当前位置:文档之家› 果胶酶活性的检测

果胶酶活性的检测

果胶酶活性的检测
果胶酶活性的检测

果胶酶活性的检测

目的

本检测方法是用来确定本公司果胶酶的催化活性。本方法适用于各种固体和液体果胶酶制剂。

说明

本方法适合于果胶酶的质量分析和质量控制领域。但不是本公司产品及其它公司产品的绝对活力的预测,而各种酶制剂的最终的酶活力在良好的实验操作下仍可发挥出更好的催化活力。

原理

果胶物质主要存在于植物初生壁和细胞中间,果胶物质是细胞壁的基质多糖。果胶包括两种酸性多糖(聚半乳糖醛酸、聚鼠李半乳糖醛酸)和三种中性多糖(阿拉伯聚糖、半乳聚糖、阿拉伯半乳聚糖)。果胶酶本质上是聚半乳糖醛酸水解酶,果胶酶水解果胶主要生成β-半乳糖醛酸,可用次碘酸钠法进行半乳醛酸的定量,从而测定果胶酶活力。果胶酶活力单位定义

1g(或1ml液体酶)酶粉,于50.0℃、pH3.5条件下,每分钟催化果胶水解生成1微克半乳糖醛酸的酶量为一个活力单位。

1. 试剂和仪器

*本标准所使用所有的试剂若无任何说明,均为分析纯

1.1 醋酸 1.2 碘 1.3 碘花钾 1.4 浓硫酸

1.5 果胶(sigma公司) 1.6 硫代硫酸钠 1.7 碳酸钠 1.8 可溶性淀粉

1.9 水浴锅 1.10 碘量瓶

2. 试剂的制备

2.1 pH

3.5的酸水

用醋酸将蒸馏水调至3.5

2.2 1%果胶溶液:

准确称取分析纯果胶1g,用酸水溶解煮沸,冷却后过滤,定至100ml。

2.2 0.1N碘液:

准确称取碘化钾5g,用蒸馏水溶解后,加入2.54g碘,溶解后定容至100ml。

2.3 0.025mol/L硫代硫酸钠:

准确称取6.2g硫代硫酸钠,加蒸馏水后定容至1L

2.4 0.5%可溶性淀粉指示剂:

准确称取可溶性淀粉0.5g放入沸水中消煮至透明。

2.5 1M碳酸钠溶液:

准确称取10.6g碳酸钠,定容于100ml的水中

2.6 2N硫酸:

吸10ml的浓硫酸倒入170ml的水中

2.7 酶样的制备

准确称取1.000g固体酶或移取1ml液体酶样,定容至100ml,于50℃水浴浸取1小时,过滤,滤液为供试酶液。则该酶已经稀释100倍。

3. 程序

3.1 取1%果胶酶10ml加入5ml酶液和5ml蒸馏水(PH3.5),在50℃水浴中保温反应1小时。

3.2 取出后加热煮沸2~3min,冷却后,补水至20ml。

3.3 取5ml反应液于100ml碘量瓶中,加1M碳酸钠溶液1ml,0.1N碘液5ml,摇匀,具塞,于室温暗处下放置20min。

3.4 取出后加2N硫酸2ml,立即用0.05N硫代硫酸钠溶液滴定至浅黄色,加

1ml0.5%可溶性淀粉溶液,继续滴定至蓝色消失为止。

3.5 空白试验以煮沸失活的酶液或蒸馏水代替酶液进行滴定。

3.6 每个酶样最少做两个平行样。

4. 计算

4.1 将测得的各平行样求OD值的均值。

4.2 计算酶的活性单位依据以下公式

酶的活力= U/g(ml) 式中:

A:样品滴定所消耗硫代硫酸钠的毫升数。

B:空白滴定所消耗硫代硫酸钠的毫升数。

N:硫代硫酸钠摩尔浓度。

0.5:1当量硫代硫酸钠相当于0.5当量半乳糖醛酸。

20:反应液总体积

51:酶液体积以1ml计

52:吸取反应液

n:稀释倍数

W:酶粉重量g或酶液体积ml

SOD酶活性测定方法

SOD酶活性测定 所需药品: (1)0.1mol/l pH7.8的磷酸钠缓冲液: A液:0.1mol/l磷酸氢二钠液 B液:0.1mol/l磷酸二氢钠液 1毫升B+10.76毫升A (2)0.026mol/l蛋氨酸液(Met):现用现配 称取0.3879克蛋氨酸,用1号液定容至100毫升。 (3)75*10-5mol/l氯化硝基四氮唑蓝(NBT)液:现用现配 称取0.1533克NBT,先用少量蒸馏水溶解,然后定容至250毫升。 (4)1umol/lEDTA-2钠和2*10-5mol/l核黄素混合液 (5)0.05mol/l pH7.8的磷酸钠缓冲液 (6)石英砂 实验步骤: 1.酶液制备:称取0.5克鲜叶,放入研钵中,加入3毫升5号液和少量石英砂,于冰浴中研成匀浆。然后用5号液定容至8毫升,于0~4℃、13000g时离心15分钟,上清液即为酶提取液。酶液可在低于0℃下的环境中保存。 2.按下表加入试剂: 试剂摇匀后,迅速遮光处理1号杯,其余杯在25℃、光强为4000勒克司的条件下照光处理15分钟,然后立即遮光。接着在560nm下,以1号杯作为空白测定其余杯中溶液的光密度。假定2、3号杯中溶液抑制NBT光还原的相对百分率为100%,然后按下式分别计算其余杯中溶液抑制NBT光还原的相对百分率。 M/N=100/X M——2、3号杯中溶液的光密度的平均值 N——其余杯中溶液的光密度值 X——其余杯中溶液抑制NBT光还原的相对百分率 然后以酶液量为横坐标,以其余杯中溶液抑制NBT光还原的相对百分率(X)为纵坐标制作曲线,根据线性好的曲线所得出的函数关系计算抑制NBT光还原的相对百分率为50%时所加入的酶液量,以该酶液量作为1个酶活单位。 结果计算:SOD活力按下式计算: A=V*1000*60/(B*W*T)

果胶酶实验报告

实验报告 果胶酶在果汁生产中的作用 一.实验目的 1.探究不同温度对果胶酶活性的影响; 2.探究不同 ph 对果胶酶活性的影响; 3.探究果胶酶的用量对果汁生产的影响。 二.实验原理 1.果胶酶的活性受温度影响。处于最适温度时,活性最高。果肉的出汁率、果汁的澄清 度与果胶酶的活性大小成正比。 2.果胶酶的活性受ph影响,处于最适ph,酶的活性最高,高于或低于此值活性均下 降。果肉的出汁率、果汁的澄清度与果胶酶的活性大小成正比。 3.在一定的条件下,随着酶浓度的增加,果汁的体积增加;当酶浓度达到某一数值后, 在增加酶的用量,果汁的体积不再改变,此值即是酶的最适用量。 三.实验材料与用具 苹果、果胶酶、盐酸溶液、榨汁机、电子天平、恒温水浴锅、烧杯、量筒、试管、漏斗、温度计、玻璃棒、滤纸、滴管、三脚架 四.实验步骤 (一)温度对果胶酶活性的影响 1.制备果汁选取一个中等大小的苹果( 约 200g) 洗净后,不去皮,切成小块,放入榨 汁机中,加入约 200ml 水,榨取 2min,制得苹果泥。量取一定体积的苹果泥, 不同条件下处理后,用滤纸进 行过滤即可得到果汁; 2.取9支试管编号并分别加入等量的果汁和果胶酶; 3.将9支试管分别放入30℃、35℃、40℃、45℃、50℃、55℃、60℃、65℃、70℃的水 浴锅中保温10分钟; 4.过滤果汁用量筒测量果汁的里量,并记录数据。 (二)ph 对果胶酶活性的影响 1.制备果汁; 2.取5支试管编号并分别加入等量的果汁和果胶酶; 3.将5支试管放入40℃恒温水浴锅中加热; 4.待试管内温度稳定后在5支试管分别加入ph分别为5、6、7、8、9的盐酸溶液; 5.恒温保持10min; 6.过滤果汁用量筒测量果汁的里量,并记录数据。 (三)果胶酶的用量对果汁生产的影响 1.配制不同浓度的果胶酶溶液准确称取纯的果胶酶1mg、2mg、3mg、4mg、5mg、6mg、 7mg、8mg、9mg,配制成相等体积的水溶液,取等量放入9支试管中,并编号1~ 9。; 2.在9支试管中加入等量的苹果汁; 3.将上述试管放入恒温水浴加热一段时间。 4.将不同浓度的果胶酶分别迅速与各试管的苹果泥混合,然后再放入恒温水箱中。 5.恒温水浴约20分钟 6.过滤后测量果汁的体积 四.实验结果 五.分析与结论篇二:果胶酶活性测定实验报告 一、实验设计 二、实验报告 篇三:果胶的实验报告

土壤酶活性测定的实验步骤

土壤酶的测定 1.三角瓶用稀HNO 3(3-5%)或用洗衣粉浸泡24h,后刷洗,然后再用蒸馏水润洗,晾干。 2.土样研磨精细后分袋装好。土量需2g+2.5g+5g+5g=14.5g,重复一次,14.5×2=29g。 一、过氧化氢酶(容量法)(关松荫P323) 1.试剂配制: (1)0.3%过氧化氢溶液: ①(1:100 30%的H 2O 2和水) ②(0.5molH 2O 2+49.5ml蒸馏水) ③(1ml30% H 2O 2+99ml蒸馏水) (2)3N硫酸: (10ml硫酸+50ml水) (3)0.1N高锰酸钾溶液: (1.58gKMnO

4+100ml蒸馏水) 2.操作步骤: 2g风干土置100三角烧瓶→注入40ml蒸馏水和5ml 0.3%过氧化氢(现配)→在往复式振荡机上振荡20min→加入5ml3N硫酸(以稳定未分解的H 2O 2)→用慢速型滤纸过滤,→吸取25ml滤液,用0.1N高锰酸钾的滴定至淡粉红色 3.结果计算 过氧化氢酶的活性(M),以20min后1g土壤的0.1N KMnO 4的毫升数表示: M=(A-B)×T 式中: A: 空白消耗的0.1N KMnO 4毫升数 B: 滤液消耗的0.1 N KMnO 4毫升数 T: KMnO 4滴定度的校正值

以容量法测H2O2的酶活: Kappen (1913)首先介绍硫酸存在下用高锰酸钾滴定剩余的过氧化氢测定酶活。此法根据H 2O 2与土壤相互作用时,未分解的H 2O 2的数量用容量法(常用高锰酸钾滴定未分解的H 2O 2)测定H 2O 2的酶活 2 KMnO 4+5H 2O 2+3H 2SO 4→2MnSO 4+K 2SO

纺织生物助剂果胶酶酶活的测定方法

1引言 随着人们对健康环保纺织品需求的增加以及各国政府对环境保护强制力度的加大,在纺织印染行业中一种新型的纺织助剂———生物酶制剂的应用逐渐发展起来。目前,一种基于果胶酶的新型纺织生物助剂正在应用推广中,它主要用于棉、麻的前处理工艺。由于纺织企业多数对果胶酶的生物特性不甚了解,在工艺应用过程中缺乏相应的检测手段,使其推广受到限制。酶活力(活性)是衡量酶生物活性及含量的重要指标,因此,建立适用于纺织行业的果胶酶酶活检测方法,是十分迫切和必要的。 2果胶酶的酶促作用机理 果胶酶是一类复合酶,是指分解果胶质的多种酶的总称。我们测定的酶活值通常是这一类复合酶协同作用的综合结果。果胶酶可分为两大类:解聚酶和果胶酯酶。解聚酶主要是通过水解作用和反式消去作用,切断果胶和果胶酶分子α-1,4糖苷键,将果胶分子降解为小分子。果胶酯酶的作用是使果胶分子中的甲酯水解,最后形成果胶酸。 果胶质主要是由D-半乳糖醛酸以α-1,4糖苷键连接形成的直链状聚合物。部分D-半乳糖醛酸上的羧基被甲醇酯化、形成甲酯,或被一种或多种碱部分或全部中和。果胶质在植物的细胞组织中起着“粘合”作用,在棉纤维的初生胞壁中,果胶质含量约占9%,而麻纤维则更高。 通过果胶酶的作用,将果胶质降解为小分子物质,从纤维中游离出来,可使与其粘合在一起的其它杂质(如蜡质、蛋白质、灰份等)与纤维素彻底分开,达到棉精炼或麻脱胶的目的。 对于纺织行业,需要的是将果胶催化水解成可游离出纤维的、小分子物质的果胶酶活性(力),因此,主要测定解聚酶的活力。解聚酶对果胶分子的酶促催化作用表现为,每切断一个果胶分子的α-1,4糖苷键,就会形成一个还原性醛基。通过测定这些还原性醛基生成的量,即可判定解聚酶的酶活力。 3测定酶活力(性)的基本原理 酶作为一种生物催化剂,其酶活力值是与其催化效率及有效(即有生物活性)酶的含量相关的。酶活力是酶在单位时间内将底物转化为反应产物的能力,以U(mol/时间)表示,底物即是酶催化的反应物。通常,酶制剂的活力是以U/g酶制剂(或U/mL酶制剂)表示,把酶制剂的量和活力联系在一起,称为“比活力”。在特定条件下,通过测定单位量的某种酶制剂在单位时间内催化足够量底物生成反应产物的量,即可测出此酶制剂的比活力。 根据酶促反应动力学的米氏学说,从酶被底物饱和的现象出发,按照“稳态平衡”假说的设想,可推导出如下公式: 产物生成速率=k3[总酶][底物]/([底物]+km)(1) 式中: [总酶]———酶的总浓度(mol/mL); [底物]———底物浓度(mol/mL); k3———在酶促反应的第二步,形成最终产物的速率常数; km———米氏常数(mol/mL),其值是当酶反应速率达到最大反应速率一半时的底物浓度。 要估计[总酶],首先要固定所有可控制的独立变量,如pH值、温度等。 当[底物]>>Km时,底物对反应速率的影响可忽略(酶饱和),酶促反应达到最大反应速率Vmax,其结果是: 产物生成速率=k3[总酶]=Vmax=U U就成为总酶量的一种测量。因此,可以通过测定U来反映酶制剂中有效酶蛋白的含量。 4果胶酶酶活的测定方法概述和比较 测定果胶酶酶活的方法有很多,但基本上都是利用酶促分解果胶产生的粘度下降或生成的还原性醛基来测定果胶酶酶活。这些方法概括起来主要有粘度降低法、滴定法和分光光度法3种。本文分别选取一种较典型的测定方法加以介绍。

果胶酶的制备与应用

1104110116 1041101班 食品学院 陈家晟 2013/6/25

摘要:果胶酶是分解果胶质酶类的总称。通常包括聚半乳糖醛酸酶(PG)、果胶酯酶(PE)、果胶裂解酶(PL)等主要组分。本文主要叙述了果胶酶的制备方法和主要的应用。 关键词:果胶;果胶酶;黑曲霉;制备;应用; 前言:50年前国外就将果胶酶应用于果汁的加工,现有商品果胶酶制剂生产。近年来,为了满足国内市场对果胶酶的需求,一些研究单位对果胶酶的生产菌种及研制[1]展开了积极的研究。 此外,随着中国三大产业的发展,特别是第一和第二产业的高速发展,果胶酶的应用也越来越广泛。现在果胶酶主要应用于果汁加工和果酒酿造。除此之外,果胶酶在茶和咖啡的发酵、桔子脱囊衣、麻料脱胶、废水处理、造纸、榨油等领域也有应用。 1.果胶酶及其简述 1.1果胶酶的定义 果胶酶,英文别名:Pectase; Polygalacturonase,是个多酶复合物,通常包括原果胶酶、果胶甲酯水解酶、果胶酸酶。果胶酶由黑曲霉经发酵精制而得。外观呈浅黄色粉末状。主要用于果蔬汁饮料及果酒的榨汁及澄清,对分解果胶具有良好的作用。 1.2果胶酶的特性 特性:作用pH:3.0-6.0,最适作用pH:3.0 温度特性:作用温度为15-55℃左右。最适作用温度为 50℃。 1.3果胶酶的作用原理 果胶酶是从根霉中提取的,可以分解细胞间的果胶物质,可以澄清果汁和分离细胞。2.果胶酶的制备 2.1高产酶菌株的选育 激光诱变育种:由成熟的黑曲霉斜面孢子制成一定浓度的孢子悬液,在搅拌条件下,采用810nm多模连续输出的半导体激光进行辐照.将辐照过的抱子悬液进行分离培养,挑单菌落接种于装有含1%果胶的麦芽汁试管中,置30℃恒温培养5-6d,观测并选出透明层较对照为最长的试管,将其孢子接种于斜面培养,在发酵培养基进行复筛,选出产酶最高者[2]. 2.2果胶酶的生产工艺 固体发酵生产果胶酶工艺流程: 培养料拌料 ↓ 灭菌 ↓ 斜面菌种→麸皮菌种→接种曲盘发酵培养 ↓ 出曲浸提 ↓ 离心甩滤→去渣 ↓ 填充剂脱色 ↓↓ 成品包装←喷雾干燥←超滤浓缩

植物五种酶活性检测方法

植物五种酶活性检测方法(总 2页) -CAL-FENGHAI.-(YICAI)-Company One1 -CAL-本页仅作为文档封面,使用请直接删除

选择茶树不同品种,每个茶枝接种5头叶蝉,按不同的时间点 (0h/6h/12h/18h/24h/36h/48h/72h/96h)取样,每个样品重复三次,测定 PPO/POD/PAL/CAT/LOX 五种酶活。 1、多酚化酶(Polyphenoloxidase,PPO)活性的测定 适量茶鲜叶(3g),料液比1:2,加入内含5%PVP(w/v)经遇冷的pH为7.2的柠檬酸-磷酸盐缓冲液(0.1mol/L),冰浴研磨,隔夜浸提12h,于4℃、9000r/min离心35min,取上清液,过滤得到初酶液。 取200ml初酶液,加入0.1mol/L柠檬酸-磷酸盐缓冲液(pH5.6)200uL,混合反应液1.2ml(0.1mol/L柠檬酸-磷酸盐缓冲液:0.1脯氨酸:1%邻苯二酚 =10:2:3),反应30min(37℃恒温水浴锅),6mol尿素1.2ml终止反应, 460nm波长测吸光度。对照为不加邻苯二酚的反应混合液。 酶活性单位:本实验条件下,以邻苯二酚反应液在460nm处吸光度值每分钟增加0.01为一个活性单位。 2、苯丙氨酸解氨酶(Phenylalanineammonialyase,PAL)活性的测定 称取新鲜样品0.5g于预冷研钵中,加入6ml 0.1mol/L(pH8.8)硼酸钠-硼酸缓冲液,加入适量的石英砂,冰浴研磨后转入离心管中。混匀后在4℃冰箱中浸提4h。4℃10000r/min离心20min,取上清液即为酶提取液。 取酶提取液0.2ml,加入由硼酸钠缓冲液配制的0.1mol/L L-苯丙氨酸,2.8ml蒸馏水,摇匀,在40℃水浴上反应30min,冰浴中终止反应,测定OD290值,以相同体积缓冲液代替酶液进行同样的反应为对照。PAL的酶活性以每小时在290nm处吸光度变化0.01OD为一个活力单位。 3、脂氧合酶(linoleate:oxygen oxidoreductase,LOX)活性的测定 取0.2g新鲜样品,加7ml经4℃预冷的1mol/L(pH7.6)的tris-HCL缓冲液冰浴上研磨。4℃、12000r/min离心25min,上层清液即为LOX酶提取液。 Lox酶活性单位以每分钟在234nm处吸光度变化0.01OD作为一个活力单位。 4、过氧化物酶(PDA)的活性测定(愈创木酚法)

果胶酶及其在食品工业中应用

果胶酶及其在食品工业中应用 10化本2班禤金萍 2010364223 摘要:果蔬是我们日常生活中必不可少的食品之一,随着生活水平的提高和消费结构的转变,饮料等果蔬加工产品更加受到大众的青睐。而在加工过程离不开酶的参与,果胶酶在工业生产领域中是一种重要的新型酶类,在果蔬饮料中的应用非常广泛,可用于果汁的提取、澄清、提高出汁率等方面。 关键词:果胶酶;应用;展望 1.果胶酶结构和来源 果胶分子是由不同酯化度的半乳糖醛酸以α-1,4糖苷键聚合而成的多糖链,常带有鼠李糖、阿拉伯糖、半乳糖、木糖、海藻糖、芹菜糖等组成的侧链,游离的羧基部分或全部与钙、钾、钠离子,特别是与硼化合物结合在一起[1]。果胶分子的结构因植物的种类、组织部位、生长条件等的不同而不同,其大致的结构简图如图1所示,总体可分为光滑区(smooth region)和须状区(hairy region)两部分,主要由HGA、RG-I和RG-II三个结构区域构成,其中RG-II常以二聚体的形式存在。果胶酶(Pectinase)是世界四大酶制剂之一,是分解果胶质酶类的总称,主要包括原果胶酶、果胶酯酶、多聚半乳糖醛酸酶和果胶裂解酶四大类。[2]果胶酶主要由黑曲霉产生,按作用方式的不同分为两大类,脂酶和解聚酶,后者包括水解酶和裂解酶。 2.果胶酶的应用 果胶酶主要应用于食品工业特别是果汁果酒的加工业,近年来也不断开拓了新的用途。我国学者对果胶酶的应用开展了较广泛而深入的研究。

2.1果蔬汁提取 目前果汁的提取方法主要是加压榨出和过滤,果汁加工时首先将植物细胞壁破坏。大多数植物细胞壁主要由纤维素、半纤维素和果胶物质等组成,细胞壁的结构较紧密,单纯依靠机械或化学方法难以将其充分破碎。另外,果胶随成熟度的增加,酯化程度较高,也是影响出汁率的主要因素之一。用果胶酶处理可以破坏果实细胞的网状结构,提高果实的破碎程度,有效降低其黏度,改善压榨性能,提高出汁率和可溶性固形物含量,从而就能在压榨时达到提高出汁效率并缩短压榨时间的目的,同时把大分子的果胶物质降解后,有利于后续的澄清、过滤和浓缩工序。[3]例如在苹果汁生产中,苹果要先经机械压榨,然后离心获得果汁,但果汁中仍然含有较多的不溶性果胶而呈浑浊状。直接将果胶酶加到苹果汁中,处理后经加热杀菌、灭酶、过滤得到澄清的果汁。 2.2果汁澄清 果胶酶可以降低果汁粘度,使果汁易于被处理而透明澄清。澄清机理的实质包括果胶的酶促水解和非酶的静电絮凝两部分。果汁中有很多物质如纤维素、蛋白质、淀粉、果胶物质等影响澄清,且果胶物质是造成果汁浑浊的主要原因。加入果胶酶澄清处理后,粘性迅速下降,浑浊颗粒迅速凝聚,使果汁迅速澄清、易于过滤。果胶酶能随机水解果胶酸和其他聚半乳糖醛酸分子内部的糖苷键,生成分子质量较小的寡聚半乳糖荃酸,使其粘度迅速下降,容易榨汁过滤,提高果浆出汁率,改善果汁澄清效果。[4] 果胶裂解酶(PL)对苹果汁有较好的澄清作用,但对葡萄汁效果不明显。对于柑橘汁,因要求雾样混浊,应当使用不含果胶酯酶(PE)的聚半乳糖醛酸内切酶(endo-PG)进行处理。由于果胶裂解酶可避免甲醇的产生,也可避免部分脱酯的果胶同钙离子形成沉淀,还可避免构成各种水果芳香性成分的酯类物质的损失。所以有研究表明果胶酶制剂若用于果蔬汁和果酒加工,最好含有较多量果胶裂解酶(PL)。[5] 2.3改善果蔬饮料的营养成分 利用果胶酶生产果蔬汁不仅提高了出汁率,而且保留了果蔬汁中的营养成分。首先果蔬汁的可溶性固形物含量明显提高,而这些可溶性固形物由可溶性蛋白质和多糖类物质等营养成分组成,果蔬汁中的胡萝卜素的保存率也明显提高。酶处理后的果汁的葡萄糖、山梨糖和果糖含量显著提高,蔗糖含量略有下降,总糖含量上升。甜玉米、胡萝卜的试验有相似的结果。此外,由于果胶的脱酯化和半乳糖醛酸的大量生成, 造成果汁的可滴定酸度上升,pH下降[6]。芳香物质含量也有明显提高,经果胶酶处理后的葡萄汁,各种酯类、萜类、醇类和挥发性酚类含量提高,葡萄汁的风味更佳。由于细胞壁的崩溃,类胡萝卜素、花色苷等大量色素溶出,大大提高了果蔬汁的外观品质。K、Na、Ca、Zn 等矿物质元素含量也有较大提高。[7] 3.其他方面的应用 在咖啡发酵过程中利用产碱性果胶酶微生物除去咖啡豆的黏表皮。有时添加碱性果胶酶来去除含大量果胶质的果肉状表层。纤维素酶和半纤维素酶的协同作用可促进咖啡豆黏表皮的降解。碱性果胶酶也可用于茶叶加工。碱性果胶酶处理可促进茶叶发酵,不过要仔细调节用酶剂量以免破坏茶叶。碱性果胶酶还可通过破坏茶叶中的果胶物质来改善速溶茶粉在冲泡过程中形成泡沫的性能。 4.展望 果胶酶是应用于果蔬汁生产中且主要的酶类,它可以较大幅度地提高果蔬品

果胶酶活性的检测

果胶酶活性的检测 目的 本检测方法是用来确定本公司果胶酶的催化活性。本方法适用于各种固体和液体果胶酶制剂。 说明 本方法适合于果胶酶的质量分析和质量控制领域。但不是本公司产品及其它公司产品的绝对活力的预测,而各种酶制剂的最终的酶活力在良好的实验操作下仍可发挥出更好的催化活力。 原理 果胶物质主要存在于植物初生壁和细胞中间,果胶物质是细胞壁的基质多糖。果胶包括两种酸性多糖(聚半乳糖醛酸、聚鼠李半乳糖醛酸)和三种中性多糖(阿拉伯聚糖、半乳聚糖、阿拉伯半乳聚糖)。果胶酶本质上是聚半乳糖醛酸水解酶,果胶酶水解果胶主要生成怜半乳糖醛酸,可用次碘酸钠法进行半乳醛酸的定量,从而测定果胶酶活力。果胶酶活力单位定义 1g(或1ml液体酶)酶粉,于50.0C、pH3.5条件下,每分钟催化果胶水解生成1 微克半乳糖醛酸的酶量为一个活力单位。 1. 试剂和仪器 * 本标准所使用所有的试剂若无任何说明,均为分析纯 1.1醋酸1.2 碘1.3 碘花钾1.4 浓硫酸 1.5果胶(sigma公司)1.6硫代硫酸钠1.7碳酸钠1.8可溶性淀粉 1.9 水浴锅1.10碘量瓶 2.试剂的制备 2.1p H 3.5的酸水 用醋酸将蒸馏水调至3.5

2.21%果胶溶液: 准确称取分析纯果胶1g,用酸水溶解煮沸,冷却后过滤,定至100ml。 2.20.1N 碘液: 准确称取碘化钾5g,用蒸馏水溶解后,加入2.54g碘,溶解后定容至100ml。 2.30.025mol/L 硫代硫酸钠: 准确称取6.2g硫代硫酸钠,加蒸馏水后定容至1L 2.40.5%可溶性淀粉指示剂: 准确称取可溶性淀粉0.5g放入沸水中消煮至透明。 2.51M碳酸钠溶液: 准确称取10.6g碳酸钠,定容于100ml的水中 2.62N硫酸: 吸10ml 的浓硫酸倒入170ml 的水中 2.7酶样的制备 准确称取1.000g固体酶或移取1ml液体酶样,定容至100ml,于50C水浴浸取1 小时,过滤,滤液为供试酶液。则该酶已经稀释100 倍。 3.程序 3.1取1%果胶酶10ml加入5ml酶液和5ml蒸馏水(PH3.5),在50C水浴中保温反应1 小时。 3.2取出后加热煮沸2~3min,冷却后,补水至20ml。 3.3取5ml反应液于100ml碘量瓶中,加1M碳酸钠溶液1ml, 0.1N碘液 5 m l ,摇匀,具塞,于室温暗处下放置20min。 3.4取出后加2N硫酸2ml,立即用0.05N硫代硫酸钠溶液滴定至浅黄色,加

脲酶的测定方法

一、脲酶测定(比色法) 脲酶是对尿素转化起关键作用的酶,它的酶促反应产物是可供植物利用的氮源,它的活性可以用来表示土壤供氮能力。 1、试剂配制: (1)pH6.7柠檬酸盐溶液:取368g柠檬酸溶于600mL蒸馏水中,另取295g 氢氧化钾溶于水,再将两种溶液合并,用1N氢氧化钠将pH调至6.7, 并用水稀释至2L。 (2)苯酚钠溶液:称取62.5g苯酚溶于少量乙醇中,加2mL甲醇和18.5mL 丙酮,后用乙醇稀释至100mL(A液),保存再冰箱中。称取27g氢 氧化钠溶于100mL水中(B液),保存于冰箱中。使用前,取A、B 两液各20mL混和,并用蒸馏水稀释至100mL备用。 (3)次氯酸钠溶液:用水稀释制剂至活性氯的浓度为0.9%,(1.9g次氯酸钠溶于1L水中)溶液稳定。 (4)10%尿素溶液:10g尿素溶于100mL水中。 (5)N的标准溶液:精确称取0.4717g硫酸铵溶于水稀释至1L,则得1mL 含0.1mgN的标液,再将此液稀释10倍制成氮工作液(0.01mg/mL)。 2、操作步骤 称取5g土置于50mL容量瓶中,加1mL甲苯处理,加塞塞紧轻摇15min; 往瓶中加入5mL10%尿素液和10mL的柠檬酸盐缓冲液(pH6.7),仔细混匀。在37℃恒温箱中培养24h。然后用热至38℃的蒸馏水稀释至刻度(甲苯应浮在刻度以上),摇荡,将悬液过滤。取滤液1mL置于50mL容量瓶中,用蒸馏水稀释至10mL,然后加入4mL苯酚钠溶液,并立即加入3mL次氯酸钠溶液,加入每一试剂后,立 即将混合物摇匀,20min后,将混合物稀释至刻度,在波长578nm处测定吸光值。脲酶活性以样品所得的吸光值减去对照样品吸光值之差,根据标准曲线求出氨态 氮量。

果胶裂解酶活力测定方法

果胶裂解酶活力测定方法 1定义 在测定条件下,每分钟作用果胶产生1μmol双键所需酶量定义为一个酶活力单位(IU)。 2 原理 果胶裂解酶作用果胶产生不饱合寡聚半乳糖醛酸。反应产物分子中C-4和C-5之间有一与C-5上羧基相连的双键,使之在235nm波长有最大吸收。分子消光系数为5500cm2 /mmol。 3 试剂 3.1 琥珀酸钠(C4H4O4Na2·6H2O) 3.3 浓盐酸(HCL) 3.2 琥珀酸(C4H6O4) 3.4 果胶(Sigma公司,P9135) 本标准中所用的试剂,在没有注明其他要求时,均指分析纯试剂和符合GB/T 6682中规定的三级水。 4 仪器和设备 4.1 实验室常用仪器设备。 4.6 秒表(数字显示) 4.2 恒温水浴:(30±0.5℃)。 4.7 分析天平(0.0001g) 4.3 分光光度计(波长范围200-1000nm) 4.8 磁力搅拌器。 4.4 移液管 4.9 离心机:转速为30000r/min 以上。 4.5 酸度计:精确至小数点后2位。 5 溶液 5.1 0.05mol/L,pH=5.2琥珀酸缓冲液 称取琥珀酸钠(C4H4O4Na2)13.51g于900ml水中,溶解后用琥珀酸(C4H6O4)调pH值至5.2,定容至1000ml,校正pH值后置冰箱中备用。 5.2 2mol/L盐酸 准确量取16.7ml浓盐酸,用水定容至100ml。 5.3 0.425%果胶溶液(底物) 称取0.425g果胶于80ml缓冲液中,至少搅拌3h,溶解后于4℃放置16h,30000rpm/min 离心30min,用缓冲液定容至100ml, 4℃保存。 6 分析步骤: 6.1待测酶液的制备 6.1.1 根据酶活力确定稀释倍数,使酶浓度控制在大约 0.06-0.09u/mL,即光吸收值在0.25—0.40范围内。 6.1.2 称取酶粉1g,精确至0.0001g,(或吸取酶液1.00 ml)。用蒸馏水溶解,置于磁力搅拌器上搅拌10分钟,全部移入容量瓶中,稀释倍数小于500倍的直接用缓冲液(5.2)溶解。4000rpm/min离心5分钟,上清液液根据稀释倍数再进行稀释,最后一次用缓冲液稀释,供测试用。

蛋白酶活力测定方法

酸性蛋白酶产品概述: 蛋白质由氨基酸组成,是自然界中发现的最复杂的有机化合物之一。由盐酸和蛋白酶分解成易被高等动物的肠道和微生物有机体的细胞膜吸收的氨基酸。包括人类在内的每种动物,必须要有足够的蛋白质来维持自身生长,来生成每个细胞所必需的氨基酸,一些特种蛋白质还是某些特殊细胞、腺体分泌物、酶和激素的功能性组成元素。蛋白酶是指一些有催化功能的酶,能够水解(断裂)蛋白质,因此也被称为蛋白水解酶。蛋白水解酶在许多的生理和病理过程中发挥着重要作用,在食品和乳品加工业也有着广泛应用。工作机理 蛋白水解酶制剂本产品能在酸性条件下水解蛋白质食品中的缩氨酸键,释放氨基酸或者多肽。在酒精、葡萄酒、果汁、啤酒、黄油和酱油生产中,添加酸性蛋白酶可澄清发酵液中的雾气。酵母在发酵阶段的生长可以通过悬浮蛋白质转化的氨基酸来加以促进,从而加速发酵并提高产量。本产品是一种酸性蛋白酶制剂,在酸性条件下具有较高活性,由酸性蛋白酶高产菌株——曲霉菌深层发酵而成。它广泛应用于饲料、纺织、废水处理和果汁提纯方面。 酸性蛋白酶(Acid protease )是指蛋白酶具有较低的最适pH,而不是指酸性基团存在于酶的活性部位,酸性蛋白酶的最适PH从2左右(胃蛋白酶)到4左右。从酶的活力-PH曲线分析,在酶的活性部位中含有一个或更多的羟基。这一类蛋白酶中研究最彻底的是胃蛋白酶。(酸性蛋白酶537容易失活)

简介:酸性蛋白酶是由隆科特黑曲霉优良菌种经发酵精制提炼而成,它能在低PH条件下,有效水解蛋白质,广泛应用于酒精、白酒、啤酒、酿造、食品加工、饲料添加、皮革加工等行业。 1、产品规格:,规格有5万u/g~10万u/g 液体型为黑褐色液体,规格有50000u/ml~10000u/ml. 2、酶活力定义:一个酶活力单位是1g酶粉或1ml酶液在40℃,PH3.0条件下,1分钟水解酪素产生1ug酪氨酸为一个酶活力单位(u/g或u/ml) 特性1、温度范围为:最适温度范围为40℃-50℃2、PH为:最适PH范围为2.5~3.5 使用方法 1、白酒工业: 本品用以淀粉为原料的生产酒精及白酒行业,提高出酒率0.25%个酒分,提高发酵速度。 2、食品工业: 食品上用以淀粉改良,提高食品风味、改良品质,因能提高氨基酸含量 3、啤酒生产: 能有效阻断双乙酰生成,缩短啤酒成熟期。 4 饲料添加剂:提高饲料利用率。 5、毛皮软化: 提高上色率,手感丰满,增加毛皮光泽。

各种酶活力测定方法及注意事项

碱性蛋白酶及各种蛋白酶活力测定方法及测定有感 因长期测定碱性蛋白酶酶活力与角蛋白酶活力与胶原酶活力和弹性蛋白酶活力,碱性蛋白酶活力测定还好,因有国家标准,测定按照国标来便可大大减少误差。其余酶活力测定过程中因无统一标准且底物差异大,导致长期酶活力测定的混乱,各种酶活力测定方法与各种试剂添加,最后实际测定的酶活力只能仅作参考。 以下是各种蛋白酶活力测定方法及标曲绘制: 碱性蛋白酶测定方法 根据国标GB/T 23527-2009 附录B 蛋白酶活力测定福林法 以下是方法

碱性蛋白酶的测定方法参考 GB/T 23527-2009 附录 B 中福林酚法进行,即 1 个酶活力单位(U/mL)定义为 1 mL 酶液在 40℃、pH= 10.5 条件下反应 1 min 水解酪蛋白产生 1 μg 酪氨酸所需要的酶量,主要步骤如下。 2.2.6.1 标准曲线的绘制 (1)L-酪氨酸标准溶液:按表 2-6 配制。 表 2-6 L-酪氨酸标准溶液配置表 Table 2-6 L-Tyrosine standard solution form 管号酪氨酸标准溶液的浓度/ (μg/mL) 取 100 μg/mL 酪氨酸标准 溶液的体积/(mL) 取水的体积/ (mL)

0 0 0 10 1 10 1 9 2 20 2 8 3 30 3 7 4 40 4 6 5 50 5 5 (2)分别取上述溶液各 1.00 mL,各加 0.4 mol/L 碳酸钠溶液 5.0 mL,福林试剂使用 液 1.00 mL,置于 40 ℃±0.2 ℃水浴锅中显色 20 min,用分光光度计于波长 680 nm,10 mm 比色皿,以不含酪氨酸的反应管作为空白,分别测定其吸光度值,以吸光度值 A 为纵坐标,酪氨酸浓度 C 为横坐标,绘制 L-酪氨酸标准曲线。 图 2-1 L-酪氨酸标准曲线 Fig. 2-1 L-tyrosine standard curve 根据作图或用回归方程计算出当吸光度为 1 时的酪氨酸的量(μg),既为吸光度常数 K 值。其 K 值应在 95-100 范围内。上图所示标准曲线符合要求,可用于下一步实验。 2.2.6.2 测定方法 (1)计算方法 X = A × K × 4 / 10 × n = 2 / 5 × A × K × n 式(2-1) 式中,X —样品的酶活力,μ/g; A —样品平行实验的平均吸光度; K —吸光常数; 4 —反应试剂的总体积,mL; 10—反应时间 10 min,以 1 min 计; n —稀释倍数。 (2)测定方法 ①先将干酪素溶液放入 40 ℃±0.2 ℃恒温水浴中,预热 5 min。 ②按下列程序操作,进行测定。 于 680 nm 波长,用 10 mm 比色皿测其吸光度。

果胶酶的生产技术

果胶酶的生产技术 课程:食品生物技术 专业: 班级: 学号: 姓名: 完成时间:2011 年5月15日

果胶酶的生产技术 摘要:果胶酶是一类分解果胶质的酶的总称,它能将复杂的果胶分解为半乳糖醛酸等小分子。目前果胶酶在食品、纺织、医药、造纸、环境、生物技术、饲料等领域得到广泛应用。果胶酶主要来自微生物。综述了微生物果胶酶生产茵的菌种、选育、鉴定、发酵方法和发酵条件优化,酶的分离纯化、酶学性质和分子生物学方面的研究进展,并介绍了果胶酶的应用进展,最后展望了微生物果胶酶研究的广阔前景。 关键词:微生物果胶酶果胶;果胶酶;几丁聚糖;固定化研究现状展望 1 果胶 果胶分子是由不同酯化度的半乳糖醛酸以a一1,4糖苷键聚合而成的多糖链,常带有鼠李糖、阿拉伯糖、半乳糖、木糖、海藻糖、芹菜糖等组成的侧链,游离的羧基部分或全部与钙、钾、钠离子,特别是与硼化合物结合在一起m.它存在于所有的高等植物中,沉积于初生细胞壁和细胞间层,在初生壁中与不同含量的纤维素、半纤维素、木质素的微纤丝以及某些伸展蛋白(extensin)[2]相互交联,使各种细 胞组织结构坚硬,表现出固有的形态.果胶分子的结构因植物的种类、组织部位、生长条件等的不同而不同,总体可分为光滑区(smooth region)和须状区(hairy region)两部分,主要由HGA、RG-I和RG-II三个结构区域构成,其中RG-II常以二聚体的形式存在.同其 它植物多糖一样,果胶也是多分子的、多分散的、多结构的、有高级空间构象的,也具有一定的相对分子质量分布. 2 果胶酶 2.1 果胶酶(pectolytic enzyme or pectinase)是指能够分解果胶物质的多种酶的总称. 2.2 果胶酶的分布 许多霉菌及少量的细菌和酵母菌都可产生果胶酶,主要以曲霉和杆菌为主.新近报道的其它茵有青霉如意大利青霉(Penicillium itaticum)、扩展青霉(Penicillium expansum)以及Penicillium

温度和pH对果胶酶活性的影响

一、课题目标 简述果胶酶的作用;检测果胶酶的活性;探究温度和pH对果胶酶活性的影响以及果胶酶的最适用量;搜集有关果胶酶应用的资料。 二、课题重点与难点 课题重点:温度和pH对果胶酶活性的影响。 课题难点:果胶酶的最适用量。 三、课题背景分析 随着生活水平的提高,水果几乎成为人们生活中的必需品,果汁饮料也深受人们的喜爱。将水果制成果汁,不仅有利于解决水果丰收季节的产、销、运输和保存等多方面的问题,而且提高了水果的附加值,满足了人们不同层次的需要。课题背景从与社会的联系、与学生生活的联系入手,引入课题研究。教师在教学过程中,可以以本地某种水果的生产、贮存、加工和运输为素材,让学生做一个简单的估算,从而认识到果汁加工的经济效益。例如,可以让学生计算生产一升苹果汁大约需要多少斤苹果,苹果与苹果汁的价格相差多少;等等。此外,教师还可以联系学生已有的关于酶的知识,引导学生认识果胶酶的特性及其作用。 四、基础知识分析与教学建议 知识要点:1.果胶酶的作用;2.酶的活性的定义;3.影响酶活性的因素;4.果胶酶的用量。教学建议:关于果胶酶作用的教学,教师可以先展示图4-1,介绍植物细胞壁的成分和细胞与细胞之间的胞间层成分,说明这些成分对果汁制作的影响,从而引出果胶酶在果汁生产过程中的作用。 图4-1 植物细胞壁及细胞之间胞间层的成分 五、实验安排及注意事项 本课题的研究建立在必修模块“探究影响酶活性的条件”的基础之上,与必修模块的探究的不同之处主要体现在两个方面:一是酶的活性不是通过定性分析而是通过定量分析来进行探究的;二是本课题并不仅仅满足于探究温度和pH对酶活性的影响,还探究了果胶酶的最适用量,对生产实践具有指导意义。本课题可用3~4课时。其中,探究温度对果胶酶活性的影响的实验可以参考下面的教学思路进行。

酶活性测定方法

酶活性测定 1、碱性磷酸酶(Alkaline phosphatase) 试剂:0.1% p-nitrophenylphosphate disodium salt(P-硝基苯磷酸二钠) 0.2mol/L 碳酸盐/碳酸氢盐缓冲溶液(pH: 9.6)——buffer 0.2mol/L NaOH 测定步骤:(1) 加入样品之前,0.1% P-硝基苯磷酸二钠及buffer 37°C孵化30 min; (2) 1mL污泥样品+1mL0.1% P-硝基苯磷酸二钠+2mL buffer 37°C孵化30 min; (3) 加入2mL 0.2mol/L NaOH终止反应; (4) 2500g 离心,上清液在410nm测定吸光度。 计算: 每个污泥样品酶活性的测定均包含两个平行样S+一个空白样品S0。 [(S1- S0)+(S2- S0)]/2*0.704 (Eu) 2、酸性磷酸酶(Acid phosphatase) 试剂:0.1% p-nitrophenylphosphate disodium salt(P-硝基苯磷酸二钠) 0.2mol/L HAc/Ac缓冲溶液(pH: 4.8)——buffer 0.2mol/L NaOH 测定步骤:(1) 加入样品之前,0.1% P-硝基苯磷酸二钠及buffer 37°C孵化30 min; (2) 1mL污泥样品+1mL0.1% P-硝基苯磷酸二钠+2mL buffer 37°C孵化30 min; (3) 加入2mL 0.2mol/L NaOH终止反应; (4) 2500g 离心,上清液在410nm测定吸光度。 计算: 每个污泥样品酶活性的测定均包含两个平行样S+一个空白样品S0。 [(S1- S0)+(S2- S0)]/2*0.719 (Eu) 3、a-葡萄糖甘酶(a-glucosidase) 试剂:0.1% p-nitrophenyl a-D glucopyranoside(p-硝基苯-Α-D-葡吡喃糖苷) 0.2mol/L Tris-HCl (pH: 7.6) 测定步骤:(1) 加入样品之前,0.1% p-硝基苯-Α-D-葡吡喃糖苷及Tris-HCl 37°C 孵化30 min; (2) 1mL污泥样品+1mL 0.1% p-硝基苯-Α-D-葡吡喃糖苷+2mL Tris-HCl 37°C孵化

酶活力测定

华南农业大学 综合实验报告 实验项目名称:食品发酵工业中常用系列酶活力测定实验项目性质:综合性实验 计划学时:6 所属课程名称:食品与发酵工业分析 班级:09生物工程2班 姓名:叶思婕 学号:200930620124 实验课指导老师:沈玉栋

摘要 测定食品发酵工业中常用酶活力,对于选择酶种类,工艺条件的制定等有重要意义。本次实验中对工业常用系列酶——糖化酶,淀粉酶,蛋白酶进行了酶活力测定。其中,测定糖化酶采用直接滴定法,测定淀粉酶采用目测比色法,测定蛋白酶采用福林酚法。 关键词:酶活力糖化酶淀粉酶蛋白酶直接滴定法目测比色法福林酚法

1 前言 酶,从早期的酿造、发酵食品开始,至今已广泛应用到各种食品上。随着生物科技进展,不断研究、开发出新的酶制剂,已成为当今新的食品原料开发、品质改良、工艺改造的重要环节。目前已有几十种酶成功地用于食品工业。例如,葡萄糖、饴糖、果葡糖浆的生产、蛋白质制品加工、果蔬加工、食品保鲜以及改善食品的品质与风味等。应用的酶制剂主要有:淀粉酶、糖化酶、蛋白酶、葡萄糖异构酶、果胶酶、脂肪酶、纤维素酶、葡萄糖氧化酶等。 酶作为生物体内的一种具有催化活性的蛋白质,生物体内几乎所有的反应都离不开没的催化。作为生物体内的催化剂,催化效率——即酶的活力是酶的一个重要的的指标。酶活力的大小可用在一定条件下,酶催化某一化学反应的速度来表示,酶催化反应速度愈大,酶活力愈高,反之活力愈低。测定酶活力实际就是测定酶促反应的速度。酶促反应速度可用单位时间内、单位体积中底物的减少量或产物的增加量来表示。在一般的酶促反应体系中,底物往往是过量的,测定初速度时,底物减少量占总量的极少部分,不易准确检测,而产物则是从无到有,只要测定方法灵敏,就可准确测定。因此一般以测定产物的增量来表示酶促反应速度较为合适。 糖化酶,又称葡萄糖淀粉酶、γ-淀粉酶。它能把淀粉从非还原性未端水介a-1,4葡萄糖苷键产生葡萄糖,也能缓慢水解a-1,6葡萄糖苷键,转化为葡萄糖。同时也能水解糊精,糖原的非还原末端释放β-D-葡萄糖。采用可溶性淀粉为底物,在一定的pH值与温度下,使之水解为葡萄糖(还原糖),以直接滴定法测定。 淀粉酶是水解淀粉和糖原的酶类总称,通常通过淀粉酶催化水解织物上的淀粉浆料。淀粉酶的种类很多,根据酶水解产物异构类型的不同可分为α-淀粉酶与β-淀粉酶。液化型淀粉酶(又称α-1,4糊精酶,俗称α-淀粉酶)能水解淀粉中α-1,4葡萄糖苷键,水解淀粉为分子量不一的糊精,淀粉迅速被液化。使淀粉与碘呈蓝紫色特征反应逐渐消,以该颜色的消失速度计算酶的活力的高低。 蛋白酶是水解蛋白质肽键的一类酶的总称,广泛存在于动物内脏、植物茎叶、果实和微生物中。微生物蛋白酶,主要由霉菌、细菌,其次由酵母、放线菌生产。福林-酚试剂在碱性条件下可被酚类化合物还原呈蓝色(钼蓝和钨蓝混合物),由

果胶裂解酶(pectinate lyases,PL)试剂盒说明书

货号:MS2622 规格:100管/48样果胶裂解酶(pectinate lyases,PL)试剂盒说明书 微量法 注意:正式测定之前选择2-3个预期差异大的样本做预测定。 测定意义: 果胶裂解酶(EC4.2.2.10)是果胶酶的重要组成部分,是一种能降解植物细胞壁,导致植物组织软化甚至死亡的解聚酶,来源比较广泛,主要来源于微生物,可用于果汁、果酒的澄清,提高水果出汁率,植物病毒的纯化,纸浆的漂白和纺织品的生物精炼,在减少环境污染和降低能源消耗方面具有潜在的应用价值。 测定原理: 果胶裂解酶作用于果胶中的α-1,4糖苷键,生成在还原端C4和C5之间位置具有不饱和键的不饱和寡聚半乳糖醛酸,在235nm处有特征吸收峰。 自备实验用品及仪器: 天平、低温离心机、紫外分光光度计/酶标仪、微量石英比色皿/96孔板(UV板)、恒温水浴锅。 试剂组成和配制: 提取液:液体100mL×1瓶,4℃保存。 试剂一:液体6mL×1瓶,4℃保存。 试剂二:液体6mL×1瓶,4℃保存。 试剂三:液体6mL×1瓶,4℃保存。 酶液提取: 1.组织:按照组织质量(g):提取液体积(mL)为1:5~10的比例(建议称取约0.1g组织,加入1mL提取液),进行冰浴匀浆。10000g ,4℃离心10min,取上清,置冰上待测。 2.细菌、真菌:按照细胞数量(104个):提取液体积(mL)为500~1000:1的比例(建议500万细胞加入1mL提取液),冰浴超声波破碎细胞(功率300w,超声3秒,间隔7秒,总时间3min);然后10000g,4℃,离心10min,取上清置于冰上待测。 3. 培养液:直接测定。 测定操作表: 1、分光光度计/酶标仪预热30min,调节波长至235nm,蒸馏水调零。 2、操作表 第1页,共3页

果胶酶实验报告

实验报告 果胶酶在果汁生产中的作用一.实验目的 1. 探究不同温度对果胶酶活性的影响; 2. 探究不同ph 对果胶酶活性的影响; 3. 探究果胶酶的用量对果汁生产的影响。二.实验原理 1. 果胶酶的活性受温度影响。处于最适温度时,活性最高。果肉的出汁率、果汁的澄清度与果胶酶的活性大小成正比。 2. 果胶酶的活性受ph影响,处于最适ph,酶的活性最高,高于或低于此值活性均下降。果肉的出汁率、果汁的澄清度与果胶酶的活性大小成正比。 3. 在一定的条件下,随着酶浓度的增加,果汁的体积增加;当酶浓度达到某一数值后, 在增加酶的用量,果汁的体积不再改变,此值即是酶的最适用量。 三.实验材料与用具苹果、果胶酶、盐酸溶液、榨汁机、电子天平、恒温水浴锅、烧杯、量筒、试管、漏斗、温度计、玻璃棒、滤纸、滴管、三脚架 四.实验步骤 (一)温度对果胶酶活性的影响 1. 制备果汁选取一个中等大小的苹果(约200g)洗净后, 不去皮, 切成小块, 放入榨汁机中,加入约200ml 水,榨取2min ,制得苹果泥。量取一定体积的苹果泥,不同条件下处理后,用滤纸进 行过滤即可得到果汁; 2. 取9 支试管编号并分别加入等量的果汁和果胶酶; 3. 将9 支试管分别放入30C、35C、40C、45C、50C、55C、60C、65C、70C 的水 浴锅中保温10 分钟; 4. 过滤果汁用量筒测量果汁的里量,并记录数据。 (二)ph 对果胶酶活性的影响 1. 制备果汁; 2. 取5 支试管编号并分别加入等量的果汁和果胶酶; 3. 将5支试管放入40C恒温水浴锅中加热; 3. 待试管内温度稳定后在5 支试管分别加入ph 分别为5、6、7、8、9 的盐酸溶液; 4. 恒温保持10min ; 5. 过滤果汁用量筒测量果汁的里量,并记录数据。 (三)果胶酶的用量对果汁生产的影响 1. 配制不同浓度的果胶酶溶液准确称取纯的果胶酶1mg、2mg、3mg、4mg、5mg、 6mg、 7mg 8mg 9mg配制成相等体积的水溶液,取等量放入9支试管中,并编号1?9。; 2. 在9 支试管中加入等量的苹果汁; 3. 将上述试管放入恒温水浴加热一段时间。 4. 将不同浓度的果胶酶分别迅速与各试管的苹果泥混合,然后再放入恒温水箱中。 5. 恒温水浴约20 分钟 6. 过滤后测量果汁的体积 四.实验结果五.分析与结论篇二:果胶酶活性测定实验报告 一、实验设计

相关主题
文本预览
相关文档 最新文档