当前位置:文档之家› 江苏师范大学数字电路模拟电路简易出租车计价器(DOC)

江苏师范大学数字电路模拟电路简易出租车计价器(DOC)

江苏师范大学数字电路模拟电路简易出租车计价器(DOC)
江苏师范大学数字电路模拟电路简易出租车计价器(DOC)

江苏师范大学物电学院本科生课程设计

课程名称:电子综合设计

题目:简易出租车计价器

专业班级:11物41班

学生姓名:张婷玉

学生学号: 11224020

日期: 2013-6-1

指导教师:王立巍

物电学院教务部印制

指导教师签字:

年月

摘要 (1)

Abstract (1)

第一章课题背景(或绪论、概述) (2)

1.1意义 (2)

1.2应解决的问题 (2)

1.3基本要求 (2)

1.4发挥部分 (2)

1.5理论依据 (2)

第二章设计方案简述 (3)

2.1各模块简述 (3)

第三章详细设计 (4)

3.1 74LS192功能 (4)

3.2 74ls48各引脚功能解说 (4)

3.3 555芯片介绍 (5)

3.4霍尔管原理 (7)

第四章设计结果及分析 (8)

4.1仿真电路 (10)

4.2遇到问题 (11)

第五章总结 (12)

参考文献 (13)

随着科技的不断发展有越来越多的科学技术应用到了人们的日常生活中,也给人们的生活带来了很多方便,大家都见过出租车前面都放着一个待显示的计价器,那么它是怎么起到计价功能的呢,其实很简单,只要用现在所学的专业知识就可以自己动手做一个简易的出租车计价器,这里我们还特意加入了等车计价的功能。在数字电路基础课中学到了好几种计数器芯片,利用这些计数芯片和相关的译码器就可以实现我们的简易计价器的制作,在等车计价方面采用555电路产生12秒为周期的震荡电路从而实现了每过一分钟计价0.05元的功能,加获取计价信号方面采用了霍尔管在磁场下的特殊效应,来实现高低点平的产生。可以通过调节滑动变阻器就可一调节电机的转速。

关键词:出租车计费器;74LS192;CD4543;555数字计数器

Abstract

Along with the continuous development of a growing number of science and technology to the people of Richangshenghuo Zhong, Ye to the people of Shenghuodailai a lot of convenience, we have stood Du seen taxi Qianmian the valuation of a device to be Xian Shi, it is how it played valuation function is very simple, just now learning to use professional knowledge to make your own a simple taxi meter, here we have specially priced Jiaru the other car functions. In the digital circuit based class secondary to several counter chip, using these counts chips and associated decoder can achieve our simple meter production, in the other car pricing aspects of using 555 circuits have 12 seconds to cycle oscillator circuit to achieve over a minute per 0.05 yuan valuation function, plus access to pricing signals in the magnetic field using a Hall-pipe under the special effects, to achieve high and low level of production. Can be adjusted by a sliding rheostat can adjust the motor speed.

Keywords:74LS160, 74LS48, 74LS121, Hall element, Manostat

第一章概述

利用所学的专业知识设计并制作出具有预置起步价和等车计价功能的简易出租车计价器,

1.1意义:简易出租车计费器的设计让同学们的很好的掌握了芯片等的工作原理和使用方法,也让同学们熟悉了电子线路设计的过程和动手操作的注意点,更好的让同学们积累了一定的电路操作的动手能力。本次的课程设计是组队设计,也很好的加强了同学们的团队工作精神和互相帮助的友情。

1.2应解决的问题:等车计价问题和模拟车轮转动问题。

1.3基本要求:行车费用按车轮转一圈0.1元计(可由玩具电机和光电转换器进行模拟);起步价5元;用三位数码管显示金额(最大值为99.9元)。

1.4发挥部分:考虑等车费用(按0.05元/每分钟计);其它

1.5理论依据:74ls192芯片具有加减和预设处置功能,在译码和显示方面分别采用的是74ls48译码器和7段共阴数码管。发挥部分使用的是555定时电路把周期定在12秒刚好满足每一分钟增加0.05元的题目要求,车轮的计数由霍尔管和电机组成系统产生的脉冲给74ls192实现没转一圈数码管实现加一的要求

第二章设计方案简述

2.1 各模块简述

根据题目的要求和设计需要,我选择了具有加减和预设处置功能的74ls192芯片作为计数模块,在译码和显示方面分别选用的是74ls48译码器和7段共阴数码管。发挥部分我使用的是555定时电路把周期定在12秒刚好满足每一分钟增加0.05元的题目要求,车轮的计数由霍尔管和电机组成系统产生的脉冲给

74ls192

实现每转一圈数码管实现加一的要求。

555外围电路

霍尔管电路

第三章详细设计

3.174LS192功能

74LS192为可预置的十进制同步加/ 减计数器,其主要电特性的典型值如下:

192 的清除端是异步的。当清除端(MR)为高电平时,

不管时钟端(CPD、CPU)状态如何,即可完成清除功能。

192 的预置是异步的。当置入控制端(PL)为低电平时,

不管时钟CP的状态如何,输出端(Q0~Q3)即可预置成与数据

输入端(P0~P3)相一致的状态。

192 的计数是同步的,靠CPD、CPU同时加在4 个触发器上

而实现。在CPD、CPU上升沿作用下Q0~Q3 同时变化,从而消

除了异步计数器中出现的计数尖峰。当进行加计数或减计数时

可分别利用CPD或CPU,此时另一个时钟应为高电平。

当计数上溢出时,进位输出端(TCU)输出一个低电平脉

冲,其宽度为CPU低电平部分的低电平脉冲;当计数下溢出时,

错位输出端(TCD)输出一个低电平脉冲,其宽度为CPD低电

平部分的低电平脉冲。

当把TCD和TCU分别连接后一级的CPD、CPU,即可进行级联

74ls192各引脚图

74ls48各引脚功能图、输出状态图、逻辑电路图、相似类型、性能参数

3.274ls48各引脚功能解说:

16?电源正极、8?电源地7、1、2、6?输入端(A、B、C、D)

13、12、11、10、9、15、14?输出端3?测灯、4?消隐、5?灭零

3?测灯输入LT(lamp test input):指3脚为低电平时,芯片输出为高电平,接到数码管上,数码管的各段发光二极管都亮,说明数码管是好的,若有一段以上发光二极管不亮,说明数码管已坏。如果3脚为高低平,则断开测试功能。用术语讲,就是3脚对低电平有效。数码管正常工作时,LT=1。

4?消隐输入/灭零输出BI/RBO(Blanking Input/Ripple Blanking Output):4脚对低电平有效,即4脚为低电平时,芯片执行该功能,BI/RBO=1时,数码管正常工作。BI/RBO消隐的特点是:当BI/RBO=0时,不管输入端为何值,输出端都为低电平,数码管不发光,这样做是为了降低显示系统的功耗。BI/RBO是级别最高的控制端。

5?灭零输入RBI (Ripple Blanking Input):5脚对低电平有效,当RBI=0,若输入端全为零时,输出端也全为零,数码管不显示0字符,但其余的数字正常显示。

当RBI=1时,数码管正常工作。这种设计是为了多位数显示时,要去掉低位数的零(如小数点后的零是这种情形之一)。

74LS48真值表:48芯片的逻辑图就是根据这个真值表进行设计的。

3.3555芯片介绍

555 芯片是定时器,是一种模拟和数字功能相结合的中规模集成器件。一般用双极性工艺制作的称为 555,用 CMOS 工艺制作的称为 7555,除单定时器外,还有对应的双定时器 556/7556。555 定时器的电源电压范围宽,可在 4.5V~16V 工作,7555 可在 3~18V 工作,输出驱动电流约为 200mA,因而其输出可与 TTL、CMOS 或者模拟电路电平兼容。

555 定时器成本低,性能可靠,只需要外接几个电阻、电容,就可以实现多谐振荡器、单稳态触发器及施密特触发器等脉冲产生与变换电路。它也常作为定时器广泛应用于仪器仪表、家用电器、电子测量及自动控制等方面。555 定时器的内部电路框图和外引脚排列图分别如图 2.9.1 和图2.9.2 所示。它内部包括两个电压比较器,三个等值串联电阻,一个RS 触发器,一个放电管T 及功率输出级。它提供两个基准电压VCC /3 和2VCC /3。

555 定时器的功能主要由两个比较器决定。两个比较器的输出电压控制RS 触发器和放电管的状态。在电源与地之间加上电压,当 5 脚悬空时,则电压比较器A1 的反相输入端的电压为2VCC /3,A2 的同相输入端的电压为VCC /3。若触发输入端TR 的电压小于VCC /3,则比较器A2 的输出为1,可使RS 触发器置1,使输出端OUT=1。如果阈值输入端TH 的电压大于2VCC/3,同时TR 端的电压大于VCC /3,则A1 的输出为1,A2 的输出为0,可将RS 触发器置0,使输出为0 电平。

3.4 霍尔管原理

霍尔集成电路是一种磁敏传感器。可以检测磁场及其变化,可在各种与磁场有关的场合中使用。霍尔集成电路是以霍尔效应原理为基础工作的。

霍尔集成电路具有许多优点,它们的结构牢固,体积小,重量轻,寿命长,安装方便,功耗小,频率高(可达1MHZ),耐震动,不怕灰尘、油污、水汽及盐雾等的污染或腐蚀。

按照霍尔集成电路的功能可将它们分为:霍尔线性集成电路和霍尔开关集成电路。前者输出模拟量,后者输出数字量。

霍尔线性集成电路的精度高、线性度好;霍尔开关集成电路无触点、无磨损、

输出波形清晰、无抖动、无回跳、位置重复精度高(可达μm级)。取用了各种补偿和保护措施的霍尔器件的工作温度范围宽,可达-55℃~150℃。

通过霍尔集成电路将许多非电、非磁的物理量例如力、力矩、压力、应力、位置、位移、速度、加速度、角度、角速度、转数、转速以及工作状态发生变化的时间等,转变成电量来进行检测和控制。霍尔开关电路的输出级一般是一个集电极开路的NPN晶体管,其使用规则和任何一种相似的NPN开关管相同。输出管截止时,输漏电流很小,一般只有几nA,可以忽略,输出电压和其电源电压相近,但电源电压最高不得超过输出管的击穿电压(25V~30V)。输出管导通时,它的输出端和线路的公共端短路。因此,必须外接一个电阻器(即负载电阻器)来限制流过管子的电流,使它不超过最大允许值(一般为10~20mA),以免损坏输出管。输出电流较大时,管子的饱和压降也会随之增大,使用者应当特别注意,仅这个电压和你要控制的电路的截止电压(或逻辑“零”)是兼容的。

以与发光二极管的接口为例,对负载电阻器的选择作一估计。若在Io为20mA (霍尔电路输出管允许吸入的最大电流),发光二极管的正向压降V LED=1.4V,当电源电压V CC=12V时,所需的负载电阻器的阻值和这个阻值最接近的标准电阻为560Ω,因此,可取560Ω的电阻器作为负载电阻器。负载电阻器阻值根据负载电流的大小一般取500Ω~5KΩ.

霍尔管实物和原理图

当霍尔管靠近磁铁时其输出一个高电平,远离磁铁时跳变为低电平中间间隔时间很短,当输出低电平时就可以给74ls192一个脉冲,从而实现了计数器加一的功能。此模块能很好的模拟车轮的转动。

第四章设计结果及分析4.1仿真电路

4.2遇到问题

原来在电路中是使用霍尔管(或电机)来模拟车轮的转动并实现计费,用示波器检测霍尔管的输出波形,呈现出标准的方波。但是在实际电路中计数器却不能实现单一的计数,而用按键模拟的波形和霍尔管输出的波形很相似却可以实现单一的计数功能。所以我又安装了一个点触开关来模拟车轮的转动来计费。此外,在发挥部分考虑等车费用(按0.05元/每分钟计),我还用了了555和两个电容电阻来进行出租车的时间计时,使最后一个数码管12秒跳0.01元。但是经过几次试验后,在初始状态下出现05.01因此我又加了一个拨码开关和点触开关来进行复位。这样既方便复位,又方便老师和我检查电路。此外,我认为05.01产生的原因是因为电路在一开始开关打开的瞬间就产生一个脉冲了,或者是因为电容有一定充放电功能才会产生一个脉冲。但是具体什么原因

我还不敢确定,还请老师答疑和多多指教。

第五章总结

经过这么多天的努力终于实现了本设计的要求,通过理论和实践的结合让我更加深刻的知道了,理论和实际的差距,和动手操作的重要性,对各个芯片的功能和原理有了进一步的了解和掌握。虽然在实物制作过程中遇到了不少困难,但是这样更加锻炼了我。

在这次课程设计中,我在找到错误时,学会分析错误产生的原因,让我更好的了解到芯片每一个引脚所起的作用。此外,电路的排版和焊接也是需要思考改进和加强的,电路有时会因为焊锡丝的过多而发生短路,也会因为焊锡丝的过少而发生虚焊。这也为以后的电路设计积累了宝贵的经验。这次课程和设计让我学到了很多东西。总之,这次设计不光增强了我的动手能力,更让我学会了分析问题和解决问题的方法。

元器件清单:

74ls192 4个

74ls48 4个

7位共阴数码管 4个

Ne555 1个

560k电阻 2个

四位拨码开关 2个

点触开关 3个

10uf电容 1个

0.1uf电容 1个

六角带锁开关 2个

万用板 1个

霍尔管(或电机)——本实验用一个点触开关进行模拟

参考文献

[1] 康华光.电子技术基础[M].北京:高等教育出版社,2005.

[2] 钟明生.数字电子技术试验指导书[M].娄底:湖南人文科技学院,2009.

[3] 柳淳.电子制作技能与技巧[M].北京:中国电力出版社,2008.

[4] 马全喜.电子元器件与电子实习[M].北京:机械工业出版社,2007.

[5] 彭介华.电子技术课程设计指导[M].北京:高等教育出版社,1997.

[6] 谢自妹.电子线路设计—实验—测试[M].武汉:华中科技大学出版社,2000.

[7] 阎石.数字电子技术基础[M].北京:高等教育出版社,2006.

[8] 胡宴如.高频电子线路[M].北京:高等教育出版社,2009.

[9] 沈美明、温东婵.IBM汇编语言程序设计[M].北京:清华大学出版社,2000.

[10] 彭介华.电子技术课程设计指导[M].北京:高等教育出版社,1997.

答辩记录表

成绩评定表

学生姓名:学号:班级:

课程设计总结

模拟数字电路基础知识

第九章 数字电路基础知识 一、 填空题 1、 模拟信号是在时间上和数值上都是 变化 的信号。 2、 脉冲信号则是指极短时间内的 电信号。 3、 广义地凡是 规律变化的,带有突变特点的电信号均称脉冲。 4、 数字信号是指在时间和数值上都是 的信号,是脉冲信号的一种。 5、 常见的脉冲波形有,矩形波、 、三角波、 、阶梯波。 6、 一个脉冲的参数主要有 Vm 、tr 、 Tf 、T P 、T 等。 7、 数字电路研究的对象是电路的输出与输入之间的逻辑关系。 8、 电容器两端的电压不能突变,即外加电压突变瞬间,电容器相当于 。 9、 电容充放电结束时,流过电容的电流为0,电容相当于 。 10、 通常规定,RC 充放电,当t = 时,即认为充放电过程结束。 11、 RC 充放电过程的快慢取决于电路本身的 ,与其它因素无关。 12、 RC 充放电过程中,电压,电流均按 规律变化。 13、 理想二极管正向导通时,其端电压为0,相当于开关的 。 14、 在脉冲与数字电路中,三极管主要工作在 和 。 15、 三极管输出响应输入的变化需要一定的时间,时间越短,开关特性 。 16、 选择题 2 若一个逻辑函数由三个变量组成,则最小项共有( )个。 A 、3 B 、4 C 、8 4 下列各式中哪个是三变量A 、B 、C 的最小项( ) A 、A B C ++ B 、A BC + C 、ABC 5、模拟电路与脉冲电路的不同在于( )。 A 、模拟电路的晶体管多工作在开关状态,脉冲电路的晶体管多工作在放大状态。 B 、模拟电路的晶体管多工作在放大状态,脉冲电路的晶体管多工作在开关状态。 C 、模拟电路的晶体管多工作在截止状态,脉冲电路的晶体管多工作在饱和状态。 D 、模拟电路的晶体管多工作在饱和状态,脉冲电路的晶体管多工作在截止状态。 6、己知一实际矩形脉冲,则其脉冲上升时间( )。 A 、.从0到Vm 所需时间 B 、从0到2 2Vm 所需时间 C 、从0.1Vm 到0.9Vm 所需时间 D 、从0.1Vm 到 22Vm 所需时间 7、硅二极管钳位电压为( ) A 、0.5V B 、0.2V C 、0.7V D 、0.3V 8、二极管限幅电路的限幅电压取决于( )。 A 、二极管的接法 B 、输入的直流电源的电压 C 、负载电阻的大小 D 、上述三项 9、在二极管限幅电路中,决定是上限幅还是下限幅的是( ) A 、二极管的正、反接法 B 、输入的直流电源极性 C 、负载电阻的大小 D 、上述三项 10、下列逻辑代数定律中,和普通代数相似是( ) A 、否定律 B 、反定律 C 、重迭律 D 、分配律

数字电路与模拟电路的关系

读书报告 “模拟信号与系统”和“数字信号与系统”的区别 一.“模拟信号与系统”和“数字信号与系统”的定义 ⑴模拟信号与系统在数值上和时间上均是连续变化的信号称为模拟信号,即连续时间 信号。输入和输出都是模拟信号的系统称为模拟系统。如图所示: ⑵数字信号与系统在数值上或是时间上均是离散的信号称为数字信号或脉冲信号,数 字信号可以用一系列的数表示,而每一个数又是由有限个数码来表示的。输入和输 出都是数字信号的系统称为数字系统。如图所示: 二.“模拟信号与系统”和“数字信号与系统”的联系 在一组离散的时间下表示信号数值的函数称为离散时间信号。因为最常遇到的离散时间信号是模拟信号在时间上以均匀(有时也以非均匀)间隔的采样。而“离散时间” 与“数字”也经常用来说明同一信号。离散时间信号的一些理论也适用于数字信号。三.信号的处理

信号处理技术已经涉及到几乎所有工程技术领域,信号处理的目的就是对被观测到的信号进行分析、变换、综合、估计和识别等,使之容易为人们所利用。 因为模拟信号在任意时刻取值,而数字信号只在有限的时间点上取值,所以数字信号更适合于计算机处理,是数字信号处理研究的对象。通常,模拟信号处理由一些模拟元器件如晶体管、电容、电阻、电感实现,而数字信号处理(DSP )则是用数值计算的方法来实现,这里“处理”的实质是运算。如果系统增加了A/D (模/数)转换器和D/A (数/模)转换器,数字信号处理系统就可以处理模拟信号,模拟信号处理与系统就可以处理数字信号了。模拟信号的处理过程如图: 信号处理的特点 ⑴ 数字信号处理 优越性: ① 灵活性 当模拟信号的功能与性能发生变化时,必须重新进行系统设计,然后再进行装 配和调试。而数字信号处理则可灵活地通过修改系统中的软件来调整系统参数, 从而实现不同的信号处理任务。 ② 高精度、高稳定性和高性能指标 数字系统只有“0”和“1”两个信号,受温度和周围噪声的影响比模拟系统要 小得多。数字系统的计算精度可以随运算位数的增加而得到显著的改善,并且 可以通过特殊的数字信号处理算法来获得高性能指标。 ③ 可重复再生性好 数字系统本身就具有较好的可重复性,这一点在数字中具有模拟系统所不可比 拟的优势。迅速发展的各种的数字纠错编解码技术,能够在极为复杂的噪声环 境中,甚至在信号完全被噪声淹没情况下,正确识别和恢复原有的信号。 ④ 强大的非线性信号处理能力 借助于神经网络,目前盲信号处理和各种各样的自适应算法数字信号处理已经 具有极为强大的非线性信号处理能力,同时,这也是目前数字信号处理技术发 展的主流方向之一。 ⑤ 便于大规模集成 DSP 处理器体积小、功能强、功耗小、性能价格比高,从而得到迅速的发展和 广泛的应用。 ⑥ 对数字信号可以存储、运算,系统可获得高性能指标,且能够进行多维处理。 模拟系统完不成的任务,利用庞大的存储单元,存储数帧图像信号。实现多维 信号的处理。 不足:主要是其处理速度不够高,不能处理很高频率的信号;其次是算法复杂、运算量大的数字信号处理系统的硬件设计和结构比较复杂,价格比较昂贵。 ⑵ 模拟信号处理 优越性:

实用电子技术基础(模拟电路,数字电路)

如何看懂电路图--电源电路单元 一电路图通常有几十乃至几百个元器件,它们的连线纵横交叉,形式变化多端,初学者往往不知道该从什么地方开始,怎样才能读懂它。其实电子电路本身有很强的规律性,不管多复杂的电路,经过分析可以发现,它是由少数几个单元电路组成的。好象孩子们玩的积木,虽然只有十来种或二三十种块块,可是在孩子们手中却可以搭成几十乃至几百种平面图形或立体模型。同样道理,再复杂的电路,经过分析就可发现,它也是由少数几个单元电路组成的。因此初学者只要先熟悉常用的基本单元电路,再学会分析和分解电路的本领,看懂一般的电路图应该是不难的。 按单元电路的功能可以把它们分成若干类,每一类又有好多种,全部单元电路大概总有几百种。下面我们选最常用的基本单元电路来介绍。让我们从电源电路开始。 一、电源电路的功能和组成 每个电子设备都有一个供给能量的电源电路。电源电路有整流电源、逆变电源和变频器三种。常见的家用电器中多数要用到直流电源。直流电源的最简单的供电方法是用电池。但电池有成本高、体积大、需要不时更换(蓄电池则要经常充电)的缺点,因此最经济可靠而又方便的是使用整流电源。 电子电路中的电源一般是低压直流电,所以要想从220 伏市电变换成直流电,应该先把220 伏交流变成低压交流电,再用整流电路变成脉动的直流电,最后用滤波电路滤除脉动直流电中的交流成分后才能得到直流电。有的电子设备对电源的质量要求很高,所以有时还需要再增加一个稳压电路。因此整流电源的组成一般有四大部分,见图1 。其中变压电路其实就是一个铁芯变压器,需要介绍的只是后面三种单元电路。 二、整流电路 整流电路是利用半导体二极管的单向导电性能把交流电变成单向脉动直流电的电路。 (1 )半波整流 半波整流电路只需一个二极管,见图2 (a )。在交流电正半周时VD 导通,负半周时VD 截止,负载R 上得到的是脉动的直流电

数字电路和模拟电路的区别

什么是数字电路? 用数字信号完成对数字量进行算术运算和逻辑运算的电路称为数字电路。现代的数字电路由半导体工艺制成的若干数字集成器件构造而成。逻辑门是数字逻辑电路的基本单元。存储器是用来存储二值数据的数字电路。 数字电路的特点 1,电路结构简单,稳定可靠。数字电路只要能区分高电平和低电平即可,对元件的精度要求不高,因此有利于实现数字电路集成化。 2,数字信号在传递时采用高,低电平两个值,因此数字电路抗干扰能力强,不易受外界干扰。 3,数字电路不仅能完成数值运算,还可以进行逻辑运算和判断,因此数字电路又称为数字逻辑电路或数字电路与;=逻辑设计。4,数字电路中元件处于开关状态,功耗较少。 由于数字电路具有以上特点,故发展十分迅速,在计算机、数字通信、数字仪器及家用电器等技术领域中得到广泛的应用。 什么是模拟电路? 模拟电路是处理模拟信号的电路;数字电路是处理数字信号的电路。模拟信号是关于时间的函数,是一个连续变化的量。数字信号则是离散的量。举个简单的例子:要想从远方传过来一段由小变大的声音,用调幅、模拟信号进行传输(相应的应采用模拟电路),那么在传输过程中的信号的幅度就会越来越大,因为它是在用电信号的幅

度特性来模拟声音的强弱特性。但是如果采用数字信号传输,就要采用一种编码,每一级声音大小对应一种编码,在声音输入端,每采一次样,就将对应的编码传输出去。可见无论把声音分多少级,无论采样频率有多高,对于原始的声音来说,这种方式还是存在损失。不过,这种损失可以通过加高样频率来弥补,理论上采样频率大于原始信号的频率的两倍就可以完全还原了。 数字集成电路:主要是针对数字信号处理的模块。如;计算机里的2近制、8近制、10近制、16近制的数据进行处理的集成模块。数字集成电路的运行以开关状态经行运算,它的精度高适合复杂的计算。模拟集成电路:主要是针对模拟信号处理的模块。如;话筒里的声音信号,电视信号和VCD输出的图象信号、温度采集的模拟信号和其它模拟量的信号处理的集成模块。模拟集成电路工作在晶体管的三角放大区。(1)电路处理的是连续变化的模拟量电信号(即其幅值可以是任何值)。(2)信号的频范围往往从直流一直可以延伸到高频段。(3)模拟集成电路中的无器件种类多,除了数字集成电路中大量采用的NPN管及电阻外,还采用了PNP管,场效应晶体管,高精度电阻等。(4)除了应用于低电压电器中的电路处,大多数模拟集成电路的电源电压较高,输出级模拟集成电路的电源电压可达几十伏以上。(5)具有内繁外简的电路形式。充分发挥了集成电路的工艺特点和便于应用的特点 另外,数字电路和模拟电路的区别还有:

数字电路与模拟电路

常用各种集成电路简介,供新手学习 第一节三端稳压IC 电子产品中常见到的三端稳压集成电路有正电压输出的78××系列和负电压输出的79××系列。故名思义,三端IC是指这种稳压用的集成电路只有三条引脚输出,分别是输入端、接地端和输出端。它的样子象是普通的三极管,TO-220 的标准封装,也有9013样子的TO-92封装。 用78/79系列三端稳压IC来组成稳压电源所需的外围元件极少,电路内部还有过流、过热及调整管的保护电路,使用起来可靠、方便,而且价格便宜。该系列集成稳压IC型号中的78或79后面的数字代表该三端集成稳压电路的输出电压,如7806表示输出电压为正6V,7909表示输出电压为负9V。 78/79系列三端稳压IC有很多电子厂家生产,80年代就有了,通常前缀为生产厂家的代号,如TA7805是东芝的产品,AN7909是松下的产品。(点击这里,查看有关看前缀识别集成电路的知识) 有时在数字78或79后面还有一个M或L,如78M12或79L24,用来区别输出电流和封装形式等,其中78L调系列的最大输出电流为100mA, 78M系列最大输出电流为1A,78系列最大输出电流为1.5A。它的封装也有多种,详见图。塑料封装的稳压电路具有安装容易、价格低廉等优点,因此用得比较多。 79系列除了输出电压为负。引出脚排列不同以外,命名方法、外形等均与78系列的相同。 因为三端固定集成稳压电路的使用方便,电子制作中经常采用,可以用来改装分立元件的稳压电源,也经常用作电子设备的工作电源。电路图如图所示。 注意三端集成稳压电路的输入、输出和接地端绝不能接错,不然容易烧坏。一般三端集成稳压电路的最小输入、输出电压差约为2V,否则不能输出稳定的电压,一般应使电压差保持在4-5V,即经变压器变压,二极管整流,电容器滤波后的电压应比稳压值高一些。 在实际应用中,应在三端集成稳压电路上安装足够大的散热器(当然小功率的条件下不用)。当稳压管温度过高时,稳压性能将变差,甚至损坏。 当制作中需要一个能输出1.5A以上电流的稳压电源,通常采用几块三端稳压电路并联起来,使其最大输出电流为N个1.5A,但应用时需注意:并联使用的集

模拟电路与数字电路期末复习试卷

模拟电路试卷一 一.填空题 1.PN结未加外部电压时,扩散电流漂流电流,加正向电压时,扩散电流漂流电流,其耗尽层;加反向电压时,扩散电流漂流电流,其耗尽层。 2.三极管工作在饱和区时,发射结为,集电结为,工作在放大区时,发射结为,集电结为,此时,流过发射结的电流主要是,流过集电结的电流主要是。 3.场效应管属于控制器件。场效应管从结构上分成 和两大类型。 4.绝缘栅型场效应管又分为和,两者区别是。 5.若希望减小放大电路从信号源索取的电流,应采取反馈;若希望取得较强的反馈作用而信号源内阻又很大,应采用反馈;当负载变化时,若希望输出电流稳定。应采用反馈。 6.某负反馈放大电路的闭换放大倍数A f=100,当开环放大倍数A变化+10%时,A f的相对变化量在+0.5%以内,则这个放大电路的开环放大倍数A,反馈系数为。 二.选择题 1.温度升高后,在纯净的半导体中() A.自由电子和空穴数目都增多,且增量相同 B.空穴增多,自由电子数目不变 C.自由电子增多,空穴不变 D.自由电子和空穴数目都不变 2.如果PN结反向电压的数值增大(小于击穿电压),则() A.阻当层不变,反向电流基本不变 B.阻当层变厚,反向电流基本不变 C.阻当层变窄,反向电流增大 D.阻当层变厚,反向电流减小 3.某放大电路在负载开路时的输出电压为4V,接入3kΩ的负载电阻后输出电压降为3V,这说明放大电路的输出电阻为() A.10kΩ B.2kΩ C.1kΩ D.0.5kΩ 4.在放大电压信号时,通常希望放大电路的输入电阻和输出电阻分别为() A.输入电阻小,输出电阻大 B.输入电阻小,输出电阻小 C.输入电阻大,输出电阻小 D.输入电阻大,输出电阻大 5.场效应管主要优点() A.输出电阻小 B.输入电阻大 C.是电流控制 D.组成放大电路时电压放大倍数大 6.在负反馈放大电路中,当要求放大电路的输入阻抗大,输出阻抗小时,应选用的反馈类型()。

数字与模拟电路设计技巧

数字与模拟电路设计技巧 模拟与数字技术的融合 由于IC与LSI半导体本身的高速化,同时为了使机器达到正常动作的目的,因此技术上的跨越竞争越来越激烈。虽然构成系统的电路未必有clock设计,但是毫无疑问的是系统的可靠度是建立在电子组件的选用、封装技术、电路设计与成本,以及如何防止噪讯的产生与噪讯外漏等综合考量。机器小型化、高速化、多功能化使得低频/高频、大功率信号/小功率信号、高输出阻抗/低输出阻抗、大电流/小电流、模拟/数字电路,经常出现在同一个高封装密度电路板,设计者身处如此的环境必需面对前所未有的设计思维挑战,例如高稳定性电路与吵杂(noisy)性电路为邻时,如果未将噪讯入侵高稳定性电路的对策视为设计重点,事后反复的设计变更往往成为无解的梦魇。模拟电路与高速数字电路混合设计也是如此,假设微小模拟信号增幅后再将full scale 5V的模拟信号,利用10bit A/D转换器转换成数字信号,由于分割幅宽祇有4.9mV,因此要正确读取该电压level并非易事,结果造成10bit以上的A/D转换器面临无法顺利运作的窘境。另一典型实例是使用示波器量测某数字电路基板两点相隔10cm的ground电位,理论上ground电位应该是零,然而实际上却可观测到4.9mV数倍甚至数十倍的脉冲噪讯(pulse noise),如果该电位差是由模拟与数字混合电路的grand所造成的话,要测得4.9 mV的信号根本是不可能的事情,也就是说为了使模拟与数字混合电路顺利动作,必需在封装与电路设计有相对的对策,尤其是数字电路switching时,ground vance noise不会入侵analogue ground的防护对策,同时还需充分检讨各电路产生的电流回路(route)与电流大小,依此结果排除各种可能的干扰因素。以上介绍的实例都是设计模拟与数字混合电路时经常遇到的瓶颈,如果是设计12bit以上A/D转换器时,它的困难度会更加复杂。 虽然计算机计算速度很快,不过包含身边物理事象在内的输入数据都是模拟数据,因此必需透过计算机的A/D转换器,将模拟信号转换成为数字信息,不过模拟的输出信号level比数位信号低几个位数,一旦遇到外部噪讯干扰时,模拟信号会被 噪讯盖住,虽然模拟在恒时微小变化量上具有非常重要的意义,不过若被外部噪讯掩盖时就不具任何价值,尤其是温度、湿度、压力等模拟量是模拟信耗的基础,它对微弱的模拟电路具有决定性的影响。为配合数字机器高速化的趋势,今后对 高速模拟化技术的要求会越来越高。如图1所示随着数字高速化,数字信号也越来越近似模拟信号波形,为了忠实传送如此的信号必需使用模拟式的思维来往处理,也就是说高速化时代数字设计者必需同时需兼具模拟素养。

2020年7月全国模拟电路与数字电路自考试题及答案解析.docx

??????????????????????精品自学考料推荐?????????????????? 全国 2019 年 7 月高等教育自学考试 模拟电路与数字电路试题 课程代码: 02314 一、单项选择题(本大题共19 小题,每小题 1 分,共 19 分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1.图示电路中,U AB、 I AB分别为() A. -2V , -1A B. -2V , 1A C. 2V , 1A D. 0V , 0A 2.图示电路中,元件 A 为负载,则电流I 为() P A.U P B.U P C. ( U ) ( P) D.U 3.电路如图示,则a、 b 两点间的电位关系为() A.V a >V b B.V a-V b=-U 1+U 2 C.V a=V b D.V a-V b=U 1-U 2 4.图示电路中, A 点电位 V A为() A.-7V B.0V C.-6V D.14V 5.下列叙述正确的是() A.叠加原理适用于任何电路 B.线性电路中的电压、电流和功率都可以叠加 1

C.叠加原理只适用于线性电路中电流或电压的计算,不能用来计算功率 D.叠加原理只能用来计算线性电路中的电流 6.在纯电容交流电路中,以下关系式正确的是( U C A.X C=i U C C.-jX C=I 7.已知一交流电路的电压U =220 () A.纯电感电路 C.纯电容电路 8.反映硅稳压管稳压性能好环的技术参数是( A. 稳定电压 U Z C.最小稳定电流I Zmin ) C B U C =C D.U C=-jIX C 电流 I = 10该电路负载的性质为 B.阻容性电路 D.阻感性电路 ) B. 最大稳定电流I Zmax D. 动态电阻r z 9.一单管放大电路输入为正弦信号,输出波形如图所示,则该放大器产生了() A.交越失真 B.饱和失真 C.截止失真及饱和失真 D.截止失真 10.需要一个阻抗变换电路,要求输入电阻小,输出电阻大,应选下列哪种负反馈放大电路 () A. 电流并联 B. 电流串联 C.电压并联 D. 电压串联 11.图示的负反馈放大电路中,其级间反馈是下列哪种类型负反馈() A.电流并联 B.电压并联 C.电流串联 D.电压串联 12.在 RC 正弦波振荡器中起稳幅作用的元件,为负反馈回路中反馈电阻,其阻值与其中的 电流应具有的条件为() A. 阻值随电流增大而增大 B. 阻值始终稳定,不随电流而变 C.阻值随电流增大而减小 D. 无论阻值如何改变,电流始终稳定 13.在甲乙互补对称功放电路中,为了改善交越失真,应() 2

模拟电路与数字电路的区分

模拟电路与数字电路的区分 模拟电路与数字电路的区分 一、双极型晶体管模拟电路与双极型晶体管数字电路 双极型晶体管模拟电路中,集电极(C)与发射极(E)之间的电流大约为基极(B)与发射极(C)之间电流的数十倍到数百倍,而且该电流不可过大或过小,否则会引起输出信号的严重失真;其集电极电压的大小是一个介于电源电压与地电压(OV)中间的某一个数值。 而在双极型晶体管数字电路中,当基极(B)有信号电流流过时,即当基极(B)处于高电位时,或者按照数字电路中的术语讲,当输入信号为1时,集电极(C)与发射极(E)之间处于导通状态,流过的电流很大,集电极(C)电压等于发射极(E)电压,或者说集电极(C)电压等于地电压(OV),按照数字电路中的术语就是输出为0; 反过来,当基极(B)没有信号电流流过时,即当基极(B)处于低电位时,或者按照数字电路中的术语讲,当输入信号为O 时,集电极(C)与发射极(E)之间处于截止状态,几乎没有电流流过,集电极(C)电压等于电源电压,按照数字电路中的术语就是输出为1,集电极电压只会是OV 和电源电压两种状态中的一种 二、场效应晶体管(FET)构成的数字电路 为了降低数字集成电路的功耗,一般都利用场效应晶体管,将其制作成CMOS(complementarymetal oxide semiconductor,互补式金属氧化物半导体)集成电路。将双极型晶体管数字电路内的双极型晶体管,改换成场效应晶体管(Field Effect Transistor, FET) 后,构成的场效应晶体管数字电路。虽然当我们在场效应晶体管的栅极加上适当电压以后,其源极和漏极之间可以形成与该电压成正比的电流流动,该现象类似于在双极型晶体管电路中发射极和集电极之间会有与基极电流成正比的电流流动一样;但是场效应晶 体管在数字电路中,所利用的仅仅是源极和漏极之间导通与截止两种状态,而不是利用这种源极和漏极之间流动的与栅极电压成正比的电流。源极和漏极之间的导通状态,称为"开",用"1" 或者"ON" 表示;截止的状态,称为"关",用"0"或者"OFF"表示。 不过,在真实的场效应晶体管数字电路中,为了使输出信号更为稳定以及大幅度地降低功耗,采用了另外一个场效应晶体管取代双极型晶体管数字电路中漏极负载电阻的方法。在取代负载电阻所使用的场效应晶体管的栅极上,也施加信号电压,不过其信号电压的相位与原有的场效应晶体管栅极上所加的信号电压相位刚好相反。这时候,虽然当原有的场效应晶体管的输入为"1" 时,即处于导通状态时,输出仍然为"0"; 但是,由于取代负载电阻的场效应晶体管处于截止状态,原有的场效应晶体管中却几乎没有电流流通,也就是消耗的功率微乎其微。反之,当原有的场效应晶体管的输入为"0" 时,即处于截止状态时,输出仍然为"1"; 但是,由于这时候取代负载电阻的场效应晶体管处于导通状态,因而输出端的电压更接近于电源电压。换句话说,其输出端的"0"是更加彻底的"0" ,输出端的勺"是更加彻底的"1" ,因此输出信号更加稳定。正是由于这种低功耗电路的出现,才使得大规模集成电路和超大规模集成电路的制作成为可能。

数字电路与模拟电路的区别

数字电路与模拟电路的区别 学号: 姓名:

数字电路是处理逻辑电平信号的电路,它是用数字信号完成对数字量进行算术运算和逻辑运算的电路。从整体上看,数字电路分为组合逻辑电路和时序逻辑电路两大类。 数字电路是模拟电路的基础上发展起来的,数字电路是以模拟电路为基础的它们的基础就是电流和电压,但它们有着本质的区别。 在一个周期内模拟电路的电流和电压是持续不变的,而数字电路中它的电流和电压是脉动变化的。 模拟电路和数字电路它们同样是信号变化的载体,模拟电路在电路中对信号的放大和削减是通过元器件的放大特性来实现操作的,而数字电路是对信号的传输是通过开关特性来实现操作的。 在模拟电路中,电压、电流、频率,周期的变化是互相制约的,而数字电路中电路中电压、电流、频率、周期的变化是离散的。 模拟电路可以在大电流高电压下工作,而数字电路只是在小电压,小电流底功耗下工作,完成或产生稳定的控制信号。 摸拟电路是为数字电路供给电源而又完成执行机构的执行。 在模拟电路和数字电路中,信号的表达方式不同。对模拟信号能够执行的操作,例如放大、滤波、限幅等,都可以对数字信号进行操作。事实上,所有的数字电路从根本上来说都是模拟电路,其基本电学原理,都与模拟电路相同。互补金属氧化物半导体就是由两个模拟的金属氧化物场效应管构成的,其对称、互补的结构,使它恰好能处理高低数字逻辑电平。不过,数字电路的设计目标是用来处理数字信号,如果强行引入任意模拟信号而不进行额外处理,则可能造成量化噪声。 电子学发展史上第一个被发明出来并得到大规模生产的器件是模拟的。后来,随着微电子学的发展,数字技术的成本大大降低,加之计算机对于数字信号的要求,使得数字式的方法在人机交互等领域具有可行性和较高的性价比。 在模拟电路中,由于信号几乎完全将真实信号按比例表现为电压或电流的形式,造成模拟电路对于噪声的影响比数字电路更加敏感,信号的微小偏差都会表现为相当显著,造成信息损失。作为对比,数字电路只取决于高低电平,如果要造成信息传递的错误,那么信号的偏差必须至少达到高电平的一半左右(具体的大小根据不同的电路规格有所不同)。因此,对信息进行量化的数字电路对于噪声的抵御能力比模拟电路更强,只要偏差不大于某一规定值,信息就不会损失。在数字电路中,噪声在各个逻辑门的地方都可以得到消减。 有若干个因素会影响信号的精度,其中最主要的是原始信号中的噪声以及信号处理过程中混入的噪声。模拟信号的分辨率受到器件物理层面限度(例如散粒噪声)的制约。在数字电子中,可以采用增加信号的位数(例如8位分辨率的模拟数字转换器能够将其量程分为8段,其中每一段作为最小分度进行转换)来提高数字信号的分辨率,转换位数是模拟数字转换器的一项关键参数。模拟数字转换器将模拟信号转换为数字信号,这样原始信号就可以用二进制数来表示,方便数字电路进行处理。用到这种转换器的应用产品包括数字式的温度计以及录音机等数据采集设备。相反的,数字模拟转换器则被用来将数字信号还原为模拟信号,它可以读入一系列二进制信号,经过转换后以电压值等形式的模拟信号输出。数字模拟转换器在许多运算放大器增益控制系统中较为常见。 模拟电路的设计通常比数字电路更为困难,对设计人员的水平要求更高。这也是数字电路系统比模拟电路系统更加普及的原因之一。模拟电路通常需要更多的手工运算,其设计过程的自动化程度低于数字电路。然而,数字式电子设备要在真实物理世界中得到应用,就必须具有一个模拟的接口,因为自然界的大多数实际信号是模拟的。例如,所有数字式收音机的信号接收器,都具有一个模拟的预放大器来进行信号接收的第一步操作。

模拟电路与数字电路的区别辨析

模拟电路与数字电路的区别辨析 【摘要】随着科学技术的突飞猛进,电子电路的自身功能不断增强,系统规模不断扩大,应用领域不断拓展,与人类生产、生活的密切度不断提升。电子电路按照功能可以分为数字电路和模拟电路两大类,这两种电路有着诸多显著的区别,辨析清楚两者的区别对电子电路的改进、设计和研发有着十分重要的意义。 【关键词】模拟电路;数字电路;区别辨析 Abstract:With the rapid development of science and technology,electronic circuit’s function is more comprehensive and system scale becomes larger and larger,so it can be applied in wider fields and closer to human production and life.Electronic circuit can be divided into two major categories,digital circuit and analog circuit,according to their function.There are many notable differences between the two kinds of circuits.It is of extremely vital significance to distinguish the two clearly,so as to improve the design and optimization of electronic circuit. Key words:analog circuit;digital circuit;difference 随着科学技术的突飞猛进,电子电路的自身功能不断增强,晶体管的尺寸不断减小,系统规模不断扩大,应用领域不断拓展,与人类生产、生活的密切度不断提升。电子电路按照功能可以分为数字电路和模拟电路两大类。模拟电路是处理连续函数形式的模拟信号的电子电路。数字电路是用数字信号完成对数字量进行算术运算和逻辑运算的电路,又称数字逻辑电路(以“开”、“关”两种状态或者以高、低电平来对应“1”和“0”二进制数字量)。模拟电路和数字电路有着显著的区别。 1.信号变化的特点不同 模拟信号的大小是随着时间连续变化的,即模拟信号在时间和数值上是连续的,幅值可由无限个数值表示。而数字信号在时间和数值上是离散的,幅值表示被限制在有限个数值之内。因此,模拟电路更加关注电压、电流的具体值,而数字电路则更加关注电平的高低。 2.处理信号的手段不同 模拟电路和数字电路都是信号变化的载体,对模拟信号能够执行的操作,如滤波、放大、限幅等都可以对数字信号进行操作。 模拟电路对信号的处理主要是通过场效应管的放大特性来实现的,当然还包括电阻、电容、二极管、双极型晶体管等元器件的特性,最终利用一定的数学模型所组成的运算网络来实现。处理方式有测量电桥、信号放大、信号滤波、调制解调、信号变换和AD变换。而数字电路对信号的传输主要是通过场效应管的开

数字电路与模拟电路的共地处理

数字电路与模拟电路的共地处理 『技术交流』关于地线的接法 最近大家在电路设计中都遇到了一些衔接的问题。特别在数字模拟设计的过程中,因为电源处理的不好,烧了很多的片子。现在收集总结一些相关的东西,包含个人的一点经验以及和顾问请教得出的心得了。 1.地线的定义 什么是地线?大家在教科书上学的地线定义是:地线是作为电路电位基准点的等电位体。这个定义是不符合实际情况的。实际地线上的电位并不是恒定的。如果用仪表测量一下地线上各点之间的电位,会发现地线上各点的电位可能相差很大。正是这些电位差才造成了电路工作的异常。电路是一个等电位体的定义仅是人们对地线电位的期望。HENRY 给地线了一个更加符合实际的定义,他将地线定义为:信号流回源的低阻抗路径。这个定义中突出了地线中电流的流动。按照这个定义,很容易理解地线中电位差的产生原因。因为地线的阻抗总不会是零,当一个电流通过有限阻抗时,就会产生电压降。因此,我们应该将地线上的电位想象成象大海中的波浪一样,此起彼伏。 .地线的阻抗谈到地线的阻抗引起的地线上各点之间的电位差能够造成电路的误动作,许多人觉得不可思议:我们用欧姆表测量地线的电阻时,地线的电阻往往在毫欧姆级,电流流过这么小的电阻时怎么会产生这么大的电压降,导致电路工作的异常。要搞清这个问题,首先要区分开导线的电阻与阻抗两个不同的概念。电阻指的是在直流状态下导线对电流呈现的阻抗,而阻抗指的是交流状态下导线对电流的阻抗,这个阻抗主要是由导线的电感引起的。任何导线都有电感,当频率较高时,导线的阻抗远大于直流电阻,表1 给出的数据说明了这个问题。在实际电路中,造成电磁干扰的信号往往是脉冲信号,脉冲信号包含丰富的高频成分,因此会在地线上产生较大的电压。对于数字电路而言,电路的工作频率是很高的,因此地线阻抗对数字电路的影响是十分可观的。 3.由于地线阻抗的存在,当电流流过地线时,就会在地线上产生电压。当电流较大时,这个电压可以很大。例如附近有大功率用电器启动时,会在地线在中流过很强的电流。这个电流会在两个设备的连接电缆上产生电流。由于电路的不平衡性,每根导线上的电流不同,因此会产生差模电压,对电路造成影响。由于这种干扰是由电缆与地线构成的环路电流产生的,因此成为地环路干扰。地环路中的电流还可以由外界电磁场感应出来。 4.从地环路干扰的机理可知,只要减小地环路中的电流就能减小地环路干扰。如果能彻底消除地环路中的电流,则可以彻底解决 地环路干扰的问题。因此提出以下几种解决地环路干扰的方案。

经典数字电路和模拟电路面试题

经典数字电路和模拟电 路面试题 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

数字电路 1、同步电路和异步电路的区别是什么?(仕兰微电子) 2、什么是同步逻辑和异步逻辑?(汉王笔试) 同步逻辑是时钟之间有固定的因果关系。异步逻辑是各时钟之间没有固定的因果关系。 电路设计可分类为同步电路和非同步电路设计。同步电路利用时钟脉冲使其子系统同步运作,而非同步电路不使用时钟脉冲做同步,其子系统是使用特殊的“开始”和“完成”信号使之同步。由於非同步电路具有下列优点--无时钟歪斜问题、低电源消耗、平均效能而非最差效能、模组性、可组合和可复用性--因此近年来对非同步电路研究增加快速,论文发表数以倍增,而Intel Pentium 4处理器设计,也开始采用非同步电路设计。 异步电路主要是组合逻辑电路,用于产生地址译码器、FIFO或RAM的读写控制信号脉冲,其逻辑输出与任何时钟信号都没有关系,译码输出产生的毛刺通常是可以监控的。同步电路是由时序电路(寄存器和各种触发器)和组合逻辑电路构成的电路,其所有操作都是在严格的时钟控制下完成的。这些时序电路共享同一个时钟CLK,而所有的状态变化都是在时钟的上升沿(或下降沿)完成的。

3、什么是"线与"逻辑,要实现它,在硬件特性上有什么具体要求?(汉王笔试) 线与逻辑是两个输出信号相连可以实现与的功能。在硬件上,要用oc门来实现(漏极或者集电极开路),由于不用oc门可能使灌电流过大,而烧坏逻辑门,同时在输出端口应加一个上拉电阻。(线或则是下拉电阻) 4、什么是Setup 和Holdup时间?(汉王笔试) 5、setup和holdup时间,区别.(南山之桥) 6、解释setup time和hold time的定义和在时钟信号延迟时的变化。(未知) 7、解释setup和hold time violation,画图说明,并说明解决办法。(威盛上海笔试试题) Setup/hold time 是测试芯片对输入信号和时钟信号之间的时间要求。建立时间是指触发器的时钟信号上升沿到来以前,数据稳定不变的时间。输入信号应提前时钟上升沿(如上升沿有效)T时间到达芯片,这个T就是建立时间-Setup time.如不满足setup time,这个数据就不能被这一时钟打入触发器,只有在下一个时钟上升沿,数据才能被打入触发器。保持时间是指触发器的时钟信号上升沿到来以后,数据稳定不变的时间。如果hold time不够,数据同样不能被打入触发器。

模拟电路数字电路基础期末考试题

13秋机电班期末考试试卷 出题人:张晓生审核人:章辉军 姓名得分 一、选择题:(每空3分,共30分) 1,半导体稳压管的稳压性质是利用下列什么特性实现的()。 A、PN结的单向导电性 B、PN结的反向截止特性 C、PN结的正向导电特性 D、PN结的反向击穿特性。 2,为了使三极管可靠地截止,电路必须满足()。 A、发射结正偏 B、发射结反偏 C、发射结和集电结均反偏 D、发射结和集电结均正偏 3,硅二极管的起始导通电压为()。 A、0.2V B 0.3V C 0.5V D 0.7V 4,对于三极管的放大作用的实质,下列说法正确的是()。 A、三极管可把小能量放大成大能量 B、三要管把小电流放大成大电流 B、三极管可把小电压放大成大电压D、三极管用较小的电流控制较大的电流 5,某三极放大器。每级的电压放大倍数是AV,则总的电压放大倍数是()。 A、3A V B、A V/3 C 、A V D、A V3 6、稳压管的稳压区是其工作在()。 A.正向导通 B.反向截止 C.反向击穿 7、当晶体管工作在放大区时,发射结电压和集电结电压应为()。 A.前者反偏、后者也反偏 B.前者正偏、后者反偏 C.前者正偏、后者也正偏 8、在输入量不变的情况下,若引人反馈后——,则说明引入的反馈是负反馈()。 A.输入电阻增大 B.输出量增大 C.净输入量增大 D.净输入量减小 9、交流负反馈是指()。 A.阻容耦合放大电路中所引入的负反馈 B.只有放大交流信号时才有的负反馈 C.在交流通路中的负反馈 10、整流的目的是()。 A.将交流变为直流 B.将高频变为低频 C.将正弦波变为方波 二、填空题:(每空1分,共30分) 1,在N型半导体中,()为多数载流子,()为少数载流子。 2,二极管的整流电路一般有()和()。 3,晶体三极管的三种联接方式分别是(),()和 ()。 4,耦合电容的作用是隔()通()。 三、在括号内用“√”或“×”表明下列说法是否正确。(每空2分,共10分) 1、放大电路必须加上合适的直流电源才能正常工作;( ) 2、整流电路可将正弦电压变为脉动的直流电压。( ) 3、电路只要满足│AF│=1,就一定会产生正弦波振荡。( ) 4、负反馈放大电路不可能产生自激振荡。( ) 5、在N型半导体中如果掺人足够量的三价元素,可将其改型为P型半导体。( )

数字电路和模拟电路的区别

数字电路和模拟电路的区别

————————————————————————————————作者:————————————————————————————————日期: 2

什么是数字电路? 用数字信号完成对数字量进行算术运算和逻辑运算的电路称为数字电路。现代的数字电路由半导体工艺制成的若干数字集成器件构造而成。逻辑门是数字逻辑电路的基本单元。存储器是用来存储二值数据的数字电路。 数字电路的特点 1,电路结构简单,稳定可靠。数字电路只要能区分高电平和低电平即可,对元件的精度要求不高,因此有利于实现数字电路集成化。 2,数字信号在传递时采用高,低电平两个值,因此数字电路抗干扰能力强,不易受外界干扰。 3,数字电路不仅能完成数值运算,还可以进行逻辑运算和判断,因此数字电路又称为数字逻辑电路或数字电路与;=逻辑设计。4,数字电路中元件处于开关状态,功耗较少。 由于数字电路具有以上特点,故发展十分迅速,在计算机、数字通信、数字仪器及家用电器等技术领域中得到广泛的应用。 什么是模拟电路? 模拟电路是处理模拟信号的电路;数字电路是处理数字信号的电路。模拟信号是关于时间的函数,是一个连续变化的量。数字信号则是离散的量。举个简单的例子:要想从远方传过来一段由小变大的声音,用调幅、模拟信号进行传输(相应的应采用模拟电路),那么在传输过程中的信号的幅度就会越来越大,因为它是在用电信号的幅

度特性来模拟声音的强弱特性。但是如果采用数字信号传输,就要采用一种编码,每一级声音大小对应一种编码,在声音输入端,每采一次样,就将对应的编码传输出去。可见无论把声音分多少级,无论采样频率有多高,对于原始的声音来说,这种方式还是存在损失。不过,这种损失可以通过加高样频率来弥补,理论上采样频率大于原始信号的频率的两倍就可以完全还原了。 数字集成电路:主要是针对数字信号处理的模块。如;计算机里的2近制、8近制、10近制、16近制的数据进行处理的集成模块。数字集成电路的运行以开关状态经行运算,它的精度高适合复杂的计算。模拟集成电路:主要是针对模拟信号处理的模块。如;话筒里的声音信号,电视信号和VCD输出的图象信号、温度采集的模拟信号和其它模拟量的信号处理的集成模块。模拟集成电路工作在晶体管的三角放大区。(1)电路处理的是连续变化的模拟量电信号(即其幅值可以是任何值)。(2)信号的频范围往往从直流一直可以延伸到高频段。(3)模拟集成电路中的无器件种类多,除了数字集成电路中大量采用的NPN管及电阻外,还采用了PNP管,场效应晶体管,高精度电阻等。(4)除了应用于低电压电器中的电路处,大多数模拟集成电路的电源电压较高,输出级模拟集成电路的电源电压可达几十伏以上。(5)具有内繁外简的电路形式。充分发挥了集成电路的工艺特点和便于应用的特点 另外,数字电路和模拟电路的区别还有:

《模拟电子与数字电子技术》模拟试题(一)

《模拟电子与数字电子技术》模拟试题(一) 1.在图示电路中,已知u i=10sinωt V,U S=5V,二极管的正向压降可忽略不计,试画出输出电压u o的波形。(10分) 答: 根据二极管的单向导电性: 当u iU S时,二极管D截止,u o=u i 2、放大电路如图所示,已知三极管的U BE=0.7V,β=50,R B=377kΩ, R C=6kΩ,R L=3kΩ,V CC=12V。试计算: (1)用估算法计算电路的静态工作点(I B,I C,U CE); (2)画出小信号模型电路; (3)计算电压放大倍数A u; (4)计算输入电阻r i和输出电阻r o(20分) 解: (1)根据电路的直流通路,可估算电路的静态工作点: I B=(V CC-U BE)/R B=(12-0.7) / (377×103) A=30uA

I C=βI B=50×30uA=1.5mA U CE=V CC-R C I C=(12-6×1.5)V=3V (2)小信号模型电路为: (3)电压放大倍数: 因为: r be=300+(1+β)26 / I E I E≈I C 所以: r be=300+(1+50)26 / 1.5 ≈1.2kΩ A u=-β(R C∥R L)/ r be=-50×(6∥3 ) / 1.2 =-83.3 (4)输入电阻: r i = R B∥r be ≈rbe=1.2kΩ 输出电阻: r o=R C=6 kΩ 3、指出图示放大器中的反馈环节,并判别其反馈类型和反馈方式。(10分) 解:反馈环节为R F 负反馈 电流并联 4、图示运算放大器电路中,R1=25kΩ,R2=50kΩ,R F=100kΩ,已知u I1=1V,u I2=0.5V,求输出电压u O. (10分) 解: u o=-(R F/R1)×u I1-(R F/R2)×u I2 = -(100/25)×1-100/50×0.5=-5V

pcb数字电路和模拟电路布线

模拟电路与数字电路PCB设计的区别更新于2011-01-18 00:31:53 文章出处:华大九天冯小辉 PCB 布线数字模拟 本文就旁路电容、电源、地线设计、电压误差和由PCB布线引起的电磁干扰(EMI)等几个方面,讨论模拟和数字布线的基本相似之处及差别。 工程领域中的数字设计人员和数字电路板设计专家在不断增加,这反映了行业的发展趋势。尽管对数字设计的重视带来了电子产品的重大发展,但仍然存在,而且还会一直存在一部分与模拟或现实环境接口的电路设计。模拟和数字领域的布线策略有一些类似之处,但要获得更好的结果时,由于其布线策略不同,简单电路布线设计就不再是最优方案了。本文就旁路电容、电源、地线设计、电压误差和由PCB布线引起的电磁干扰(EMI)等几个方面,讨论模拟和数字布线的基本相似之处及差别。 模拟和数字布线策略的相似之处 旁路或去耦电容 在布线时,模拟器件和数字器件都需要这些类型的电容,都需要靠近其电源引脚连接一个电容,此电容值通常为0.1mF。系统供电电源侧需要另一类电容,通常此电容值大约为10mF。 这些电容的位置如图1所示。电容取值范围为推荐值的1/10至10倍之间。但引脚须较短,且要尽量靠近器件(对于0.1mF电容)或供电电源(对于10mF电容)。 在电路板上加旁路或去耦电容,以及这些电容在板上的位置,对于数字和模拟设计来说都属于常识。但有趣的是,其原因却有所不同。在模拟布线设计中,旁路电容通常用于旁路电源上的高频信号,如果不加旁路电容,这些高频信号可能通过电源引脚进入敏感的模拟芯片。一般来说,这些高频信号的频率超出模拟器件抑制高频信号的能力。如果在模拟电路中不使用旁路电容的话,就可能在信号路径上引入噪声,更严重的情况甚至会引起振动。

相关主题
文本预览