单片机 课程设计霓虹灯控制器的设计.
- 格式:doc
- 大小:466.50 KB
- 文档页数:17
单片机接口与技术课程设计(论文)
I 课程设计(论文)任务及评语
院(系):电子与信息工程学院 教研室:通信工程教研室
学 号 学生姓名 专业班级
课程设计(论文)
题目 霓虹灯控制器的设计
课程设计(论文)任务 任务和要求:
1、以单片机为控制核心设计霓虹灯控制器。
2、可用按键设置显示方式。
3、霓虹灯采用无触点开关控制。
设计内容:
1、分析设计要求,明确性能指标;查阅资料、设计方案分析对比。
2、论证并确定合理的总体设计方案,绘制总体结构框图,分析工作原理。
3、完成各单元具体电路的设计:单片机最小系统、显示等电路。包括元器件选择、工作原理分析。
4、写出程序流程图及汇编源程序。
5、完成课程设计说明书。
该控制器可实现的硬件和软件设计。实现技术指标包括:
指导教师评语及成绩
平时成绩(20%): 论文成绩(40%):
答辩成绩(40%): 总成绩:
指导教师签字: 学生签字:
年 月 日
单片机接口与技术课程设计(论文)
II
摘要
近年来随着科技的飞速发展,单片机的应用正在不断地走向深入,同时带动传统控制检测日新月益地更新。在实时检测和自动控制的应用系统中,单片机往往是作为一个核心部件来使用,仅单片机方面知识是不够的,还应根据具体硬件结构,以及针对具体应用对象特点的软件结合,加以完善。我们周围有许多广告牌、交通指示灯等都是通过单片机控制的。霓虹灯模拟控制器正是利用美国ATMEL公司生产的AT89C51单片机作为核心控制芯片实现对霓虹灯的控制。模拟控制器由单片机控制部分和显示部分组成,与按键、电阻等较少的辅助硬件电路相结合,通过汇编语言编程可以实现任意改变霓虹灯的变化花样和。本系统具有体积小、硬件少、电路结构简单及容易操作等优点。
单片机接口技术课程设计(论文) III
目录
第1章 设计方案论证 ................................................... 1
1.1设计意义 ...................................................... 1
1.2 课题设计要求、系统方案介绍 .................................... 1
1.3 单片机的选择 .................................................. 1
第2章 硬件电路设计 ................................................... 2
2.1主控制器模块设计 .............................................. 2
2.2本设计中用到的引脚功能说明 .................................... 2
2.3 AT89C51时钟电路 ............................................. 3
2.4 AT89C51复位电路 .............................................. 4
2.5主控模块电路设计 .............................................. 4
第3章 程序设计 ....................................................... 6
第4章 设计总结 ...................................................... 11
参考文献 ............................................................. 12
附录1: 整体电路原路图 ............................................... 13
附录2:器件清单 ..................................................... 14
单片机接口与技术课程设计(论文)
1 第1章 设计方案论证
1.1设计意义
随着人们生活环境的不断改善和美化,在许多场合可以看到彩色霓虹灯。 LED 彩灯由于其丰富的灯光色彩,低廉的造价以及控制简单等特点而得到了广泛的应用,用彩灯来装饰已经成为一种时尚。但目前市场上各式样的 LED 彩灯控制器大多数用全硬件电路实现,电路结构复杂、功能单一,这样一旦制作成品只能按照固定的模式闪亮,不能根据不同场合、不同时间段的需要来调节亮灯时间、模式、闪烁频率等动态参数。这种彩灯控制器结构往往有芯片过多、电路复杂、功率损耗大等缺点。此外从功能效果上看,亮灯模式少而且样式单调,缺乏用户可操作性,影响亮灯效果。因此有必要对现有的彩灯控制器进行改进。
1.2 课题设计要求、系统方案介绍
设计一个霓虹灯,采用LED模拟,要有多重花样。用单片机的P0口控制8盏发光二级管,P2口控制8盏发光二级管,P3口控制一个共阳数码管。P0,P2,P3口控制的 24盏灯排成8×3矩阵,数码管显示灯的花样种类,方案中总共有12种花样,数码管显示数字为0,1,2,3,4,5,6,7,8,9。在设计的 过程中,P0口要加上上拉电阻,这是单片机系统内部决定的 。在方案中用到五个按键,按键S1是单片机复位键,按键S2--S5是选择灯的花样,按键每按下一次,切换花样一次。
1.3 单片机的选择
AT89C51是一种高性能低功耗的采用CMOS工艺制造的8位微控制器。其芯片内部有ROM,且片内ROM全部采用Flash ROM,它能于3V的超低压工作,与MCS-51系列单片机完全兼容。所以选用AT89C51设计电路。
单片机接口技术课程设计(论文) 2 第2章 硬件电路设计
2.1主控制器模块设计
本设计用AT89C51作主控制器,构成一个最小控制系统,这个包括:单片机、晶振电路,复位电路。
AT89C51 是美国ATMEL公司生产的低电压,高性能CMOS 8 位单片机,片内含8kbytes的可反复擦写的Flash只读程序存储器和256 bytes 的随机存取数据存储器(RAM)。AT89C52单片机属于AT89C51单片机的增强型,与Intel公司的80C51在引脚排列、硬件组成、工作特点和指令系统等方面兼容。
2.2本设计中用到的引脚功能说明
AT89C51的引脚图如图2-1所示。
图2-1 AT89C51的引脚
Vcc:第40脚,电源引脚,必须接+5V电源。
Vss:第20脚,接地电位。
P1 口:第1~8脚。P1 是一个带内部上拉电阻的8 位双向I/O 口, P1 的输出缓冲级可驱动(吸收或输出电流)4个TTL逻辑门电路。对端口写“1”,通过内部的上拉XTAL218XTAL119ALE30EA31PSEN29RST9P0.0/AD039P0.1/AD138P0.2/AD237P0.3/AD336P0.4/AD435P0.5/AD534P0.6/AD633P0.7/AD732P1.01P1.12P1.23P1.34P1.45P1.56P1.67P1.78P3.0/RXD10P3.1/TXD11P3.2/INT012P3.3/INT113P3.4/T014P3.7/RD17P3.6/WR16P3.5/T115P2.7/A1528P2.0/A821P2.1/A922P2.2/A1023P2.3/A1124P2.4/A1225P2.5/A1326P2.6/A1427U1AT89C51 单片机接口技术课程设计(论文) 3 电阻把端口拉到高电平,此时可作输入口。作输入口使用时,因为内部存在上拉电阻,某个引脚被外部信号拉低时会输出一个电流(IIL)。AT89C51 不同之处是,P1.0 和P1.1
还可分别作为定时/计数器2 的外部计数输入(P1.0/T2)和输入(P1.1/T2EX)。
P3 口:第10~17脚。P3 口是一组带有内部上拉电阻的8 位双向I/O 口。P3 口输出缓冲级可驱动(吸收或输出电流)4 个TTL逻辑门电路。对P3 口写入“1”时,它们被内部上拉电阻拉高并可作为输入端口。此时,被外部拉低的P3 口将用上拉电阻输出电流(IIL)。此外,P3 口还接收一些用于Flash 闪速存储器编程和程序校验的控制信号。
RST:第9脚。复位输入。当振荡器工作时,RST引脚出现两个机器周期以上高电平将使单片机复位。
EA/VPP:第31脚。外部访问允许。欲使CPU 仅访问外部程序存储器(地址为0000H—FFFFH),EA 端必须保持低电平(接地)。XTAL1:振荡器反相放大器的及内部时钟发生器的输入端。
XTAL2:振荡器反相放大器的输出端。
2.3 AT89C51时钟电路
时钟频率直接影响单片机的速度,电路的质量直接影响系统的稳定性。常用的时钟电路有两种方式:内部时钟方式和外部时钟方式。
内部时钟方式:AT89C51芯片中的高增益反相放大器,其输入端为引脚XTAL1,其输出端为引脚XTAL2。通过这两个引脚在芯片外并接石英晶体振荡器和两只电容(电容C1和C2一般取30pF)。石英晶体振荡器为一个感性元件,与电容构成振荡回路,为片内放大器提供正反馈和振荡所需要的相移条件,从而构成一个稳定的自激振荡器。AT89C51振荡电路如图2-2所示。
图2-2 AT89C51振荡电路