当前位置:文档之家› (学)高中数学数列放缩专题:用放缩法处理数列和不等问题

(学)高中数学数列放缩专题:用放缩法处理数列和不等问题

(学)高中数学数列放缩专题:用放缩法处理数列和不等问题
(学)高中数学数列放缩专题:用放缩法处理数列和不等问题

数列和不等问题(教师版)

一.先求和后放缩(主要是先裂项求和,再放缩处理)

例1.正数数列{}n a 的前n 项的和n S ,满足12+=n n a S ,试求: (1)数列{}n a 的通项公式; (2)设1

1

+=

n n n a a b ,数列{}n b 的前n 项的和为n B ,求证:21

解:(1)由已知得2)1(4+=n n a S ,2≥n 时,211)1(4+=--n n a S ,作差得:

12

12224----+=n n n n n a a a a a ,所以0)2)((11=--+--n n n n a a a a ,又因为{

}n a 为正数数列,所以21=--n n a a ,即{}n a 是公差为2的等差数列,由1211+=a S ,得11=a ,所以12-=n a n

(2))1

21

121(21)12)(12(111+--=+-==

+n n n n a a b n n n ,所以

2

1)12(2121)1211215131311(21<+-=+---+-=

n n n B n 真题演练1:(06全国1卷理科22题)设数列{}n a 的前n 项的和,1412

2333

n n n S a +=

-?+,1,2,3,n = (Ⅰ)求首项1a 与通项n a ;(Ⅱ)设2n n n T S =,1,2,3,n = ,证明:1

3

2n

i i T =<∑.

解: (Ⅰ)由 S n =43a n -13×2n+1+23, n=1,2,3,… , ① 得 a 1=S 1= 43a 1-13×4+2

3

所以a 1=2

再由①有 S n -1=43a n -1-13×2n +2

3

, n=2,3,4,…

将①和②相减得: a n =S n -S n -1= 43(a n -a n -1)-13

×(2n+1-2n

),n=2,3, …

整理得: a n +2n =4(a n -1+2n -1),n=2,3, … , 因而数列{ a n +2n }是首项为a1+2=4,公比为4的等比数列,即 :

a n +2n =4×4n -1= 4n , n=1,2,3, …, 因而a n =4n -2n , n=1,2,3, …,

(Ⅱ)将a n =4n -2n 代入①得 S n = 43×(4n -2n )-13×2n+1 + 23 = 1

3×(2n+1-1)(2n+1-2)

= 2

3

×(2n+1-1)(2n -1)

T n = 2n S n = 32×2n (2n+1-1)(2n -1) = 32×(12n -1 - 12n+1-1)

所以, 1

n

i i T =∑

=

321

(

n

i =∑12i

-1 - 12i+1-1) = 32×(121-1 - 11

21

n +-) < 32

二.先放缩再求和

1.放缩后成等比数列,再求和

例2.等比数列{}n a 中,11

2

a =-,前n 项的和为n S ,且798,,S S S 成等差数列.

设n

n n a a b -=12

,数列{}n b 前n 项的和为n T ,证明:1

3n T <.

解:∵9789A A a a -=+,899A A a -=-,899a a a +=-,∴公比981

2

a q a =

=-. ∴n n a )2

1

(-=. n

n n n

n n b 231

)2(41)2

1(141?≤

--=

--=

. (利用等比数列前n 项和的模拟公式n n S Aq A =-猜想)

∴n n b b b B ++=2131)211(312

11)

211(213123123123122<-=--?

=?++?+?≤n n . 真题演练2:(06福建卷理科22题)已知数列{}n a 满足*111,21().n n a a a n N +==+∈

(I )求数列{}n a 的通项公式;

(II )若数列{}n b 滿足12111*444(1)()n n b b b b n a n N ---=+∈ ,证明:数列{}n b 是等差数列; (Ⅲ)证明:*122311...()232

n n a a a n n

n N a a a +-<+++<∈. (I )解:*121(),n n a a n N +=+∈

112(1),n n a a +∴+=+{}1n a ∴+是以112a +=为首项,2为公比的等比数列

12.n n a ∴+=即 2*21().n a n N =-∈

(II )证法一:1211144...4(1).n n k k k k n a ---=+

12(...)42.n n k k k n nk +++-∴=

122[(...)],n n b b b n nb ∴+++-= ①

12112[(...)(1)](1).n n n b b b b n n b ++++++-+=+ ②

②-①,得112(1)(1),n n n b n b nb ++-=+-

即1(1)20,n n n b nb +--+=21(1)20.n n nb n b ++-++= ③-④,得 2120,n n n nb nb nb ++-+=

即 2120,n n n b b b ++-+=*211(),n n n n b b b b n N +++∴-=-∈{}n b ∴是等差数列

(III )证明:

1121211

,1,2,...,,1212

2(2)2

k k k k k k a k n a ++--==<=--

12231 (2)

n n a a a n

a a a +∴

+++<

111211111111.,1,2,...,,2122(21)2 3.222232

k k k k k k

k k a k n a +++-==-=-≥-=--+-

1222311111111

...(...)(1),2322223223

n n n n a a a n n n a a a +∴

+++≥-+++=-->-

*122311...().232

n n a a a n n

n N a a a +∴-<+++<∈ 2.放缩后为“差比”数列,再求和

例3.已知数列{}n a 满足:11=a ,)3,2,1()21(1 =+=+n a n a n n n .求证:1

121

3-++-≥>n n n n a a 证明:因为n n

n a n

a )21(1+=+,所以1+n a 与n a 同号,又因为011>=a ,所以0>n a , 即02

1>=-+n n n n a n

a a ,即n n a a >+1.所以数列{}n a 为递增数列,所以11=≥a a n , 即n n n n n n a n a a 221≥=-+,累加得:1

21

212221--+++≥-n n n a a . 令12212221--+++=

n n n S ,所以n n n S 2

1

22212132-+++= ,两式相减得: n n n n S 212121212121132--++++=- ,所以1212-+-=n n n S ,所以12

13-+-≥n n n a , 故得1

121

3-++-≥>n n n n a a .

3.放缩后成等差数列,再求和

例4.已知各项均为正数的数列{}n a 的前n 项和为n S ,且22n n n a a S +=.

(1) 求证:22

14

n n n a a S ++<;

(2)

解:(1)在条件中,令1=n ,得1112122a S a a ==+,1011=∴>a a ,又由条件n n n S a a 22

=+有

11212+++=+n n n S a a ,上述两式相减,注意到n n n S S a -=++11得

0)1)((11=--+++n n n n a a a a 001>+∴>+n n n a a a ∴11n n a a +-=

所以, n n a n =-?+=)1(11,(1)

2

n n n S +=

所以4

2)1(212)1(2

1

2

22++=

++?<+=n n n a a n n n n S (2)因为1)1(+<+

2

1

2)1(2

+<

+<

n n n n ,所以 2)

1(23222121++

+?+?=++n n S S S n 2

12322++++

12

2312-=+=+n S n n ;2

2

2)1(2

2

22

121n n S n n n S S S =

+=

+

++

>

++

练习:

1.(08南京一模22题)设函数213

()44

f x x bx =

+-,已知不论,αβ为何实数,恒有(cos )0f α≤且(2sin )0f β-≥.对于正数列{}n a ,其前n 项和()n n S f a =,*()n N ∈.

(Ⅰ) 求实数b 的值;(II )求数列{}n a 的通项公式;

1

,1n

n N a +=∈+,且数列{}n c 的前n 项和为n T ,试比较n T 和16的大小并证明之.

解:(Ⅰ) 1

2

b =

(利用函数值域夹逼性);(II )21n a n =+; (Ⅲ)∵2

1111(22)22123n c n n n ??=<- ?+++??,∴1231111

+23236

n n T c c c c n ??=+++???<-< ?+??…

2.(04全国)已知数列}{n a 的前n 项和n S 满足:n n n a S )1(2-+=, 1≥n (1)写出数列}{n a 的前三项1a ,2a ,3a ;(2)求数列}{n a 的通项公式;

(3)证明:对任意的整数4>m ,有

8

711154<+++m a a a 分析:⑴由递推公式易求:a 1=1,a 2=0,a 3=2;

⑵由已知得:1112(1)2(1)n n n n n n n a S S a a ---=-=+----(n>1) 化简得:1122(1)n n n a a --=+-

2)1(2)1(11---=---n n n n a a ,]32)

1([232)1(1

1+--=+---n n n n a a 故数列{

32

)

1(+-n

n a }是以321+-a 为首项, 公比为2-的等比数列. 故

1

)2)(31(32)

1(---=+-n n

n a ∴22[2(1)]3n n n a -=-- ∴数列{n a }的通项公式为:2

2[2(1)]3

n n n a -=

--. ⑶观察要证的不等式,左边很复杂,先要设法对左边的项进行适当的放缩,使之能够求和。而左边

=

232451113111[]221212(1)

m m m a a a -+++=+++-+-- ,如果我们把上式中的分母中的1±去掉,就可利用等比数列的前n 项公式求和,由于-1与1交错出现,容易想到将式中两项两项地合并起来一起进行放缩,尝试知:

3

2322

1

21121121+>++-, 43432121121121+<-++,因此,可将1212-保留,再将后面的项两两组合后放缩,即可求和。这里需要对m 进行分类讨论,(1)当m 为偶数)4(>m 时,

m a a a 11154+++ )11()11(11654m

m a a a a a +++++=- )21

2121(2321243-++++<

m )2

11(4123214--?+=

m 8321+<

8

7= (2)当m 是奇数)4(>m 时,1+m 为偶数,

8

711111111165454<+++++<++++m m m a a a a a a a a

所以对任意整数4>m ,有

m a a a 1

1154+

++ 8

7<。 本题的关键是并项后进行适当的放缩。

3.(07武汉市模拟)定义数列如下:*+∈+-==N n a a a a n n n ,1,22

11

求证:(1)对于*∈N n 恒有n n a a >+1成立; (2)当*∈>N n n 且2,有11211+=-+a a a a a n n n 成立; (3)11112112006

212006

<+++<

-

a a a 分析:(1)用数学归纳法易证。

(2)由12

1+-=+n n n a a a 得:)1(11-=-+n n n a a a )1(111-=-∴--n n n a a a … … )1(1112-=-a a a

以上各式两边分别相乘得: )1(111211-=--+a a a a a a n n n ,又21=a 11211+=∴-+a a a a a n n n (3)要证不等式11

112112006

212006

<+++<

-

a a a , 可先设法求和:

2006

211

11a a a +

++ ,再进行适当的放缩。 )1(11-=-+n n n a a a n n n a a a 1111

11--=

-∴

+1

1

1111--

-=∴+n n n a a a 200621111a a a +++∴

)1111()1111()1111(200720063221---++---+---=a a a a a a 1

1

1120071---=

a a 20062111a a a -

=1<又2006200612006212=>a a a a 20062006212

1

111->-

∴a a a ∴原不等式得证。

本题的关键是根据题设条件裂项求和。

数列和不等问题(学生版)

一.先求和后放缩(主要是先裂项求和,再放缩处理)

例1.正数数列{}n a 的前n 项的和n S ,满足12+=n n a S ,试求: (1)数列{}n a 的通项公式; (2)设1

1

+=n n n a a b ,数列{}n b 的前n 项的和为n B ,求证:21

真题演练1:(06全国1卷理科22题)设数列{}n a 的前n 项的和,1412

2333

n n n S a +=

-?+,1,2,3,n = (Ⅰ)求首项1a 与通项n a ;(Ⅱ)设2n n n T S =,1,2,3,n = ,证明:1

3

2n

i i T =<∑.

二.先放缩再求和

1.放缩后成等比数列,再求和

例2.等比数列{}n a 中,11

2

a =-,前n 项的和为n S ,且798,,S S S 成等差数列.

设n

n n a a b -=12

,数列{}n b 前n 项的和为n T ,证明:1

3n T <.

真题演练2:(06福建卷理科22题)已知数列{}n a 满足*111,21().n n a a a n N +==+∈

(I )求数列{}n a 的通项公式;

(II )若数列{}n b 滿足12111*444(1)()n n b b b b n a n N ---=+∈ ,证明:数列{}n b 是等差数列; (Ⅲ)证明:*122311...()232

n n a a a n n

n N a a a +-<+++<∈.

2.放缩后为“差比”数列,再求和

例3.已知数列{}n a 满足:11=a ,)3,2,1()21(1 =+=+n a n a n n n .求证:1

121

3-++-≥>n n n n a a

3.放缩后成等差数列,再求和

例4.已知各项均为正数的数列{}n a 的前n 项和为n S ,且2

2n n n a a S +=.

(1) 求证:22

14

n n n a a S ++<;

(2)

练习:

1.(08南京一模22题)设函数213

()44

f x x bx =

+-,已知不论,αβ为何实数,恒有(cos )0f α≤且(2sin )0f β-≥.对于正数列{}n a ,其前n 项和()n n S f a =,*()n N ∈.

(Ⅰ) 求实数b 的值;(II )求数列{}n a 的通项公式;

1

,1n

n N a +=∈+,且数列{}n c 的前n 项和为n T ,试比较n T 和16的大小并证明之.

2.(04全国)已知数列}{n a 的前n 项和n S 满足:n n n a S )1(2-+=, 1≥n (1)写出数列}{n a 的前三项1a ,2a ,3a ;(2)求数列}{n a 的通项公式; (3)证明:对任意的整数4>m ,有8

7

11154<+++m a a a

3.(07武汉市模拟)定义数列如下:*+∈+-==N n a a a a n n n ,1,22

11

求证:(1)对于*∈N n 恒有n n a a >+1成立; (2)当*∈>N n n 且2,有11211+=-+a a a a a n n n 成立; (3)11112112006

212006

<+++<

-

a a a

高中数列放缩法技巧大全

高中数列放缩法技巧大全 证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: 一、裂项放缩 例1.(1)求∑ =-n k k 121 42的值; (2)求证:2 1153n k k =<∑ . 解析:(1)因为 1 21 121)12)(12(21422+- -=+-= -n n n n n ,所以1 2212111 42 1 2 += +- =-∑=n n n k n k (2)因为22211411214121214 n n n n n ??<==- ?--+??- , 所以35321121121513121112 =+

高中数学数列专题大题训练

高中数学数列专题大题组卷 一.选择题(共9小题) 1.等差数列{a n}的前m项和为30,前2m项和为100,则它的前3m项和为()A.130 B.170 C.210 D.260 2.已知各项均为正数的等比数列{a n},a1a2a3=5,a7a8a9=10,则a4a5a6=()A.B.7 C.6 D. 3.数列{a n}的前n项和为S n,若a1=1,a n+1=3S n(n≥1),则a6=() A.3×44B.3×44+1 C.44D.44+1 4.已知数列{a n}满足3a n+1+a n=0,a2=﹣,则{a n}的前10项和等于()A.﹣6(1﹣3﹣10)B.C.3(1﹣3﹣10)D.3(1+3﹣10)5.等比数列{a n}的前n项和为S n,已知S3=a2+10a1,a5=9,则a1=()A.B.C.D. 6.已知等差数列{a n}满足a2+a4=4,a3+a5=10,则它的前10项的和S10=()A.138 B.135 C.95 D.23 7.设等差数列{a n}的前n项和为S n,若S m﹣1=﹣2,S m=0,S m+1=3,则m=()A.3 B.4 C.5 D.6 8.等差数列{a n}的公差为2,若a2,a4,a8成等比数列,则{a n}的前n项和S n=() A.n(n+1)B.n(n﹣1)C.D. 9.设{a n}是等差数列,下列结论中正确的是() A.若a1+a2>0,则a2+a3>0 B.若a1+a3<0,则a1+a2<0 C.若0<a 1<a2,则a2D.若a1<0,则(a2﹣a1)(a2﹣a3)>0 二.解答题(共14小题) 10.设数列{a n}(n=1,2,3,…)的前n项和S n满足S n=2a n﹣a1,且a1,a2+1,a3成等差数列.

求递推数列通项的特征根法与不动点法

求递推数列通项的特征根法与不动点法 一、形如21(,n n n a pa qa p q ++=+是常数)的数列 形如112221,,(,n n n a m a m a pa qa p q ++===+是常数)的二阶递推数列都可用特征根法求得通项n a ,其特征方程为2x px q =+…① 若①有二异根,αβ,则可令1212(,n n n a c c c c αβ=+是待定常数) 若①有二重根αβ=,则可令1212()(,n n a c nc c c α=+是待定常数) 再利用1122,,a m a m ==可求得12,c c ,进而求得n a . 例1.已知数列{}n a 满足*12212,3,32()n n n a a a a a n N ++===-∈,求数列{}n a 的通项n a . 解:其特征方程为232x x =-,解得121,2x x ==,令1212n n n a c c =?+?, 由1122122243a c c a c c =+=??=+=?,得121 12 c c =???= ??, 112n n a -∴=+. 例2.已知数列{}n a 满足*12211,2,44()n n n a a a a a n N ++===-∈,求数列{}n a 的通项n a . 解:其特征方程为2 441x x =-,解得121 2x x ==,令()1212n n a c nc ?? =+ ??? , 由1122121()121(2)2 4 a c c a c c ? =+?=????=+?=??,得1246c c =-??=?, 1322n n n a --∴=. 二、形如2n n n Aa B a C a D ++= +的数列 对于数列2n n n Aa B a C a D ++= +,*1,(,,,a m n N A B C D =∈是常数且0,0C AD BC ≠-≠) 其特征方程为A x B x C x D += +,变形为2()0C x D A x B +--=…②

高中数学放缩法技巧全总结材料

2010高考数学备考之放缩技巧 证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: 一、裂项放缩 例1.(1)求 ∑=-n k k 1 2 142 的值; (2)求证: 3 51 1 2 < ∑=n k k . 解析:(1)因为121121)12)(12(21 422+--=+-= -n n n n n ,所以12212111 4212 +=+-=-∑=n n n k n k (2)因为??? ??+--=-=- <1211212144 4 11 1 222n n n n n ,所以35321121121513121112=+-?>-?>?-=?=+ (14) ! )2(1!)1(1)!2()!1(!2+- +=+++++k k k k k k (15) )2(1)1(1 ≥--<+n n n n n (15) 11 1) 11)((1122222 222<++++= ++ +--= -+-+j i j i j i j i j i j i j i 例2.(1)求证:)2()12(2167) 12(1513112 22≥-->-++++n n n (2)求证:n n 412141361161412 -<++++ (3)求证:1122642)12(531642531423121-+< ????-????++????+??+n n n (4) 求证:)112(213 12 11)11(2-+<++++<-+n n n

高中数学数列放缩专题:用放缩法处理数列和不等问题

用放缩法处理数列和不等问题(教师版) 一.先求和后放缩(主要是先裂项求和,再放缩处理) 例1.正数数列{}n a 的前n 项的和n S ,满足12+=n n a S ,试求: (1)数列{}n a 的通项公式; (2)设11+= n n n a a b ,数列{}n b 的前n 项的和为n B ,求证:2 1

不动点(特征方程)法求数列通项

特征方程法求解递推关系中的数列通项 考虑一个简单的线性递推问题. 设已知数列}{n a 的项满足 其中,1,0≠≠c c 求这个数列的通项公式. 采用数学归纳法可以求解这一问题,然而这样做太过繁琐,而且在猜想通项公式中容易出错,本文提出一种易于被学生掌握的解法——特征方程法:针对问题中的递推关系式作出一个方程,d cx x +=称之为特征方程;借助这个特征方程的根快速求解通项公式.下面以定理形式进行阐述. 定理1.设上述递推关系式的特征方程的根为0x ,则当10a x =时,n a 为常数列,即0101,;x b a a x a a n n n +===时当, 其中}{n b 是以c 为公比的等比数列,即01111,x a b c b b n n -==-. 证明:因为,1,0≠c 由特征方程得.10c d x -=作换元,0x a b n n -= 则.)(110011 n n n n n n cb x a c c cd ca c d d ca x a b =-=--=--+=-=-- 当10a x ≠时,01≠b ,数列}{n b 是以c 为公比的等比数列,故;11-=n n c b b 当10a x =时,01=b ,}{n b 为0数列,故.N ,1∈=n a a n (证毕) 下面列举两例,说明定理1的应用. 例1.已知数列}{n a 满足:,4,N ,23 111=∈--=+a n a a n n 求.n a 解:作方程.2 3,23 10-=--=x x x 则 当41=a 时,.2112 3 ,1101= +=≠a b x a 数列}{n b 是以3 1 -为公比的等比数列.于是.N ,)3 1 (2112323,)31(211)3 1 (111 1∈-+-=+-=-=-=---n b a b b n n n n n n 例2.已知数列}{n a 满足递推关系:,N ,)32(1∈+=+n i a a n n 其中i 为虚数单位. 当1a 取何值时,数列}{n a 是常数数列? 解:作方程,)32(i x x +=则.5 360i x +-= a 1= b a n+1=ca n +d

(完整版)高三文科数学数列专题.doc

高三文科数学数列专题 高三文科数学复习资料 ——《数列》专题 1. 等差数列{ a n}的前n项和记为S n,已知a1030, a2050 . ( 1)求通项a n; ( 2)若S n242 ,求 n ; ( 3)若b n a n20 ,求数列 { b n } 的前 n 项和 T n的最小值. 2. 等差数列{ a n}中,S n为前n项和,已知S77, S1575 . ( 1)求数列{ a n}的通项公式; ( 2)若b n S n,求数列 {b n } 的前 n 项和 T n. n 3. 已知数列{ a n}满足a1 1 a n 1 ( n 1) ,记 b n 1 , a n . 1 2a n 1 a n (1)求证 : 数列{ b n}为等差数列; (2)求数列{ a n}的通项公式 . 4. 在数列a n 中, a n 0 , a1 1 ,且当 n 2 时,a n 2S n S n 1 0 . 2 ( 1)求证数列1 为等差数列;S n ( 2)求数列a n的通项 a n; ( 3)当n 2时,设b n n 1 a n,求证: 1 2 (b2 b3 b n ) 1 . n 2(n 1) n 1 n 5. 等差数列{ a n}中,a18, a4 2 . ( 1)求数列{ a n}的通项公式; ( 2)设S n| a1 | | a2 || a n |,求 S n;

1 (n N *) , T n b1 b2 b n (n N *) ,是否存在最大的整数m 使得对任( 3)设b n n(12 a n ) 意 n N * ,均有T n m m 的值,若不存在,请说明理由. 成立,若存在,求出 32 6. 已知数列{log2(a n1)} 为等差数列,且a13, a39 . ( 1)求{ a n}的通项公式; ( 2)证明: 1 1 ... 1 1. a2 a1 a3 a2 a n 1 a n 7. 数列{ a n}满足a129, a n a n 12n 1(n 2, n N * ) . ( 1)求数列{ a n}的通项公式; ( 2)设b n a n,则 n 为何值时, { b n } 的项取得最小值,最小值为多少?n 8. 已知等差数列{ a n}的公差d大于0 , 且a2,a5是方程x2 12 x 27 0 的两根,数列 { b n } 的前 n 项和 为 T n,且 T n 1 1 b n. 2 ( 1)求数列{ a n} , { b n}的通项公式; ( 2)记c n a n b n,求证:对一切 n N 2 , 有c n. 3 9. 数列{ a n}的前n项和S n满足S n2a n 3n . (1)求数列{ a n}的通项公式a n; (2)数列{ a n}中是否存在三项,它们可以构成等差数列?若存在,请求出一组适合条件的项;若不存在,请说明理由 . 10. 已知数列{ a n}的前n项和为S n,设a n是S n与 2 的等差中项,数列{ b n} 中, b1 1,点 P(b n , b n 1 ) 在 直线 y x 2 上. ( 1)求数列{ a n} , { b n}的通项公式

不动点法求数列通项公式

不动点法求数列通项公 式 内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)

不动点法求数列通项公式 通常为了求出递推数列a[n+1]=(ca[n]+d)/(ea[n]+f)【c、d、e、f是不全为0的常数,c、e不同时为0】的通项,我们可以采用不动点法来解.假如数列{a[n]}满足a[n+1]=f(a[n]),我们就称x=f(x)为函数f(x)的不动点方程,其根称为函数f(x)的不动点.至于为什么用不动点法可以解得递推数列的通项,这足可以写一本书.但大致的理解可以这样认为,当n趋于无穷时,如果数列{a[n]}存在极限,a[n]和a[n+1]是没有区别的. 首先,要注意,并不是所有的递推数列都有对应的不动点方程,比如: a[n+1]=a[n]+1/a[n].其次,不动点有相异不动点和重合不动点. 下面结合不动点法求通项的各种方法看几个具体的例子吧. ◎例1:已知a[1]=2,a[n+1]=2/(a[n]+1),求通项. 【说明:这题是“相异不动点”的例子.】 先求不动点 ∵a[n+1]=2/(a[n]+1) ∴令 x=2/(x+1),解得不动点为:x=1 和 x=-2 【相异不动点】 ∴(a[n+1]-1)/(a[n+1]+2) 【使用不动点】 =(2/(a[n]+1)-1)/(2/(a[n]+1)+2) =(2-a[n]-1)/(2+2a[n]+2) =(-a[n]+1)/(2a[n]+4) =(-1/2)(a[n]-1)/(a[n]+2) ∵a[1]=2 ∴(a[1]-1)/(a[1]+2)=1/4 ∴{(a[n]-1)/(a[n]+2)}是首项为1/4,公比为-1/2的等比数列

备战高考技巧大全之高中数学黄金解题模板:专题26 数列求和方法答案解析

【高考地位】 数列是高中数学的重要内容,又是高中数学与高等数学的重要衔接点,其涉及的基础知识、数学思想与方法,在高等数学的学习中起着重要作用,因而成为历年高考久考不衰的热点题型,在历年的高考中都占有重要地位。数列求和的常用方法是我们在高中数学学习中必须掌握的基本方法,是高考的必考热点之一。此类问题中除了利用等差数列和等比数列求和公式外,大部分数列的求和都需要一定的技巧。下面,就近几年高考数学中的几个例子来谈谈数列求和的基本方法和技巧。 【方法点评】 方法一 公式法 解题模板:第一步 结合所求结论,寻找已知与未知的关系; 第二步 根据已知条件列方程求出未知量; 第三步 利用前n 项和公式求和结果 例1.设}{n a 为等差数列,n S 为数列}{n a 的前n 项和,已知77=S ,7515=S ,n T 为数列}{n S n 的前n 项和,求n T . 【评析】直接应用公式求和时,要注意公式的应用范围,如当等比数列公比为参数(字母)时,应对其公比是否为1进行讨论.常用的数列求和公式有:

等差数列前n 项和公式: 11()(1)22 n n n a a n n S na d +-==+. 等比数列前n 项和公式:111(1)(1)(1)11n n n na q S a q a a q q q q =??=--?=≠?--? . 自然数方幂和公式:1123(1)2 n n n +++???+=+ 22221123(1)(21)6 n n n n +++???+=++ 333321123[(1)]2 n n n +++???+=+ 【变式演练1】已知{a n }是等差数列,a 1+a 2=4,a 7+a 8=28,则该数列前10项和S 10等于( ) A.64 B.100 C.110 D.120 【答案】B 【解析】 试题分析:a 1+a 2=4,a 7+a 8=28,解方程组可得11,2a d == 101109101002 S a d ?∴=+ = 考点:等差数列通项公式及求和 方法二 分组法 解题模板:第一步 定通项公式:即根据已知条件求出数列的通项公式; 第二步 巧拆分:即根据通项公式特征,将其分解为几个可以直接求和的数列; 第三步 分别求和:即分别求出各个数列的和; 第四步 组合:即把拆分后每个数列的求和进行组合,可求得原数列的和. 例2. 已知数列{a n }是3+2-1,6+22-1,9+23-1,12+24-1,…,写出数列{a n }的通项公式并求其前n 项 S n .

【高考数学】高考数列不动点法解题方法整理版

利用“不动点”法巧解高考题 由递推公式求其数列通项历来是高考的重点和热点题型,对那些已知递推关系但又难求通项的数列综合问题,充分运用函数的相关性质是解决这类问题的着手点和关键.与递推关系对应的函数的“不动点”决定着递推数列的增减情况,因此我们可以利用对函数“不动点”问题的研究结果,来简化对数列通项问题的探究。笔者在长期的教学实践中,不断总结探究反思,对那些难求通项的数列综合问题,形成利用函数不动点知识探究的规律性总结,以期对同学们解题有所帮助. 1 不动点的定义 一般的,设()f x 的定义域为D ,若存在0x D ∈,使f x x ()00=成立,则称x 0为f x ()的 不动点,或称00(,)x x 为f x ()图像的不动点。 2 求线性递推数列的通项 定理 1 设()(01)f x ax b a =+≠,,且x 0为f x ()的不动点,{}a n 满足递推关系1()n n a f a -=,2,3, n =,证明{}a x n -0是公比为a 的等比数列。证:∵x 0是f x ()的不动点,所以ax b x 00+=, 所以,所以a n -=+-=-=----x a a b x a a ax a a x n n n 0101010()()··,∴数列{}a x n -0是公比为a 的等比数列。 例1(2010上海文数21题)已知数列{}n a 的前n 项和为n S ,且585n n S n a =--,*n N ∈ (1)证明:{}1n a -是等比数列;(2)求数列{}n S 的通项公式,并求出使得1n n S S +>成立的最小正整数n . 证:(1) 当n =1时,a 1=-14;当2n ≥时,a n =S n -S n -1=-5a n +5a n -1+1,即1651n n a a -=+(2)n ≥即 15166n n a a -= +(2)n ≥,记51 ()66f x x =+,令()f x x =,求出不动点01x =,由定理1知:15 1(1)(2)6 n n a a n --=-≥,又a 1-1= -15 ≠0,所以数列{a n -1}是等比数列。(2)解略。 3求非线性递推数列的通项 定理2 设()(00)ax b f x c ad bc cx d +=≠-≠+,,且x x 12、是f x ()的不动点,数列{}a n 满足递推关系a f a n n =-()1,2,3,n =,(ⅰ)若12x x ≠,则数列{ }a x a x n n --12是公比为a x c a x c --12的等比数列;(ⅱ)

人教版最新高中数学数列专题复习(综合训练篇含答案)Word版

——教学资料参考参考范本——人教版最新高中数学数列专题复习(综合训练篇含答案)Word 版 ______年______月______日 ____________________部门

———综合训练篇 一、选择题: 1. 在等差数列中,,则的值为 ( D ){}n a 120 31581=++a a a 1092a a - A .18 B .20 C .22 D .24 2.等差数列满足:,若等比数列满足则为( B ) A .16 B .32 C .64 D .27{}n a 30,8531==+S a a {} n b ,,4311a b a b ==5b 3.等差数列中,则数列的前9项之和S9等于{} n a 1 a {a ( C )A .66 B .144 C .99 D .297 4.各项都是正数的等比数列的公比q ≠1,且,,成等差数列,则为(A ) A . B . C . D .或{} n a 2a 321a 1 a 5 443a a a a ++2 15-215+2 51-2 1 5+215- 5.设等比数列的前项和为,若则( B ){}n a n n S ,33 6=S S = 69S S A. 2 B. C. D.3738 3

6.已知等差数列的前项的和为,且,,则过点和的直线的一个方向向 量的坐标是 ( B ){}n a n n S 210S =555S =(,) n P n a 2(2,)()n Q n a n N *++∈ A. B. C. D.1(2,)2 1(,2)2--1(,1) 2--(1,1)-- 7.设a 、b 、c 为实数,3a 、4b 、5c 成等比数列,且、、成等差数列,则 的值为( C ) A . B . C . D .a 1b 1c 1a c c a +15941594±15341534 ± 8. 已知数列的通项则下列表述正确的是 ( A ){} n a ,1323211 ????????-??? ??? ? ? ??=--n n n a A .最大项为最小项为 B .最大项为最小项不存在,1a 3 a ,1a C .最大项不存在,最小项为 D .最大项为最小项为3 a ,1a 4a 9.已知为等差数列,++=105,=99.以表示的前项和,则使得达到最大 值的是(B ){}n a 1a 3a 5a 246a a a ++n S {}n a n n S n A .21 B .20 C .19 D .18 9.一系列椭圆都以一定直线l 为准线,所有椭圆的中心都在定点M , 且点M 到l 的距离为2,若这一系列椭圆的离心率组成以为首项,为公比的等比数列,而椭圆相应的长半轴长为ai=(i=1,2,…,n),设bn=2(2n+1)·3n -2·an ,且Cn=,Tn=C1+C2+…+Cn ,若

高中数学数列求和专题复习知识点习题.doc

数列求和例题精讲 1. 公式法求和 (1)等差数列前 n 项和公式 S n n(a 1 a n ) n(a k 1 a n k ) n( n 1) d 2 2 na 1 2 (2)等比数列前 n 项和公式 q 1 时 S n na 1 q 1 时 S n a 1 (1 q n ) a 1 a n q 1 q 1 q (3)前 n 个正整数的和 1 2 3 n(n 1) n 2 前 n 个正整数的平方和 12 22 32 n 2 n(n 1)(2n 1) 6 前 n 个正整数的立方和 13 23 33 n 3 [ n(n 1) ] 2 ( 1)弄准求和项数 n 的值; 2 公式法求和注意事项 ( 2)等比数列公比 q 未知时,运用前 n 项和公式要分类。 例 1.求数列 1,4,7, ,3n 1 的所有项的和 例 2.求和 1 x x 2 x n 2 ( n 2, x 0 )

2.分组法求和 例 3.求数列 1, 1 2,1 2 3,,1 2 3 n 的所有项的和。 5n 1 (n为奇数 ) 例 4.已知数列a n中,a n ,求 S2m。 ( 2) n (n为偶数 ) 3.并项法求和 例 5.数列a n 中, a n ( 1) n 1 n2,求 S100。 例 6.数列a n中,,a n( 1) n 4n ,求 S20及 S35。 4.错位相减法求和 若a n 为等差数列,b n 为等比数列,求数列a n b n(差比数列)前n项 b n 的公比。 和,可由S n qS n求 S n,其中q 为

例 7.求和12x 3x 2nx n 1(x0 )。 5.裂项法求和 :把数列各项拆成两项或多项之和,使之出现成对互为相反数的项。 例 8.求和 1 1 1 1 。 1 3 3 5 5 7 (2n 1)(2n 1) 例 9.求和 1 1 1 1 2 1 3 2 23 。 n 1n [练习] 1 1 1 1 1 2 3 2 3 n 1 2 1 a n S n 2 1 n 1

用不动点法求数列通项

定义:方程的根称为函数的不动点. 利用递推数列的不动点,可将某些递推关系所确定的数列化为等比数列或较易求通项的数列,这种方法称为不动点法. 定理1:若是的不动点,满足递推关系,则,即是公比为的等比数列. 证明:因为是的不动点 由得 所以是公比为的等比数列. 定理2:设,满足递推关系,初值条件 (1):若有两个相异的不动点,则(这里) (2):若只有唯一不动点,则(这里) 证明:由得,所以 (1)因为是不动点,所以,所以 令,则 (2)因为是方程的唯一解,所以 所以,所以 所以 令,则 例1:设满足,求数列的通项公式 例2:数列满足下列关系:,求数列的通项公式 定理3:设函数有两个不同的不动点,且由确定着数列,那么当且仅当时, 证明:是的两个不动点 即 于是, 方程组有唯一解

例3:已知数列中,,求数列的通项. 其实不动点法除了解决上面所考虑的求数列通项的几种情形,还可以解决如下问题: 例4:已知且,求数列的通项. 解: 作函数为,解方程得的不动点为 .取,作如下代换: 逐次迭代后,得: 已知曲线22:20(1,2,)n C x nx y n -+==K .从点(1,0)P -向曲线n C 引斜率为(0) n n k k >的切线n l ,切点为(,)n n n P x y . (1)求数列{}{}n n x y 与的通项公式; (2)证明:13521n n n x x x x x y -????<),()f x '是()f x 的 导数,设11a =,1()(12)()n n n n f a a a n f a +=-='L ,,. (1)求αβ,的值; (2)证明:对任意的正整数n ,都有n a α>; (3)记ln (12)n n n a b n a βα -==-L ,,,求数列{}n b 的前n 项和n S 13陕西文21.(本小题满分12分)已知数列{}n a 满足, *11212,,2 n n n a a a a a n N ++=∈’+2==. ()I 令1n n n b a a +=-,证明:{}n b 是等比数列; (Ⅱ)求{}n a 的通项公式。 山东文20.(本小题满分12分)等比数列{n a }的前n 项和为n S , 已知对任意的n N + ∈ ,点(,)n n S ,均在函数(0x y b r b =+>且1,,b b r ≠均为常数)的图像上.(1)求r 的值;(11)

高三数列专题练习30道带答案

高三数列专题训练二 学校:___________姓名:___________班级:___________考号:___________ 一、解答题 1.在公差不为零的等差数列{}n a 中,已知23a =,且137a a a 、、成等比数列. (1)求数列{}n a 的通项公式; (2)设数列{}n a 的前n 项和为n S ,记,求数列{}n b 的前n 项和n T . 2.已知等差数列{}n a 的前n 项和为n S ,公差,50,053=+≠S S d 且1341,,a a a 成等比数列. (Ⅰ)求数列{}n a 的通项公式; 1,公比为3的等比数列,求数列{}n b 的前n 项和n T . 3.设等比数列{}n a 的前n 项和为n S ,,2S ,3S 成等差数列,数列{}n b 满足2n b n =. (1)求数列{}n a 的通项公式; (2)设n n n c a b =?,若对任意*n N ∈,求λ的取值范围. 4.已知等差数列{n a }的公差2d =,其前n 项和为n S ,且等比数列{n b }满足11b a =, 24b a =,313b a =. (Ⅰ)求数列{n a }的通项公式和数列{n b }的前n 项和n B ; (Ⅱ)记数列的前n 项和为n T ,求n T . 5.设数列{}n a 的前n 项和为n S ,且满足()21,2,3,n n S a n =-=. (1)求数列{}n a 的通项公式; (2)若数列{}n b 满足11b =,且1n n n b b a +=+,求数列{}n b 的通项公式; (3)设()3n n c n b =-,求数列{}n c 的前n 项和n T .

高中数学方法讲解之放缩法

高中数学方法讲解之放 缩法 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

放缩法 将不等式一侧适当的放大或缩小以达证题目的的方法,叫放缩法。 放缩法的方法有: ⑴添加或舍去一些项,如:a a >+12;n n n >+)1( ⑵将分子或分母放大(或缩小) ⑶利用基本不等式,如: 4lg 16lg 15lg )2 5lg 3lg ( 5lg 3log 2 =<=+k k k k k (程度大) Ⅲ、 )1111(21)1)(1(11 112 2+--=+-=- c b a d d b a d c c a c b a b d c b a a m

2=+++++++< c d d d c c b a b b a a m ∴1 < m < 2 即原式成立 例2.当 n > 2 时,求证:1)1(log )1(log <+-n n n n 【巧证】:∵n > 2 ∴0)1(log ,0)1(log >+>-n n n n ∴ 2 22 2)1(log 2)1(log )1(log )1(log )1(log ?? ????-=??? ???++-<+-n n n n n n n n n n 12log 22=?? ? ??? 2时, 1)1(log )1(log <+-n n n n 例3.求证: 21 3121112222<++++n 【巧证】:n n n n n 1 11)1(112 --=-< ∴ 21 21113121211113121112 222<-=+-++-+-+<++++n n n n 十二、放缩法: 巧练一:设x > 0, y > 0,y x y x a +++=1, y y x x b +++=11,求 证:a < b 巧练一:【巧证】: y y x x y x y y x x y x y x +++<+++++=+++11111 巧练二:求证:lg9?lg11 < 1 巧练二:【巧证】: 122299lg 211lg 9lg 11lg 9lg 2 2 2 =?? ? ??

不动点法求数列的通项(讲座)

不动点法求数列的通项 惠来县第一中学 方文湃 自从实施新课程标准,使用新教材以来,高考题中出现了数列的解答题的次数好象不少。如2007年普通高考广东数学理科卷压轴题第21题 、2011年普通高等学校招生全国统一考试数学广东卷理科第20题 ,这两道题都是已知数列的递推式,求它的的通项公式,并且求法都与“不动点”有关。 记函数f(x)的定义域为D ,若存在λ∈D ,使λ=f(λ)成立,则称(λ,λ)为坐标的点为函数f(x)图象上的不动点。以此类推,在数列{a n }中,a n+1=f(a n ) (n ∈N +),若存在λ满足方程λ=f(λ),称λ为不动点方程λ=f(λ)的根。下面介绍的一些数列,可先求生成函数(递推式)的不动点,通过换元后,化为等差、等比数列,再求这些数列的通项,这一方法,我们不妨称为不动点法。 一、递推式为a n+1=aa n +b(a ≠0,a ≠1,a,b 均为常数)型的数列 由递推式a n+1=aa n +b 总可变形为 a n+1-λ=a (a n -λ) …………………………(1) (1) 式中的λ与系数a, b 存在怎样的关系呢? 由(1)得a n+1=aa n +λ-a λ ∴b=λ-a λ即λ=a λ+b …………………………(2) 关于λ的方程(2)刚好是递推式a n+1=aa n +b 中的a n ,a n+1都换成λ得到的不动点方程。 令b n =a n -λ代入(1)得b n+1=ab n 一般来说,可先求等比数列{b n }的通项,再求数列{a n }的通项。 例1:在数列{a n }中,已知a 1=1,a n+1=1-21 a n (n ∈N +),求lim ∞ →n a n 。 解:令x=1- 21x 得x=32 a n+1-32=1-21a n -32=-21 (a n -3 2) 令b n =a n -32,则b n+1=-2 1 b n ∴数列{b n }成首项为b 1=a 1-32=1-32=31,公比为q =-2 1 的等比数列,于 是有

高中数学方法讲解之放缩法

创作编号: GB8878185555334563BT9125XW 创作者: 凤呜大王* 放缩法 将不等式一侧适当的放大或缩小以达证题目的的方法,叫放缩法。 放缩法的方法有: ⑴添加或舍去一些项,如:a a >+12;n n n >+)1( ⑵将分子或分母放大(或缩小) ⑶ 利用基本不等式,如: 4lg 16lg 15lg )2 5lg 3lg ( 5lg 3log 2 =<=+k k k k k (程度大) Ⅲ、)1 1 11(21)1)(1(11112 2+--=+-=-< k k k k k k ; (程度小)

例1.若a , b , c , d ∈R +,求证: 21<+++++++++++< c a d d b d c c a c b b d b a a 【巧证】:记m =c a d d b d c c a c b b d b a a +++ ++++++++ ∵a , b , c , d ∈R + ∴ 1=+++++++++++++++> c b a d d b a d c c a c b a b d c b a a m 2=+++++++ 2 时,求证:1)1(log )1(log <+-n n n n 【巧证】:∵n > 2 ∴0)1(log ,0)1(log >+>-n n n n ∴ 2 22 2)1(log 2)1(log )1(log )1(log )1(log ?? ????-=??????++-<+-n n n n n n n n n n 12log 22=?? ? ??? 2时, 1)1(log )1(log <+-n n n n 例3.求证:21 3121112222<++++n 【巧证】:n n n n n 111)1(112 --=-< ∴ 21 21113121211113121112 222<-=+-++-+-+<++++n n n n 十二、放缩法: 巧练一:设x > 0, y > 0,y x y x a +++=1, y y x x b +++=11,求 证:a < b

高考数学专题复习数列求和

第4讲数列求和 一、选择题 1.设数列{(-1)n}的前n项和为S n,则对任意正整数n,S n=( ) A.n[1n-1] 2 B. 1n-1+1 2 C.1n+1 2 D. 1n-1 2 解析∵数列{(-1)n}是首项与公比均为-1的等比数列, ∴S n=11n1 11 = 1n-1 2 . 答案 D 2.已知数列{a n}的前n项和S n=n2-4n+2,则|a1|+|a2|+…+|a10|=( ) A.66 B.65 C.61 D.56 解析当n=1时,a1=S1=-1,当n≥2时,a n=S n-S n-1=n2-4n+2-[(n -1)2-4(n -1)+2]=2n-5.∴a2=-1,a3=1,a4=3,…,a10=15,∴|a1| +|a2|+…+|a10|=1+1+81+15 2 =2+64=66. 答案 A 3.在数列{a n}中,a n= 1 n n +1 ,若{a n}的前n项和为 2 013 2 014 ,则项数n为( ). A.2 011 B.2 012 C.2 013 D.2 014 解析∵a n=1 n n +1= 1 n - 1 n+1 ,∴S n=1- 1 n+1 = n n+1 = 2 013 2 014 ,解得n=2 013. 答案 C 4.数列{a n}满足a n+1+(-1)n a n=2n-1,则{a n}的前60项和为( ).A.3 690 B.3 660 C.1 845 D.1 830 解析当n=2k时,a2k+1+a2k=4k-1, 当n=2k-1时,a2k-a2k-1=4k-3,

∴a 2k +1+a 2k -1=2,∴a 2k +1+a 2k +3=2, ∴a 2k -1=a 2k +3,∴a 1=a 5=…=a 61. ∴a 1+a 2+a 3+…+a 60=(a 2+a 3)+(a 4+a 5)+…+(a 60+a 61)=3+7+11+…+(4×30-1)=30 3+119 2 =30×61=1 830. 答案 D 5.若把能表示为两个连续偶数的平方差的正整数称为“和平数”,则 1~100 这100个数中,能称为“和平数”的所有数的和是( ) A .130 B .325 C .676 D .1 300 解析 设两个连续偶数为2k +2和2k (k ∈N +),则(2k +2)2-(2k )2=4(2k +1),故和平数 是4的倍数,但不是8的倍数,故在1~100之间,能称为和平数的有4×1,4×3,4×5,4×7,…,4×25,共计13个,其和为4×1+252 ×13=676. 答案 C 6.数列{a n }满足a n +a n +1=1 2(n ∈N *),且a 1=1,S n 是数列{a n }的前n 项和,则S 21 = ( ). A.21 2 B .6 C .10 D .11 解析 依题意得a n +a n +1=a n +1+a n +2=1 2,则a n +2=a n ,即数列{a n }中的奇数项、 偶数项分别相等,则a 21=a 1=1,S 21=(a 1+a 2)+(a 3+a 4)+…+(a 19+a 20)+a 21=10(a 1+a 2)+a 21=10×1 2+1=6,故选B. 答案 B 二、填空题 7.在等比数列{a n }中,若a 1=1 2,a 4=-4,则公比q =________;|a 1|+|a 2|+… +|a n |=________. 解析 设等比数列{a n }的公比为q ,则a 4=a 1q 3,代入数据解得q 3=-8,所以

相关主题
文本预览
相关文档 最新文档