起红细胞聚集,导致微循环障碍。可见,测定高聚物分子量对生产和使用高分子材料有重要意义。由于高聚物分子量大小不一,故通常测定高聚物分子量都是利用统计的平均分子量。常用的测定方法有很多,如粘度法、端基分析、沸点升高、冰点降低、等温蒸馏、超离心沉降及扩散法等,其中,用粘度法测定的分子量称“黏均分子量”,记作。 线型高分子可被溶剂分子分散,在具有足够的动能下相互移动,成为黏度态,η是可溶性的高聚物在稀溶液中的黏度,是它在流动过程中所存在内摩擦的反映,这种摩擦主要有:溶剂分子与溶剂分子之间的内摩擦,也就是纯溶剂的黏度,记作η0;高分子与高分子之间的内摩擦以及高分子与溶剂分子之间的内摩擦,三者总和表现为高聚物溶液的黏度,记作η。 在同一温度下,高聚物的黏度一般都比纯溶剂的黏度大,即η>η0,这些黏度增加的分数,叫做增比黏度,记作ηsp,即

水溶性高分子絮凝剂及其在污泥脱水方面的应用

水溶性高分子絮凝剂及其在污泥脱水方面的应用 US 200502300319 发明背景及摘要 本发明涉及一种新型水溶性共聚物,可有效用作助留剂、纸张增强剂、稠化剂,特别是用作高分子絮凝剂,本发明将叙述该类物质的制备工艺及其在以上几方面的应用。 这种水溶性聚合物包括由一种阴离子单体如(甲基)丙烯酸盐聚合而成的均聚物,或者是由阳离子单体如二甲氨基乙基(甲基)丙烯酸酯的季铵盐聚合而成的产物,再或者由非离子单体如(甲基)丙烯酰胺聚合而成的产物,另外也可能是各种类型单体的共聚物。 有多种高分子絮凝剂被广泛用于污水处理过程中产生的污泥的絮凝脱水处理。例如,日本专利JP58-51988用聚合硫酸铁作为无机絮凝剂并单独加入一种高分子有机絮凝剂来对污泥进行絮凝脱水处理。日本专利JP56-16599用一种无机絮凝剂和一种两性高分子絮凝剂对污泥进行处理。另外,人们为了改进聚合物的性能,也作了许多尝试,日本专利JP11-156400开发了一种新的污泥脱水剂,主要成分为一种两性高聚物,是由一种阳离子单体、阴离子单体,及一种水溶性非离子单体和一种溶解度不超过1g的疏水性丙烯酸衍生物共聚反应制备而成的。 上述专利文献中开发的聚合物可有效用作污泥脱水剂,但问题却发生在单体的聚合过程中,主要是有凝胶的现象。如果想在聚合过程中避免凝胶现象的发生,结果却只能制得低分子量的聚合物。再者,由于各单体的共聚反应活性差别较大,按照单体的初始配比进行共聚反应后,所得产物并不是理想的结果。所以,很难达到预期的改进效果,即使得到了想要的共聚物,在处理污泥时也无法达到充分的效果。 而且,由于生活环境的变化,市政及工业废水产生的污泥量越来越多,随之絮凝剂的消耗量越来越大,人们对絮凝剂效能的要求越来越高,要求能用少量的药剂达到较好的处理效果。 鉴于上述情况,本发明研究了一种高聚物可用作絮凝剂,并且在污泥脱水处理中生成的矾花有良好的性能,包括絮凝强度、过滤速度及含水率。通过以上研究,发明们开发了一种嵌段共聚物,是由一种水溶性单体与一种含有聚环氧烷基团的混合物共聚反应而成的。 而且,发明者们继续研究了一种能够提供优秀絮凝效果的水溶性共聚物。该聚合物具有极佳的絮凝特性并且对各种类型的污泥均有良好的脱水性能,即使是处理剩余污泥也可获得满意效果。 再者,发明者们还发现了一种新型高分子量水溶性聚合物,其基本组成为一种端基带有烯类不饱和基的聚环氧烷低聚物,该产品在生产过程中不会出现诸如凝胶此类的问题。当用于污泥脱水处理,该水溶性聚合物可以使生成的矾花在絮凝强度、含水率及过滤速率个方面表现极佳。而且该聚合物还可有效用作助留剂、纸张增强剂、增稠剂。 同样,本发明也制备了带有不同阳离子度的上述新型水溶性共聚物,并且发现混合使用可以获得更佳的污泥脱水效果。换句话说,发明者们发现在对含有原泥与剩余污泥的混合污泥进行脱水处理时可获得更加充分的效果。 发明的最佳实施方案 下面将详细介绍一种由水溶性共聚物组成的高分子絮凝剂及其在污泥脱水

水溶性高分子简介

水溶性高分子简介 摘要:本文介绍了水溶性高分子的分类,物理性能,制造以及未来的发展前景。关键词:水溶性高分子聚乙烯醇聚乙二醇 引言 水溶性高分子化合物又称为水溶性树脂或水溶性聚合物。是一种亲水性的高分子材料,在水中能够溶解或溶胀而形成溶液或分散液。在水溶性聚合物的分子结构中含有大量的亲水基团。亲水基团通常可分为三类:①阳离子基团,如叔胺基、季胺基等;②阴离子基团,如羧酸基、磺酸基、磷酸基、硫酸基等;③极性非离子基团,如羟基、醚基、胺基、酰胺基等。这些集团不但使得高分子有亲水性,而且还带来很多宝贵的性能,如粘合性,成膜性,润滑性,分散性,减磨性等等。 1水溶性高分子的分类 1.1天然水溶性高分子。 以天然动植物为原料,通过物理过程或者物理化学的方法提取而成。最常见的如淀粉类、纤维素、植物胶、动物胶等。天然高分子虽然受到合成高分子的不断冲击,产量逐渐下降,但是仍然有很大一部分市场被其牢牢统治着。 1.2改性天然高分子。 主要有改性纤维素和改性淀粉两大类。如羧甲基淀粉、醋酸淀粉、羟甲基纤维素、羧甲基纤维素等。这类高分子兼有天然高分子和合成高分子的优点,拥有广泛的市场,因此产量很大。 1.3合成高分子。 合成高分子材料分为聚合类和缩合类两类,如聚丙烯酰胺(PAM)、水解聚丙烯酰胺(HPAM))、聚乙烯吡咯烷酮(PVP)等。按大分子链连接的水化基团分为:非离子型和离子型。按荷电性质分为:非离子、阳离子、阴离子和两性离子高分子,其中后三类为聚电解质。按基团间是否存在较强的非共价键联结又分为缔合聚合物和非缔合聚合物。 2水溶性高分子的物理性能 2.1溶解性 溶解性是达到平衡的溶液便不能容纳更多的溶质,在特殊条件下,溶液中溶解的溶质会比正常情多,这时它便成为过饱和溶液。每份溶剂所能溶解的溶质的最大值就是“溶质在这种溶剂的溶解度”。 为了提高水溶性,一是在分子中引入足够的亲水基团到大分子上面变为水溶性高分子。二是降低聚合物的结晶度。三是利用聚电解质的反离子力作用促进溶解。

导电高分子材料

导电高分子材料 导电高分子材料概述 摘要导电高分子材料具有高电导率等与一般聚合物不同的特性。文章综述了导电高分子的分类,研究进展,制备方法以及在作为导电材料,电极材料,显示材料,电子器件,电磁屏蔽材料及催化材料方面的应用。 关键词:导电高分子,制备,应用 Abstract :Conductive polymeric materials have the properties such as high conductivity that different from traditional polymeric materials.This paper reviews the classification of conductive polymers, research progress,Preparation methods and Conductive polymeric materials applied as the conductive material, electrode materials, display materials, electronic devices, electromagnetic shielding materials and the application of catalytic materials. Keywords: Conductive polymeric materials, Preparation,application 传统高分子材料的体积电阻率一般介于1010,1020Ω?cm之问,一直作为电绝缘材料使用。自从1997年,美国化学家MacDiarmid、物理学家Herger和日本化学家Shirakawa[1]发现掺杂聚乙炔具有良好导电性后,世界各国科学家纷纷投入到导电聚合物的研究当中,各种有机导电聚合物相继出现,其应用范围也日益扩大,广泛应用于各种家用电器、航空航天、抗静电涂料、雷达吸波材料、电磁屏蔽材料和传感器等方面,极大地丰富和改善了人们的生活。 1.导电聚合物的分类

水溶性高分子聚乙烯醇的制备及其应用

水溶性高分子聚乙烯醇的制备及其应用 * 中山大学化学与化学工程学院应用化学广州 510275 摘要:本实验采用溶液聚合法,以AIBN作为引发剂合成聚乙酸乙烯酯,然后用NaOH的甲醇溶液进行醇解,得到聚乙烯醇5.527 g,产率54.0%,之后利用红外对聚乙酸乙烯酯与聚乙烯醇进行表征。之后利用聚乙 烯醇的缩醛化反应制备胶水,利用聚乙烯醇的性质制备面膜。 关键词:水溶性高分子聚乙烯醇聚乙酸乙烯酯红外光谱法 1.引言 水溶性高分子化合物又称水溶性树脂或水溶性聚合物,是一种亲水性的高分子材料,在水中能溶胀而形成溶液或分散液。1924年,德国化学家WO. Hermann和WW. Haehel首次将碱液加入到聚乙酸乙烯酯的甲醇溶液中,得到聚乙烯醇(PV A)。聚乙烯醇为白色絮状固体或片状固体,无毒无味,是使用最广泛的合成水溶性高分子,具有优良的力学性能和可调节的表面活性。PV A具有多羟基强氢键,以及单一的-C-C-单键结构,这样的结构不但使PV A具有亲水性,还有黏合性、成膜性、分散性、润滑性、增稠性等良好性能。 PV A的制备首先由乙酸乙烯酯聚合成聚乙酸乙烯酯,然后将其醇解生成PV A,其反应式如下: PVA的结构可以看成是交替相隔的碳原子上带有羟基的多元醇,因此,其发生的反应为多元醇反应,如醚化、酯化、缩醛化。聚乙烯醇和羰基化合物反应可得到缩醛化合物。本实验利用聚乙烯醇和甲醛反应,生产聚乙烯醇缩甲醛,作为胶水使用。 2.实验过程 2.1 实验仪器 三颈瓶,回流冷凝管,水浴锅,蒸汽蒸馏装置,滴液漏斗,pH试纸,培养皿,抽滤装置,滤纸,真空烘箱。2.2 实验试剂 偶氮二异丁腈(AIBN),甲醇,乙酸乙烯酯,NaOH,聚乙烯醇,甲酸,40%甲醛水溶液,盐酸,羧甲基纤维素,丙二醇,乙醇。 2.3 实验步骤

水溶性高分子增稠剂综述

1 绪论 增稠剂实质上是一种流变助剂,加入增稠剂后能调节流变性,使胶黏剂和密封剂增稠,防止填料沉淀,赋予良好的物理机械稳定性,控制施工过程的流变性(施胶时不流挂、不滴淌、不飞液),还能起着降低成本的作用。特别对于胶黏剂和密封剂的制造、储存、使用都很重要,能够改进和调节黏度,获得稳定、防沉、减渗、防淌、触变等性能。 1.1定义 能明显增加胶黏剂和密封剂黏度的物质称为增稠剂(chickening agent),有水性和油性之分。尤其是水相增稠剂应用更为普遍。在水体系中,当增稠剂达到一定浓度后,亲油端基缔合形成胶束;在水基高分子体系中,增稠剂的亲油基团主要与聚合物粒子缔合,以这种方式完成增稠特性的高分子化合物称为水性增稠剂。 1.2分类及机理 水溶性高分子增稠剂的分类有以下几种: 1.2.1纤维素类[1] 纤维素类在水基体系中是一类非常有效的增稠剂,广泛应用于化妆品的各种领域。纤维素是天然有机物, 它含有重复的葡萄糖苷单元,每个葡萄糖苷单元含有3 个羟基, 通过这些羟基可以形成各种各样的衍生物。纤维素类增稠剂通过水合膨胀的长链而增稠,纤维素增稠的体系表现明显的假塑性流变形态。使用量一般质量分数为1%左右。

纤维素类增稠剂纤维素类增稠剂的增稠机理是疏水主链与周围水分子通过氢键缔合,提高了聚合物本身的流体体积,减少了颗粒自由活动的空间,从而提高了体系黏度。也可以通过分子链的缠绕实现黏度的提高,表现为在静态和低剪切有高黏度,在高剪切下为低黏度。这是因为静态或低剪切速度时,纤维素分子链处于无序状态而使体系呈现高粘性;而在高剪切速度时,分子平行于流动方向作有序排列,易于相互滑动,所以体系黏度下降。 1.2.2 聚丙烯酸类 聚丙烯酸类增稠剂[2]自1953 年Goodrich 公司将Carbomer934引入市场至今已有40年的历史了, 现在这系列增稠剂已经有了更多的选择(见表1) 。 聚丙烯酸类增稠剂的增稠机理有2 种, 即中和增稠与氢键结合增稠。中和增稠是将酸性的聚丙烯酸类增稠剂中和, 使其分子离子化并沿着聚合物的主链产生负电荷, 同性电荷之间的相斥促使分子伸直张开形成网状结构达到增稠效果; 氢键结合增稠是聚丙烯酸类增稠剂先与水结合形成水合分子, 再与质量分数为10 %~ 20 %的羟基给予体(如具有5个或以上乙氧基的非离子表面活性剂)结合, 使其卷曲的分子在含水系统中解开形成网状结构达到增稠效果。 1.2.3 天然胶及其改性物 天然胶主要有胶原蛋白类和聚多糖类,但是作为增稠剂的天然胶主要是聚多糖类( 见表1) 。 增稠机理是通过聚多糖中糖单元含有3个羟基与水分子相互作用形成三维水化网络结构,从而达到增稠的效果。它们的水溶液的流变形态大部分是非牛顿流体, 但也有些稀溶液的流变特性接近牛顿流体。 1.2.4无机高分子及其改性物 无机高分子类增稠剂一般具有三层的层状结构或一个扩张的格子结构,最有商业用途的两类是蒙脱土和水辉石。 其增稠机理是无机高分子在水中分散时,其中的金属离子从晶片往外扩散,随着水合作用的进行,它发生溶胀,到最后片晶完全分离,其结果形成阴离子层状结构片晶和金属离子的透明胶体悬浮液。在这种情况下,片晶带有表面负电荷,它的

导电高分子材料

导电高分子材料概述 摘要导电高分子材料具有高电导率等与一般聚合物不同的特性。文章综述了导电高分子的分类,研究进展,制备方法以及在作为导电材料,电极材料,显示材料,电子器件,电磁屏蔽材料及催化材料方面的应用。 关键词:导电高分子,制备,应用 Abstract :Conductive polymeric materials have the properties such as high conductivity that different from traditional polymeric materials.This paper reviews the classification of conductive polymers, research progress,Preparation methods and Conductive polymeric materials applied as the conductive material, electrode materials, display materials, electronic devices, electromagnetic shielding materials and the application of catalytic materials. Keywords: Conductive polymeric materials, Preparation,application 传统高分子材料的体积电阻率一般介于1010~1020Ω?cm之问,一直作为电绝缘材料使用。自从1997年,美国化学家MacDiarmid、物理学家Herger和日本化学家Shirakawa[1]发现掺杂聚乙炔具有良好导电性后,世界各国科学家纷纷投入到导电聚合物的研究当中,各种有机导电聚合物相继出现,其应用范围也日益扩大,广泛应用于各种家用电器、航空航天、抗静电涂料、雷达吸波材料、电磁屏蔽材料和传感器等方面,极大地丰富和改善了人们的生活。 1.导电聚合物的分类 导电高分子材料按结构和制备方法不同可分为结构型导电高分子材料和复合型导电高分子材料两大类。根据结构特征和导电机理不同可分成三类:载流子为自由电子的电子导电聚合物、载流子为能在聚合物分子间迁移的正负离子的离子导电聚合物、以氧化还原反应为电子转移机理的氧化还原型导电聚合物。 1.1结构型导电高分子材料 结构型(又称作本征型)导电高分子[2]是指高分子材料本身或经过掺杂后具有导电功能的聚合物。这种高分子材料由于其结构的特点,能够提供载流子而具有导电性,经掺杂后,电导率可达到金属的导电水平。从导电时载流子的种类来看,结构型导电高分子材料又被分为离子型和电子型两类。 1.2复合型导电高分子材料 复合型导电高分子材料[3]是将各种导电性物质以不同的方式和加工工艺(如分散聚合、层积复合、形成表面电膜等)填充到聚合物基体中而构成的。通常是填充高效导电粒子或导电纤维,较普及的是炭黑填充型和金属填充型。复合型导电高分子材料在技术上比结构型导电高分子材料具有更加成熟的优势。 1.3电子导电聚合物 电子导电聚合物是导电聚合物中种类最多,研究最早的一类导电材料,在电子导电聚合物的导电过程中载流子是聚合物中的自由电子或空穴。高分子聚合物中的π键可以提供有限离域,当高分子聚合物中具有共轭结构时,π电子体系增大,电子的离域性增强,共轭体系越大,离域性也越大,电子的可移动范围也就

感光高分子材料及应用

感光高分子材料及其实际应用 姓名**** (********* ) 摘要:序言所谓感光性高分子材料是指吸收光能后,可引起分子内或分子间的物理或化学变化,而这些变化可以加以利用的高分子功能材料。广义地说,除感光性树脂外,光导电材料,充电变换,光能储存以及光记录显示材料也都属于感光材料的范畴。但是在一般情况下,我们说感光材料是指感光性树脂,更严格地说是指用于电子部门的光致抗蚀剂。 关键字:感光高分子光化学光致抗蚀 1 引言 随着时代的发展,人类将进入一个信息时代。为了解决生产高速发展以及由此所产生的能源、环境等一系列的问题,更需要用高科技的方法和手段来生产新型的、功能化的产品,以获得各种优良的综合性能。今年来新型功能材料层出不穷,得到了突破性的进展。 日本和欧美各国对新型功能材料的研究十分注重,这是因为功能材料是能源、计算机、通讯、电子、激光等现代科学的基础,功能材料在未来的实惠发展中具有重大战略意义。 近十年来,功能材料成为材料科学和工程领域中最为活跃的部分。每年以5%以上的速度增加,相当于每年有1.25万种新材料问世。未来世界需要更多性能优异的功能材料,他们正在渗透到现在生活的各个领域。 其中,感光性高分子发展成了功能高分子中用途最广的一种。这与感光性高分子作为新材料在各种领域中得到广泛应用有关。特别是近年来信息科学和信息工业的发展有力地促进了光物理和光化学科学研究的进步,而信息科学所涉及的印刷图像术、复制技术和微细加工及光刻技术等不断对感光高分子及有关材料提出新的要求,有力地推动了感光性高分子的发展。最近不但在成像材料,如照相、复印、印刷、集成电路中获得重要应用,在塑料、纤维、医疗、生物化学、涂料和胶黏剂等方面也都取得了重要地位。 2 感光高分子

水溶性高分子及其应用

水溶性高分子及其应用 马建 常州轻工职业技术学院 10线缆331 1013433138 摘要:水溶性高分子材料是一种亲水性的高分子材料,在水中能溶解或溶胀而形成溶液或分散液。它具有性能优异、使用方便、有利环境保护等优点,广泛应用于国民经济的各个领域。本文主要论述了水溶性高分子材料的概念、分类、功能和应用、以及研究发展现状及前景。 关键词:水溶性 高分子 发展应用 1、 水溶性高分子的概念 水溶性高分子化合物又称为水溶性树脂或水溶性聚合物。通常所说的水溶性高分子是一种强亲水性的高分子材料,能溶解或溶胀于水中形成水溶液或分散体系”。在水溶性聚合物的分子结构中含有大量的亲水基团。亲水基团通常可分为三类:①阳离子基团,如叔胺基、季胺基等;② 阴离子基团,如羧酸基、磺酸基、磷酸基、硫酸基等;③极性非离子基团,如羟基、醚基、胺基、酰胺基等。 2、分类 a 、按来源分类 1 )天然水溶性高分子。 天然水溶性高分子以植物或动物为原料,通过物理的或物理化学的方法提取而得。许多天然水溶性高分子一直是造纸助剂的重要组分,例如常见的有表面施胶剂天然淀粉、植物胶、动物胶 (干酪素)、甲壳质以及海藻酸的水溶性衍生物等。 2)半合成水溶性高分子 。 这类高分子材料是由上述天然物质经化学改性而得。用于造纸工业中主要有两类:改性纤维素 (如羧甲基纤维素) 和改性淀粉 (如阳离子淀粉)。 3)合成水溶性高分子。 此类高分子的应用最为广泛,特别是其分子结构设计十分灵活的优势可以较好地满足造纸生产环境多变及造纸工业发展的要求。 b 、按分子量分类 可分为低分子量、高分子量、超高分子量 C 、按用途分类 可分为驱油剂(聚丙烯酰胺、改性淀粉、瓜胶),絮凝剂(聚丙烯酸、改性纤维素、壳聚糖) 3、功能 O OH O OH O CH 2OH OH O OH O CH 2OH OH O OH COOH

光敏高分子材料

光敏高分子材料 叶青 080712120 长春理工大学 130022 摘要:光敏高分子材料是光化学和光物理科学的重要组成部分,在光或射线作用下能迅速发生化学变化或物理变化的高分子材料。近年来发展迅速,并在各个领域中获得广泛应用,本文简述了光敏高分子材料的概述、分类及光致变色材料等。 关键词:光敏;材料;分类;光致变色 Abstract: photosensitive polymer materials is an important part of photochemical and photo physical science, under the action of light or rays can quickly polymer materials experiencing chemical or physical change. In recent years has developed rapidly, and used in various fields, this article tries to sketch an overview of the photosensitive polymer materials, classification and photochromic materials. Keywords: photosensitive; material; classification of photochromic 1 光敏高分子材料概述 敏高分子材料也称为光功能高分子材料,是指在光参量的作用下能够表现出某些特殊物理或化学性能的高分子材料。如,吸收光能后发生化学变化的光敏高分子材料有:光致刻蚀剂和光敏涂料(发生光聚合、光交联、光降解反应等),光致变色高分子材料(发生互变异构反应,引起材料吸收波长的变化);吸收光能后发生物理变化的光敏高分子材料有:光力学变化高分子材料(引起材料外观尺寸变化),光导电高分子材料(可增加载流子而导),非线性光学材料(发生超极化而显示非线性光学性质),荧光发射材料(将光能转换为另外一种光辐射形式发出)等。光敏高分子材料是光化学和光物理科学的重要组成部分,近年来发展迅速,并在各个领域中获得广泛应用。 1.1高分子光物理和光化学原理 许多物质吸收光子以后,可以从基态跃迁到激发态,处在激发态的分子容易发生各种变化。如果这种变化是化学的,如光聚合反应或者光降解反应,则研究这种现象的科学称为光化学;如果这种变化是物理的,如光致发光或者光导电现象,则研究这种 现象的科学称为光物理。研究在高分子中发生的这些过程的科学我们分别称其为高分 子光化学和高分子光物理。高分子光物理和光化学是研究光敏高分子材料的理论基础。激发能的耗散激发态分子的激发能,有三种可能转化方式。即:发生光化学反应;以发射光的形式耗散能量;通过其他方式转化成热能,后两种方式称为激发能的耗散。激发能耗散的方式有许多种。光引发剂和光敏剂光引发剂和光敏剂,均能促进光化学反应的进行。但是,光引发剂是吸收光能后跃迁到激发态,当激发态能量高于分子键断裂能量时,断键产生自由基,光引发剂则被消耗;而光敏剂是吸收光能后跃迁到激发态,然后发生分子内或

最新几种水溶性高分子在水中的聚合

几种水溶性高分子在水中的聚合

几种水溶性高分子在水中的聚合 一、丙烯酰胺水溶液聚合 一、实验目的 1.掌握溶液聚合的方法和原理。 2.学习如何选择溶液。 3.掌握聚合物的处理方法。 二、实验原理 将单体溶于溶剂中而进行聚合的方法叫做溶液聚合。生成聚合物有的溶解有的不溶,前一种情况称为均相聚合,后者则称为沉淀聚合。自由基聚合,离子型聚合和缩聚均可用溶液聚合的方法。 在沉淀聚合中,由于聚合物处在非良溶剂中,聚合物链处于卷曲状态,端基被包裹,聚合一开始就出现自动加速现象,不存在稳态阶段。随着转化率的提高,包裹程度加深,自动加速效应也相应增强,沉淀聚合的动力学行为与均相聚合有明显不同。均相聚合时,依双基终止机理,聚合速率与引发剂浓度的平方根成正比。而沉淀聚合一开始就是非稳态,随包裹程度的加深,其只能单基终止,故聚合速率将与引发剂的浓度的一次方成正比。 在均相溶液聚合中,由于聚合物是处在良溶剂环境中,聚合物处于比较伸展状态,包裹程度浅链扩散容易,活性端基容易相互靠近而发生双基终止。只有在高转化率时,才开始出现自动加速现象,若单体浓度不高,则有可能消除

自动加速效应,使反应遵循正常的自由基聚合动力学规律。因而溶液聚合是实验室中研究聚合机理及聚合动力学等常用的方法之一。 进行溶液聚合时,由于溶剂并非完全是惰性的,其对反应会产生各种影响,选择溶剂时应考虑以下几个问题: (1)对引发剂分解的影响:偶氮类引发剂(偶氮二异丁腈)的分解速率受溶剂的影响很小,但溶剂对有机过氧化物引发剂有较大的诱导分解作用。这种作用按下列顺序依次增大:芳烃、烷烃、醇类、醚类、胺类,诱导分解的结果使引发剂的引发效率降低。 (2)溶剂的链转移作用:自由基是一个非常活泼的反应中心,它不仅能引发单体分子,而且还能与溶剂反应,夺取溶剂分子的一个原子,如氢或氯,以满足它的不饱和原子价。溶剂分子提供这种原子的能力越强,链转移作用就越强。链转移的结果使聚合物分子量降低。若反应生成自由基活性降低,则聚合速度也将减小。 (3)对聚合物的溶解性能,溶剂溶解聚合物的性能控制着活性链的形态(卷曲或舒展)及其粘度,它们决定了链终止速度与分子量的分布。 与本体聚合相比,溶液聚合体系具有粘度降低、混合及传热较容易、不易产生局部过热、温度容易控制等优点。但由于有机溶剂费用高,回收困难等原因,使得溶液聚合在工业上很少应用,只有直接使用聚合物溶液的情况下,如涂料、胶粘剂。浸渍剂和合成纤维放丝液等采用溶液聚合的方法。 丙稀酰胺为水溶性单体,其聚合物也溶于水。本实验采用水为溶剂进行溶液聚合,其优点是:价廉、无毒、链转移常数小、对单体及聚合物溶解性能好,为均相聚合。

水溶性高分子材料(薄膜)生产项目

水溶性高分子材料(薄膜)生产项目 研发单位;潍坊华潍新材料科技有限公司 项目介绍;本项目提出的全降解水溶解的高分子材料使用后不会成为对环 境长期产生污染的固体废弃物,这种材料具有通用塑料所有的理化特性,在环 境中可以降解成无害的物质或对土壤具有改良作用,同时在一定程度上可以回 收再利用,是一种环境友好、资源节约的新型高新技术材料。 本项目所属领域:新材料>高分子材料>生态和环保高分子材料。 项目主要配方、关键技术及设备 主要配方:水溶性高分子材料、生物添加剂、增塑剂、交联剂及其它助剂; 关键技术:破构技术、交联(接枝)技术、共混技术、干法挤出吹膜技术; 主要设备:吹膜机、制袋包装设备等。 项目工艺技术路线描述 2.2.1水溶性高分子材料 ①首先分别将生物添加剂进行变性处理、水溶性高分子材料预增塑处理(降 低其熔点); ②上述产物加入其他添加剂等在高速混合设备进行共混处理,提高下游制 品的质量和成膜性; ③将处理好的掺混料加入混炼造粒设备,实施高剪切下的熔融混炼,使得 各组分,有机地熔合在一起,塑化更均匀。 ④制得水溶性高分子材料料经真空设备进行封装出售或直接在其他加工设 备上生产终极产品。产品具有良好的流动性、加工成型性和二次加工性,产品 具有良好的强度,柔软性,光泽,阻气性,耐油性,耐溶剂性和热封性等优良 的力学性能和水解性能,其水解后产物对环境不产生二次污染。 水溶性薄膜性能;

(1)能够在不同的温度条件下,按照设定的的时间要求溶解于水中,包括含 有其它成分的水溶液,溶解速度范围为10秒-20分钟,溶解温度范围为4-80摄 氏度。 (2)水溶性膜溶解后,不与所包装的物料发生化学反应,能充分保持所包装 的物料的化学和物理特性,但是硼砂和硼酸除外,水溶膜溶解后遇碘呈蓝色。(3)水溶性膜溶解后,以水溶液(具有一定粘度的胶体)状态进入环境,在 一定的时间内,在光照和一种存在于环境中的特殊细菌的作用下降解,最终产 物为二氧化碳和水,水溶性膜的成膜材料在环境水中,生物耗氧量和化学耗氧 量仅为淀粉制品的六分之一,是优于淀粉的环境友好产品。 (4)水溶性膜作为包装物,具有良好的密闭性,可以有效地隔绝除氨气和水 蒸气之外的所有气体,在25℃时,氧气的透过率为0,因此可以有效地保护各 种物料不被氧化或其它气体腐蚀或污染。 (5)水溶性膜具有高强度的拉伸性、在韧性和撕裂强度等均优于传统塑料薄膜。 (6)水溶性膜及其水溶袋具有极好的耐油性,耐脂肪性,耐有机溶剂,但多 元醇如甘油、和酰胺、醇胺及醇胺盐除外,如要包装这类物料,公司可提供特 定产品。 (7)水溶性膜及其水溶袋具有抗静电性能优良,包装粉状物时,不会吸附粉 末和尘埃。 (8)适用于酸、碱类腐蚀性物质包装,适用于各种毒害化学品的包装,如农药,可以避免这类物质与使用者和生产者直接接触,体现以人为本的先进理念。(9)可以在中小型自动包装机上使用,由于水溶膜的延展率较大,如果在大 型自动包装机上使用,需根据机器的类型调整水溶膜的技术指标。 产品用途 制衣和刺绣方面

相关主题
文本预览
相关文档 最新文档