当前位置:文档之家› 锤击桩机和静压桩机的区别

锤击桩机和静压桩机的区别

锤击桩机和静压桩机的区别
锤击桩机和静压桩机的区别

锤击桩机和静压桩机的区别

锤击桩机和静压桩机是目前预制桩施工的主要打桩设备。但这两种设备从工作原理还有施工工艺上有很大的区别,现结合工程实际对静压桩锤击桩的不同特点进行分析:

柴油锤是利用燃油爆炸推动活塞往复运动而锤击打桩,活塞重量从几百公斤到数吨。用锤击沉桩宜重锤轻击。若重锤重击,则锤击功大部分被桩身吸收,桩不易打入,且桩头易被打碎。锤重与桩重宜有一定的比值,或控制锤击应力,以防桩被打坏。桩架是支持桩身和桩锤,沉桩过程中引导桩的方向,并使桩锤能沿着要求的方向冲击的打桩设备。

1.沉桩机理的不同

静压法施工是通过抱紧油缸将桩抱紧,以机械的自重和机身上的配重通过顶压油缸传递到桩身,集中受力后,再将桩压入地层标高中。

锤击桩是通过锤头内的锤芯压缩缸体内,当雾化的柴油和机油进行燃烧爆炸产生向下的作用力,再通过锤头下的桩帽等一系列缓冲将力和振动作用到桩身,逐步击入土层标高。

2.施工造成土体破坏程度的对比分析

静压桩沉桩过程中,桩尖进入土体后,原状土受到压缩变形以及初应力状态的破坏,使贴近桩周处土体结构完全破坏,随着贯入压力的增大,土体达到急剧破坏,粘性土土体在有水的作用下产生塑性流动,砂性土会产生挤密侧移和部分液化;

锤击桩沉桩时,土体在桩身的冲击力和震动的作用下,粘性土产生压缩变形,桩身逐步进入,砂性土在震动的作用下产生液化,抗剪力降低,在冲击力作用下进入土体;震动作用下对土作用面较大。

在粘性土施工中,两种施工方法均会产生对地表向上隆起效应,静压桩对土体的作用面较小,锤击桩在震动中对土体的作用面较大,因而在施工时,锤击桩所造成的土体隆起要大于静压桩。在砂性土施工中,由于静压桩主要采用挤密方法进入,理论上产生的隆起较大,而锤击桩产生砂性液化,土体内水流失后产生的隆起较小,甚至不会造成隆起效应。

工程实施过程中发现,静压桩在进入砂层面时,压力陡然上升,静压桩施工困难。但当两种机型在同一地点施工时,由于锤击桩施工造成浅层的粉土和砂层的液化,压力上升幅度明显降低,浅层的粉土液化甚至造成机身较重的静压桩机湿陷。

3.桩身部位,在施工过程中受力不同的分析

静压桩施工时,往往按照设计的极限承载力的倍左右配备荷载,最大荷载不能超出桩身的所能承担的应力。施压值随着入土深度的增加逐步增大。桩身某一点的受力等于施压值减去上部桩长(送桩过程中要加上送桩器)与土体的摩阻力,相同施压值的情况下,逐步减小。当桩端部点的力小于桩端的阻力时,桩身将无法下压,需采取增加施压值或减少桩身摩阻力的方法来解决。理论上,假定在相同施压值荷载情况下,下压过程中的桩,土层某一点所对应桩身点的受力相同。由于土层的变化,桩身受力相同的点的位置不同,总体来看在施工期间桩体受力,变化较为单一。

锤击桩,施工过程中,桩身某一点受力等于桩锤所施加的动能转化为冲击力减去该点以上部位在土体深度内的摩阻力。桩锤所能施加的能量与桩锤跳起的高度有关,锤跳起的高度不但与档位有关,而且与桩身在入土过程中所产生的瞬间抵抗力有关,只有当瞬间抵抗力充分时,桩锤的跳起高度才能达到极限。因

而在施工时桩身点的受力较为复杂,不会因为入土深度的增加而立即减小,但总的减少趋势与静压桩一致。

在砂性土中,由于受震动液化的影响,锤击桩施工过程中的桩身的摩阻力比静压桩会明显减少。假定在相同压力作用下,桩身某一点所形成的应力,锤击桩将高于静压桩,即锤击桩入土点的下压力大。因此在砂性土较厚工程及以标高控制的桩,往往采用锤击方法对施工更有利。嵌岩桩施工,考虑到桩尖部位的破坏力,一般只能采用锤击桩施工。

在工程施工中,由于24m以下的黄色粘性土中铁质结核在局部地方较为丰富,静压桩无法压至指定的标高,监理要求施工单位更换采用了锤击桩机施工,均能够施工到位,避免了由于桩身不到位所产生的质量隐患。

4.施工阶段对承载力初步判断方法不同

在静压桩施工时,往往采用入土的有效桩长和终压值进行控制,设计的桩长较短的工程,考虑到土体的恢复系数,终压值宜尽量达到设计取值的∽倍,并视土质及布桩情况考虑复压。

锤击桩施工时,一般采用入土的有效桩长和最后贯入度进行控制,因而在施工机械进场后,对不同的桩机均要按照设计标准进行必要的试打,记录不同机型进入不同深度和不同地层的贯入度指标,用锤标准一般采用固定的中档锤

锤击桩机和静压桩机的区别

锤击桩机和静压桩机的区别 锤击桩机和静压桩机是目前预制桩施工的主要打桩设备。但这两种设备从工作原理还有施工工艺上有很大的区别,现结合工程实际对静压桩锤击桩的不同特点进行分析: 柴油锤是利用燃油爆炸推动活塞往复运动而锤击打桩,活塞重量从几百公斤到数吨。用锤击沉桩宜重锤轻击。若重锤重击,则锤击功大部分被桩身吸收,桩不易打入,且桩头易被打碎。锤重与桩重宜有一定的比值,或控制锤击应力,以防桩被打坏。桩架是支持桩身和桩锤,沉桩过程中引导桩的方向,并使桩锤能沿着要求的方向冲击的打桩设备。 1.沉桩机理的不同 1.1静压法施工是通过抱紧油缸将桩抱紧,以机械的自重和机身上的配重通过顶压油缸传递到桩身,集中受力后,再将桩压入地层标高中。 1.2锤击桩是通过锤头内的锤芯压缩缸体内,当雾化的柴油和机油进行燃烧爆炸产生向下的作用力,再通过锤头下的桩帽等一系列缓冲将力和振动作用到桩身,逐步击入土层标高。 2.施工造成土体破坏程度的对比分析 2.1静压桩沉桩过程中,桩尖进入土体后,原状土受到压缩变形以及初应力状态的破坏,使贴近桩周处土体结构完全破坏,随着贯入压力的增大,土体达到急剧破坏,粘性土土体在有水的作用下产生塑性流动,砂性土会产生挤密侧移和部分液化; 2.2锤击桩沉桩时,土体在桩身的冲击力和震动的作用下,粘性土产生压缩变形,桩身逐步进入,砂性土在震动的作用下产生液化,抗剪力降低,在冲击力作用下进入土体;震动作用下对土作用面较大。 2.3在粘性土施工中,两种施工方法均会产生对地表向上隆起效应,静压桩对土体的作用面较小,锤击桩在震动中对土体的作用面较大,因而在施工时,锤击桩所造成的土体隆起要大于静压桩。在砂性土施工中,由于静压桩主要采用挤密方法进入,理论上产生的隆起较大,而锤击桩产生砂性液化,土体内水流失后产生的隆起较小,甚至不会造成隆起效应。 工程实施过程中发现,静压桩在进入砂层面时,压力陡然上升,静压桩施工困难。但当两种机型在同一地点施工时,由于锤击桩施工造成浅层的粉土和砂层的液化,压力上升幅度明显降低,浅层的粉土液化甚至造成机身较重的静压桩机湿陷。 3.桩身部位,在施工过程中受力不同的分析 3.1静压桩施工时,往往按照设计的极限承载力的1.5倍左右配备荷载,最大荷载不能超出桩身的所能承担的应力。施压值随着入土深度的增加逐步增大。桩身某一点的受力等于施压值减去上部桩长(送桩过程中要加上送桩器)与土体的摩阻力,相同施压值的情况下,逐步减小。当桩端部点的力小于桩端的阻力时,桩身将无法下压,需采取增加施压值或减少桩身摩阻力的方法来解决。理论上,假定在相同施压值荷载情况下,下压过程中的桩,土层某一点所对应桩身点的受力相同。由于土层的变化,桩身受力相同的点的位置不同,总体来看在施工期间桩体受力,变化较为单一。 3.2锤击桩,施工过程中,桩身某一点受力等于桩锤所施加的动能转化为冲击力减去该点以上部位在土体深度内的摩阻力。桩锤所能施加的能量与桩锤跳起的高度有关,锤跳起的高度不但与档位有关,而且与桩身在入土过程中所产生的瞬间抵抗力有关,只有当瞬间抵抗力充分时,桩锤的跳起高度才能达到极限。

锤击桩机和静压桩机的区别

锤击桩机和静压桩机的区 别 Final approval draft on November 22, 2020

锤击桩机和静压桩机的区别 锤击桩机和静压桩机是目前预制桩施工的主要打桩设备。但这两种设备从工作原理还有施工工艺上有很大的区别,现结合工程实际对静压桩锤击桩的不同特点进行分析: 柴油锤是利用燃油爆炸推动活塞往复运动而锤击打桩,活塞重量从几百公斤到数吨。用锤击沉桩宜重锤轻击。若重锤重击,则锤击功大部分被桩身吸收,桩不易打入,且桩头易被打碎。锤重与桩重宜有一定的比值,或控制锤击应力,以防桩被打坏。桩架是支持桩身和桩锤,沉桩过程中引导桩的方向,并使桩锤能沿着要求的方向冲击的打桩设备。 1.沉桩机理的不同 静压法施工是通过抱紧油缸将桩抱紧,以机械的自重和机身上的配重通过顶压油缸传递到桩身,集中受力后,再将桩压入地层标高中。 锤击桩是通过锤头内的锤芯压缩缸体内,当雾化的柴油和机油进行燃烧爆炸产生向下的作用力,再通过锤头下的桩帽等一系列缓冲将力和振动作用到桩身,逐步击入土层标高。 2.施工造成土体破坏程度的对比分析 静压桩沉桩过程中,桩尖进入土体后,原状土受到压缩变形以及初应力状态的破坏,使贴近桩周处土体结构完全破坏,随着贯入压力的增大,土体达到急剧破坏,粘性土土体在有水的作用下产生塑性流动,砂性土会产生挤密侧移和部分液化; 锤击桩沉桩时,土体在桩身的冲击力和震动的作用下,粘性土产生压缩变形,桩身逐步进入,砂性土在震动的作用下产生液化,抗剪力降低,在冲击力作用下进入土体;震动作用下对土作用面较大。 在粘性土施工中,两种施工方法均会产生对地表向上隆起效应,静压桩对土体的作用面较小,锤击桩在震动中对土体的作用面较大,因而在施工时,锤击桩所造成的土体隆起要大于静压桩。在砂性土施工中,由于静压桩主要采用挤密方法进入,理论上产生的隆起较大,而锤击桩产生砂性液化,土体内水流失后产生的隆起较小,甚至不会造成隆起效应。 工程实施过程中发现,静压桩在进入砂层面时,压力陡然上升,静压桩施工困难。但当两种机型在同一地点施工时,由于锤击桩施工造成浅层的粉土和砂层的液化,压力上升幅度明显降低,浅层的粉土液化甚至造成机身较重的静压桩机湿陷。 3.桩身部位,在施工过程中受力不同的分析 静压桩施工时,往往按照设计的极限承载力的倍左右配备荷载,最大荷载不能超出桩身的所能承担的应力。施压值随着入土深度的增加逐步增大。桩身某一点的受力等于施压值减去上部桩长(送桩过程中要加上送桩器)与土体的摩阻力,相同施压值的情况下,逐步减小。当桩端部点的力小于桩端的阻力时,桩身将无法下压,需采取增加施压值或减少桩身摩阻力的方法来解决。理论上,假定在相同施压值荷载情况下,下压过程中的桩,土层某一点所对应桩身点的受力相同。由于土层的变化,桩身受力相同的点的位置不同,总体来看在施工期间桩体受力,变化较为单一。 锤击桩,施工过程中,桩身某一点受力等于桩锤所施加的动能转化为冲击力减去该点以上部位在土体深度内的摩阻力。桩锤所能施加的能量与桩锤跳起的高度有关,锤跳起的高度不但与档位有关,而且与桩身在入土过程中所产生的瞬间抵抗力有关,只有当瞬间抵抗力充分时,桩锤的跳起高度才能达到极限。因

锤击桩与静压机比较

锤击桩与静压机比较 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

锤击桩和静压桩在同一工程中应用的对比分析 海门云起苑一期工程,位于海门市南海路南侧,汉江东侧,为3栋26-32层商业和住宅建筑及一层地下车库,建筑面积7万多平米,地下室基础埋深±以下5米,采用桩基和筏板基础,三栋高层均 采用先张法预应力管桩,规格:PHC600(110)AB―C80。设计为有效桩长42m,桩顶标高的相对标高为米,单桩承载力特征值为2850KN。本工程管桩施工采用了一台800吨位的静压桩基和一台10柴油锤击桩机进行施工。 地质条件:本工程场地属于长江中下游冲击平原,场地为空地,较平坦。自上而下土层结构如下表: 1#、2 #楼根采用锤击施工工艺,具体见下表:

经过一个月的施工,沉桩记录如下: 现结合工程实际对静压桩、锤击桩的不同特点进行分析: 1.沉桩机理的不同 静压法施工是通过抱紧油缸将桩抱紧,以机械的自重和机身上的配重通过顶压油缸传递到桩身集中受力后,再将桩压入地层标高中。 锤击桩是通过锤头内的锤芯压缩缸体内,当雾化的柴油和机油进行燃烧爆炸产生向下的作用力,再通过锤头下的桩帽等一系列缓冲将力和振动作用到桩身,逐步击入土层标高。 2.施工造成土体破坏程度的对比分析 静压桩沉桩过程中,桩尖进入土体后,原状土受到压缩变形以及初应力状态的破坏,使贴近桩周处土体结构完全破坏,随着贯入压力的增大,土体达到急剧破坏,粘性土土体在有水的作用下产生塑性流动,砂性土会产生挤密侧移和部分液化; 锤击桩沉桩时,土体在桩身的冲击力和震动的作用下,粘性土产生压缩变形,桩身逐步进入,砂性土在震动的作用下产生液化,抗剪力降低,在冲击力作用下进入土体;震动作用下对土作用面较大。 在粘性土施工中,两种施工方法均会产生对地表向上隆起效应,静压桩对土体的作用面较小,锤击桩在震动中对土体的作用面较大,因而在施工时,锤击桩所造成的土体隆起要大于静压桩。在砂性土施工中,由于静压桩主要采用挤密方法进入,理论上产生的隆起较大,而锤击桩产生砂性液化,土体内水流失后产生的隆起较小,甚至不会造成隆起效应。 工程实施过程中发现,静压桩在进入砂层面时,压力陡然上升,静压桩施工困难.但当两种机型在同一地点施工时,由于锤击桩施工造成浅层的粉土和砂层的液化,压力上升幅度明显降低,浅层的粉土液化甚至造成机身较重的静压桩机湿陷。 3.桩身部位,在施工过程中受力不同的分析 静压桩施工时,往往按照设计的极限承载力的倍左右配备荷载,最大荷载不能超出桩身的所能承担的应力。施压值随着入土深度的增加逐步增大。桩身某一点的受力等于施压值减去上部桩长(送桩过程中要加上送桩器)与土体的摩阻力,相同施压值的情况下,逐步减小。当桩端部点的力小于桩端的阻力时,桩身将无法下压,需采取增加施压值或减少桩身摩阻力的方法来解决。理论上,假定在相同施压值荷载情况下,下压过程中的桩,土层某一点所对应桩身点的受力相同。由于土层的变化,桩身受力相同的点的位置不同,总体来看在施工期间桩体受力,变化较为单一。 锤击桩,施工过程中, 桩身某一点受力等于桩锤所施加的动能转化为冲击力减去该点以上部位在土体深度内的摩阻力。桩锤所能施加的能量与桩锤跳起的高度有关,锤跳起的高度不但与档位有关,而且与桩身在入土过程中所产生的瞬间抵抗力有关,只有当瞬间抵抗力充分时,桩锤的跳起高度才能达到极限。因而在施工时桩身点的受力较为复杂,不会因为入土深度的增加而立即减小,但总的减少趋势与静压桩一致。

5、传统静压桩与新型液压锤击桩对比分析及选型11.12

传统静压桩与新型液压锤击桩对比分析及选型本项目位于佛山顺德区容桂街道马岗大道33号南方医科大学顺德校区。 总建筑面积为21657.92平方米,其中1号楼建筑面积8804.77平方米,建筑物高度为32米,地下一层、地上10层,框架结构宿舍楼;2号楼建筑面积8811.92平方米,地下一层、地上10层,框架结构宿舍楼;地下人防建筑面积为4041.23平方米。 本工程绝对标高3.600(广州城建高程)相当于相对标高的±0.00。本工程地基基础设计等级为乙级。基础采用“预应力高强混凝土管桩,本方案设计为“静压预应力管桩专项施工方案”。管桩安全等级为二级。本工程采用PHC500AB125型预应力高强砼管桩,桩径φ500,壁厚为125mm,单桩竖向承载力特征值为2200KN,有效桩长预计8~35m,桩尖持力层选在全/强风化花岗岩,桩尖进入持力层不小于1.0米。 根据现场周边环境、施工情况及施工图要求,本工程桩的施工方式,将采取两种方案来保证打桩顺利进行,方案1为传统静力压桩,方案2为新型液压锤击桩。 现对方案1与方案2的综合情况进行分析比较如下表: 综合上述分析,方案2相对于方案1施工现场风险、施工进度、安全与均有保证的优势,液压施工成桩质量基本保持一致,而方案2设备租金较高但运行使用成本较低,综合成本增加基本一致。 广州市大地建筑工程总公司 2019年11月12日

附件: 新型液压锤桩机施工使用说明书 新型液压锤桩机打桩是在环保意识日益增强的现代社会而产生的一种新式打桩机械。在国外已有十多年的使用经验,在国内使用目前还是起步阶段。国外引进使用的步履式15-1210型液压锤采用全液压驱动,主体分为液压动力站、主臂、锤身和步履式行走机构等结构组成;型号“15”代表可打单节15米长的桩;“12”代表锤芯行程最大达1.2米;“10”代表锤芯自重10吨。 新型液压打桩锤的基本原理: 新型液压锤也属于冲击式桩锤,按其结构和工作原理可分为单作用和双作用式两种。所谓单作用式是锤芯通过液压油提升到预定高度后快速释放锤芯以自由落体方式打击桩头;双作用式是锤芯通过液压油提升到预定高度后从液压系统获得加速度能量提高锤芯的下落速度而打击桩头。 步履式15-1210型液压锤桩机的特点: 1、采用步履式行走设计,行走平稳灵活,操作简单。无噪音振动,工人少,劳动强度低,对施工现场场地的地耐力要求低,每平米地耐力大于4吨就可正常施工,不陷机,泥泞场地、雨天行走不打滑。 2、液压锤采用远程调控操作,可自动或手动操作,方便操作人员在不同地点、角度观察桩身入土情况,可随时调整打桩速度和锤芯行程高低,以保证打入桩的质量。 3、液压锤打击频率高并可无级调节。锤芯打击频率从每分钟120次/200mm行程—60次/1200mm行程可任意调节。可以最大限度地保证冲击能量的充分发挥而又不损害桩身结构,对桩身入土的速度可以控制到最理想的范围,还可以按贯入阻力确定桩尖是否达到设计的预定持力层。 4、液压锤施工时的最大特点是无废气和油污危害,噪声和振动较小,可满足对环保和噪音要求日益严格的城市施工。 5、液压锤在打桩过程中,可以自动记录每根桩的每米锤击数和总锤击次

预应力管桩锤击与静压施工方案对比分析及选型

预应力管桩锤击与静压施工方案 对比分析及选型 桩基工程(主楼)于2006年9月29日下午3:00点进行Φ600管桩试桩,当管桩入土深度为8.1米时压桩力达到4200KN(设计单桩承载力特征值为2050K N),桩无法穿透地质勘察报告中第3层(粉土层) ,经现场建设、设计、勘察、监理、施工单位共同商定,增加配重至5000KN以上再试打,在增加配重后并于10月1日上午进行第二次试桩,当压桩力达到5000KN以上时,管桩入土深度为8.5米,桩仍无法穿透第3层;在对休闲馆Φ400管桩进行试压时,当压桩力达到2200KN以上时,管桩入土深度为6米,管桩爆裂。经上述五方主体于10月1日下午通过会议商定,将采取两种方案来保证打桩顺利进行,即方案(1):由静压法施工改为锤击法施工,强行穿透3层;方案(2):仍由静压法施工,先取土(取土12米左右),然后静压穿透3层。 现对方案(1)与方案(2)施工质量与成本进行比较: 1、质量比较 方案(1)锤击法施工质量影响: ①如要强行穿透3层粉土,Φ600管桩其锤击瞬间冲击力则需在6000KN~7 000KN甚至更大(已超过管桩自身承载力),施工时很有可能对桩身质量造成破坏。 ②由于3层粉土层较厚,采用锤击时贯入度相应会较小,锤击数相应会增多,易打烂桩头(锤击数不宜超过2500),对管桩要求较高(采用PHC型管桩)。 ③本工程桩顶设计标高最深有-7.25米左右,而实测场地标高约-0.30米,送桩深度约6.95米,也就是说送桩器至少达6.0米以上,这样很难保证桩顶完整性和桩身垂直度。

④锤击法施工不能直观反映压桩力。 方案(2)静压法施工,采用设备对3层粉土上部取土,然后采用静压桩机静压穿过穿透3层,对桩身质量影响不大。 2、成本测算比较 方案(1)锤击法施工相对于静压法施工增加成本为: ①打桩费用增加:大吨位锤击桩增加4.00元/米,即11750米×4元/米=4700 0元;小吨位锤击桩增加2元/米,即5124米×2元/米=10248元。 ②锤击法施工静载试验费用 主楼70元/吨×400吨×3枚=84000元 附房70元/吨×110吨×3枚=23100元 ③Ф500PC管桩改Ф500PHC管桩增加费用为10元/米,即5124米×10元/米=51240元 ④按常规打桩经验锤击桩施工桩长控制每枚桩约多配两米计(不利用灵活调配,节约材料),增加费用为2米×250元/米×168枚=84000元。 增加费用小计:299588元 方案(2)静压法施工相对于锤击法施工增加成本为: ①钻孔取土增加费用为400元/枚×630枚=252000元 ②采用桩架配重进行静压法施工静载试验费用 主楼6000元/枚×6枚=36000元。 小计:288000元 综合上述分析,方案(2)相对于方案(1)施工质量有保证,而施工成本增加基本一致。 工程建设有限公司 2006年10月2日

锤击桩与静压机比较(建筑助手)

锤击桩和静压桩在同一工程中应用的对比分析海门云起苑一期工程,位于海门市南海路南侧,汉江东侧,为3栋26-32层商业和住宅建筑及一层地下车库,建筑面积7万多平米,地下室基础埋深±0.00以下5米,采用桩基和筏板基础,三栋高层均采用先张法预应力管桩,规格:PHC600(110)AB―C80。设计为有效桩长42m,桩顶标高的相对标高为-5.85米,单桩承载力特征值为2850KN。本工程管桩施工采用了一台800吨位的静压桩基和一台10柴油锤击桩机进行施工。 地质条件:本工程场地属于长江中下游冲击平原,场地为空地,较平坦。自上而下土层结构如下表: 层数土质土层层底标高层底埋深厚度平均厚度标高平均埋深平均 1层填土、松散0.8-3.4 1.37 -0.66—2.12 1.32 0.8-3.4 1.37 2层粉质粘土、 软塑 0.4-3.1 1.50 -1.83—0.66 0.13 2.1-4.5 2.56 3层粉土、稍密- 中密 1.0-3.3 2.34 - 3.02—-1.59 -2.23 4.1- 5.6 4.92 4层粉砂夹粉 土、稍密- 中密 6.3-10.4 8.23 -12.01—-8.66 -10.46 11.1-14.7 13.15 5层粉土夹粉质 粘土、稍密 2.0-5.6 3.35 -15.03—-12.49 -13.81 15.1-17.7 16.5 6层粉砂夹粉 土、稍密- 中密 1.5-3.0 2.19 -17.01—-14.49 -16.00 17.1-19.8 18.69 7层粉质粘土夹 粉土、软塑 1.7-3.8 2.87 -20.21—-17.39 -18.87 20.00-22.9 21.56 8层淤泥质粉质 粘土、软塑- 流塑 2.0-19.1 7.35 -37.08—-21.64 -26.41 24.00-40.0 29.10 9层粉细砂中密 -密实该层未穿透该层未穿 透 该层未穿透该层未穿透 工,1#、2#楼根采用锤击施工工艺,具体见下表: 1#桩型桩长m 桩顶相对标高桩根数桩端持力层单桩承载力特 征值PHC-600(110)AB-C80 42 -5.650 139 9层细砂 层 2850KN PHC-600(110)AB-C80 42 -7.350 12 9层细砂层2850KN PHC-600(110)AB-C80 47 3.55 3 9层细砂层单桩抗压力加 载值5700KN

预应力管桩锤击与静压施工方案对比分析及选型

预应力管桩锤击与静压施工方案对比分析及选型 ******* 筹建办: *****桩基工程(主楼)于2006年9月29日下午3:00点进行①600管桩试桩,当管桩入土深度为8.1米时压桩力达到4200KN (设计单桩承载力特征值为2050 KN),桩无法穿透地质勘察报告中第3层(粉土层),经现场建设、设计、勘察、监理、施工单位共同商定,增加配重至5000KN 以上再试打,在增加配重后并于10月 1 日上午进行第二次试桩,当压桩力达到5000KN 以上时,管桩入土深度为8.5米,桩仍无法穿透第3层;在对休闲馆①40管桩进行试压时,当压桩力达到 2200KN 以上时,管桩入土深度为6 米,管桩爆裂。经上述五方主体于10 月1 日下午通过会议商定,将采取两种方案来保证打桩顺利进行,即方案(1): 由静压法施工改为锤击法施工,强行穿透 3 层;方案(2):仍由静压法施工,先取土(取土12米左右),然后静压穿透3层。 现对方案(1)与方案(2)施工质量与成本进行比较: 1、质量比较 方案( 1 )锤击法施工质量影响: ①如要强行穿透3层粉土,①600管桩其锤击瞬间冲击力则需在6000KN?7 000KN 甚至更大(已超过管桩自身承载力),施工时很有可能对桩身质量造成破坏。 ②由于 3 层粉土层较厚,采用锤击时贯入度相应会较小,锤击数相应会增多, 易打烂桩头(锤击数不宜超过2500),对管桩要求较高(采用PHC型管桩)。 ③本工程桩顶设计标高最深有-7.25米左右,而实测场地标高约-0.30米,送桩深度约 6.95米,也就是说送桩器至少达 6.0米以上,这样很难保证桩顶完整性

和桩身垂直度。 ④锤击法施工不能直观反映压桩力。 方案(2)静压法施工,采用设备对 3 层粉土上部取土,然后采用静压桩机静压穿过穿透 3 层,对桩身质量影响不大。 2、成本测算比较 方案(1)锤击法施工相对于静压法施工增加成本为: ①打桩费用增加:大吨位锤击桩增加 4.00元咪,即11750米>4元咪=4700 0元;小吨位锤击桩增加2元/米,即5124米>2元/米=10248元。 ②锤击法施工静载试验费用 主楼70元/吨>400吨>3枚=84000元 附房70元/吨>110吨>3枚=23100元 ③①500PC管桩改①500PHC管桩增加费用为10元/米,即卩5124米>0元/ 米=51240元 ④按常规打桩经验锤击桩施工桩长控制每枚桩约多配两米计(不利用灵活调配,节约材料),增加费用为2米>250元/米>168枚=84000元。 增加费用小计:299588元 方案(2)静压法施工相对于锤击法施工增加成本为: ①钻孔取土增加费用为400 元/枚>630枚=252000元 ②采用桩架配重进行静压法施工静载试验费用主楼6000元/枚>6枚=36000 元。 小计:288000元 综合上述分析,方案(2)相对于方案( 1 )施工质量有保证,而施工成本 增加基本一致。 ********* 工程建设有限公司

预应力管桩锤击和静压施工方法应注意的问题

预应力管桩锤击和静压施工方法应注意的问题 摘要:本文对混凝土预制桩的分类及预应力管桩基础在采用锤击法和静压法施工中应注意的问题给出了介绍。 关键字:混凝土预制桩分类锤击法沉桩断桩原因静压法沉桩 Abstract: in this paper, the classification of prefabricated concrete piles and prestressed pipe pile foundation in the hammer the method and the static pressure method should be paid attention to in the construction of the problems are given in the paper. Key word: prefabricated concrete pile classification hammering the piles of broken pile reason to pile static pressure method 前言 随着我国高层建筑,尤其是高层住宅的大量涌现,预应力管桩基础在一些地区运用愈来愈广泛。预制桩根据所用材料的不同,可分为混凝土预制桩、钢桩和木桩三类。混凝土预制桩常用的有混凝土实心方桩和预应力混凝土空心管桩;钢桩主要是钢管桩和H型钢桩两种;木桩目前只在一些层数较低、荷载较轻的建筑物地基或遇局部暗塘的情况,采用它进行处理地基,木桩在工程中已很少使用。 混凝土预制桩的横截面有方、圆等各种形状,预制桩可以在工厂生产,也可现场预制。现场预制桩的长度一般在25~30m以内,工厂预制桩的分节长度一般不超过12m,沉桩是在现场连接到所需长度[1]。混凝土预制桩的配筋主要受到起吊、运输、吊立和沉桩等各阶段的应力控制,因而用钢量较大。为减少混凝土预制桩的钢筋用量、提高桩的承载力和抗裂性,可采用预应力混凝土桩。混凝土预制桩能承受较大的荷载、坚固耐久、施工速度快,是广泛应用的桩型之一,但其施工对周围环境影响较大,这里主要介绍混凝土预制管桩。 预应力混凝土管桩采用先张法预应力工艺和离心成型法制作。经高压蒸气养护生产的为预应力高强度混凝土管桩(PHC桩),其桩身离心混凝土强度等级不低于C80;未经高压蒸气养护生产的为预应力混凝土管桩(PC桩),其桩身离心混凝土强度等级C60~C80。管桩按外径分为300mm、400mm、500mm、600mm 和700mm、800mm、1000mm、1200m、1300mm、1400mm等规格,建筑中的常用管桩规格为300mm、400mm、500mm和600mm。300mm管桩今后要逐步淘汰。管桩按混凝土有效预压应力值分为A型、AB型、B型和C型,其有效预压应力值分别为4MPa、6MPa、8MPa和10MPa。重要工程都要选用AB型或B型桩;静压用桩广东大部分选用厚壁的AB型桩。今后A型桩也逐步少用。

锤击桩与静压机比较

锤击桩和静压桩在同一工程中应用的对比分析 海门云起苑一期工程,位于海门市南海路南侧,汉江东侧,为3栋26-32层商业和住宅建筑及一层 地下车库,建筑面积7万多平米,地下室基础埋深土0.00以下5米,采用桩基和筏板基础,三栋高层均采用先张法预应力管桩,规格:PHC600 (110)AB ―C80。设计为有效桩长42m,桩顶标高的相对标高为-5.85米,单桩承载力特征值为2850KN。本工程管桩施工采用了一台800吨位的静压桩基和一台10 柴油锤击桩机进行施工。 地质条件:本工程场地属于长江中下游冲击平原,场地为空地,较平坦。自上而下土层结构如下表:

现结合工程实际对静压桩、锤击桩的不同特点进行分析: 1. 沉桩机理的不同 1.1静压法施工是通过抱紧油缸将桩抱紧,以机械的自重和机身上的配重通过顶压油缸传递到桩身集中受力 后,再将桩压入地层标高中。 1.2锤击桩是通过锤头内的锤芯压缩缸体内,当雾化的柴油和机油进行燃烧爆炸产生向下的作用力,再通过锤 头下的桩帽等一系列缓冲将力和振动作用到桩身,逐步击入土层标高。 2. 施工造成土体破坏程度的对比分析 2.1静压桩沉桩过程中,桩尖进入土体后,原状土受到压缩变形以及初应力状态的破坏,使贴近桩周处土体 结构完全破坏,随着贯入压力的增大,土体达到急剧破坏,粘性土土体在有水的作用下产生塑性流动,砂性土会产生挤密侧移和部分液化; 2.2锤击桩沉桩时,土体在桩身的冲击力和震动的作用下,粘性土产生压缩变形,桩身逐步进入,砂性土在 震动的作用下产生液化,抗剪力降低,在冲击力作用下进入土体;震动作用下对土作用面较大。 2.3在粘性土施工中,两种施工方法均会产生对地表向上隆起效应,静压桩对土体的作用面较小,锤击桩在 震动中对土体的作用面较大,因而在施工时,锤击桩所造成的土体隆起要大于静压桩。在砂性土施工中, 由于静压桩主要采用挤密方法进入,理论上产生的隆起较大,而锤击桩产生砂性液化,土体内水流失后产生的隆起较小,甚至不会造成隆起效应。 工程实施过程中发现,静压桩在进入砂层面时,压力陡然上升,静压桩施工困难.但当两种机型在同一地点施工时,由于锤击桩施工造成浅层的粉土和砂层的液化,压力上升幅度明显降低,浅层的粉土液化甚至造 成机身较重的静压桩机湿陷。 3. 桩身部位,在施工过程中受力不同的分析 3.1静压桩施工时,往往按照设计的极限承载力的 1.5倍左右配备荷载,最大荷载不能超岀桩身的所能承担 的应力。施压值随着入土深度的增加逐步增大。桩身某一点的受力等于施压值减去上部桩长(送桩过程中要加上送桩器)与土体的摩阻力,相同施压值的情况下,逐步减小。当桩端部点的力小于桩端的阻力时,桩身将无法下压,需采取增加施压值或减少桩身摩阻力的方法来解决。理论上,假定在相同施压值荷载情况下, 下压过程中的桩,土层某一点所对应桩身点的受力相同。由于土层的变化,桩身受力相同的点的位置不同,总

锤击桩与静压机比较

锤击桩与静压桩在同一工程中应用得对比分析海门云起苑一期工程,位于海门市南海路南侧,汉江东侧,为3栋26—32层商业与住宅建筑及一层地下车库,建筑面积7万多平米,地下室基础埋深±0。00以下5米,采用桩基与筏板基础,三栋高层均采用先张法预应力管桩,规格:PHC600(110)AB―C80。设计为有效桩长42m,桩顶标高得相对标高为-5。85米,单桩承载力特征值为2850KN。本工程管桩施工采用了一台800吨位得静压桩基与一台10柴油锤击桩机进行施工。 地质条件:本工程场地属于长江中下游冲击平原,场地为空地,较平坦、自上而下土层结构如下表: 1#、2#楼根采用锤击施工工艺,具体见下表:

经过一个月得施工,沉桩记录如下: 现结合工程实际对静压桩、锤击桩得不同特点进行分析: 1、沉桩机理得不同 1.1静压法施工就是通过抱紧油缸将桩抱紧,以机械得自重与机身上得配重通过顶压油缸传递到桩身集中受力后,再将桩压入地层标高中。 1。2锤击桩就是通过锤头内得锤芯压缩缸体内,当雾化得柴油与机油进行燃烧爆炸产生向下得作用力,再通过锤头下得桩帽等一系列缓冲将力与振动作用到桩身,逐步击入土层标高。 2。施工造成土体破坏程度得对比分析 2。1静压桩沉桩过程中,桩尖进入土体后,原状土受到压缩变形以及初应力状态得破坏,使贴近桩周处土体结构完全破坏,随着贯入压力得增大,土体达到急剧破坏,粘性土土体在有水得作用下产生塑性流动,砂性土会产生挤密侧移与部分液化; 2、2锤击桩沉桩时,土体在桩身得冲击力与震动得作用下,粘性土产生压缩变形,桩身逐步进入,砂性土在震动得作用下产生液化,抗剪力降低,在冲击力作用下进入土体;震动作用下对土作用面较大。 2、3在粘性土施工中,两种施工方法均会产生对地表向上隆起效应,静压桩对土体得作用面较小,锤击桩在震动中对土体得作用面较大,因而在施工时,锤击桩所造成得土体隆起要大于静压桩。在砂性土施工中,由于静压桩主要采用挤密方法进入,理论上产生得隆起较大,而锤击桩产生砂性液化,土体内水流失后产生得隆起较小,甚至不会造成隆起效应。 工程实施过程中发现,静压桩在进入砂层面时,压力陡然上升,静压桩施工困难。但当两种机型在同一地点施工时,由于锤击桩施工造成浅层得粉土与砂层得液化,压力上升幅度明显降低,浅层得粉土液化甚至造成机身较重得静压桩机湿陷。 3、桩身部位,在施工过程中受力不同得分析 3.1静压桩施工时,往往按照设计得极限承载力得1。5倍左右配备荷载,最大荷载不能超出桩身得所能承担得应力。施压值随着入土深度得增加逐步增大。桩身某一点得受力等于施压值减去上部桩长(送桩过程中要加上送桩器)与土体得摩阻力,相同施压值得情况下,逐步减小。当桩端部点得力小于桩端得阻力时,桩身将无法下压,需采取增加施压值或减少桩身摩阻力得方法来解决。理论上,假定在相同施压值荷载情况下,下压过程中得桩,

锤击桩与静压桩

1.沉桩机理的不同 1.1静压法施工是通过抱紧油缸将桩抱紧,以机械的自重和机身上的配重通过顶压油缸传递到桩身,集中受力后,再将桩压入地层标高中。 1.2锤击桩是通过锤头内的锤芯压缩缸体内,当雾化的柴油和机油进行燃烧爆炸产生向下的作用力,再通过锤头下的桩帽等一系列缓冲将力和振动作用到桩身,逐步击入土层标高。 2.施工造成土体破坏程度的对比分析 2.1静压桩沉桩过程中,桩尖进入土体后,原状土受到压缩变形以及初应力状态的破坏,使贴近桩周处土体结构完全破坏,随着贯入压力的增大,土体达到急剧破坏,粘性土土体在有水的作用下产生塑性流动,砂性土会产生挤密侧移和部分液化; 2.2锤击桩沉桩时,土体在桩身的冲击力和震动的作用下,粘性土产生压缩变形,桩身逐步进入,砂性土在震动的作用下产生液化,抗剪力降低,在冲击力作用下进入土体;震动作用下对土作用面较大。 2.3在粘性土施工中,两种施工方法均会产生对地表向上隆起效应,静压桩对土体的作用面较小,锤击桩在震动中对土体的作用面较大,因而在施工时,锤击桩所造成的土体隆起要大于静压桩。在砂性土施工中,由于静压桩主要采用挤密方法进入,理论上产生的隆起较大,而锤击桩产生砂性液化,土体内水流失后产生的隆起较小,甚至不会造成隆起效应。 工程实施过程中发现,静压桩在进入砂层面时,压力陡然上升,静压桩施工困难。但当两种机型在同一地点施工时,由于锤击桩施工造成浅层的粉土和砂层的液化,压力上升幅度明显降低,浅层的粉土液化甚至造成机身较重的静压桩机湿陷。 3.桩身部位,在施工过程中受力不同的分析 3.1静压桩施工时,往往按照设计的极限承载力的1.5倍左右配备荷载,最大荷载不能超出桩身的所能承担的应力。施压值随着入土深度的增加逐步增大。桩身某一点的受力等于施压值减去上部桩长(送桩过程中要加上送桩器)与土体的摩阻力,相同施压值的情况下,逐步减小。当桩端部点的力小于桩端的阻力时,桩身将无法下压,需采取增加施压值或减少桩身摩阻力的方法来解决。理论上,假定在相同施压值荷载情况下,下压过程中的桩,土层某一点所对应桩身点的受力相同。由于土层的变化,桩身受力相同的点的位置不同,总体来看在施工期间桩体受力,变化较为单一。 3.2锤击桩,施工过程中,桩身某一点受力等于桩锤所施加的动能转化为冲击力减去该点以上部位在土体深度内的摩阻力。桩锤所能施加的能量与桩锤跳起的高度有关,锤跳起的高度不但与档位有关,而且与桩身在入土过程中所产生的瞬间抵抗力有关,只有当瞬间抵抗力充分时,桩锤的跳起高度才能达到极限。因而在施工时桩身点的受力较为复杂,不会因为入土深度的增加而立即减小,但总的减少趋势与静压桩一致。 3.3在砂性土中,由于受震动液化的影响,锤击桩施工过程中的桩身的摩阻力比静压桩会明显减少。假定在相同压力作用下,桩身某一点所形成的应力,锤击桩将高于静压桩,即锤击桩入土点的下压力大。因此在砂性土较厚工程及以标高控制的桩,往往采用锤击方法对施工更有利。嵌岩桩施工,考虑到桩尖部位的破坏力,一般只能采用锤击桩施工。 在工程施工中,由于24m以下的黄色粘性土中铁质结核在局部地方较为丰富,静压桩无法压至指定的标高,监理要求施工单位更换采用了锤击桩机施工,均能够施工到位,避免了由于桩身不到位所产生的质量隐患。 4.施工阶段对承载力初步判断方法不同 4.1在静压桩施工时,往往采用入土的有效桩长和终压值进行控制,设计的桩长较短的工程,考虑到土体的恢复系数,终压值宜尽量达到设计取值的1.5∽1.7倍,并视土质及布桩情况考虑复压。 4.2锤击桩施工时,一般采用入土的有效桩长和最后贯入度进行控制,因而在施工机械进场后,对不同的桩机均要按

锤击桩与静压机比较

锤击桩与静压机比较 Final approval draft on November 22, 2020

锤击桩和静压桩在同一工程中应用的对比分析 海门云起苑一期工程,位于海门市南海路南侧,汉江东侧,为3栋26-32层商业和住宅建筑及一层地下车库,建筑面积7万多平米,地下室基础埋深±以下5米,采用桩基和筏板基础,三栋高层均 采用先张法预应力管桩,规格:PHC600(110)AB―C80。设计为有效桩长42m,桩顶标高的相对标高为米,单桩承载力特征值为2850KN。本工程管桩施工采用了一台800吨位的静压桩基和一台10柴油锤击桩机进行施工。 地质条件:本工程场地属于长江中下游冲击平原,场地为空地,较平坦。自上而下土层结构如下表: #、2#楼根采用锤击施工工艺,具体见下表:

经过一个月的施工,沉桩记录如下: 现结合工程实际对静压桩、锤击桩的不同特点进行分析: 1.沉桩机理的不同 静压法施工是通过抱紧油缸将桩抱紧,以机械的自重和机身上的配重通过顶压油缸传递到桩身集中受力后,再将桩压入地层标高中。 锤击桩是通过锤头内的锤芯压缩缸体内,当雾化的柴油和机油进行燃烧爆炸产生向下的作用力,再通过锤头下的桩帽等一系列缓冲将力和振动作用到桩身,逐步击入土层标高。 2.施工造成土体破坏程度的对比分析 静压桩沉桩过程中,桩尖进入土体后,原状土受到压缩变形以及初应力状态的破坏,使贴近桩周处土体结构完全破坏,随着贯入压力的增大,土体达到急剧破坏,粘性土土体在有水的作用下产生塑性流动,砂性土会产生挤密侧移和部分液化; 锤击桩沉桩时,土体在桩身的冲击力和震动的作用下,粘性土产生压缩变形,桩身逐步进入,砂性土在震动的作用下产生液化,抗剪力降低,在冲击力作用下进入土体;震动作用下对土作用面较大。 在粘性土施工中,两种施工方法均会产生对地表向上隆起效应,静压桩对土体的作用面较小,锤击桩在震动中对土体的作用面较大,因而在施工时,锤击桩所造成的土体隆起要大于静压桩。在砂性土施工中,由于静压桩主要采用挤密方法进入,理论上产生的隆起较大,而锤击桩产生砂性液化,土体内水流失后产生的隆起较小,甚至不会造成隆起效应。 工程实施过程中发现,静压桩在进入砂层面时,压力陡然上升,静压桩施工困难.但当两种机型在同一地点施工时,由于锤击桩施工造成浅层的粉土和砂层的液化,压力上升幅度明显降低,浅层的粉土液化甚至造成机身较重的静压桩机湿陷。 3.桩身部位,在施工过程中受力不同的分析 静压桩施工时,往往按照设计的极限承载力的倍左右配备荷载,最大荷载不能超出桩身的所能承担的应力。施压值随着入土深度的增加逐步增大。桩身某一点的受力等于施压值减去上部桩长(送桩过程中要加上送桩器)与土体的摩阻力,相同施压值的情况下,逐步减小。当桩端部点的力小于桩端的阻力时,桩身将无法下压,需采取增加施压值或减少桩身摩阻力的方法来解决。理论上,假定在相同施压值荷载情况下,下压过程中的桩,土层某一点所对应桩身点的受力相同。由于土层的变化,桩身受力相同的点的位置不同,总体来看在施工期间桩体受力,变化较为单一。 锤击桩,施工过程中, 桩身某一点受力等于桩锤所施加的动能转化为冲击力减去该点以上部位在土体深度内的摩阻力。桩锤所能施加的能量与桩锤跳起的高度有关,锤跳起的高度不但与档位有关,而且与桩身在入土过程中所产生的瞬间抵抗力有关,只有当瞬间抵抗力充分时,桩锤的跳起高度才能达到极限。因而在施工时桩身点的受力较为复杂,不会因为入土深度的增加而立即减小,但总的减少趋势与静压桩一致。

相关主题
文本预览
相关文档 最新文档