当前位置:文档之家› MATLAB数学实验报告 定积分的近似计算

MATLAB数学实验报告 定积分的近似计算

MATLAB数学实验报告   定积分的近似计算
MATLAB数学实验报告   定积分的近似计算

MATLAB数学实验报告

实验日期:2015年11月20日

实验名称定积分的近似计算

姓名:学号:班级:

问题背景描述:

利用牛顿—莱布尼兹公式虽然可以精确地计算定积分的值,但它仅适用于被积函数的原函数能用初等函数表达出来的情形.如果这点办不到或者不容易办到,这就有必要考虑近似计算的方法.在定积分的很多应用问题中,被积函数甚至没有解析表达式,可能只是一条实验记录曲线,或者是一组离散的采样值,这时只能应用近似方法去计算相应的定积分.

实验目的:

本实验将主要研究定积分的三种近似计算算法:矩形法、梯形法、抛物线法。对于定积分的近似数值计算,Matlab有专门函数可用。

实验原理与数学模型:

1.矩形法

根据定积分的定义,每一个积分和都可以看作是定积分的一个近似值,即

在几何意义上,这是用一系列小矩形面积近似小曲边梯形的结果,所以把这个近似计算方法称为矩形法.不过,只有当积分区间被分割得很细时,矩形法才有一定的精确度.

针对不同的取法,计算结果会有不同。

(1)左点法:对等分区间

,在区间上取左端点,即取。

(2)右点法:同(1)中划分区间,在区间上取右端点,即取。

(3)中点法:同(1)中划分区间,在区间上取中点,即取。2.梯形法

等分区间

相应函数值为().

曲线上相应的点为()

将曲线的每一段弧用过点,的弦(线性函数)来代替,这使得每个

上的曲边梯形成为真正的梯形,其面积为

,.

于是各个小梯形面积之和就是曲边梯形面积的近似值,

即,

称此式为梯形公式。

3.抛物线法

将积分区间作等分,分点依次为

,,

对应函数值为

(),

曲线上相应点为

().

现把区间上的曲线段用通过三点,,的抛物线来近似代替,然后求函数从到的定积分:

由于,代入上式整理后得

同样也有

……

将这个积分相加即得原来所要计算的定积分的近似值:

,即

这就是抛物线法公式,也称为辛卜生(Simpson)公式.

实验所用软件及版本:

Matlab 7.0

主要内容(要点):

1.分别用梯形法与抛物线法,计算,取.并尝试直接使用函数trapz()、quad()进行计算求解,比较结果的差异.

2.试计算定积分.(注意:可以运用trapz()、quad()或附录程序求解吗?为什么?)

3.学习fulu2sum.m的程序设计方法,尝试用函数sum 改写附录1和附录3的程序,避免for 循环。

实验过程记录(含基本步骤、主要程序清单及异常情况记录等):

第2题

○1梯形法

format long

a=1;b=2;n=120;s=0;

syms x y

y=1/x;

for i=a:1/n:b

xj=a+(i-1).*(b-a)./n; %左点

xi=a+i.*(b-a)./n; %右点

yj=subs('y','x',xj); %左点值

yi=subs('y','x',xi); %右点值

s=s+(yi+yj).*(b-a)./(2.*n);

end

s

integrate=int(y,1,2) %integrate为matlab中自带的积分函数

integrate=double(integrate)

abs((s-integrate)./integrate) %相对误差

【调试结果】

s =

(121*y)/120

integrate =

log(2)

integrate =

0.693147180559945

ans =

abs((136233888727957504*y)/93649721522480385 - 1)

○2抛物线法:

format long

a=1;b=2;s=0;

n=120;% 抛物线条数120 小区间个数2*n

syms x y

y=1/x;

for i=a:1/n:b

x0=a+(2.*i).*(b-a)./(2*n); %第一点

x1=a+(2.*i-1).*(b-a)./(2*n); %第二点

x2=a+(2.*i-0).*(b-a)./(2*n); %第san点

y0=subs('y','x',x0); %第一点值

y1=subs('y','x',x1); %第二点值

y2=subs('y','x',x2); %第三点值

s=s+(y0+4.*y1+y2).*(b-a)./(6.*n);

end

s

integrate=int(y,1,2) %integrate为matlab中自带的积分函数integrate=double(integrate)

abs((s-integrate)./integrate) %相对误差

【调试结果】

s =

(121*y)/120

integrate =

log(2)

integrate =

0.693147180559945

ans =

abs((136233888727957504*y)/93649721522480385 - 1)

○3使用函数trapz()

x=1:1/120:2;

y=1./x;

trapz(x,y)

【调试结果】

ans =

0.693151520800048

○4使用函数quad()

quad('1./x',1,2,1/120)

【调试结果】

ans =

0.693147292908988

第3题

○1使用函数trapz()

x=1:1/120:inf;

y=sin(x)./x;

trapz(x,y)

【调试结果】

??? Error using ==> colon

Maximum variable size allowed by the program is exceeded. ○2使用函数quad()

quad('sin(x)./x',0,inf)

【调试结果】

ans =

NaN %NaN不定值

第6题

○1矩形法:利用求和函数

%利用sum函数改写矩形法

format long

n=100;a=0;b=1;

syms x fx

fx=1/(1+x^2);

i=1:n;

xj=a+(i-1)*(b-a)/n;

xi=a+i*(b-a)/n;

fxj=subs(fx,'x',xj);

fxi=subs(fx,'x',xi);

fxij=(fxi+fxj)/2;

m=fxj*(b-a)/n;

p=fxi*(b-a)/n;

k=fxij*(b-a)/n;

inum1=sum(m)

inum2=sum(p)

inum3=sum(k)

【调试结果】

inum1 =

0.787893996730782

inum2 =

0.782893996730782

inum3 =

0.785393996730783

○2抛物线法:使用求和函数

%利用sum函数改写抛物线法

format long

n=100;a=0;b=1;

syms x fx

fx=1/(1+x^2);

i=0:(n-1);

xj=a+(2*i)*(b-a)/(2*n);

xi=a+(2*i+1)*(b-a)/(2*n);

xk=a+(2*i+2)*(b-a)/(2*n);

fxj=subs(fx,'x',xj);

fxi=subs(fx,'x',xi);

fxk=subs(fx,'x',xk);

m=(fxj+4*fxi+fxk)*(b-a)/(6*n);

inum=sum(m)

【调试结果】

inum =

0.785398163397448

【情况记录】

1、梯形法和抛物线法程序设计较为顺利。但要注意使用for循环函数和求和函数时的不同matlab命令,避免混淆出错。使用函数trapz(),quad()时要注意被积函数是数值形式,应使用数组计算,应用点除即 ./ ,否则将出错,不能调试出结果。

2、使用函数trapz(),quad()和附录程序求解,均不能调试出获得出正确答案。最后尝试用matlab命令中的符号求积分才得出正确结果。

3、参照附录B中的求和函数程序设计顺利改变了附录A和C。发现使用求和函数时,inum不需要赋初值,应用了积分理论中分割、近似、求和、取极限的思想方法,避免了for 循环的冗杂性,较容易理解。

实验结果报告及实验总结:

结果第2题

○1梯形法

s =

(121*y)/120

integrate =

log(2)

integrate =

0.693147180559945

ans =

abs((136233888727957504*y)/93649721522480385 - 1)

○2抛物线法:

s =

(121*y)/120

integrate =

log(2)

integrate =

0.693147180559945

ans =

abs((136233888727957504*y)/93649721522480385 - 1)

○3使用函数trapz()

ans =

0.693151520800048

○4使用函数quad()

ans =

0.693147292908988

将题中的近似计算结果与Matlab各命令的计算结果相比较,发现运用不同的方法,计算结果会有不同。

因为由梯形法求近似值,当为凹曲线时,它就偏小;当为凸曲线时,它就偏大.误差较大。故由计算结果知,利用抛物线法近似计算定积分,更接近于实际值,精确程度更高.

且发现trapz()的调试结果与梯形法结果相同,故可猜测该Matlab中的数值积分命令函数

trapz()采用了梯形法近似计算方法。

第3题

○1使用函数trapz()

??? Error using ==> colon

Maximum variable size allowed by the program is exceeded.

○2使用函数quad()

ans =

NaN %NaN不定值

通过实验发现使用函数trapz(),quad()和附录程序求解,均不能调试出或得出正确答案。用matlab命令中的符号求积分int()才得出正确结果。故矩形法、梯形法、抛物线法是主要研究定积分的三种近似计算算法。Matlab的专门函数trapz(),quad()也是用于定积分的近似数值计算。对于不定积分,由于积分区间无限大,故不能使用该分割方法。

第6题

○1矩形法:利用求和函数

inum1 =

0.787893996730782

inum2 =

0.782893996730782

inum3 =

0.785393996730783

○2抛物线法:使用求和函数

inum =

0.785398163397448

在实验中要注意使用for循环函数和求和函数时的不同matlab命令,避免混淆出错。使用函数trapz(),quad()时要注意被积函数是数值形式,应使用数组计算,应用点除即 ./ ,否则将出错,不能调试出结果。参照附录B中的求和函数程序设计顺利改变了附录A和C。

思考与深入:

题目理解稍有困难,第三题参照附录B改写附录C不是很容易。通过本实验加深理解了积分理论中分割、近似、求和、取极限的思想方法。学习并掌握了用matlab求定积分的方法,了解了定积分近似计算的矩形法、梯形法,和抛物线法。并认识到对于不同的题目,采取不同的运算方法,结果会不同,且精确程度也不同。

要多加练习,要深刻理解不定积分、定积分概念,熟悉matlab数学软件的求不定积分、定积分的命令,了解简单的编程语句,以准确有效地设计出程序。

教师评语:

用递推公式计算定积分(matlab版)

用递推公式计算定积分 实验目的: 1.充分理解不稳定的计算方法会造成误差的积累,在计算过程中会导致误差的迅速增加,从而使结果产生较大的误差。 2.在选择数值计算公式来进行近似计算时,应学会选用那些在计算过程中不会导致误差迅速增长的计算公式。 3.理解不稳定的计算公式造成误差积累的来源及具体过程; 4.掌握简单的matlab语言进行数值计算的方法。 实验题目: 对n=0,1,2,…,20,计算定积分: 实验原理: 由于y(n)= = – 在计算时有两种迭代方法,如下: 方法一: y(n)=– 5*y(n-1),n=1,2,3, (20) 取y(0)= = ln6-ln5 ≈ 0.182322 方法二: 利用递推公式:y(n-1)=-*y(n),n=20,19, (1) 而且,由 = * ≤≤* =

可取:y(20)≈*()≈0.008730. 实验容: 对算法一,程序代码如下: function [y,n]=funa() syms k n t; t=0.182322; n=0; y=zeros(1,20); y(1)=t; for k=2:20 y(k)=1/k-5*y(k-1); n=n+1; end y(1:6) y(7:11) 对算法二,程序代码如下: %计算定积分; %n--表示迭代次数; %y用来存储结果; function [y,n]=f(); syms k y_20;

y=zeros(21,1); n=1; y_20=(1/105+1/126)/2; y(21)=y_20; for k=21:-1:2 y(k-1)=1/(5*(k-1))-y(k)/5; n=n+1; end 实验结果: 由于计算过程中,前11个数字太小,后9个数字比较大,造成前面几个数字只显示0.0000的现象,所以先输出前6个,再输出7—11个,这样就能全部显示出来了。 算法一结果: [y,n]=funa %先显示一y(1)—y(6) ans = 0.1823 -0.4116 2.3914 -11.7069 58.7346

MATLAB实验报告50059

实验一MATLAB操作基础 实验目的和要求: 1、熟悉MATLAB的操作环境及基本操作方法。 2、掌握MATLAB的搜索路径及设置方法。 3、熟悉MATLAB帮助信息的查阅方法 实验内容: 1、建立自己的工作目录,再设置自己的工作目录设置到MA TLAB搜索路径下,再试 验用help命令能否查询到自己的工作目录。 2、在MA TLAB的操作环境下验证课本;例1-1至例1-4,总结MATLAB的特点。 例1-1

例1-2 例1-3 例1-4

3、利用帮助功能查询inv、plot、max、round等函数的功能。 4、完成下列操作: (1)在matlab命令窗口输入以下命令: x=0:pi/10:2*pi; y=sin(x); (2)在工作空间窗口选择变量y,再在工作空间窗口选择回绘图菜单命令或在工具栏中单击绘图命令按钮,绘制变量y的图形,并分析图形的含义。

5、访问mathworks公司的主页,查询有关MATLAB的产品信息。 主要教学环节的组织: 教师讲授实验目的、开发环境界面、演示实验过程,然后同学上机练习。 思考题: 1、如何启动与退出MA TLAB集成环境? 启动: (1)在windows桌面,单击任务栏上的开始按钮,选择‘所有程序’菜单项,然后选择MA TLAB程序组中的MA TLABR2008b程序选项,即可启动 MATLAB系统。 (2)在MA TLAB的安装路径中找到MA TLAB系统启动程序matlab.exe,然后运行它。 (3)在桌面上建立快捷方式后。双击快捷方式图标,启动MA TLAB。 退出: (1)在MA TLAB主窗口file菜单中选择exitMATLAB命令。 (2)在MA TLAB命令窗口中输入exit或quit命令。 (3)单击MATLAB主窗口的关闭按钮。 2、简述MATLAB的主要功能。 MATLAB是一种应用于科学计算领域的数学软件,它主要包括数值计算和符 号计算功能、绘图功能、编程语言功能以及应用工具箱的扩展功能。 3、如果一个MATLAB命令包含的字符很多,需要分成多行输入,该如何处理?

计算方法上机实验报告

《计算方法》上机实验报告 班级:XXXXXX 小组成员:XXXXXXX XXXXXXX XXXXXXX XXXXXXX 任课教师:XXX 二〇一八年五月二十五日

前言 通过进行多次的上机实验,我们结合课本上的内容以及老师对我们的指导,能够较为熟练地掌握Newton 迭代法、Jacobi 迭代法、Gauss-Seidel 迭代法、Newton 插值法、Lagrange 插值法和Gauss 求积公式等六种算法的原理和使用方法,并参考课本例题进行了MATLAB 程序的编写。 以下为本次上机实验报告,按照实验内容共分为六部分。 实验一: 一、实验名称及题目: Newton 迭代法 例2.7(P38):应用Newton 迭代法求 在 附近的数值解 ,并使其满足 . 二、解题思路: 设'x 是0)(=x f 的根,选取0x 作为'x 初始近似值,过点())(,00x f x 做曲线)(x f y =的切线L ,L 的方程为))((')(000x x x f x f y -+=,求出L 与x 轴交点的横坐标) (') (0001x f x f x x - =,称1x 为'x 的一次近似值,过点))(,(11x f x 做曲线)(x f y =的切线,求该切线与x 轴的横坐标) (') (1112x f x f x x - =称2x 为'x

的二次近似值,重复以上过程,得'x 的近似值序列{}n x ,把 ) (') (1n n n n x f x f x x - =+称为'x 的1+n 次近似值,这种求解方法就是牛顿迭代法。 三、Matlab 程序代码: function newton_iteration(x0,tol) syms z %定义自变量 format long %定义精度 f=z*z*z-z-1; f1=diff(f);%求导 y=subs(f,z,x0); y1=subs(f1,z,x0);%向函数中代值 x1=x0-y/y1; k=1; while abs(x1-x0)>=tol x0=x1; y=subs(f,z,x0); y1=subs(f1,z,x0); x1=x0-y/y1;k=k+1; end x=double(x1) K 四、运行结果: 实验二:

Matlab数学实验报告一

数学软件课程设计 题目非线性方程求解 班级数学081 姓名曹曼伦

实验目的:用二分法与Newton迭代法求解非线性方程的根; 用Matlab函数solve、fzero、fsolve求解非线性方程(组)的解。 编程实现二分法及Newton迭代法; 学会使用Matlab函数solve、fzero、fsolve求解非线性方程(组)的解。 通过实例分别用二分法及迭代法解非线性方程组并观察收敛速度。 实验内容: 比较求exp(x)+10*x-2的根的计算量。(要求误差不超过十的五次方) (1)在区间(0,1)内用二分法; (2)用迭代法x=(2-exp(x))/10,取初值x=0 。 试验程序 (1)二分法: format long syms x s=exp(x)+10*x-2 a=0; b=1; A=subs(s,a) B=subs(s,b) f=A*B %若f<0,则为由根区间 n=0; stop=1.0e-5; while f<0&abs(a-b)>=stop&n<=100; Xk=(a+b)/2; %二分 M= subs(s, Xk); if M* A<0 symbol=1 %若M= subs(s, Xk)为正,则与a二分 b= Xk else symbol=0 % 若M= subs(s, Xk)为负,则与b二分 a= Xk end n=n+1 end Xk n (2)牛顿迭代法; format long

syms x s= (2-exp(x))/10; %迭代公式 f=diff(s); x=0; %迭代初值 a=subs(f,x); %判断收敛性(a是否小于1) s=(2-exp(x))/10; stop=1.0e-5; %迭代的精度 n=0; while a<1&abs(s-x)>=stop&n<=100; x=s %迭代 s=(2-exp(x))/10; n=n+1 end 实验结果: (1)二分法: symbol =1 b =0.50000000000000 n =1 symbol =1 b =0.25000000000000 n =2 symbol =1 b =0.12500000000000 n =3 symbol =0 a =0.06250000000000 n =4 symbol =1 b =0.09375000000000 n =5 symbol =0 a =0.07812500000000 n =6 symbol =1 b =0.09054565429688 n =15 symbol =1 b =0.09053039550781 n =16 symbol =0 a =0.09052276611328 n =17 Xk =0.09052276611328 n =17 (2)迭代法 由x =0.10000000000000 n =1 x =0.08948290819244 n =2 x =0.09063913585958 n =3 x =0.09051261667437 n =4 x =0.09052646805264 n =5 试验结果可见用二分法需要算17次,而用迭代法求得同样精度的解仅用5次,但由于迭代法一般只具有局部收敛性,因此通常不用二分法来求得非线性方程的精确解,而只用它求得根的一个近似解,再用收敛速度较快的迭代法求得其精确解。

数值积分算法与MATLAB实现陈悦5133201讲解

东北大学秦皇岛分校 数值计算课程设计报告 数值积分算法及MATLAB实现 学院数学与统计学院 专业信息与计算科学 学号5133201 姓名陈悦 指导教师姜玉山张建波 成绩 教师评语: 指导教师签字: 2015年07月14日

1 绪论 数值分析是计算数学的一个主要部分,计算数学是数学科学的一个分支,它研究用计算机求解各种数学问题的数值检索方其理论与软件的实现.而数值分析主要研究数值计算. 现科学技术的发展与进步提出了越来越多的复杂的数值计算问题,这些问题的圆满解决已远人工手算所能胜任,必须依靠电子计算机快速准确的数据处理能力.这种用计算机处理数值问题的方法,成为科学计算.今天,科学计算的应用范围非常广泛,天气预报、工程设计、流体计算、经济规划和预测以及国防尖端的一些科研项目,如核武器的研制、导弹和火箭的发射等,始终是科学计算最为活跃的领域. 1.1 数值积分介绍 数值积分是数值分析的重要环节,实际问题当中常常需要计算积分,有些数值方法,如微分方程和积分方程的求解,也都和积分计算相联系. 求某函数的定积分时,在多数情况下,被积函数的原函数很难用初等函数表达出来,因此能够借助微积分学的牛顿-莱布尼兹公式计算定积分的机会是不多的.另外,许多实际问题中的被积函数往往是列表函数或其他形式的非连续函数,对这类函数的定积分,也不能用不定积分方法求解.由于以上原因,数值积分的理论与方法一直是计算数学研究的基本课题.对微积分学做出杰出贡献的数学大师,如I.牛顿、L.欧拉、C.F.高斯、拉格朗日等人都在数值积分这个领域作出了各自的贡献,并奠定了这个分支的理论基础. 构造数值积分公式最通常的方法是用积分区间上的n 次插值多项式代替被积函数,由此导出的求积公式称为插值型求积公式.特别在节点分布等距的情形称为牛顿-科特斯公式,例如梯形公式(Trapezoidal Approximations)与抛物线公式(Approximations Using Parabolas)就是最基本的近似公式.但它们的精度较差.龙贝格算法是在区间逐次分半过程中,对梯形公式的近似值进行加权平均获得准确程度较高的积分近似值的一种方法,它具有公式简练、计算结果准确、使用方便、稳定性好等优点,因此在等距情形宜采用龙贝格求积公式(Rhomberg Integration).当用不等距节点进行计算时,常用高斯型求积公式计算,它在节点数目相同情况下,准确程度较高,稳定性好,而且还可以计算无穷积分.数值积分还是微分方程数值解法的重要依据.许多重要公式都可以用数值积分方程导出.现探讨数值积分算法以及运用MATLAB软件的具体实现

数学实验“几种常见的求积分近似解的方法”实验报告(内含matlab程序)

西京学院数学软件实验任务书

实验二十一实验报告 一、实验名称:Romberg 积分法,Gauss 型积分法,高斯-勒让德积分法,高斯-切比雪夫积分法,高斯-拉盖尔积分法,高斯-埃尔米特积分法。 二、实验目的:进一步熟悉Romberg 积分法,Gauss 型积分法,高斯-勒让德积分法,高斯-切比雪夫积分法,高斯-拉盖尔积分法,高斯-埃尔米特积分法。 三、实验要求:运用Matlab/C/C++/Java/Maple/Mathematica 等其中一种语言完成程序设计。 四、实验原理: 1.Romberg 积分法: 龙贝格积分法是用里查森外推算法来加快复合梯形求积公式的收敛速度,它的算法如下,其中()i m T 是通过一系列逼近原定积分的龙贝格分值. 计算(0)1[()()]2 b a T f a f b -= + 对1,2,3,k n = ,计算下列各步: 21()(1)1 111 1(21)()[()]222k k k k k j b a j b a T T f a ---=---=++∑

对1,2,,m k = 和,1,2,,1i k k k =-- ,计算111 441 m i i i m m m m T T T --+-=- 随着计算的步骤的增加,()i m T 越来越逼近积分()b a f x dx ?。 2.Gauss 型积分法: 高斯积分公式的思想是用n 个不等距的节点123,,,n x x x x 对被积函数进行插值,然后对插值后的函数进行积分,其积分公式为: 1 1 1 ()()n k k k f x dx A f x -=≈∑? 如果积分区间不是[1,1]-,则需转换到此区间: 11()()222 b a b a b a b a f x dx f t dt ---+= +? ? 其中系数k A 、节点k x 与n 的关系如下表所示: 3.高斯-切比雪夫积分法: 第一类切比雪夫积分形式为: 1 1 ()()n k k k f x dx A f x -=≈∑? 其中k A n π= ,21cos 2k k x n π-= 4.高斯-拉盖尔积分法: 高斯-拉盖尔公式有两种形式: 1 ()()n x k k k e f x dx A f x +∞ -=≈∑?

matlab数学实验报告5

数学实验报告 制作成员班级学号 2011年6月12日

培养容器温度变化率模型 一、实验目的 利用matlab软件估测培养容器温度变化率 二、实验问题 现在大棚技术越来越好,能够将温度控制在一定温度范围内。为利用这种优势,实验室现在需要培植某种适于在8.16℃到10.74℃下能够快速长大的甜菜品种。为达到实验所需温度,又尽可能地节约成本,研究所决定使用如下方式控制培养容器的温度:1,每天加热一次或两次,每次约两小时; 2,当温度降至8.16℃时,加热装置开始工作;当温度达到10.74℃时,加热装置停止工作。 已知实验的时间是冬天,实验室为了其它实验的需要已经将实验室的温度大致稳定在0℃。下表记录的是该培养容器某一天的温度 时间(h)温度(℃)时间(h)温度(℃)09.68 1.849.31 0.929.45 2.959.13 3.878.981 4.989.65 4.988.811 5.909.41 5.908.691 6.839.18 7.008.5217.938.92 7.938.3919.048.66 8.978.2219.968.43 9.89加热装置工作20.848.22 10.93加热装置工作22.02加热装置工作10.9510.8222.96加热装置工作12.0310.5023.8810.59 12.9510.2124.9910.35 13.889.9425.9110.18 三、建立数学模型 1,分析:由物理学中的傅利叶传热定律知温度变化率只取决于温度

差,与温度本身无关。因为培养容器最低温度和最高温度分别是:8.16℃和10.74℃;即最低温度差和最高温度差分别是:8.16℃和10.74℃。而且,16.8/74.10≈1.1467,约为1,故可以忽略温度对温度变化率的影响2, 将温度变化率看成是时间的连续函数,为计算简单,不妨将温度变化率定义成单位时间温度变化的多少,即温度对时间连续变化的绝对值(温度是下降的),得到结果后再乘以一系数即可。 四、问题求解和程序设计流程1)温度变化率的估计方法 根据上表的数据,利用matlab 做出温度-时间散点图如下: 下面计算温度变化率与时间的关系。由图选择将数据分三段,然后对每一段数据做如下处理:设某段数据为{(0x ,0y ),(1x ,1y ),(2x , 2y ),…,(n x ,n y )},相邻数据中点的平均温度变化率采取公式: 温度变化率=(左端点的温度-右端点的温度)/区间长度算得即:v( 2 1i i x x ++)=(1+-i i y y )/(i i x x - +1). 每段首尾点的温度变化率采用下面的公式计算:v(0x )=(30y -41y +2y )/(2x -0x )v(n x )=(3n y -41+n y +2+n y )/(n x -2-n x )

MATLAB实验报告(1-4)

信号与系统MATLAB第一次实验报告 一、实验目的 1.熟悉MATLAB软件并会简单的使用运算和简单二维图的绘制。 2.学会运用MATLAB表示常用连续时间信号的方法 3.观察并熟悉一些信号的波形和特性。 4.学会运用MATLAB进行连续信号时移、反折和尺度变换。 5.学会运用MATLAB进行连续时间微分、积分运算。 6.学会运用MATLAB进行连续信号相加、相乘运算。 7.学会运用MATLAB进行连续信号的奇偶分解。 二、实验任务 将实验书中的例题和解析看懂,并在MATLAB软件中练习例题,最终将作业完成。 三、实验内容 1.MATLAB软件基本运算入门。 1). MATLAB软件的数值计算: 算数运算 向量运算:1.向量元素要用”[ ]”括起来,元素之间可用空格、逗号分隔生成行向量,用分号分隔生成列向量。2.x=x0:step:xn.其中x0位初始值,step表示步长或者增量,xn 为结束值。 矩阵运算:1.矩阵”[ ]”括起来;矩阵每一行的各个元素必须用”,”或者空格分开; 矩阵的不同行之间必须用分号”;”或者ENTER分开。2.矩阵的加法或者减法运算是将矩阵的对应元素分别进行加法或者减法的运算。3.常用的点运算包括”.*”、”./”、”.\”、”.^”等等。 举例:计算一个函数并绘制出在对应区间上对应的值。

2).MATLAB软件的符号运算:定义符号变量的语句格式为”syms 变量名” 2.MATLAB软件简单二维图形绘制 1).函数y=f(x)关于变量x的曲线绘制用语:>>plot(x,y) 2).输出多个图像表顺序:例如m和n表示在一个窗口中显示m行n列个图像,p表 示第p个区域,表达为subplot(mnp)或者subplot(m,n,p) 3).表示输出表格横轴纵轴表达范围:axis([xmax,xmin,ymax,ymin]) 4).标上横轴纵轴的字母:xlabel(‘x’),ylabel(‘y’) 5).命名图像就在subplot写在同一行或者在下一个subplot前:title(‘……’) 6).输出:grid on 举例1: 举例2:

用MATLAB算多元函数积分

用MATLAB 计算多元函数的积分 三重积分的计算最终是化成累次积分来完成的,因此只要能正确的得出各累次积分的积分限,便可在MA TLAB 中通过多次使用int 命令来求得计算结果。但三重积分的积分域Ω是一个三维空间区域,当其形状较复杂时,要确定各累次积分的积分限会遇到一定困难,此时,可以借助MATLAB 的三维绘图命令,先在屏幕上绘出Ω的三维立体图,然后执行命令 rotate3d on ↙ 便可拖动鼠标使Ω的图形在屏幕上作任意的三维旋转,并且可用下述命令将Ω的图形向三个坐标平面进行投影: view(0,0),向XOZ 平面投影; view(90,0),向YOZ 平面投影; view(0,90),向XOY 平面投影. 综合运用上述方法,一般应能正确得出各累次积分的积分限。 例11.6.1计算zdv Ω ???,其中Ω是由圆锥曲面222z x y =+与平面z=1围成的闭区域 解 首先用MA TLAB 来绘制Ω的三维图形,画圆锥曲面的命令可以是: syms x y z ↙ z=sqrt(x^2+y^2); ↙ ezsurf(z,[-1.5,1.5]) ↙ 画第二个曲面之前,为保持先画的图形不会被清除,需要执行命令 hold on ↙ 然后用下述命令就可以将平面z=1与圆锥面的图形画在一个图形窗口内: [x1,y1]=meshgrid(-1.5:1/4:1.5); ↙ z1=ones(size(x1)); ↙ surf(x1,y1,z1) ↙ 于是得到Ω的三维图形如图:

由该图很容易将原三重积分化成累次积分: 111zdv dy -Ω=???? 于是可用下述命令求解此三重积分: clear all ↙ syms x y z ↙ f=z; ↙ f1=int(f,z.,sqrt(x^2+ y^2),1); ↙ f2=int(f1,x,-sqrt(1- y^2), sqrt(1- y^2)); ↙ int(f2,y,-1,1) ↙ ans= 1/4*pi 计算结果为4 π 对于第一类曲线积分和第一类曲面积分,其计算都归结为求解特定形式的定积分和二重积分,因此可完全类似的使用int 命令进行计算,并可用diff 命令求解中间所需的各偏导数。 例11.6.2用MATLAB 求解教材例11.3.1 解 求解过程如下 syms a b t ↙ x=a*cos(t); ↙ y=a*sin(t); ↙ z=b*t; ↙ f=x^2 +y^2+z^2; ↙ xt=diff(x,t); ↙ yt=diff(y,t); ↙ zt=diff(z,t); ↙ int(f*sqrt(xt^2 +yt^2+zt^2),t,0,2*pi) ↙ ans= 2/3*( a^2 +b^2)^1/2*a^2*pi+8/3*( a^2 +b^2)^1/2*b^2*pi^3 对此结果可用factor 命令进行合并化简: factor (ans ) ans= 2/3*( a^2 +b^2)^1/2*pi*(3* a^2 +4*b^2*pi^2) 例11.6.3用MATLAB 求解教材例11.4.1 解 求解过程如下 syms x y z1 z2↙ f= x^2 +y^2; ↙ z1=sqrt(x^2 +y^2); ↙ z2=1; ↙ z1x=diff(z1,x); ↙ z1y=diff(z1,y); ↙ z2x=diff(z2,x); ↙ z2y=diff(z2,y); ↙

数学实验报告

《数学实验》报告 题目:根据数值积分计算方法计 算山东省面积 学生姓名: 学号: 专业班级:机械工程17-1班

2019年4月15日

一、问题背景与提出 图1是从百度地图中截取的山东省地图,试根据前面数值积分计 算方法,计算山东省面积。 图 1 二、实验目的 1、 学会运用matlab 解决一些简单的数学应用问题。 2、 学会运用matlab 建立数学模型。 3、 学会运用一些常见的数值积分计算方法结算实际问题,并 了解其实际意义,建立积分模型。 三、实验原理与数学模型 将积分区间 [a , b] n 等分,每个区间宽度均为h = (b - a) / n , h 称 为积分步长。记 a = x 0 < x 1 < … < x k … < x n = b , 在小区间上用小矩形面积近似小曲边梯形的面积,若分别取左端点和右端点的函数值为小矩形的高,则分别得到两个曲边梯形的面积的近似公式: Ln = h ∑f (x k )n=1k=0 , h = b?a ?

R n =?∑f (x k )n k=1 , h = b?a ? 如果将二者求平均值,则每个小区间上的小矩形变为小梯形,整 个区间上的值变为: Tn =?∑f (X k )n=1 k=1+?2[f (x 0)+f (x n )] 将山东省边界上的点反映在坐标化,运用梯形公式积分计算得山 东省的面积。 四、实验内容(要点) 1、将山东省的地图区域在matlab 中画出 。 2、在坐标系上运用积分方法将所求区域的面积求出。 3、通过比例尺将山东省的实际面积求出。 五、实验过程记录(含基本步骤、主要程序清单及异常情况记录等) 1、 在百度地图中标识出山东省的区域范围,标明对应的比例: 图 2 2、 取出所截取图片中山东的边界的坐标,即将边界坐标化: (1) 运用imread 函数和imshow 函数导入山东省的区域 图片。

MATLAB实验报告

数字信号处理及MATLAB 实验报告 班级: 学号: 姓名:

4.7.2 例4,2 设x(n)是由两个正弦信号及白噪声的叠加,试用FFT文件对其作频谱分析。程序清单 %产生两个正弦加白噪声 N=256; f1=.1;f2=.2;fs=1; a1=5;a2=3; w=2*pi/fs; x=a1*sin(w*f1*(0:N-1))+a2*sin(w*f2*(0:N-1))+randn(1,N); %应用FFT求频谱 subplot(2,2,1); plot(x(1:N/4)); title('原始信号'); f=-0.5:1/N:0.5-1/N; x=fft(x); y=ifft(x); subplot(2,2,2); plot(f,fftshift(abs(x))); title('频域信号'); subplot(2,2,3); plot(real(x(1:N/4))); title('时域信号');

例4.3 设x(n)为长度N=6的矩形序列,用MATLAB程序分析FFT取不同长度时x(n)频谱的变化。N=8,32,64,时x(n)的FFT MATLAB实现程序如下。 x=[1,1,1,1,1,1]; N=8; y1=fft(x,N); n=0:N-1; subplot(3,1,1);stem(n,abs(y1),'.k');axis([0,9,0,6]); N=32; y2=fft(x,N); n=0:N-1; subplot(3,1,2);stem(n,abs(y2),'.k');axis([0,40,0,6]); N=64; y3=fft(x,N); subplot(3,1,3);stem(n,abs(y3),'.k');axis([0,80,0,6]);

浅析Matlab数学实验报告

数学实验报告 姓名: 班级: 学号: 第一次实验任务 过程: a=1+3i; b=2-i; 结果: a+b =3.0000 + 2.0000i a-b =-1.0000 + 4.0000i a*b = 5.0000 + 5.0000i a/b = -0.2000 + 1.4000i 过程: x=-4.5*pi/180; y=7.6*pi/180; 结果: sin(abs(x)+y)/sqrt(cos(abs(x+y))) =0.2098 心得:对于matlab 中的角度计算应转为弧度。 (1)过程: x=0:0.01:2*pi; y1=sin(x); y2=cos(x); y3=exp(x); y4=log(x); plot(x,y1,x,y2,x,y3,x,y4) plot(x,y1,x,y2,x,y3,x,y4) 结果: (2)过程:>> subplot(2,2,1) >> plot(x,y1) >> subplot(2,2,2) >> plot(x,y2) ./,,,,2,311b a b a b a b a i b i a ?-+-=+=计算、设有两个复数 6,7,5.4)

cos()sin(2=-=++y x y x y x ,其中、计算的图形。 下分别绘制)同一页面四个坐标系)同一坐标系下(、在( x y e y x y x y x ln ,,cos ,sin 213==== >> subplot(2,2,3) >> plot(x,y3) >> subplot(2.2.4) >> subplot(2,2,4) >> plot(x,y4) 结果: 心得:在matlab中,用subplot能够实现在同一页面输出多个坐标系的图像,应注意将它与hold on进行区别,后者为在同一坐标系中划出多条曲线。 5、随机生成一个3x3矩阵A及3x2矩阵B,计算(1)AB,(2)对B中每个元素平方后得到的矩阵C,(3)sinB,(4)A的行列式,(5)判断A是否可逆,若可逆,计算A的逆矩阵,(6)解矩阵方程AX=B,(7)矩阵A中第二行元素加1,其余元素不变,得到矩阵D,计算D。 过程:A=fix(rand(3,3).*10) ; B=fix(rand(3,3).*10);

数值积分的matlab实现

实验10 数值积分 实验目的: 1.了解数值积分的基本原理; 2.熟练掌握数值积分的MATLAB 实现; 3.会用数值积分方法解决一些实际问题。 实验内容: 积分是数学中的一个基本概念,在实际问题中也有很广泛的应用。同微分一样,在《微积分》中,它也是通过极限定义的,由于实际问题中遇到的函数一般都以列表形式给出,所以常常不能用来直接进行积分。此外有些函数虽然有解析式,但其原函数不是初等函数,所以仍然得不到积分的精确值,如不定积分?1 0 d sin x x x 。这时我们一般考虑用数值方法计算其 近似值,称为数值积分。 10.1 数值微分简介 设函数()y f x =在* x 可导,则其导数为 h x f h x f x f h ) ()(lim )(**0* -+='→ (10.1) 如果函数()y f x =以列表形式给出(见表10-1),则其精确值无法求得,但可由下式求得其近似值 h x f h x f x f ) ()()(*** -+≈' (10.2) 表 10-1 一般的,步长h 越小,所得结果越精确。(10.2)式右端项的分子称为函数()y f x =在 *x 的差分,分母称为自变量在*x 的差分,所以右端项又称为差商。数值微分即用差商近似 代替微商。常用的差商公式为: 000()() ()2f x h f x h f x h +--'≈ (10.3) h y y y x f 243)(2 100-+-≈ ' (10.4)

h y y y x f n n n n 234)(12+-≈ '-- (10.5) 其误差均为2 ()O h ,称为统称三点公式。 10.2 数值微分的MATLAB 实现 MATLAB 提供了一个指令求解一阶向前差分,其使用格式为: dx=diff(x) 其中x 是n 维数组,dx 为1n -维数组[]21321,, ,n x x x x x x ---,这样基于两点的数值导 数可通过指令diff(x)/h 实现。对于三点公式,读者可参考例1的M 函数文件diff3.m 。 例1 用三点公式计算()y f x =在=x 1.0,1.2,1.4处的导数值,()f x 的值由下表给 解:建立三点公式的M 函数文件diff3.m 如下: function f=diff3(x,y) n=length(x);h=x(2)-x(1); f(1)=(-3*y(1)+4*y(2)-y(3))/(2*h); for j=2:n-1 f(j)=(y(j+1)-y(j-1))/(2*h); end f(n)=(y(n-2)-4*y(n-1)+3*y(n))/(2*h); 在MATLAB 指令窗中输入指令: x=[1.0,1.1,1.2,1.3,1.4];y=[0.2500,0.2268,0.2066,0.1890,0.1736];diff3(x,y) 运行得各点的导数值为:-0.2470,-0.2170,-0.1890,-0.1650,-0.0014。所以()y f x =在=x 1.0,1.2,1.4处的导数值分别为-0.2470,-0.1890和-0.0014。 对于高阶导数,MATLAB 提供了几个指令借助于样条函数进行求导,详细使用步骤如下: step1:对给定数据点(x,y ),利用指令pp=spline(x,y),获得三次样条函数数据pp ,供后面ppval 等指令使用。其中,pp 是一个分段多项式所对应的行向量,它包含此多项式的阶数、段数、节点的横坐标值和各段多项式的系数。 step2:对于上面所求的数据向量pp ,利用指令[breaks,coefs,m,n]=unmkpp(pp)进行处理,生成几个有序的分段多项式pp 。 step3:对各个分段多项式pp 的系数,利用函数ppval 生成其相应导数分段多项式的系数,再利用指令mkpp 生成相应的导数分段多项式 step4:将待求点xx 代入此导数多项式,即得样条导数值。 上述过程可建立M 函数文件ppd.m 实现如下: function dy=ppd(pp) [breaks,coefs,m]=unmkpp(pp);

数学计算方法实验报告

数学计算方法实验报告 习题二 2.估计用二分法求方程f(x)=x3+4x2-10=0在区间[1,2]内根的近似值,为使方程不超过10时所需的二分次数。f(x k) 程序过程: function two (tolerance) a=1;b=2;counter=0; while (abs(b-a)>tolerance) c=(a+b)/2; fa=a^3+4*a^2-10;

fb=b^3+4*b^2-10; fc=c^3+4*c^2-10; if ((fa==0|fb==0)) disp(counter); elseif (fa*fc<0) b=c;counter=counter+1; elseif (fb*fc<0) a=c;counter=counter+1; elseif (fb==0) disp(counter); end end solution=(a+b)/2; disp(solution); disp(counter); 实验结果: 6.取x0=1.5,用牛顿迭代法求第三中的方程根.f(x)=x3+4x2-10=0的近似值(精确到||x k+1-x k|≦10-5,并将迭代次数与3题比较。 程序过程: function six (g) a=1.5; fa=a^3+4*a^2-10;

ga=3*a^2+8*a; b=a-fa/ga; k=1; while(abs(b-a)>g) a=b; fa=a^3+4*a^2-10; ga=3*a^2+8*a; b=a-fa/ga; k=k+1; end format long; disp(a); disp(k); 实验结果:程序结果计算结果 8.用弦割法求方程f(x)=x3-3x2-x+9=0在区间[-2,-1]内的一个实根近似值x k,|f(x k)|≦10-5. 程序过程: function eight (t) a=-2; b=-1; fa=a^3-3*a^2-a+9; fb=b^3-3*b^2-b+9; c=b-fb*(b-a)/(fb-fa); k=1; while(abs(c-b)>t) a=b; b=c; fa=a^3-3*a^2-a+9; fb=b^3-3*b^2-b+9; c=b-fb*(b-a)/(fb-fa); k=k+1; end

matlab求定积分之实例说明

一、符号积分 符号积分由函数int来实现。该函数的一般调用格式为: int(s):没有指定积分变量和积分阶数时,系统按findsym函数指示的默认变量对被积函数或符号表达式s求不定积分; int(s,v):以v为自变量,对被积函数或符号表达式s求不定积分; int(s,v,a,b):求定积分运算。a,b分别表示定积分的下限和上限。该函数求被积函数在区间[a,b]上的定积分。a和b可以是两个具体的数,也可以是一个符号表达式,还可以是无穷(inf)。当函数f关于变量x在闭区间[a,b]上可积时,函数返回一个定积分结果。当a,b中有一个是inf时,函数返回一个广义积分。当a,b中有一个符号表达式时,函数返回一个符号函数。 例: 求函数x^2+y^2+z^2的三重积分。内积分上下限都是函数,对z积分下限是sqrt(x*y),积分上限是x^2*y;对y积分下限是sqrt(x),积分上限是x^2;对x的积分下限1,上限是2,求解如下: >>syms x y z %定义符号变量 >>F2=int(int(int(x^2+y^2+z^2,z,sqrt(x*y),x^2*y),y,sqrt(x),x^2),x,1,2) %注意定积分的书写格式 F2 = 1610027357/6563700-6072064/348075*2^(1/2)+14912/4641*2^(1/4)+64/225*2 ^(3/4) %给出有理数解 >>VF2=vpa(F2) %给出默认精度的数值解 VF2 = 224.92153573331143159790710032805 二、数值积分 1.数值积分基本原理 求解定积分的数值方法多种多样,如简单的梯形法、辛普生(Simpson)?法、牛顿-柯特斯(Newton-Cotes)法等都是经常采用的方法。它们的基本思想都是将整个积分区间[a,b]分成n个子区间[xi,xi+1],i=1,2,…,n,其中x1=a,xn+1=b。这样求定积分问题就分解为求和问题。 2.数值积分的实现方法 基于变步长辛普生法,MATLAB给出了quad函数来求定积分。该函数的调用格式为: [I,n]=quad('fname',a,b,tol,trace) 基于变步长、牛顿-柯特斯(Newton-Cotes)法,MATLAB给出了quadl函数来求定积分。该函数的调用格式为: [I,n]=quadl('fname',a,b,tol,trace) 其中fname是被积函数名。a和b分别是定积分的下限和上限。tol用来控制积分精度,缺省时取tol=0.001。trace控制是否展现积分过程,若取非0则展现积分过程,取0则不展现,缺省时取trace=0。返回参数I即定积分值,n为被积函数的调用次数。 例: 求函数'exp(-x*x)的定积分,积分下限为0,积分上限为1。 >>fun=inline('exp(-x.*x)','x'); %用内联函数定义被积函数fname

《数学软件》实验报告-符号计算基础与符号微积分

实验报告 课程名称:数学软件姓名: 学院: 专业: 年级: 学号: 指导教师: 职称: 年月日

实验项目列表

附件三: 实验报告(二) 系:专业:年级:姓名学号:实验课程: 实验室号:_ 实验设备号:实验时间: 指导教师签字:成绩: 1. 实验项目名称:符号计算基础与符号微积分 2. 实验目的和要求 1.掌握定义符号对象的方法 2.掌握符号表达式的运算法则以及符号矩阵运算 3.掌握求符号函数极限及其导数的方法 4.掌握求符号函数定积分和不定积分的方法 3. 实验使用的主要仪器设备和软件 方正商祺N260微机;MATLAB7. 0或以上版本 4. 实验的基本理论和方法 (1)符号函数;sym(x);syms a b …… (2)平方根:sqrt(x) (3)分解因式:factor(s) (4)符号表达式化简:simplify(s) (5)逆矩阵:inv(x) (6)下三角矩阵:tril(x) (7)矩阵行列式的值:det(x)

(8)符号函数求极限:limit (f ,x ,a );limit (f ,x ,a ,‘right ’) (9)符号函数求导:diff (f ,v ,n ) (10)符号函数求不定积分:int (f ,v ) (11)符号函数求定积分:int (f ,v ,a ,b ) 5. 实验内容与步骤 (描述实验中应该做什么事情,如何做等,实验过程中记录发生的现象、中间结果、最终得到的结果,并进行分析说明) (包括:题目,写过程、答案) 题目: 1. 已知x=6,y=5,利用符号表达式求 y x x z -++= 31。 提示:定义符号常数)'5(')'6('sym y sym x ==,。 >> x=sym('6'); >> y=sym('5'); >> z=(x+1)/(sqrt(3+x)-sqrt(y)) z = 7/(3-5^(1/2)) 2. 分解因式:44y x - >> syms x y; >> A=x^4-y^4; >> factor(A) ans = (x-y)*(x+y)*(x^2+y^2) 3. 化简表达式 (1)2121sin cos cos sin ββββ- (2) 123842+++x x x (1) >> syms x y; >> f1=sin(x)*cos(y)-cos(x)*sin(y);

matlab实验报告

Matlab实验报告 ——定积分的近似计算 学生姓名: 学号: 专业:数学与应用数学专业

数学实验报告 实验序号:1001114030 日期:2012年10月20日 班级应一姓名陈璐学号1001114030 实验名称:定积分的近似运算 问题背景描述: 利用牛顿—莱布尼茨公式虽然可以精确地计算定积分的值,但它仅适合于被积分函数的原函数能用初等函数表达出来的情形。如果这点办不到或不容易办到, 这就有必要考虑近似计算的方法。在定积分的很多应用问题中,被积函数甚至没 有解析表达式,可能只是一条实验记录曲线,或者是一组离散的采样值,这时只 能应用近似方法去计算相应的定积分。 实验目的: 本实验将主要研究定积分的三种近似计算算法:矩形法、梯形法、抛物线发。对于定积分的近似数值计算,Matlab有专门函数可用。 实验原理与数学模型: 1.sum(a):求数组a的和。 2.format long:长格式,即屏幕显示15位有效数字。 3.double():若输入的是字符则转化为相应的ASCII码;若输入的是整型数之则转化为 相应的实型数值。 4.quad():抛物线法求数值积分。格式:quad(fun,a,b)。此处的fun是函数,并且

为数值形式,所以使用*、/、^等运算时要在其前加上小数点。 5.trapz():梯形法求数值积分。格式:trapz(x,y)。其中x为带有步长的积分区间;y为数 值形式的运算。 6.fprintf(文件地址,格式,写入的变量):把数据写入指定文件。 7.syms 变量1变量2……:定义变量为符号。 8.sym('表达式'):将表达式定义为符号。 9.int(f,v,a,b):求f关于v积分,积分区间由a到b。 10.subs(f,'x',a):将a的值赋给符号表达式f中的x,并计算出值。若简单地使用subs (f),则将f的所有符号变量用可能的数值代入,并计算出值。 实验所用软件及版本:Matlab 7.0.1

相关主题
文本预览
相关文档 最新文档