当前位置:文档之家› ZEMAX的基本像差控制与优化

ZEMAX的基本像差控制与优化

光学设计论著中评价光学系统设计阶段的成像质量通常使用两套像差曲线体系。一个是“独立几何像差”,分别描述了成像光束在像空间的结构和状态。例如轴上点球差和轴向色差曲线,轴外点像散、场曲曲线,等等,其优点是很明显的,能够直观的了解该项像差的定性和定量数值。对于特定的光学系统,设计人员容易从该系统可能存在的主要像差分析入手,快速了解和控制像差优化进程中变化趋势,很方便制定下一步校正方法。其缺点就是系统性不强,只能反映影响像质的某些方面,不能反映全局的像差情况。一个是“垂轴像差曲线”,定义为不同孔径子午、弧矢光线和主光线在理想像平面上的 交点之间的距离来表示。其直接给出了不同孔径的光线对在像平面上的弥散位置,反映了像点的大小和光束能量集中程度,全面显示了系统的成像质量。

单项几何像差和垂轴像差都是用来描述系统的成像质量的,两者从不同的方向对系统成像质量进行了描述。如果说垂轴像差侧重于综合性、总体性,那么单项几何像差侧重于局部、某个形态。两者之间的关系可以概括为“系统”和“局部”的关系。也就是说,从垂轴像差曲线设计人员能够宏观的了解成像质量的情况,例如:像点弥散斑大小,能量集中程度,彗差大小,场曲大小,轴外球差情况,从而判定系统的整体好坏。当然,如果要更为直观的、定量的了解垂轴像差曲线反映的像差情况,可以查看几何像差曲线。ZEMAX中没有提到的像差曲线,例如:轴外球差,彗差等。

正确的设计思路归结如下:设计人员心中对系统的成像质量评价要综合使用目的、设计、加工制造等环节后建立的一套清晰的体系。

ZEMAX提供的工具很多,有些是侧重某个方面的像差,有的是仿真计算某种光学特性。笔者认为,设计人员手下的作品都是有针对性的,有服务方向的,就拿光学镜头而言,摄像机镜头、数码相机镜头、照相镜头、安防镜头、工业检测镜头、电脑眼等等,更有偏重,各有自身的“最合适”评价和设计。成熟的设计人员不是追求像差极致、为像差所累的家伙,成熟的工程师是权衡设计用途,综合考虑设计、使用和加工装配综合性能价格比,绝不是为了优化而优化。例如:设计人员都知道,通常使用的对设计结果进行评价的工具有MTF和点列图。点列图主要反映能量集中程度,弥散尺寸;MTF则预示了实际镜头的成像锐度以及分辨能力。然而这些有的时候还是不够的。

投影镜头设计需要了解成像细节边缘的情况,这时可能需要引入“Line/Edge Response”,直观的仿真景物边缘被模糊的情形。


MTF是最常用的设计系统成像质量评价依据:景物轮廓主要是低分辨率部分反映出来,细节部分则由高频部分反映。CCD或者CMOS本身的响应也不是理想的,正如人眼也有自身的阈值对比度一样,在这些成像传感器也有自己的阈值对比度,高国欣(《数码镜头设计原理》,2005)认为其为0.15左右,没有给出理论依据。本文给出分析说明。

Kazuhiko Ohnuma 在其论文《可直接观察通过人工晶状体后成像的模型眼》(《视光学杂志》,2000,Vol.2,No.1 P.32-37)中提到CCD摄像机的阈值对比度为0.008,和人眼0.010相近。其实,光电系统的阈值对比度和景物背景亮度、景物细节分辨要求是相关的。也就是说,在不同的亮度下,CCD阈值对比度是不同的;不同景物细节(空间频率不同),其阈值对比度也不一样,阈值对比度是景物亮度、空间频率二者的函数。不过,自然景物对比度最低时在0.1~0.2左右,乘以0.15的调制量为0.015~0.03,临近阈值对比度了,且考虑了景物亮度的差异保证了一定的余量,还是有一定的道理的。

在设计阶段,考虑到加工和装配过程中必然的误差影响,一般而言设计阶段的MTF还要下降0.1~0.15左右。因此为了保证成像镜头在其截止频率(最高空间频率,即f =1/2d,其中d为CCD像元尺寸)附近仍保证合适的成像质量,通常使用0.7视场(成像面积约占总面积80%)、MTF等于0.3的空间频率位置作为成像镜头设计阶段的评价依据。那么在既定CCD后的设计阶段,就要以截止频率位置附近、0.7视场、MTF等于0.3作为设计目标。例如:1/3 inch黑白摄像机,752X582,其像素大小约为6.4um,其空间截止频率约为78lp/mm。设计人员的设计目标大约可以设定为:80lp/mm线对上,0.7视场对应的MTF大于0.3。评价时:左上角(0,0)位置到(80,0.3)连接直线,中心视场、0.3、0.5、0.7等各视场的MTF曲线大部分在此之上为佳。

相关主题
文本预览
相关文档 最新文档