当前位置:文档之家› Chapter 3 管道稳定性

Chapter 3 管道稳定性

挡土墙设计与验算(手算)

第1章挡土墙设计与验算(手算) 1.设计资料 1.1 地质情况: 地表下1 m内为亚粘土层,容重γd=18kN/m3,内摩擦角 d=23o ,摩擦系数f d =0.5 ; 1m以下为岩层,允许承载力[σd] =700kPa,此岩层基底摩擦系数取 f d =0.6 1.2 墙背填料 选择就地开挖的碎石作墙背填料,容重γt=19kN/m 3 ,内摩阻角 t=43°,墙背摩擦角δt=21.5 1.3 墙体材料 采用M7.5砂浆40号片石通缝砌体,砌体容重γqr=25kN/m3,砌体摩擦系 数 f q =0.45 , 允许偏心距[e q] =0.25B ,允许压应力[σqa] =1200kPa,允许剪应力[τqj] =90kPa,允许拉应力[τql]=90kPa,允许弯拉应力[τqwl]=140kPa 2.技术要求 2.1 设计荷载: 公路Ⅰ级 2.2 分项系数: Ⅰ类荷载组合,重力γG=1.2 ,主动土压力γQ1=1.4

2.3 抗不均匀沉降要求: 基地合力偏心距[e]≤1/5B 3.挡土墙选择 根据平面布置图,K2+040~K2+100为密集居民区,为收缩坡角,避免多占用地,同时考虑减小墙高,因此布置仰斜式路堤挡土墙。K2+080处断面边坡最高,故以此为典型断面布置挡土墙 4.基础与断面的设计 1、换算荷载土层高 当 时, ;当 时, 由直线内插法得:H=9m时, 换算均布土层厚度: 2、断面尺寸的拟订

根据《路基路面工程》(第三版)关于尺寸的设计要求,如下图拟订断面,将墙基埋置于岩层上,深度为1.5m ,α=14°: 5.挡土墙稳定性验算(参照《路基路面工程》(第三版)) 5.1 主动土压力计算: ⑴ 破裂角θ试算 假设破裂面交于荷载内,由主动土压力计算公式有:? ? 50.5° 破裂角θ有, 解得,θ=35.8° 验算破裂面位置:

危岩体稳定性分析

附件2 危岩体稳定性分析 1、WY-01危岩体稳定性定量评价 1 计算模型 从工程防治的角度按照危岩失稳类型进行分类,可将危岩概化分为滑移式危岩、倾倒式危岩和坠落式危岩3 类。WY-01危岩体为滑移式危岩;其软弱结构面倾向山外,上覆盖体后缘裂隙与软弱结构面贯通,在动水压力、地震和自重力作用下,缓慢向前滑移变形,形成滑移式危岩,其模式见图(图3-1)。 图3-1 滑移式危岩示意图 危岩体 危岩前缘 扬压力U 静水压力V 地下水位 后缘裂隙 危岩后缘 软弱结 构面 W c o s θ W W s i n θh w θ 图3-2 滑移式危岩稳定性计算示意图(后缘有陡倾裂隙) 2 计算公式 ①后缘有陡倾裂隙、滑面缓倾时,滑移式危岩稳定性按下式计算:

(cos sin sin )sin cos cos W Q V V tg c l K W Q V θθθφθθθ---+?= ++ 2 21w w h V γ= 式中:V ——裂隙水压力(kN/m),; w h ——裂隙充水高度(m),取裂隙深度的1/3。 w γ——取10kN/m 。 Q ——地震力(kN/m),按公式e Q W ξ=?确定,式中地震水平作用系数七 级烈度地区 e ξ取0.075; K ——危岩稳定性系数; c ——后缘裂隙粘聚力标准值(kPa);当裂隙未贯通时,取贯通段和未贯通 段粘聚力标准值按长度加权和加权平均值,未贯通段粘聚力标准值取岩石粘聚力标准值的0.4倍; φ——后缘裂隙内摩擦角标准值(kPa);当裂隙未贯通时,取贯通段和未贯 通段内摩擦角标准值按长度加权和加权平均值,未贯通段内摩擦角标准值取岩石内摩擦角标准值的0.95倍; θ——软弱结构面倾角(°),外倾取正,内倾取负; W ——危岩体自重(kN/m3)。 3 危岩稳定性计算结果 根据危岩结构特征和形态特征,②区危岩破坏模式主要为滑移式。 (1)计算参数: 崩塌区出露地层为第四系崩坡积物和石炭系太原组,根据附近工程岩体参数及工程类比得出物理力学参数见表: 表3-2 岩体物理力学参数表 岩石 名称 密度 g/cm3 抗压强度σ MPa 抗剪强度 抗拉强度 (KPa) 软化 系数 C(MPa) ф(°) 灰岩 2. 70 32 0.110~0.271 30.3~40.2 698.5 0.53 结构面 灰岩结构面 0.03-0.10 23-29

理正边坡稳定分析

第一章功能概述 边坡失稳破坏是岩土工程中常遇到的工程问题之一。造成的危害及治理费用均非常可观。因此,客观的、正确的评估边坡稳定状况,是摆在工程技术人员面前的一道难题。为满足工程技术人员的需要,编制了“理正边坡稳定分析”软件。 该软件具有下列功能: ⑴本软件具有通用标准、堤防规范、碾压土石坝规范三种标准,以满足不同行业的要求; ⑵本软件提供三种地层分布模式(匀质地层、倾斜地层、复杂地层),可满足各种地层条件的要求; ⑶本软件可计算边坡的稳定安全系数、及剩余下滑力; ⑷本软件提供多种方式计算边坡的稳定安全系数; ⑸本软件提供的自动搜索最小稳定安全系数的方法,是理正技术人员研制、开发、应用到软件中,并取得良好的效果。一般情况下,都可以得到最优解。但是对于较复杂的地质条件,建议先指定区域搜索、分不同精度进行分析,逐步逼近最优解,这样才能既快、又准; ⑹对于圆弧稳定计算,本软件提供三种方法:瑞典条分法、简化Bishop法、及Janbu 法。集三种方法于一体,用户可以根据不同的要求采用不同的方法。用户需要注意的是采用后两种方法计算时,有时不收敛,也是正常的。需要用户调整相关的参数再计算或用第一种方法; ⑺软件可同时考虑地震作用、外加荷载、及锚杆、锚索、土工布等对稳定的影响; ⑻特别是针对水利行业做了大量工作,除按水利的堤防、碾压土石坝规范外,还参照了海堤等规范;提供按不同工况—施工期、稳定渗流期、水位降落期计算堤坝的稳定性(具有总应力法及有效应力法); 详细的分析、考虑水的作用,包括堤坝内部的水(渗流水)及堤坝外部的水(静水压力)的作用;尤其方便的是可以将渗流软件分析的流场数据直接应用到稳定分析,使计算结果更逼近真实状况。 ⑼具有图文并茂的交互界面、计算书。并有及时的提示指导、帮助用户使用软件。 本软件可应用于水利行业、公路行业、铁路行业和其它行业在岩土工程建设中遇到的边坡(主要是土质边坡、岩石边坡可参考)稳定分析。

第一部分钢管撑、钢围檩、工法桩型钢计算书

围护结构计算书 一、钢支撑承载能力验算 根据围护结构计算,5号通道与1号风亭中斜支撑长度22.2米,支撑间距3.5米,斜撑与围护角度为450,计算结果中第二道支撑轴力标准值341kN/m。 支撑轴力设计值为:341×1.25×3.5/sin(450)=2110kN/m 。

二、工法桩H型钢内力验算 围护结构采用SMW工法桩,桩径850mm,间距600mm。 工法桩内插H型钢,截面尺寸b×h×t1×t2为:300×700×13×24mm。截面惯性矩: I=1/12×300×7003-1/12×(300-13)×(700-2× 24)3=1946069925mm4 根据围护结构计算书附件,7号通道与2号风亭弯矩标准值491kN×m/m,设计值M=491×1.25×1.2=736.5kN×m/m σ=M/I×y o=736.5×106/1946069925×700/2=132.5N/mm2<215N/mm2满足安全要求。 三、钢围檩内力验算 围护结构钢围檩采用双榀I40b工字钢,材质为Q345。 截面系数:W x=2×1140×103mm3 S x=2×671.2×103mm3 I x=2×22781×104mm4 t w=2×12.5mm 根据计算书附件,钢围檩所承受最大均布荷载为4号通道第二道支撑处,q k=397.4(N/mm),设计值:q=397.4×1.25=497(N/mm)。 则围檩最大弯矩设计值为支座处, M=1 /12 ×497×35002=507100000(N×mm/mm), 则围檩翼缘处最大拉、压应力为: σ=M/W x =50710000/(2×1140000)=222 N/mm2< f=295N/mm2 围檩抗拉设计强度满足要求。

挡土墙稳定性验算

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 挡土墙稳定性验算 中铁五局沪昆铁路客运专线云南段(TJ1 标)项目经理部临建挡土墙类型的确定及稳定性验算一、挡土墙类型选择从经济使用的角度出发,结合当地的实际情况,初步确定用于本施工管段内的临建及便道挡土墙类型为石砌重力式挡土墙。 其特点是○依靠墙身自重 1 抵抗土压力的作用;○形式简单,取材容易,施工简易。 2 挡墙根据墙背的倾斜方向,墙身断面形式可分为仰斜、垂直、俯斜、凸形折线和衡重式几种。 在其他条件相同时,仰斜墙背所承受的土压力比俯斜式小,故其墙身断面亦较俯斜墙背经济。 同时,由于仰斜式墙背的倾斜方向与开挖面边坡方向一致,故开挖量和回填量均比俯斜式墙背小。 综合考虑,在此确定挡墙类型为重力式(仰斜式)挡土墙。 其墙身断面形式如下图所示:1:m1:m1:m1:m重力式挡土墙断面图重力式挡土墙断面图(扩大基础)1:m图中,m=n,且 m 值宜为0.05~0.30,H=2.0~6.0m,B≥0.5m 当地基承载力不足且墙趾处地形平坦时,为减小地基应力和增加抗倾覆稳定性,常采用扩基础。 扩大基础是将墙趾或墙蹱部分加宽成台阶,也可以同时将两侧加宽,以在、增大承压面积,减小基底压力。 台阶宽度一般不小于 0.2m。 1/ 8

台阶高度按加宽部分的1

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 抗剪、抗弯和基础材料的扩散角要求确定,高宽比可采用 3:2 或2:1。 挡墙基础埋臵深度:为保证挡土墙的稳定性,必须根据地基的条件,将挡土墙基础埋入地面以下适当深度。 基础埋臵深度需满足:○设臵在土质地基 1 上的挡墙,基底埋臵深度一般应在天然地面以下 1.0m;受水冲刷时,应在冲刷线以下1.0m。 ○ 设臵在石质地基上的挡土墙,应清除表面风化层,当风化层 2 厚难于清除时,可根据风化程度及允许地基承载力,将基础埋臵在风化层中,并保证有一定的襟边宽度。 二、挡土墙稳定性验算挡土墙的设计方法有容许应力法和极限状态法两种。 容许应力法是把结构材料视为理想的弹性体,在荷载的作用下产生的应力和应变不超过规定的容许值。 极限状态法是根据结构在荷载作用下的工作特征,在容许应力法基础上发展形成的一种方法。 但由于极限状态法在工程实践中的应用尚不充分,目前挡墙的设计仍按容许应力法。 本路段内表层土体大部分属于西南地区碳酸盐类岩层的残积红土,参照《公路桥涵地基与基础设计规范》(JTJ 024-85)第 2.1.2 条和第 2.1.3 条的相关规定,地基容许承载力 [? 0 ] 取值如下表: 3/ 8

挡土墙稳定性验算

附件1 滑坡稳定性及挡土墙稳定性验算 1、滑坡体工况1稳定性计算 计算项目:土层滑坡稳定性计算-自重工况 ------------------------------------------------------------------------ [计算简图] [控制参数]: 采用规范: 通用方法 计算目标: 安全系数计算 滑裂面形状: 圆弧滑动法 不考虑地震 [坡面信息] 坡面线段数10 坡面线号水平投影(m) 竖直投影(m) 超载数 1 0.000 2.320 0 2 9.340 1.780 0

3 3.710 4.880 0 4 3.030 0.700 0 5 3.620 2.000 0 6 3.330 1.000 0 7 0.590 0.800 0 8 2.830 0.200 0 9 3.080 1.000 0 10 9.780 4.000 0 [土层信息] 坡面节点数11 编号X(m) Y(m) 0 0.000 0.000 -1 0.000 2.320 -2 9.340 4.100 -3 13.050 8.980 -4 16.080 9.680 -5 19.700 11.680 -6 23.030 12.680 -7 23.620 13.480 -8 26.450 13.680 -9 29.530 14.680 -10 39.310 18.680 附加节点数8 编号X(m) Y(m) 1 0.000 -0.870 2 7.970 0.000 3 27.620 6.400 4 39.310 8.080 5 4.470 -4.200 6 39.310 0.860 7 6.540 -4.200

用理正岩土计算边坡稳定性

运用《理正岩土边坡稳定性分析》 作定量计算 (整理人:朱冬林,2012-2-21) 1、我目前手上理正岩土的版本为5.11版,有新版本的请踊跃报名,大家共同进步! 2、为什么要用理正岩土边坡稳定性分析? 现在山区公路项目地形条件越来越复杂,对于一些斜坡(指一般自然坡)或边坡(指开挖后的坡体)的稳定性评价是不可避免,比如桥位区沿斜坡布线,桥轴线与坡向大角度相交,自然坡度20~40°,覆盖层比较厚,到底是稳定还是不稳定?会不会有隐患和危险?必将困扰每个勘察技术人员,说它稳定吧,又怕将来出问题,说不稳定,目前又没有出现开裂变形滑动迹象,那在报告中如何评价桥址的安全性?再比如,路线从大型堆积体上经过,究竟稳定性如何评价?仅靠钻探或地质调查无法对其稳定性进行合理评价。这时候,就要辅以定量分析计算来提供证据了。 还有,我们在报告中提路堑边坡的岩土经验参数,常常遭设计诟病,按报告

中提的参数,自然坡都垮得一塌糊涂了,更不要说开挖了。我们在正式报告中提出“问题参数”会大大降低了勘察在设计心目中的光辉(灰)形象。如果我们事先对自然斜坡的横断面进行过初步计算,提出的参数就不会太离谱,必将给设计留下“很专业”的印象。 3、是否好用? 很好用。在保宜项目我一天计算几十个断面,既有效又快。 4、断面图能不能直接从CAD图读入? 可以。只需事先转化为dxf即可(用dxfout命令保存)。对图形的条件是所有的线段都是直线段组成(对于多段线需要炸开,对于样条曲线可以用多段线描一下再炸开即可),另外图形边界要封闭(事先可以用填充命令试一下,看各个区域是否封闭)。注意,图中只能有直线段,不能有其它图元(记得按上面操作完后,全选(Ctrl+A),看“属性”(Ctrl+1),全部为直线,则OK)。 5、下面结合实例讲解计算过程,保证学一遍就上手。 以土质边坡计算为例(最常用) 进入土质边坡稳定性分析程序

钢管支撑架计算

钢管支撑架计算 钢管支撑架由钢管扣件、底架和调节杆等组成。钢管选用外径48mm 、壁厚为3.0,长度有2.8、3、4、6等几种。扣件按用途的不同,有十字扣、旋转扣、接扣三种,其单个重量和容许荷载见表: 受力性能较合理,承载能力能充分里利用,支架高度调节灵活,后者荷载直接支承在横杆上,受力性能较差,立杆的承载能力未被充分利用,支架高度调节较困难。但钢管的支度可不受楼层高度变化的影响。其计算方式如下: 一、 立杆的稳定验算: 钢管脚手架的稳定性,可简化为按两端交接的受力杆件来计算: 1、 用对接扣件连接的钢管支架,考虑到立杆本身存在弯曲,对接扣件的 偏差和荷载不均匀,可按偏心受压杆件来计算: 若按偏心1/3的钢管直径,即: =3D =348=16mm ,则Φ48×3mm 钢管的偏差率Σ=e · W A =16×449424=15.1 长细比:λ=r L =9.15L 式中L —计算长度、取横杆的步距。 立杆的容许荷载[N],(N )可按下式计算: [N]= ·A ·f 查表467页表须知:主杆间距为900,横杆步距L=1800,能满足要求。 二、横杆的强度和刚度验算 当模板直接放在顶端横杆上时,横杆承受均布荷载。当顶端横杆上先放檩条,再放模板时,则横杆承受集中荷载。横杆可规作连续梁,其抗弯强度和挠度的近似计算公式如下: 在均布荷载作用下 σmax= W M max =w ql 10≤f Wmax=EI ql 150≤[W] 在两点集中荷载作用下: σmax=W M max =w ql 5.3≤f Wmax=EI ql 55≤[W] 式中: σmax ─横杆的最大应力(N/m ㎡)

衡重式挡土墙稳定性验算分析实例

衡重式挡土墙的稳定性验算分析实例摘要:衡重式挡土墙是利用衡重台上部填土的下压作用和全墙 重心的后移,增加墙身稳定,节约断面尺寸,适用于山区、地面横坡陡峻的路肩墙。本文以某工程衡重式挡土墙为例,利用理正软 件对其稳定性进行验算,对验算结果进行总结分析,可为同类工程的设计提供参考。 关键词:衡重式挡土墙稳定性重力式挡土墙 abstract: retaining wall is to use the platform under the pressure of filling the role of the ministry and the whole center of gravity moved back wall. it can be increased the stability of wall and to reduce the section size. so it apply to the mountains on the ground cross slope steep shoulder wall. this text based on a retaining wall, using of lizheng software to check its stability and analyze the results for checking. purpose is to provide a reference for the design of similar projects. keywords:weighing retaining wall ;stability; gravity retaining wall 一、衡重式挡墙土压力计算基本原理 衡重式挡土墙等折线形墙背挡墙不能直接用库仑理论计算主动 土压力,这时,应将上墙和下墙看作独立的墙背,分别按库仑理论计算主动土压力,然后取两者的矢量和作为全墙的土压力。计算上

挡土墙稳定性计算学习资料

挡土墙稳定性计算

2、农田护墙(挡土墙)稳定性计算书 (1):墙身尺寸: 墙身高: 1.500(m) 墙顶宽: 0.500(m) 面坡倾斜坡度: 1:0.250 背坡倾斜坡度: 1:0.200 采用1个扩展墙址台阶: 墙趾台阶b1: 0.300(m) 墙趾台阶h1: 0.400(m) 墙趾台阶与墙面坡坡度相同 墙底倾斜坡率: 0.200:1 (2):物理参数: 圬工砌体容重: 23.000(kN/m3) 圬工之间摩擦系数: 0.400 地基土摩擦系数: 0.500 墙身砌体容许压应力: 2100.000(kPa)

墙身砌体容许剪应力: 110.000(kPa) 墙身砌体容许拉应力: 150.000(kPa) 墙身砌体容许弯曲拉应力: 280.000(kPa) (3):挡土墙类型: 一般挡土墙 墙后填土内摩擦角: 35.000(度) 墙后填土粘聚力: 0.000(kPa) 墙后填土容重: 19.000(kN/m3) 墙背与墙后填土摩擦角: 17.500(度) 地基土容重: 18.000(kN/m3) 修正后地基土容许承载力: 500.000(kPa) 地基土容许承载力提高系数: 墙趾值提高系数: 1.200 墙踵值提高系数: 1.300 平均值提高系数: 1.000 墙底摩擦系数: 0.500 地基土类型: 土质地基 地基土内摩擦角: 30.000(度) 土压力计算方法: 库仑 (4):坡线土柱:

坡面线段数: 2 折线序号水平投影长(m) 竖向投影长(m) 换算土柱数 1 3.000 2.000 0 2 5.000 0.000 0 坡面起始距离: 0.000(m) 地面横坡角度: 20.000(度) 墙顶标高: 0.000(m) (5):稳定性计算书: 第 1 种情况: 一般情况 [土压力计算] 计算高度为 1.807(m)处的库仑主动土压力 按实际墙背计算得到: 第1破裂角: 38.300(度) Ea=21.071 Ex=18.463 Ey=10.154(kN) 作用点高度 Zy=0.615(m) 因为俯斜墙背,需判断第二破裂面是否存在,计算后发现第二破裂面存在:第2破裂角=10.021(度) 第1破裂角=39.550(度) Ea=23.256 Ex=16.438 Ey=16.450(kN) 作用点高度 Zy=0.632(m) 墙身截面积 = 1.603(m2) 重量 = 36.866 kN 墙背与第二破裂面之间土楔重 = 0.733(kN) 重心坐标(0.633,-0.594)(相对于墙面坡上角点) (一) 滑动稳定性验算 基底摩擦系数 = 0.500

挡土墙验算安全系数取值问题

各规中关于挡墙稳定验算安全系数的规定 1、建筑支挡: 1.1 《GB 50330-2002 建筑边坡工程技术规》规定: 5.3.1 边坡工程稳定性验算时,其稳定性系数应不小于下表规定的稳定安全系数的要求,否则应对边坡进行处理。 注:对地质条件很复杂或破坏后果极严重的边坡工程,其稳定安全系数宜适当提高。 10.2.3 重力式挡土墙抗滑稳定性安全系数不得小于1.3。 10.2.4 重力式挡土墙抗倾覆稳定性安全系数不得小于1.6。 10.2.5 重力式挡土墙的土质地基稳定性可采用圆滑滑动法验算,岩质地基稳定性可采用平面滑动法验算。 2、水利支挡: 2.1 《CJJ 50-1992 城市防洪工程设计规》规定: 2.4.1 堤(岸)坡抗滑稳定安全系数,应符合下表的规定。 2.4.2 建于非岩基上的混凝土或圬工砌体防洪建筑物与非岩基接触面的水平抗滑时稳定安全系数,应符合下表的规定。 2.4.3 建于岩基上的混凝土或圬工砌体防洪建筑物与岩基接触的抗滑稳定安全系数,应符合下表的规定。 2.4.4 防洪建筑物抗倾覆稳定安全系数应符合下表的规定。

2.2 《GB 50286-1998 堤防工程设计规》规: 2.2.3 土堤的抗滑稳定安全系数不应小于下表的规定。 2.2.4 滨海软弱堤基上的土堤的抗滑稳定安全系数,当难以达到规定数值时,经过论证,并报行业主管部门批准后,可以适当降低。 2.2.5 防洪墙抗滑稳定安全系数,不应小于下表的规定。 2.2.6 防洪墙抗倾覆稳定安全系数不应小于下表的规定。 2.3 《SL 379-2007 水工挡土墙设计规》规定: 3.2.7沿挡墙基底面的抗滑稳定安全系数不应小于下表规定的允许值。 注:特殊组合Ⅰ适用于施工情况及校核洪水位情况,特殊组合Ⅱ适用于地震情况。 3.2.8 当土质地基上的挡土墙沿软弱土体整体滑动时,按瑞典圆弧法或折线滑动法计算的抗滑稳定安全系数不应小于上表规定的允许值。 3.2.9 岩石地基上挡土墙沿软弱结构面整体滑动,当按公式6.3.6计算的稳定安全系数允许值,可根据工程实践经验按上表中相应规定的允许值降低采用。 3.2.11 对于加筋式挡土墙,不论其基本,基本荷载组合条件下的抗滑稳定安全系数不应小于 1.40,特殊荷载组合条件下的抗滑稳定安全系数不应小于1.30。 3.2.12 土质地基上挡土墙的抗倾覆稳定安全系数不应小于下表规定的允许

钢管支撑强度验算

(一)支架强度验算 1.荷载计算 a、钢筋砼:a=25.48KN/m3 b、施工荷载标准值:b=1.0KN/㎡ C、振捣砼荷载标准值:c=2.5KN/㎡ d、支架及模板荷载:d=1.0KN/㎡ 2.立杆的极限荷载取值 查《公路桥涵施工计算手册》表8-34步距为1.2,Ф48×3㎜的钢管允许荷载26.78KN. 3.桥面板自重计算(以5号桥为例) a、桥面板位面积S=148.8㎡(上面板)。 Ga=148.8㎡×0.2m×25.48KN/m3 =758.3KN b、纵向肋板处桥梁面积S=88㎡ Gb=88㎡×25.48KN/m3×0.25=560.6KN c、横向勒板处桥梁面积S=27.9㎡ Gc=27.9㎡×0.25m×25.48 KN/m3=17.3KN 4.整体强度计算 G总=1.2G+1.4SQ =1.2×1336.2+1.4×4.5×9.3×16=2540.9KN 立杆数量N=16*16=256根。 每根立杆承受荷载为G单=2540.9/256=10KN<[N]=26.78KN 5.最不利截面强度计算,桥面板最大荷载在纵向肋板端头处。 a、纵向肋板端头处每米面积S=0.3米宽*1.3米高=0.39㎡ G最不利=1.2系数×0.39㎡×25.48KN/m3+1.4系数×0.39㎡×4.5KN/㎡=14.4 KN 肋板沿前进方向间距0.5米, 肋板两边各搭设一根钢管,两根钢管之间搭设 10CM正方形松木方。端头只用两个钢管。 G=14.4 KN/2=7.2 KN<[N]=26.78KN满足要 (二)稳定性验算 1.地基承载力计算 场地找平后用20t震动压路机碾压8遍,然后再铺筑厚30cm的石粉渣,用20震动压路机碾压8遍后用10cm水泥稳定料铺底压路机碾压6遍洒水养生7天。地基承载完全达到要求,故地基承载力不必验算。 2.梁高方向杆件间距验算 设梁高方向杆件间距 临界应力由平衡方程P=π2EI/L2得 Pcr=σcrA=π2EA/λ2 λP=√π2E/σP A3钢的E=206GPa,比例极限σP=200MPa λP=√π2×206×109/200×106≈100(有资料可查我国3号钢第一组λ=101) λP=ul/i u=1 故L=λPi i=√I/A=√[π(D外4-D内)/64]/[π(D外2-D内2)/4] =√(D内2+D外2)/4 =√(482+422)/4 =15.95mm 所以,L=100×15.96=1596mm=1.6m

桂林市典型危岩体稳定性分析及危险性评价2

桂林喀斯特危岩体发育特征及稳定性分析 刘宝臣1 ,郑金1 (1.桂林理工大学土建学院,桂林541004) 摘要:危岩体是由多组的结构面组合而形成,在地表风化作用、卸荷作用、重力、地震、降雨等诱发因素作用下处于不稳定、欠稳定或极限平衡状态的岩体。笔者对桂林市15座山的326块危岩体发育情况进行实地调查,测绘等手段得到几组重要数据,根据危岩体的结构特征和状态特征,将桂林市的危岩体类型分为悬挂式式、倾倒式、贴坡式、孤立式三种基本类型,本文以屏风山1号危岩体为对象进行研究,并采用极限平衡法对该危岩体稳定性进行定量验算,综合分析评价桂林市危岩体的发育特征及稳定性。 关键词:危岩;极限平衡状态;稳定性;定量验算 Stability analysis and risk assessment for three typical rocks in the Guilin city liuBao-chen1 Zheng-jin1 (1.Guilin University of Technology,Guilin 541004) Abstract:Dangerous rock is combined to form groups of the structure surface ,In the Unstable, less stable or equilibrium state of the rock and the factors of Surface weathering, unloading, gravity, earthquake, rainfall and so on. Through the investigation and mapping on the 326 dangerous rocks of fifteen mountains of the Guilin city,the writer get some important data ,According to the structure and State features of dangerous rocks ,Guilin dangerous rocks are divided into Hanging-type , dumping-type、posted slope -type and Isolated style. using the three typical rocks as the research object and checking the stability of the dangerous rocks by Limit equilibrium method, analyze the stability of the dangerous rocks. Key word:dangerous rock;Limit equilibrium;Stability;Quantitative Checking 0前言 危岩崩塌灾害是我国三大地质灾害之一,已成为我国山地开发和建设的重要制约因素。由于危岩崩塌灾害分布零散, 通常规模有限, 爆发随机性强,难以有一个准确的灾害统计数据,但是其危害程度并不亚于泥石流、滑坡等灾害。我区石灰岩出露面积广大,这些地区岩溶山峰和地下洞穴非常发育,形成了独特的喀斯特旅游风景名胜区。举世瞩目的桂林景区以其独特秀丽的风景吸引了广大的国内外游客参观,其中岩溶山峰和洞穴景观占景区主要部分。但其独特的喀斯特区山体岩石突露、奇峰林立,在特殊的地质条件下风化剥蚀已形成大量危岩,严 重威胁山体附近居民及游人的人身和财产安全,严重影响喀斯特景区特色旅游业的稳定快速发展。而国内外对此种危岩的研究甚少。为此,研究岩溶地区岩质边坡和洞穴危岩发生发展的机理、致灾因素,显得非常必要。本文通过地质灾害勘查、物探、室内模拟试验与计算机模拟等,确定危岩失稳破坏的过程与临界条件,提出桂林市危岩体的类型,确定危岩的稳定性判别指标,并对区内典型的危岩体作出稳定性评价,为后期区内危岩体的治理防控技术体系的研究创造条件。 1.1危岩体发育特征分析

浅谈挡土墙稳定性验算

浅谈挡土墙稳定性验算 摘要根据实际铁路设计路基工点,介绍了挡土墙稳定性验算,即抗滑稳定性验算、抗倾覆稳定性验算、基底应力及合力偏心距验算。 关键词挡土墙;稳定性;验算 0 引言 在铁路工程中,经常用挡土墙来支挡上下高差的土体,而重力式挡土墙是用得较多的一种形式。它的作用影响着铁路工程的建设投资和运营效益。挡土墙的设计往往是路基设计工作的重点。某新建环形专用线位于内蒙古自治区准格尔旗哈镇川谷地上,DK8+217~DK8+640段落位于低中山区,地形起伏较大,工点长423m。线路在此以深路堑通过。由于边坡高度较高,需用重力式挡土墙对路堑进行支挡防护,并且对挡土墙的稳定性进行验算。 图1 挡土墙横断面 1 工程概况 工点位于低中山区,地形起伏较大。地面高程一般在1110~1140m之间。线路在此以深路堑通过,路堑边坡最大高度约61m。工点范围内地层为第四系上更新统冲风积层砂质黄土;下伏侏罗系下统砂岩、泥岩。地震动峰值加速度0.05g (相当于地震基本烈度六度)。土壤最大冻结深度1.7m。工点范围内特殊岩土为膨胀性泥岩和砂质黄土。泥岩:具弱膨胀性,自由膨胀率43%~53%;砂质黄土:具湿陷性。湿陷系数0.024~0.044,湿陷层厚度约7.0m,场地属Ⅱ级自重湿陷性场地。勘测期间勘探深度内未见地下水。工点范围内无不良地质发育。 2 工程措施 DK8+260~DK8+640段右侧路堑边坡设置路堑挡土墙,墙高6~8m,挡土墙胸坡、背坡坡率均采用1:0.25,基础埋深1.5m,挡土墙采用C25片石混凝土浇筑。挡墙设计参数:挡墙设计参数:φ=30°,f=0.3,γ=19kN/m3,[σ]=300kPa。挡墙以上一级、二级、三级、五级堑坡采用框架锚杆护坡防护。 3 挡土墙稳定性验算 对于重力式挡土墙,稳定性往往是设计中的控制因素。挡土墙的稳定性包括

挡土墙稳定性计算

2、农田护墙(挡土墙)稳定性计算书 (1):墙身尺寸: 墙身高: 1.500(m) 墙顶宽: 0.500(m) 面坡倾斜坡度: 1:0.250 背坡倾斜坡度: 1:0.200 采用1个扩展墙址台阶: 墙趾台阶b1: 0.300(m) 墙趾台阶h1: 0.400(m) 墙趾台阶与墙面坡坡度相同 墙底倾斜坡率: 0.200:1 (2):物理参数: 圬工砌体容重: 23.000(kN/m3) 圬工之间摩擦系数: 0.400 地基土摩擦系数: 0.500 墙身砌体容许压应力: 2100.000(kPa) 墙身砌体容许剪应力: 110.000(kPa) 墙身砌体容许拉应力: 150.000(kPa) 墙身砌体容许弯曲拉应力: 280.000(kPa) (3):挡土墙类型: 一般挡土墙 墙后填土内摩擦角: 35.000(度) 墙后填土粘聚力: 0.000(kPa) 墙后填土容重: 19.000(kN/m3) 墙背与墙后填土摩擦角: 17.500(度) 地基土容重: 18.000(kN/m3) 修正后地基土容许承载力: 500.000(kPa) 地基土容许承载力提高系数: 墙趾值提高系数: 1.200 墙踵值提高系数: 1.300 平均值提高系数: 1.000

墙底摩擦系数: 0.500 地基土类型: 土质地基 地基土内摩擦角: 30.000(度) 土压力计算方法: 库仑 (4):坡线土柱: 坡面线段数: 2 折线序号水平投影长(m) 竖向投影长(m) 换算土柱数 1 3.000 2.000 0 2 5.000 0.000 0 坡面起始距离: 0.000(m) 地面横坡角度: 20.000(度) 墙顶标高: 0.000(m) (5):稳定性计算书: 第 1 种情况: 一般情况 [土压力计算] 计算高度为 1.807(m)处的库仑主动土压力 按实际墙背计算得到: 第1破裂角: 38.300(度) Ea=21.071 Ex=18.463 Ey=10.154(kN) 作用点高度 Zy=0.615(m) 因为俯斜墙背,需判断第二破裂面是否存在,计算后发现第二破裂面存在:第2破裂角=10.021(度) 第1破裂角=39.550(度) Ea=23.256 Ex=16.438 Ey=16.450(kN) 作用点高度 Zy=0.632(m) 墙身截面积 = 1.603(m2) 重量 = 36.866 kN 墙背与第二破裂面之间土楔重 = 0.733(kN) 重心坐标(0.633,-0.594)(相对于墙面坡上角点) (一) 滑动稳定性验算 基底摩擦系数 = 0.500 采用倾斜基底增强抗滑动稳定性,计算过程如下: 基底倾斜角度 = 11.310 (度) Wn = 36.869(kN) En = 19.355(kN) Wt = 7.374(kN) Et = 12.893(kN) 滑移力= 5.519(kN) 抗滑力= 28.112(kN) 滑移验算满足: Kc = 5.093 > 1.300 地基土摩擦系数 = 0.500 地基土层水平向: 滑移力= 16.438(kN) 抗滑力= 29.149(kN) 地基土层水平向: 滑移验算满足: Kc2 = 1.773 > 1.300 (二) 倾覆稳定性验算 相对于墙趾点,墙身重力的力臂 Zw = 0.865 (m) 相对于墙趾点,Ey的力臂 Zx = 1.425 (m) 相对于墙趾点,Ex的力臂 Zy = 0.325 (m) 验算挡土墙绕墙趾的倾覆稳定性 倾覆力矩= 5.334(kN-m) 抗倾覆力矩= 56.294(kN-m)

边坡稳定性分析模式及流程

一、土岩混合边坡分析 土岩混合边坡稳定性分析一般有四种: 1、上部土层及风化层内部的破坏(圆弧或折线,受土体强度控制,软件自动搜索最危险滑面); 2、沿土岩交界面滑动破坏(土与风化层面或土、风化层与基岩面,受交界面强度控制,软件指定交界面进行计算稳定性,采用圆滑滑动(均质土体时)和折线滑动(覆盖层与基岩面时)两种计算); 3、下部岩体结构面破坏(受结构面控制,平面或楔形体破坏,倾倒破坏也可能。先用赤平投影定性分析(龙海涛和理正结合使用),根据定性情况,若不稳定,则用理正进行定量稳定性计算(平面滑动和楔形体滑动))。 4、上部土体圆弧滑动,下部岩体沿结构面滑动破坏(分析了1和3后,二者都不稳定时,则对边坡整体进行计算,采用1的最危险滑动面与3的平面滑动面组合成上部圆弧,下部直线(层面、某节理裂隙或结构面组合的交线)的整体滑动面,采用传递系数法进行稳定性计算),则1.2.3.4得到四种稳定系数,根据稳定系数进行综合评价。 5、极软岩边坡可能受岩土体强度控制,也可能受结构面控制,故也应对边坡整体进行稳定性计算,采用圆弧滑动(简化毕肖普法)和折线滑动(传递系数隐式解法)分别进行计算。 6、若1.2稳定,3不稳定,则会发生下部岩体沿结构面滑动破坏,从而带动上部土体一起滑动破坏。故下部岩体稳定性很重要。 综合內摩擦角是对平面滑动的,若提粘聚力很小,甚至为零,只有內摩擦角,则破坏模式为平面滑动,如砂砾石层,岩层等。若判断破坏模式为圆弧滑动,则必须提粘聚力与內摩擦角,如破碎岩层、强风化层与上部土层可能发生圆弧滑动破坏。故,提不提粘聚力,可否换算成综合內摩擦角,取决于判断其破坏模式是圆弧还是平面滑动。 下部为极软岩的土岩混合边坡除按岩质边坡分析外,还需计算五种滑动面稳定系数,如下:(下部为硬质的边坡,可不计算整体圆弧滑动,整体折现滑动视基岩内部裂隙及破碎带

试论公路危岩稳定性评价体系

试论公路危岩稳定性评价体系 本文通过分析影响公路危岩稳定性的指标,从而找出了几类对危岩稳定性影响很大的因素,在对公路危岩的稳定性进行评价时,采用了模糊层次的分析方法来进行。这种方法在实体工程中运用得到的结果和在实际经验中得到的状况是基本一致的,这在一定程度上证明了这种方法在进行危岩稳定性评价时是非常可靠的,也是值得运用的一种方法。 标签:公路危岩稳定性评价体系 1引言 对于危岩稳定性评价方法来说,它一般都分为很多种类,具体包括地质分析法、数值模拟法、可靠度法、比较识别法、静力解析法和模型试验法等。影响危岩稳定性的因素也有很多,内部因素主要包括重力侵蚀和地质构造等,外部因素主要包括气候问题和人类活动等[1]。本文就是通过对这些方法的一些适用条件进行分析,对这些方法的数据进行获取和比较,从而将层次模糊综合评价方法当作本次研究的主要数学模型。 2选取公路危岩评价指标体系 通过对公路危岩的一些特点进行分析,从而了解了对危岩稳定性产生影响的几个重要因素。 (1)岩组类型。对于大多数的结构类型来说,它对危岩的稳定性有着非常重要的控制作用。而岩组类型就是一种由边坡坡面、岩层状况和公路走向这三个方面所决定的一种边坡形态,但是也有些边坡是不存在危岩结构这个理念的,例如均质坡和土坡等。 (2)坡度。坡度不同,就说明危岩对构造物的破坏程度是不同的。这是因为坡度的变化会使得很多因素发生变化,例如供应力分布等。而地形坡度则非常显著的控制着危岩的稳定性。一般来说,最容易发生崩塌的坡度在35度到50度之间。 (3)坡高。要想评价边坡的稳定性,那么颇高是必须考虑的一个因素。即使边坡的高度对等值线的图像不会产生任何作用,但是它的数值却是随着坡高的加大而增大的。 (4)自然灾害。自然灾害主要是指滑坡和崩塌等地质灾害。在对边坡的稳定性进行评价时,地质灾害是一定要考虑到的,不管是已经发生的还是将会发生的,都需要预测到,这是因为地质灾害具有群发性的特点。 (5)风化作用。岩石风化会使得岩石破碎,并且使得岩石的裂缝扩大。使

钢管内支撑

百隆东方城(二期)2#楼钢管内支撑专项施工方案 编制人: 审核人: 审批人: 武汉市培源建筑有限公司 年月日

钢管内支撑施工方案 一、编制依据: 1.《扣件式钢管脚手架安全技术规范》(JGJ30-2001) 2.《建筑结构荷载规范》(GB50009-2001)(2006版) 3.《建筑工程抗震设防分类标准》(GB50223-2008) 4.《混凝土结构设计规范》(GB50010-2002) 二、工程概况: 工程名称:百隆东方城(二期)2#楼 建设单位:武汉道禾房地产开发有限公司 设计单位:深圳机械院建筑设计有限公司 勘察单位:中机三勘岩土工程有限公司 监理单位:武汉市江北工程建设监理有限责任公司 施工单位:武汉市培源建筑有限公司 该工程建筑为框剪结构,地上层楼为26层,建筑面积:㎡,结构设计使用年限为50年,建筑结构安全等级二级,建筑抗震设防类别为丙类,抗震设防烈度为6度,抗震等级为四级。 三、材料准备: 1.落地式钢管脚手架采用φ48×3.5的钢管。 1.1扣件: 扣件应符合《钢管脚手架扣件》(GB—1995)的规定。扣件不能有裂纹、气孔、疏松、砂眼等铸造缺陷。扣件与钢管的贴合面要接触良好,扣件夹紧钢管时,开口处的最小距离接触良好,扣件夹紧钢管时,开口处的最小距离小于5mm。

2.钢管内支撑: 本工程主体脚手架采用落地式,楼内搭设满堂脚手架。 本支撑地面垫块采用厚度大于50MM的木板,初步设计尺寸为50*300*300,施工时可根据实际情况进行调整。 2.1内支撑设计: (1)搭设满堂脚手架的支座支撑在砼梁板上面,有足够的支承面积的垫板。搭设方法基本同扣件式钢管外脚手架,在四角设包角斜撑,四侧设剪刀撑,中间每隔四排立杆沿纵向长方向设一道剪刀撑,所有斜撑和剪刀撑均须由底到顶连续设置,另在垂直面设有斜撑及剪刀撑的部位,于顶层、底层及每隔两步架应在水平方向设水平剪刀撑。凡有斜撑、剪刀撑的部位于顶面设一道水平剪刀撑保持整个体系稳定。 2.2.钢管内支撑的构造 (1)脚手架使用材料:φ48×3.5的钢管,扣件,钢卡环。(2)支撑及荷载系统:双排立杆及大横杆、斜撑拉杆。水平风荷载主要由斜拉杆、拉结杆承受。 3.1细部交叉梁部位支撑设计: 分别在主梁、次梁两侧取梁截面宽沿纵距方向各设置一道立杆,中间并增设一道承重立杆,间距以1.0m设置;各道梁交叉高差部分采用以下部梁底下降300㎜加设横杆,步距以1.7m设计,斜杆搭接长度不小于1m,等间距设置3个旋转扣件固定,端部扣件盖板边缘至搭接纵向水平杆杆端的距离不小于100mm;扫地横

生态固滨挡墙稳定计算(参考)

1、设计依据 ●《水工挡土墙设计规范》(SL379-2007); ●《水利水电工程边坡设计规范》(SL386-2007); ●《堤防工程设计规范》(GB50286-98)。 2、设计方案 方案设计遵循的原则是: 安全可靠:即不管采用何种结构、何种方法,必须满足规范要求,经得起实践检验。 经济节约:以全寿命周期成本为原则,以采用新技术、新材料、新方法为手段,以资源节约为目标。 技术创新:以新理念为指导,以创新应用为宗旨,探索应用新材料、新结构、新工艺。 生态环保:以“不破坏就是最大的保护”为原则,通过少占用地、减少工程量、最大可能增加绿化措施为手段。 和谐自然:以构筑物融入自然为出发点,实现人与自然和谐、物与自然和谐。 3、设计计算原理及稳定计算书 固滨挡墙的基本稳定原理同浆砌石重力挡墙和混凝土重力挡墙相同,均是通过墙体自身重量来维持挡墙在土压力下的稳定。固滨重力式挡墙的外形通常有外台阶、内台阶、宝塔式三种。而由于固滨材料的特性,固滨挡墙无法做成如仰斜式的斜墙。 重力挡墙的设计计算在国内已经有了很完善的计算方法和规范。且由于各个行业的侧重点不同,各个行业的重力挡墙计算方法也有细微的区别。不过,尽管如此,固滨重力挡墙仍然可以套用不同行业的重力挡墙计算,在个别细微的地方作出微调即可。 此处仅计算挡墙完建期无水状态时整体稳定性以作参考。

挡墙一 (1)挡墙高度H=2.6m ,顶宽1.0m ,底宽4.0m 。墙底逆坡脚00θ=,墙背与竖直夹角 00ε=,50cm 错台布置,填土表面水平,坡面3m 宽,后有1:2的下坡至排水沟,具体形式如图。墙前埋深0.8m 。 (2)固滨笼回填石料的单位体积重3/25m KN s =γ,空隙率0.3n =。 (3)固滨笼挡墙墙后填土选用的填筑土各项参数取值:回填土粘聚力c=29.64,内摩 擦角为14.10 ,填土容重3/9.16m KN s =γ。作回填土时粘聚力折减一半计算取14.82,据《建筑边坡工程技术规范》,墙高5.5m 时,计算其等效内摩擦角d ?=37.590 ,墙背与填土之间的摩擦角取ο53.12=δ。 1.土压力计算 主动土压力系数222cos () sin()sin()cos cos()1cos()cos()a K ?α?δ?βααδαδαβ-=?+-+?+-? 根据地勘资料取值,回填土粘聚力折减一半c=14.82,内摩擦角为14.10,据《建筑边坡工 程技术规范》,墙高5.5m 时,计算其等效内摩擦角d ?=37.590。填土坡度为00 时,Ka 1=0.225?

相关主题
文本预览
相关文档 最新文档