当前位置:文档之家› 立体几何解题方法技巧

立体几何解题方法技巧

立体几何解题方法技巧
立体几何解题方法技巧

立体几何

高考对本节知识的考查主要有以下两个考向:1.三视图几乎是每年的必考内容,一般以选择题、填空题的形式出现,一是考查相关的识图,由直观图判断三视图或由三视图想象直观图,二是以三视图为载体,考查面积、体积的计算等,均属低中档题.2.对于空间几何体的表面积与体积,由原来的简单公式套用渐渐变为三视图及柱、锥与球的接切问题相结合,特别是已知空间几何体的三视图求表面积、体积是近两年高考考查的热点,题型一般为选择题或填空题.

1.四棱柱、直四棱柱、正四棱柱、正方体、平行六面体、直平行六面体、长方体之间的关

系.

2.空间几何体的三视图

(1)三视图的正视图、侧视图、俯视图分别是从物体的正前方、正左方、正上方看到的物体轮廓线的正投影形成的平面图形.

(2)三视图排列规则:俯视图放在正视图的下面,长度与正视图一样;侧视图放在正视图的右面,高度和正视图一样,宽度与俯视图一样.

(3)画三视图的基本要求:正俯一样长,俯侧一样宽,正侧一样高.看不到的线画虚线. 3.直观图的斜二测画法

空间几何体的直观图常用斜二测画法来画,其规则是:

(1)原图形中x 轴、y 轴、z 轴两两垂直,直观图中,x ′轴、y ′轴的夹角为45°(或135°),

z ′轴与x ′轴和y ′轴所在平面垂直.

(2)原图形中平行于坐标轴的线段,直观图中仍分别平行于坐标轴.平行于x 轴和z 轴的线段在直观图中保持原长度不变,平行于y 轴的线段长度在直观图中变为原来的一半.

4.空间几何体的两组常用公式

(1)柱体、锥体、台体的侧面积公式: ①S 柱侧=ch (c 为底面周长,h 为高); ②S 锥侧=1

2

ch ′(c 为底面周长,h ′为斜高);

③S 台侧=1

2(c +c ′)h ′(c ′,c 分别为上下底面的周长,h ′为斜高);

④S 球表=4πR 2

(R 为球的半径). (2)柱体、锥体和球的体积公式:

①V 柱体=Sh (S 为底面面积,h 为高); ②V 锥体=1

3Sh (S 为底面面积,h 为高);

③V 台=1

3(S +SS ′+S ′)h (不要求记忆);

④V 球=43πR 3

.

考点一 三视图与直观图的转化

例1 (1)已知三棱柱的正视图与俯视图如图,那么该三棱锥的侧视图可能为

( )

(2)将长方体截去一个四棱锥,得到的几何体如图所示,则该几何体的侧视图为( )

答案 (1)B (2)D

解析 (1)底面为正三角形,一侧棱垂直于底面.由虚线知可 能有一侧棱看不见.由题知这个空间几何体的侧视图的底面边长是3,故其侧视图只

可能是选项B 中的图形.

(2)如图所示,点D 1的投影为C 1,点D 的投影为C ,点A 的投影为B ,故选D.

空间几何体的三视图是从空间几何体的正面、左面、上面用平行投影的方法得到的三个平面投影图,因此在分析空间几何体的三视图问题时,先根据俯视图确定几何体的底面,然后根据正视图或侧视图确定几何体的侧棱与侧面的特征,调整实线和虚线所对应的棱、面的位置,再确定几何体的形状,即可得到结果.

(1)(2013·课标全国Ⅱ)一个四面体的顶点在空间直角坐标系O -xyz 中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为投影面,则得到的正视图可以为

( )

(2)(2012·湖南)某几何体的正视图和侧视图均如图所示,则该几何体的俯视图不可能是

( )

答案 (1)A (2)D

解析 (1)根据已知条件作出图形:四面体C 1-A 1DB ,标出各个点的坐标如图(1)所示,可以看出正视图为正方形,如图(2)所示.故选A.

(2)根据几何体的三视图知识求解.

由于该几何体的正视图和侧视图相同,且上部分是一个矩形,矩形中间无实线和虚线,因此俯视图不可能是D. 考点二 几何体的表面积及体积

例2 (1)某四面体的三视图如图所示,该四面体四个面的面积中最大的是

( )

A .8

B .6 2

C .10

D .8 2

(2)(2013·浙江)若某几何体的三视图(单位:cm)如图所示,则此几何体的体积等于________ cm 3

.

答案 (1)C (2)24

解析 (1)由三视图可想象出如图所示的三棱锥,SA ⊥平面ABC ,△ABC 中∠ABC =90°,SA =AB =4,BC =3,因此图中四个面的三角形均为 直角三角形,SB =42,AC =5,S △SAC =10,S △SAB =8,S △SBC =62,

S △ABC =6,所以最大面积是10.

(2)由三视图可知,其直观图为:

AB =4,AC =3,∠BAC =90°,

∴BC =5. 作AH ⊥BC 于H ,

AH =AB ·AC BC =125

.

作A 1M ⊥BB 1于M ,A 1N ⊥CC 1于N .连接MN .

V =13×(5×3)×125+(3×4)×12

×2=24.

(1)求几何体的表面积及体积问题,可以多角度、多方位地考虑,熟记公式是

关键所在.求三棱锥的体积,等体积转化是常用的方法,转换原则是其高易求,底面放在已知几何体的某一面上.

(2)求不规则几何体的体积,常用分割或补形的思想,将不规则几何体转化为规则几何体以易于求解.

(1)(2013·江西)一几何体的三视图如图所示,则该几何体的体积为

( )

A .200+9π

B .200+18π

C .140+9π

D .140+18π

(2)(2012·辽宁)一个几何体的三视图如图所示,则该几何体的表面积为________.

答案 (1)A (2)38

解析 (1)该几何体是由一个长方体与一个半圆柱构成.

V =10×4×5+12

×π×32×2=200+9π.

(2)将三视图还原为直观图后求解.

根据三视图可知几何体是一个长方体挖去一个圆柱, 所以S =2×(4+3+12)+2π-2π=38. 考点三 多面体与球

例3 如图所示,平面四边形ABCD 中,AB =AD =CD =1,BD =2,BD ⊥CD ,将其沿对角线

BD 折成四面体ABCD ,使平面ABD ⊥平面BCD ,若四面体ABCD 的顶点在同一个球面上,

则该球的体积为

( )

A.3

2

π

B .3π

C.2

3

π

D .2π

要求出球的体积就要求出球的半径,需要根据已知数据和空间位置关系确定

球心的位置,由于△BCD 是直角三角形,根据直角三角形的性质:斜边的中点到三角形各个顶点的距离相等,只要再证明这个点到点A 的距离等于这个点到B ,C ,D 的距离即可确定球心,进而求出球的半径,根据体积公式求解即可. 答案 A

解析 如图,取BD 的中点E ,BC 的中点O , 连接AE ,OD ,EO ,AO .

由题意,知AB =AD ,所以AE ⊥BD . 由于平面ABD ⊥平面BCD ,AE ⊥BD , 所以AE ⊥平面BCD .

因为AB =AD =CD =1,BD =2, 所以AE =

22,EO =12.所以OA =32

.

在Rt△BDC 中,OB =OC =OD =12BC =3

2,

所以四面体ABCD 的外接球的球心为O ,半径为3

2

. 所以该球的体积V =43π(32)3=3

2

π.故选A.

多面体与球接、切问题求解策略

(1)涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体中的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题,再利用平面几何知识寻找几何体中元素间的关系,或只画内切、外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解.

(2)若球面上四点P ,A ,B ,C 构成的三条线段PA ,PB ,PC 两两互相垂直,且PA =a ,

PB =b ,PC =c ,一般把有关元素“补形”成为一个球内接长方体,则4R 2=a 2+b 2+c 2

求解.

(1)一个几何体的三视图如图所示,其中正视图和侧视图是腰长为4的两个全等的等腰直角三角形,若该几何体的所有顶点在同一球面上,则该球的表面积是

( )

A .12π

B .24π

C .32π

D .48π

(2)一个空间几何体的三视图如图所示,且这个空间几何体的所有顶点都在同一个球面上,则这个球的表面积是________.

答案 (1)D (2)16π

解析 (1)由已知条件知该几何体的直观图如图所示,PA ⊥面ABCD , △PAC 、△PBC 、△PCD 均为直角三角形,且斜边相同,所以球心 为PC 中点O ,OA =12PC =OB =OD =2 3.球的表面积为S =4π(OA )

2 =48π.

(2)该几何体是一个正三棱柱,底面边长为3,高为2.设其外接球的球心为

O ,上、下底面中心分别为B 、C ,则O 为BC 的中点,如图所示.

则AB =2

3×3sin 60°=3,BO =1,

∴该棱柱的外接球半径为R =AB 2

+BO 2

=2, ∴球的表面积是S =4πR 2

=16π.

1.空间几何体的面积有侧面积和表面积之分,表面积就是全面积,是一个空间几何体中“暴露”在外的所有面的面积,在计算时要注意区分是“侧面积还是表面积”.多面体的表面积就是其所有面的面积之和,旋转体的表面积除了球之外,都是其侧面积和底面面积之和. 2.在体积计算中都离不开空间几何体的“高”这个几何量(球除外),因此体积计算中的关

键一环就是求出这个量.在计算这个几何量时要注意多面体中的“特征图”和旋转体中的轴截面.

3.一些不规则的几何体,求其体积多采用分割或补形的方法,从而转化为规则的几何体,

而补形又分为对称补形(即某些不规则的几何体,若存在对称性,则可考虑用对称的方法进行补形)、还原补形(即还台为锥)和联系补形(某些空间几何体虽然也是规则几何体,不过几何量不易求解,可根据其所具有的特征,联系其他常见几何体,作为这个规则几何体的一部分来求解). 4.长方体的外接球

(1)长、宽、高分别为a 、b 、c 的长方体的体对角线长等于外接球的直径,即a 2

+b 2

+c 2

=2R ;

(2)棱长为a 的正方体的体对角线长等于外接球的直径,即3a =2R .

1.从一个正方体中截去部分几何体,得到一个以原正方体的部分顶点为顶点的凸多面体,

其三视图如图,则该几何体体积的值为

( )

A .5 2

B .6 2

C .9

D .10

答案 C

解析 由三视图知,其直观图为 棱锥A -BCDE .

V =27-272-13×3×92

=9.故选C.

2.在三棱锥A -BCD 中,侧棱AB ,AC ,AD 两两垂直,△ABC ,△ACD ,△ABD 的面积分别为

2

2

,32,6

2,则三棱锥A -BCD 的外接球体积为

( )

A.6π

B .26π

C .36π

D .46π

答案 A

解析 如图,以AB ,AC ,AD 为棱把该三棱锥扩充成长方体,则该 长方体的外接球恰为三棱锥的外接球, ∴三棱锥的外接球的直径是长方体的对角线长.

据题意???

AB ·AC =2,

AC ·AD =

3,

AB ·AD =

6,

解得???

AB =2,AC =1,

AD =3,

∴长方体的对角线长为AB 2

+AC 2

+AD 2

=6, ∴三棱锥外接球的半径为

62

. ∴三棱锥外接球的体积为V =43π·(62

)3

=6π.

一、选择题

1.一梯形的直观图是一个如右图所示的等腰梯形,且该梯形的面积为

2,则原梯形的面积为

( )

A .2

B. 2

C .2 2

D .4

答案 D

解析 直观图为等腰梯形,则上底设为x ,高设为y ,则S 直观图=1

2y (x +2y +x )=2,

由直观图可知原梯形为直角梯形,其面积S =1

2·22y ·(x +2y +x )=22×2=4.

2.(2013·湖南)已知正方体的棱长为1,其俯视图是一个面积为1的正方形,侧视图是一

个面积为2的矩形,则该正方体的正视图的面积等于

( )

A.32

B .1

C.

2+1

2

D. 2

答案 D

解析 ∵俯视图是面积为1的正方形, ∴此正方体水平放置,

又侧视图是面积为2的矩形, ∴正方体的对角面平行于投影面, 此时正视图和侧视图相同,面积为 2.

3.(2013·课标全国Ⅰ)某几何体的三视图如图所示,则该几何体的体积为

( )

A .16+8π

B .8+8π

C .16+16π

D .8+16π

答案 A

解析 将三视图还原成直观图为: 上面是一个正四棱柱,下面是半个圆柱体. 所以V =2×2×4+12×22

×π×4

=16+8π. 故选A.

4.一个几何体的三视图如图所示,则这个几何体的体积为

( )

A.

3 8+π

6

B.

3 8+2π

6

C.

3 6+π

6

D.

3 9+2π

6

答案 A

解析 该几何体由底面半径为1的半圆锥与底面为边长等于2的正方形的四棱锥组成,且高都为3,因此该几何体的体积V =13×(12×π×12

)×3+13×(2×2)×3=

3π6+

433=3 8+π

6

,故选A. 5.(2012·北京)某三棱锥的三视图如图所示,该三棱锥的表面积是

( )

A .28+6 5

B .30+6 5

C .56+12 5

D .60+12 5

答案 B

解析 根据几何体的三视图画出其直观图,利用直观图的图形特征求其表面积.

由几何体的三视图可知,该三棱锥的直观图如图所示,

其中AE ⊥平面BCD ,CD ⊥BD ,且CD =4,BD =5,BE =2,ED =3,

AE =4.

∵AE =4,ED =3,∴AD =5. 又CD ⊥BD ,CD ⊥AE , 则CD ⊥平面ABD , 故CD ⊥AD ,

所以AC =41且S △ACD =10.

在Rt△ABE 中,AE =4,BE =2,故AB =2 5. 在Rt△BCD 中,BD =5,CD =4, 故S △BCD =10,且BC =41.

在△ABD 中,AE =4,BD =5,故S △ABD =10. 在△ABC 中,AB =25,BC =AC =41,

则AB 边上的高h =6,故S △ABC =1

2×25×6=6 5.

因此,该三棱锥的表面积为S =30+6 5.

6.某几何体的三视图如图所示,其中正视图是腰长为2的等腰三角形,侧视图是半径为1

的半圆,该几何体的体积为

( )

A.3

3

π B.3

6

π

C.3

2

π

D.3π 答案 A

解析 三视图复原的几何体是圆锥沿轴截面截成两部分,然后把截面放在平面上,底面相对接的图形,圆锥的底面半径为1,母线长为2,故圆锥的高为h =22

-12

= 3.易知该几何体的体积就是整个圆锥的体积,即V 圆锥

=13πr 2h =13π×12

×3=33

π.故选A.

7.已知正方形ABCD 的边长为22,将△ABC 沿对角线AC 折起,使

平面ABC ⊥平面ACD ,得到如右图所示的三棱锥B -ACD .若O 为

AC 边的中点,M ,N 分别为线段DC ,BO 上的动点(不包括端点),

且BN =CM .设BN =x ,则三棱锥N -AMC 的体积y =f (x )的函数图象大致是 ( )

答案 B

解析 由平面ABC ⊥平面ACD ,且O 为AC 的中点,可知BO ⊥平面ACD ,易知BO =2,故三棱锥N -AMC 的高为ON =2-x ,△AMC 的面积为1

2

·MC ·AC ·sin 45°=2x ,故三棱

锥N -AMC 的体积为y =f (x )=13·(2-x )·2x =23(-x 2

+2x )(0

图象为开口向下的抛物线的一部分. 二、填空题

8.(2012·山东)如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,E ,F 分

别为线段AA 1,B 1C 上的点,则三棱锥D 1-EDF 的体积为______. 答案 1

6

解析 利用三棱锥的体积公式直接求解.

VD 1-EDF =VF -DD 1E =13

S △D 1DE ·AB

=13×12×1×1×1=16

. 9.(2013·江苏)如图,在三棱柱A 1B 1C 1-ABC 中,D ,E ,F 分别是AB ,AC ,AA 1的中点,设

三棱锥F -ADE 的体积为V 1,三棱柱A 1B 1C 1-ABC 的体积为V 2,则V 1∶V 2=________.

答案 1∶24

解析 设三棱锥F -ADE 的高为h , 则V 1

V 2=13h ? ???

?12AD ·AE ·sin∠DAE 2h 1

2 2AD 2AE sin∠DAE

=124

. 10.已知矩形ABCD 的面积为8,当矩形周长最小时,沿对角线AC 把△ACD 折起,则三棱锥

D -ABC 的外接球的表面积等于________.

答案 16π

解析 设矩形的两邻边长度分别为a ,b ,则ab =8,此时2a +2b ≥4ab =82,当且仅当a =b =22时等号成立,此时四边形ABCD 为正方形,其中心到四个顶点的距离相等,均为2,无论怎样折叠,其四个顶点都在一个半径为2的球面上,这个球的表面积是4π×22

=16π.

11.已知某几何体的三视图如图所示,其中,正视图、侧视图均是由三角形与半圆构成的,

俯视图由圆与内接三角形构成,根据图中的数据可得此几何体的体积为________.

答案

2π6+1

6

解析 据三视图可知,该几何体是一个半球(下部)与一个四面体(上部)的

组合体,其直观图如图所示,其中BA ,BC ,BP 两两垂直,且BA =BC =BP =1,∴(半)球的直径长为AC =2,∴该几何体的体积为 V =V 半球+V P -ABC =12×43

π(AC 2

)3+13×12

×BA ·BC ·PB =2π6

+1

6

.

三、解答题

12.(2013·福建)如图,在四棱锥P —ABCD 中,PD ⊥平面ABCD ,AB ∥DC ,

AB ⊥AD ,BC =5,DC =3,AD =4,∠PAD =60°.

(1)当正视方向与向量AD →

的方向相同时,画出四棱锥P —AB CD 的正视 图(要求标出尺寸,并写出演算过程); (2)若M 为PA 的中点,求证:DM ∥平面PBC ; (3)求三棱锥D —PBC 的体积.

(1)解 在梯形ABCD 中,过点C 作CE ⊥AB ,垂足为E . 由已知得,四边形ADCE 为矩形,AE =CD =3, 在Rt△BEC 中,由BC =5,CE =4,依据勾股定理得

BE =3,从而AB =6.

又由PD ⊥平面ABCD 得,PD ⊥AD ,

从而在Rt△PDA 中,由AD =4,∠PAD =60°, 得PD =4 3. 正视图如图所示:

(2)证明 取PB 中点N ,连接MN ,CN . 在△PAB 中,∵M 是 PA 的中点, ∴MN ∥AB ,MN =1

2AB =3,

又CD ∥AB ,CD =3, ∴MN ∥CD ,MN =CD ,

∴四边形MNCD 为平行四边形, ∴DM ∥CN .

又DM ?平面PBC ,CN ?平面PBC , ∴DM ∥平面PBC .

(3)解 V D —PBC =V P —DBC =1

3

S △DBC ·PD ,

又S △DBC =6,PD =43, 所以V D —PBC =8 3.

13.如图,在Rt△ABC 中,AB =BC =4,点E 在线段AB 上.过点E 作EF ∥BC 交AC 于点F ,

将△AEF 沿EF 折起到△PEF 的位置(点A 与P 重合),使得∠PEB =30°. (1)求证:EF ⊥PB ;

(2)试问:当点E 在何处时,四棱锥P —EFCB 的侧面PEB 的面积最大?并求此时四棱

锥P —EFCB 的体积.

(1)证明 ∵EF ∥BC 且BC ⊥AB ,

∴EF ⊥AB ,即EF ⊥BE ,EF ⊥PE .又BE ∩PE =E , ∴EF ⊥平面PBE ,∴EF ⊥PB .

(2)解 设BE =x ,PE =y ,则x +y =4. ∴S △PEB =1

2BE ·PE ·sin∠PEB

=14xy ≤14? ??

??x +y 22=1. 当且仅当x =y =2时,S △PEB 的面积最大. 此时,BE =PE =2. 由(1)知EF ⊥平面PBE , ∴平面PBE ⊥平面EFCB ,

在平面PBE 中,作PO ⊥BE 于O ,则PO ⊥平面EFCB . 即PO 为四棱锥P —EFCB 的高. 又PO =PE ·sin 30°=2×1

2

=1.

S EFCB =12

(2+4)×2=6.

∴V P —BCFE =1

3×6×1=2.

立体几何新题型的解题技巧

立体几何新题型的解题技巧 立体几何新题型的解题技巧 【命题趋向】 在高考中立体几何命题有如下特点: 1.线面位置关系突出平行和垂直,将侧重于垂直关系. 2.多面体中线面关系论证,空间“角”与“距离”的计算常在解答题中综合出现. 3.多面体及简单多面体的概念、性质多在选择题,填空题出现. 4.有关三棱柱、四棱柱、三棱锥的问题,特别是与球有关的问题将是高考命题的热点. 此类题目分值一般在17---22分之间,题型一般为1个选择题,1个填空题,1个解答题. 【考点透视】 (A)版.掌握两条直线所成的角和距离的概念,对于异面直线的距离,只要求会计算已给出公垂线时的距离.掌握斜线在平面上的射影、直线和平面所成的角、直线和平面的距离的概念.掌握二面角、二面角的平面角、两个平行平面间的距离的概念. (B)版. ①理解空间向量的概念,掌握空间向量的加法、减法和数乘. ②了解空间向量的基本定理,理解空间向量坐标的概念,掌握空间向量的坐标运算. ③掌握空间向量的数量积的定义及其性质,掌握用直角坐标计算空间向量数量积公式. ④理解直线的方向向量、平面的法向量,向量在平面内的射影等概念. ⑤了解多面体、凸多面体、正多面体、棱柱、棱锥、球的概念. ⑥掌握棱柱、棱锥、球的性质,掌握球的表面积、体积公式. ⑦会画直棱柱、正棱锥的直观图. 空间距离和角是高考考查的重点:特别是以两点间距离,点到平面的距离,两异面直线的距离,直线与平面的距离以及两异面直线所成的角,直线与平面所成的角,二面角等作为命题的重点内容,高考试题中常将上述内容综合在一起放在解答题中进行考查,分为多个小问题,也可能作为客观题进行单独考查.考查空间距离和角的试题一般作为整套试卷的中档题,但也可能在最后一问中设置有难度的问题. 不论是求空间距离还是空间角,都要按照“一作,二证,三算”的步骤来完成,即寓证明于运算之中,正是本专题的一大特色. 求解空间距离和角的方法有两种:一是利用传统的几何方法,二是利用空间向量。

立体几何题型的解题技巧适合总结提高用

第六讲 立体几何新题型的解题技巧 考点1 点到平面的距离 例1(2007年福建卷理)如图,正三棱柱111ABC A B C -的所有棱长都为2,D 为1CC 中点. (Ⅰ)求证:1AB ⊥平面1A BD ; (Ⅱ)求二面角1A A D B --的大小; (Ⅲ)求点C 到平面1A BD 的距离. 例2.( 2006年湖南卷)如图,已知两个正四棱锥P -ABCD 与Q -ABCD 的高分别为1和2,AB =4. (Ⅰ)证明PQ ⊥平面ABCD ; (Ⅱ)求异面直线AQ 与PB 所成的角; (Ⅲ)求点P 到平面QAD 的距离. 考点2 异面直线的距离 例3已知三棱锥ABC S -,底面是边长为24的正三角形,棱SC 的长为2,且垂直于底面.D E 、分别为AB BC 、的中点,求CD 与SE 间的距离. 考点3 直线到平面的距离 例4.如图,在棱长为2的正方体1AC 中,G 是1AA 的中点,求BD 到平面11D GB 的距离. 考点4 异面直线所成的角 例5(2007年北京卷文) 如图,在Rt AOB △中,π6OAB ∠=,斜边4AB =.Rt AOC △可以通过Rt AOB △以直线AO 为轴旋转得到,且二面角B AO C --的直二面角.D 是AB 的中点. (I )求证:平面COD ⊥平面AOB ; (II )求异面直线AO 与CD 所成角的大小. 例6.(2006年广东卷)如图所示,AF 、DE 分别是⊙O 、⊙O 1的直径.AD 与两圆所在的平面均垂直,AD =8,BC 是⊙O 的直径,AB =AC =6,OE //AD . (Ⅰ)求二面角B —AD —F 的大小; (Ⅱ)求直线BD 与EF 所成的角. 考点5 直线和平面所成的角 例7.(2007年全国卷Ⅰ理) B A C D O G H 1 A 1 C 1D 1 B 1O Q B C P A D O M A B C D 1 A 1 C 1 B O C A D B E

高考中常见的立体几何题型和解题方法

高考中常见的立体几何题型和解题方法 黔江中学高三数学教师:付 超 高考立体几何试题一般共有2——3道(选择、填空题1——2道, 解答题1道), 共计总分18——23分左右,考查的知识点在20个以内. 选择填空题考核立几中的 逻辑推理型问题, 而解答题着重考查立几中的计算型问题, 当然, 二者均应以正 确的空间想象为前提. 随着新的课程改革的进一步实施,立体几何考题正朝着“多 一点思考,少一点计算”的方向发展.从历年的考题变化看, 以简单几何体为载体 的线面位置关系的论证,角与距离的探求是常考常新的热门话题. 一、知识整合 1.有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过 程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与 距离等)中不可缺少的内容,因此在主体几何的总复习中,首先应从解决“平行 与垂直”的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能, 通过对问题的分析与概括,掌握立体几何中解决问题的规律——充分利用线线平 行(垂直)、线面平行(垂直)、面面平行(垂直)相互转化的思想,以提高逻辑思维能 力和空间想象能力. 2. 判定两个平面平行的方法: (1)根据定义——证明两平面没有公共点; (2)判定定理——证明一个平面内的两条相交直线都平行于另一个平面; (3)证明两平面同垂直于一条直线。 3.两个平面平行的主要性质: ⑴由定义知:“两平行平面没有公共点”。 ⑵由定义推得:“两个平面平行,其中一个平面内的直线必平行于另一个平 面。 ⑶两个平面平行的性质定理:“如果两个平行平面同时和第三个平面相交, 那 么它们的交线平行”。 ⑷一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。 ⑸夹在两个平行平面间的平行线段相等。 ⑹经过平面外一点只有一个平面和已知平面平行。 以上性质⑵、⑷、⑸、⑹在课文中虽未直接列为“性质定理”,但在解题过 程中均可直接作为性质定理引用。 4.空间角和距离是空间图形中最基本的数量关系,空间角主要研究射影以 及与射影有关的定理、空间两直线所成的角、直线和平面所成的角、以及二面角 和二面角的平面角等.解这类问题的基本思路是把空间问题转化为平面问题去解 决. 空间角,是对由点、直线、平面所组成的空间图形中各种元素间的位置关系 进行定量分析的一个重要概念,由它们的定义,可得其取值范围,如两异面直线 所成的角θ∈(0,2π],直线与平面所成的角θ∈0,2π?????? ,二面角的大小,可用它们的平面角来度量,其平面角θ∈[0,π].对于空间角的计算,总是通过一定 的手段将其转化为一个平面内的角,并把 它置于一个平面图形,而且是一个三

立体几何解题方法总结

1.判定两个平面平行的方法: (1)根据定义——证明两平面没有公共点; (2)判定定理——证明一个平面内的两条相交直线都平行于另一个平面; (3)证明两平面同垂直于一条直线。 2.两个平面平行的主要性质: ⑴由定义知:“两平行平面没有公共点”。 ⑵由定义推得:“两个平面平行,其中一个平面内的直线必平行于另一个平面。 ⑶两个平面平行的性质定理:“如果两个平行平面同时和第三个平面相交,那么它们的交线平行”。 ⑷一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。 ⑸夹在两个平行平面间的平行线段相等。 ⑹经过平面外一点只有一个平面和已知平面平行。 3.空间的角和距离是空间图形中最基本的数量关系,空间的角主要研究射影以及与射影有关的定理、空间两直线所成的角、直线和平面所成的角、以及二面角和二面角的平面角等.解这类问题的基本思路是把空间问题转化为平面问题去解决. 空间的角,是对由点、直线、平面所组成的空间图形中各种元素间的位置关系进行定量 分析的一个重要概念,由它们的定义,可得其取值范围,如两异面直线所成的角θ∈(0,2 π ], 直线与平面所成的角θ∈0,2π?? ????,二面角的大小,可用它们的平面角来度量,其平面角θ∈[0, π ]. 对于空间角的计算,总是通过一定的手段将其转化为一个平面内的角,并把它置于一个平面图形,而且是一个三角形的内角来解决,而这种转化就是利用直线与平面的平行与垂直来实现的, 如求异面直线所成的角常用平移法(转化为相交直线)与向量法;求直线与平面所成的角常利用射影转化为相交直线所成的角;而求二面角-l -的平面角(记作)通常有以 下几种方法: (1) 根据定义; (2) 过棱l 上任一点O 作棱l 的垂面 ,设 ∩ =OA , ∩ =OB ,则∠AOB = ; (3) 利用三垂线定理或逆定理,过一个半平面内一点A ,分别作另一个平面的垂线 AB (垂足为B ),或棱l 的垂线AC (垂足为C ),连结AC ,则∠ACB = 或∠ACB =-; (4) 设A 为平面外任一点,AB ⊥ ,垂足为B ,AC ⊥ ,垂足为C ,则∠BAC = 或 ∠BAC =-; (5) 利用面积射影定理,设平面 内的平面图形F 的面积为S ,F 在平面 内的射影图形

数学立体几何解题技巧

数学立体几何解题技巧 数学立体几何解题技巧 1平行、垂直位置关系的论证的策略: (2)利用题设条件的性质适当添加辅助线(或面)是解题的常用方法之一。 (3)三垂线定理及其逆定理在高考题中使用的频率最高,在证明线线垂直时应优先考虑。 2空间角的计算方法与技巧: 主要步骤:一作、二证、三算;若用向量,那就是一证、二算。 (1)两条异面直线所成的角: ①平移法:②补形法:③向量法: (2)直线和平面所成的角 ①作出直线和平面所成的角,关键是作垂线,找射影转化到同一三角形中计算,或用向量计算。 ②用公式计算. (3)二面角: ①平面角的作法: (i)定义法; (ii)三垂线定理及其逆定理法;(iii)垂面法。 ②平面角的计算法: (i)找到平面角,然后在三角形中计算(解三角形)或用向量计算;

(ii)射影面积法; (iii)向量夹角公式. 3空间距离的计算方法与技巧: (1)求点到直线的距离: 经常应用三垂线定理作出点到直线的垂线,然后在相关的三角形中求解,也可以借助于面积相等求出点到直线的距离。 (2)求两条异面直线间距离: 一般先找出其公垂线,然后求其公垂线段的长。在不能直接作出公垂线的情况下,可转化为线面距离求解(这种情况高考不做要求)。 (3)求点到平面的距离: 一般找出(或作出)过此点与已知平面垂直的平面,利用面面垂直的性质过该点作出平面的垂线,进而计算;也可以利用“三棱锥体积法”直接求距离;有时直接利用已知点求距离比较困难时,我们可以 把点到平面的距离转化为直线到平面的距离,从而“转移”到另一 点上去求“点到平面的距离”。求直线与平面的距离及平面与平面 的距离一般均转化为点到平面的距离来求解。 4熟记一些常用的小结论 诸如:正四面体的体积公式是;面积射影公式;“立平斜关系式”;最小角定理。弄清楚棱锥的顶点在底面的射影为底面的内心、外心、垂心的条件,这可能是快速解答某些问题的前提。 5平面图形的翻折、立体图形的展开等一类问题 要注意翻折前、展开前后有关几何元素的“不变性”与“不变量”。 6与球有关的题型 只能应用“老方法”,求出球的半径即可。 7立体几何读题:

高中数学立体几何解题技巧

高中数学立体几何解题技巧 高考立体几何试题一般共有4道(选择、填空题3道,解答题1道),共计总分27分左右,考查的知识点在20个以内。选择填空题考核立几中的计算型问题,而解答题着重考查立几中的逻辑推理型问题,当然,二者均应以正确的空间想象为前提。随着新的课程改革的进一步实施,立体几何考题正朝着“多一点思考,少一点计算”的发展。从历年的考题变化看,以简单几何体为载体的线面位置关系的论证,角与距离的探求是常考常新的热门话题。 知识整合 1、有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与距离等)中不可缺少的内容,因此在主体几何的总复习中,首先应从解决“平行与垂直”的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能,通过对问题的分析与概括,掌握立体几何中解决问题的规律--充分利用线线平行(垂直)、线面平行(垂直)、面面平行(垂直)相互转化的思想,以提高逻辑思维能力和空间想象能力。 2、判定两个平面平行的方法: (1)根据定义--证明两平面没有公共点; (2)判定定理--证明一个平面内的两条相交直线都平行于另一

个平面; (3)证明两平面同垂直于一条直线。 3、两个平面平行的主要性质: (1)由定义知:“两平行平面没有公共点”。 (2)由定义推得:“两个平面平行,其中一个平面内的直线必平行于另一个平面。 (3)两个平面平行的性质定理:”如果两个平行平面同时和第三个平面相交,那么它们的交线平行“。 (4)一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。 (5)夹在两个平行平面间的平行线段相等。 (6)经过平面外一点只有一个平面和已知平面平行。 以上性质(2)、(3)、(5)、(6)在课文中虽未直接列为”性质定理“,但在解题过程中均可直接作为性质定理引用。 解答题分步骤解决可多得分 01、合理安排,保持清醒。 数学考试在下午,建议中午休息半小时左右,睡不着闭闭眼睛也好,尽量放松。然后带齐用具,提前半小时到考场。 02、通览全卷,摸透题情。 刚拿到试卷,一般较紧张,不宜匆忙作答,应从头到尾通览全卷,尽量从卷面上获取更多的信息,摸透题情。这样能提醒自己先易后难,也可防止漏做题。

高中数学立体几何知识点与解题方法技巧

立体几何知识点 & 例题讲解 高考时如果图形比较规则且坐标也比较好计算时就用坐标法(向量法)解决,但平时传统方法和向量法都要熟练。并且要多用传统方法,这样才能把自己的空间想象能力培养上去。 一、知识点 <一>常用结论 1.证明直线与直线的平行的思考途径:(1)转化为判定共面二直线无交点;(2)转化为二直线同与第三条直线 平行;(3)转化为线面平行;(4)转化为线面垂直;(5)转化为面面平行. 2.证明直线与平面的平行的思考途径:(1)转化为直线与平面无公共点;(2)转化为线线平行;(3)转化为面 面平行. 3.证明平面与平面平行的思考途径:(1)转化为判定二平面无公共点;(2)转化为线面平行;(3)转化为线面 垂直. 4.证明直线与直线的垂直的思考途径:(1)转化为相交垂直;(2)转化为线面垂直;(3)转化为线与另一线的 射影垂直;(4)转化为线与形成射影的斜线垂直. 5.证明直线与平面垂直的思考途径:(1)转化为该直线与平面内任一直线垂直;(2)转化为该直线与平面内相交二直线垂直;(3)转化为该直线与平面的一条垂线平行;(4)转化为该直线垂直于另一个平行平面;(5)转化为该直线与两个垂直平面的交线垂直. 6.证明平面与平面的垂直的思考途径:(1)转化为判断二面角是直二面角;(2)转化为线面垂直. 7.夹角公式 :设a =123(,,)a a a ,b =123(,,)b b b ,则cos 〈a ,b 〉 . 8.异面直线所成角:cos |cos ,|a b θ== 21 |||||| a b a b x ?= ?+ (其中θ(090θ<≤)为异面直线a b , 所成角,,a b 分别表示异面直线a b ,的方向向量) 9.直线AB 与平面所成角:sin |||| AB m arc AB m β?=(m 为平面α的法向量). 10、空间四点A 、B 、C 、P 共面z y x ++=?,且 x + y + z = 1 11.二面角l αβ--的平面角 cos ||||m n arc m n θ?=或cos |||| m n arc m n π?-(m ,n 为平面α,β的法向量). 12.三余弦定理:设AC 是α内的任一条直线,且BC ⊥AC ,垂足为C ,又设AO 与AB 所成的角为1θ,AB 与AC 所 成的角为2θ,AO 与AC 所成的角为θ.则12cos cos cos θθθ=. 13.空间两点间的距离公式 若A 111(,,)x y z ,B 222(,,)x y z ,则,A B d =||AB AB AB = ?=14.异面直线间的距离: || || CD n d n ?= (12,l l 是两异面直线,其公垂向量为n ,C D 、分别是12,l l 上任一点,d 为12,l l 间的距离). 15.点B 到平面α的距离:|| || AB n d n ?= (n 为平面α的法向量,AB 是经过面α的一条斜线,A α∈). 16.三个向量和的平方公式:2 2 2 2()222a b c a b c a b b c c a ++=+++?+?+? 222 2||||cos ,2||||cos ,2||||cos ,a b c a b a b b c b c c a c a =+++?+?+? 17. 长度为l 的线段在三条两两互相垂直的直线上的射影长分别为123l l l 、、,夹角分别为123θθθ、、,则有 2222123l l l l =++222123cos cos cos 1θθθ?++=222123sin sin sin 2θθθ?++=. (立体几何中长方体对角线长的公式是其特例).

立体几何及解题技巧以及空间距离专题复习

立体几何及解题技巧以及空间距离专题复习

知识点整理 (一)平行与垂直的判断 ⑴平行:设,的法向量分别为U,V ,贝U 直线l,m 的方向向量分 别为a,b ,平面 线线平行i // m a 〃 b a 诂;线面平行i // a u a u 0 ; 面面平行// u // v u J. ⑵ 垂直:设直线l ,m 的方向向量分别为a,b ,平面,的法向量 分别为u,v ,则 线线垂直I 丄m a 丄b ab 0 ;线面垂直I 丄 a // u a ku 「; 面面垂直丄 u 丄v u v 0. (二)夹角与距离的计算 注意:以下公式可以可以在非正交 基底下用,也可以在正交基底下用坐标运算 (1)夹角:设直线l ,m 的方向向量分别为,平面,的法向量 分别为u ,v ,则 ①两直线I ,m 所成的角为 (2)空间距离 ②直线I 与平面 ③二面角一I 的大小为(0< < ),cos cos (0< =2),sin 所成的角为

点、直线、平面间的距离有种.点到平面的距离是重点,两异面直线间的距离是难 ①点到平面的距离h:(定理)如图,设n是是平 面的法向量,AP是平面的一条斜线,其中A 则点P到平面的距离 uuu uu ②h 1 Auur n |(实质是AP在法向量n 方向上的投影的绝对值) |n| uuu ur ③异面直线l i,l2间的距离d: d AB JC』1( 11,12的公垂向量为 |n| ' n, C、D分别是h,l2上任一点). 题型一:非正交基底下的夹角、的计算 例1.如图,已知二面角-I - 点 A , B , A C I于点C, 且 AC=CD=DB=1. 求:(1) A、B两点间的距离; (2)求异面直线AB和CD勺所成的角(3) AB与CD勺距 离. 解:设AC a,CD b,DB c,则 |a| |b| |c| 1, a,b b,c 900, a,c 60°, 2 ? ? 2 ?? 2 ■■ 2 |AB | a b c . a b c 2a b 2b c 2c a 2 A、B两点间的距离为2. (2)异面直线AB和CD的所成的角为60°

立体几何的解题方法小结

立体几何中的存在惟一性问题 存在惟一问题是立体几何中的重要题型,但往往被同学们所忽视。下面介绍其证明方法。 解决这类题型必须分两步论证。先证存在性,常用构造法,即作出符合题意的图形,再证惟一性,常用反证法(或同一法)。 例:求证:过两条异面直线中一条有且仅有一个平面与另一条直线平行。 分析;“有一个”——说明图形存在。“仅有一个”——说明图形惟一。 证明:(1)存在性 ∴a b // 这与a 、b 是异面直线相矛盾,于是假设不成立 故过b 有且仅有一个平面α与直线a 平行 立体几何中公理2的一个应用 公理2:如果两个平面有一个公共点,那么它们还有其他公共点,这些公共点的集合是一条直线。 此公理是立体几何中关于平面的基本性质之一,它除了能判断两个平面是否相交之外,还能得出如下性质: 若A A l ∈∈=αβαβ,,且I ,则A l ∈。用此性质可解决如下题型:证明点在直线上。 以下举例说明。 例1. 已知?ABC 的三边AB 、BC 、AC 所在的直线分别与平面α相交于E 、F 、G 三点,求证:E 、F 、G 三点共线。 证明:如图1,ΘI I AB E BC F EF EF ααα==?.,,联结,则

又平面平面又, ,平面,即是平面与平面的公共点。因此,、、三点共线。 EF ABC ABC EF AC G G G ABC G ABC G EF E F G ?∴==∴∈∈∴∈ααααI I . . 图1 例2. 如图2,在正方体ABCD —A 1B 1C 1D 1中,E 为AB 中点,F 为AA 1中点,求证:CE 、D 1F 、DA 相交于一点。 图2 证明:ΘE AB F AA 为的中点,为的中点,1 ∴∴EF A B A B D C EF D C //////1111又因, 评注:证明三点共线或三线共点常常转化为证明点在直线上。

高中立体几何中二面角经典求法

高中立体几何中二面角求法 摘要:在立体几何中,求二面角的大小是历届高考的热点,几乎每年必考,而对于求二面角方面的问题,同学们往往很难正确地找到作平面角的方法,本文对求二面角的方法作了一个总结,希望对学生有帮助。 (一)、二面角定义的回顾: 从一条直线出发的两个半平面所组成的图形就叫做二面角。二面角的大小是用二面角的平面角来衡量的。而二面角的平面角是指在二面角βα--l 的棱上任取一点O ,分别在两个半平面内作射线l BO l AO ⊥⊥,,则AOB ∠为二面角βα--l 的平面角。 α β (二)、二面角的通常求法 1、由定义作出二面角的平面角; * 2、利用三垂线定理(逆定理)作出二面角的平面角; 3、作二面角棱的垂面,则垂面与二面角两个面的交线所成的角就是二面角的平面角。 4、空间坐标法求二面角的大小 5、平移或延长(展)线(面)法 6、射影公式S 射影=S 斜面cos θ 7、化归为分别垂直于二面角的两个面的两条直线所成的角 1、利用定义作出二面角的平面角,并设法求出其大小。 例1、 如图,已知二面角α-а-β等于120°,PA ⊥α,A ∈α,PB ⊥β,B ∈β. 求∠APB 的大小. 解: 设平面∩PAB α=OA,平面PAB ∩β=OB 。 ∵PA ⊥α, аα ∴PA ⊥а 同理PB ⊥а ∴а⊥平面PAB 又∵OA 平面PAB ∴а⊥OA 同理а⊥OB. ∴∠AOB 是二面角α-а-β的平面角. 在四边形PAOB 中, ∠AOB=120°,. O A B ) A B l P . B A

∠PAO=∠POB=90°, 所以∠APB=60° 2、 ( 3、 三垂线定理(逆定理)法 由二面角的一个面上的斜线(或它的射影)与二面角的棱垂直,推得它位于二面角的另一的面上的射影(或斜线)也与二面角的棱垂直,从而确定二面角的平面角。 例2:如图,ABCD-A 1B 1C 1D 1是长方体,侧棱AA 1长为1,底面为正方体且边长为2,E 是棱BC 的中点,求面C 1DE 与面CDE 所成二面角的正切值. 解:在长方体ABCD —A 1B 1C 1D 1中 由三垂线定理可得: CD CE=1, DE= 5 3、找(作)公垂面法 由二面角的平面角的定义可知两个面的公垂面与棱垂直,因此公垂面与两个面的交线所成的角,就是二面角的平面角。 例5、如图,已知PA 与正方形ABCD 所在平面垂直,且AB =PA ,求平面PAB 与平面PCD 所成的二面角的大小。 \ 解: ∵PA ⊥平面ABCD ,∴PA ⊥CD .P 又CD ⊥AD ,故CD ⊥平面PAD . A D 而CD 平面PCD , B C 所以 平面PCD ⊥平面PAD . A B C D A 1 B 1 C 1 ( E O CO DE O C C ,连结,作过点⊥11DE CO ⊥的平面角 为二面角C DE C OC C --∠∴11的正方形 是边长为又2ABCD CO DE CE CD S CDE Rt CDE ?=?=??2 1 21中,在1 1=CC 又5 52tan 1= ∠∴OC C 5 52tan arg 1=∠∴OC C 5 5 2= ∴CO

立体几何的解题技巧

立体几何新题型的解题技巧 【命题趋向】在高考中立体几何命题有如下特点: 1.线面位置关系突出平行和垂直,将侧重于垂直关系. 2.多面体中线面关系论证,空间“角”与“距离”的计算常在解答题中综合出现. 3.多面体及简单多面体的概念、性质多在选择题,填空题出现. 4.有关三棱柱、四棱柱、三棱锥的问题,特别是与球有关的问题将是高考命题的热点. 此类题目分值一般在17---22分之间,题型一般为1个选择题,1个填空题,1个解答题. 【考点透视】掌握两条直线所成的角和距离的概念,对于异面直线的距离,只要求会计算已给出公垂线时的距离.掌握斜线在平面上的射影、直线和平面所成的角、直线和平面的距离的概念.掌握二面角、二面角的平面角、两个平行平面间的距离的概念. 空间距离和角是高考考查的重点:特别是以两点间距离,点到平面的距离,两异面直线的距离,直线与平面的距离以及两异面直线所成的角,直线与平面所成的角,二面角等作为命题的重点内容,高考试题中常将上述内容综合在一起放在解答题中进行考查,分为多个小问题,也可能作为客观题进行单独考查.考查空间距离和角的试题一般作为整套试卷的中档题,但也可能在最后一问中设置有难度的问题. 不论是求空间距离还是空间角,都要按照“一作,二证,三算”的步骤来完成,即寓证明于运算之中,正是本专题的一大特色. 求解空间距离和角的方法有两种:一是利用传统的几何方法,二是利用空间向量。 考点1 点到平面的距离 求点到平面的距离就是求点到平面的垂线段的长度,其关键在于确定点在平面内的垂足,当然别忘了转化法与等体积法的应用. 例1如图,正三棱柱111ABC A B C -的所有棱长都为2,D 为1CC 中点. (Ⅰ)求证:1AB ⊥平面1A BD ;(Ⅱ)求二面角1A A D B --的大小;(Ⅲ)求点C 到平面1A BD 的距离. 考查目的:本小题主要考查直线与平面的位置关系,二面角的 大小,点到平面的距离等知识,考查空间想象能力、逻辑思维 能力和运算能力. 解答过程:解法一:(Ⅰ)取BC 中点O ,连结AO .ABC △为正三角形,AO BC ∴⊥. 正三棱柱111ABC A B C -中,平面ABC ⊥平面11BCC B ,AO ∴⊥平面11BCC B . 连结1B O ,在正方形11BB C C 中,O D ,分别为1BC CC ,的中点, 1B O BD ∴⊥, 1AB BD ∴⊥. 在正方形11ABB A 中,11AB A B ⊥, 1AB ∴⊥平面1A BD . (Ⅱ)设1AB 与1A B 交于点G ,在平面1A BD 中,作1GF A D ⊥于F ,连结AF ,由(Ⅰ)得1AB ⊥平面1 A BD . 1AF A D ∴⊥, AFG ∴∠为二面角1A A D B --的平面角.在1AA D △中,由等面积法可求得AF = 又 11 2AG AB == sin AG AFG AF ∴==∠.所以二面角1A A D B --的大小为 (Ⅲ)1A BD △中,1 11A BD BD A D A B S ==△1BCD S =△.在正三棱柱中,1A 到平面11BCC B 设点C 到平面1A BD 的距离为d .由1 1 A BCD C A BD V V --=,得11133 3BCD A BD S S d =△△,1A BD d ∴=△ A B C D 1 A 1 C 1B A C D 1 A 1 C 1 B O F

高考数学题型归纳:立体几何题型解题方法

高考数学题型归纳:立体几何题型解题方法 精品资料欢迎下载 高考数学题型归纳:立体几何题型解题方法 如何提高学习率,需要我们从各方面去努力。WTT为大家整理了高考数学题立体几何题型解题方法,希望对大家有所帮助。 高考数学题型归纳:立体几何题型解题方法高考数学之立体几何 高考立体几何试题一般共有4道(选择、填空题3道,解答题1道),共计总分27分左右,考查的知识点在20个以内。选择填空题考核立几中的计算型问题,而解答题着重考查立几中的逻辑推理型问题,当然,二者均应以正确的空间想象为前提。随着新的课程改革的进一步实施,立体几何考题正朝着多一点思考,少一点计算的发展。从历年的考题变化看,以简单几何体为载体的线面位置关系的论证,角与距离的探求是常考常新的热门话题。知识整合 1.有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与距离等)中不可缺少的内容,因此在主体几何的总复习中,首先应从解决平行与垂直的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能,通过对

问题的分析与概括,掌握立体几何中解决问题的规律--充分利用线线平行(垂直)、线面平行(垂直)、 1 / 3 精品资料欢迎下载 面面平行(垂直)相互转化的思想,以提高逻辑思维能力和空间想象能力。 2.判定两个平面平行的方法: (1)根据定义--证明两平面没有公共点; (2)判定定理--证明一个平面内的两条相交直线都平行于另一个平面; (3)证明两平面同垂直于一条直线。 3.两个平面平行的主要性质: ⑴由定义知:两平行平面没有公共点。 ⑵由定义推得:两个平面平行,其中一个平面内的直线必平行于另一个平面。 ⑶两个平面平行的性质定理:如果两个平行平面同时和第三个平面相交,那么它们的交线平行。 ⑷一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。 ⑸夹在两个平行平面间的平行线段相等。

高中立体几何最佳解题方法及考题详细解答

高中立体几何最佳解题方法总结 一、线线平行的证明方法 1、利用平行四边形; 2、利用三角形或梯形的中位线; 3、如果一条直线和一个平面平行,经过这条直线的平面与这个相交,那么这条直线和交线平行。(线面平行的 性质定理) 4、如果两个平行平面同时和第三个平面相交,那么它们的交线平行。(面面平行的性质定理) 5、如果两条直线垂直于同一个平面,那么这两条直线平行。(线面垂直的性质定理) 6、平行于同一条直线的两个直线平行。 7、夹在两个平行平面之间的平行线段相等。 二、线面平行的证明方法 1、定义法:直线和平面没有公共点。 2、如果平面外的一条直线和这个平面内的一条直线平行,那么这条直线就和这个平面平行。(线面平行的判定 定理) 3、两个平面平行,其中一个平面内的任意一条直线必平行于另一个平面。 4、反证法。 三、面面平行的证明方法 1、定义法:两个平面没有公共点。 2、如果一个平面内的两条相交直线都平行于另一个平面,那么这两个平面平行。(面面平行的判定定理) 3、平行于同一个平面的两个平面平行。 4、经过平面外一点,有且只有一个平面与已知平面平行。 5、垂直于同一条直线的两个平面平行。 四、线线垂直的证明方法 1、勾股定理; 2、等腰三角形; 3、菱形对角线; 4、圆所对的圆周角是直角; 5、点在线上的射影; 6、如果一条直线和这个平面垂直,那么这条直线和这个平面内的任意直线都垂直。 7、在平面内的一条直线,如果和这个平面一条斜线垂直,那么它也和这条斜线的射影垂直。(三垂线定理) 8、在平面内的一条直线,如果和这个平面一条斜线的射影垂直,那么它也和这条斜线垂直。 9、如果两条平行线中的一条垂直于一条直线,那么另一条也垂直于这条直线。 五、线面垂直的证明方法: 1、定义法:直线与平面内的任意直线都垂直; 2、点在面内的射影; 3、如果一条直线和一个平面内的两条相交直线垂直,那么这条直线就和这个平面垂直。(线面垂直的判定定理) 4、如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线必垂直于另一个平面。(面面垂直的性质 定理) 5、两条平行直线中的一条垂直于平面,那么另一条必垂直于这个平面。 6、一条直线垂直于两个平行平面中的一个平面,那么这条直线必垂直于另一个平面。 7、两相交平面同时垂直于第三个平面,那么它们的交线必垂直于第三个平面。 8、过一点,有且只有一条直线与已知平面垂直。 9、过一点,有且只有一个平面与已知直线垂直。 六、面面垂直的证明方法: 1、定义法:两个平面的二面角是直二面角; 2、如果一个平面经过另一个平面的一条垂线,那么这两个平面垂直;(面面垂直的判定定理) 3、如果一个平面与另一个平面的垂线平行,那么这两个平面互相垂直。

立体几何的解题技巧

立体几何新题型的解题技巧 【命题趋向】在2007年高考中立体几何命题有如下特点: 1.线面位置关系突出平行和垂直,将侧重于垂直关系. 2.多面体中线面关系论证,空间“角”与“距离”的计算常在解答题中综合出现. 3.多面体及简单多面体的概念、性质多在选择题,填空题出现. 4.有关三棱柱、四棱柱、三棱锥的问题,特别是与球有关的问题将是高考命题的热点. 此类题目分值一般在17---22分之间,题型一般为1个选择题,1个填空题,1个解答题. 【考点透视】(A)版.掌握两条直线所成的角和距离的概念,对于异面直线的距离,只要求会计算已给出公垂线时的距离.掌握斜线在平面上的射影、直线和平面所成的角、直线和平面的距离的概念.掌握二面角、二面角的平面角、两个平行平面间的距离的概念. . 空间距离和角是高考考查的重点:特别是以两点间距离,点到平面的距离,两异面直线的距离,直线与平面的距离以及两异面直线所成的角,直线与平面所成的角,二面角等作为命题的重点内容,高考试题中常将上述内容综合在一起放在解答题中进行考查,分为多个小问题,也可能作为客观题进行单独考查.考查空间距离和角的试题一般作为整套试卷的中档题,但也可能在最后一问中设置有难度的问题. 不论是求空间距离还是空间角,都要按照“一作,二证,三算”的步骤来完成,即寓证明于运算之中,正是本专题的一大特色. 求解空间距离和角的方法有两种:一是利用传统的几何方法,二是利用空间向量。 【例题解析】 考点1 点到平面的距离 求点到平面的距离就是求点到平面的垂线段的长度,其关键在于确定点在平面内的垂足,当然别忘了转化法与等体积法的应用. 典型例题 例1(2007年福建卷理)如图,正三棱柱111ABC A B C 的所有棱长都为2,D 为1CC 中点. (Ⅰ)求证:1AB ⊥平面1A BD ; A 1 A

立体几何空间直角坐标系解法典型例题

立体几何坐标解法典型例题 1、如图,正三棱柱111ABC A B C -的所有棱长都为2,D 为1CC 中点. (Ⅰ)求证:1AB ⊥平面1A BD ; (Ⅱ)求二面角1A A D B --的大小; (Ⅲ)求点C 到平面1A BD 的距离. 2、如图,在Rt AOB △中, π6 OAB ∠=,斜边4AB =.Rt AOC △可以通过Rt AOB △以直线AO 为轴旋转得到,且二面角B AO C --的直二面角.D 是AB 的中点. (1)求证:平面COD ⊥平面AOB ; (2)求异面直线AO 与CD 所成角的大小. A B C D

3.(2010·上海松江区模拟)设在直三棱柱ABC -A 1B 1C 1中,AB =AC =AA 1=2,∠BAC =90°,E ,F 依次为C 1C ,BC 的中点. (1)求异面直线A 1B 、EF 所成角θ的正弦值; (2)求点B 1到平面AEF 的距离. 4.四棱锥S ABCD -中,底面ABCD 为平行四边形,侧面SBC ⊥底面ABCD .已知45ABC =o ∠, 2AB = ,BC = SA SB == (Ⅰ)证明SA BC ⊥; (Ⅱ)求直线SD 与平面SAB 所成角的大小. D B C A S

5.如图,点P 是单位正方体ABCD -A 1B 1C 1D 1中异于A 的一个顶点,则AP →·AB → 的值为( ) A .0 B .1 C .0或1 D .任意实数 5.在棱长为1的正方体ABCD -A 1B 1C 1D 1中,M 、N 分别为A 1B 1和BB 1的中点,那么直线AM 与CN 所成角的余弦值等于( ) A.32 B.1010 C.35 D.25 <二>选择题辨析 [注]: ①两条异面直线在同一平面内射影一定是相交的两条直线.(×) ②直线在平面外,指的位置关系:平行或相交 ③若直线a 、b 异面,a 平行于平面,b 与的关系是相交、平行、在平面内. ④两条平行线在同一平面内的射影图形是一条直线或两条平行线或两点. ⑤在平面内射影是直线的图形一定是直线.(×) ⑥在同一平面内的射影长相等,则斜线长相等.(×) ⑦是夹在两平行平面间的线段,若,则的位置关系为相交或平行或异面. [注]: ①直线与平面内一条直线平行,则∥. (×) ②直线与平面内一条直线相交,则与平面相交. (×) ③若直线与平面平行,则内必存在无数条直线与平行. (√) ④两条平行线中一条平行于一个平面,那么另一条也平行于这个平面. (×) ⑤平行于同一直线的两个平面平行.(×) ⑥平行于同一个平面的两直线平行.(×) ⑦直线与平面、所成角相等,则∥.(×) [注]: ①垂直于同一平面....的两个平面平行.(×) ②垂直于同一直线的两个平面平行.(√) ③垂直于同一平面的两条直线平行.(√) αααb a ,b a =b a ,a αa αa αa αa ααa l αβαβ

高中立体几何解题技巧

αl l αβ βαβαα//,//// ??? ????且相交m l m l m l m l ////??????=?=?βγαγβαγm βαl 高考文科数学立体几何解题技巧 1.判定线面平行的方法 定义:如果一条直线和一个平面没有公共点。 (1)如果平面外的一条直线和这个平面内的一条直线平行,则这条直线和这个平面平行。 ααα////l l m m l ??? ????? (2)两面平行,则其中一个平面内的直线必平行于另一个平面。 αββα////l l ????? (3)平面外的两条平行直线中的一条平行于平面,则另一条也平行于该平面。 (4)平面外的一条直线和两个平行平面中的一个平面平行,则也平行于另一个平面。 2. 判定面面平行的方法 (1)如果一个平面内有两条相交直线都平行于另一个平面,则两面平行。 (2)垂直于同一直线的两个平面平行。 (3)平行于同一平面的两个平面平行。 3.面面平行的性质 (1)两平行平面没有公共点。 (2)两平面平行,则一个平面上的任一直线平行于另一平面。 (3)垂直于两平行平面中一个平面的直线,必垂直于另一个平面。 (4)两平 行平面被第三个平面所截,则两交线平 行。 m l αm βαl

αα⊥?????????=?⊥⊥l AB AC A AB AC AB l AC l ,//a a αββα??⊥?⊥? ,l a a a l αβαββα⊥??=?⊥???⊥ ?a a b b αα⊥??⊥??? 4.判定线面垂直的方法 定义:如果一条直线和平面内的任何一条直线都垂直,则线面垂直。 (1)如果一条直线和一个平面内的两条相交线垂直,则线面垂直。 (2)如果两条平行直线中的一条垂直于一个平面,则另一条也垂直于该平面。 αα⊥?? ??⊥b a b a // (3)一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。 (4)如果两个平面垂直,那么在一个平面内垂直它们交线的直线垂直于另一个平面。 (5)如果两个相交平面都垂直于另一个平面,那么它们的交线垂直于另一个平面。 5.判定两线垂直的方法 (1)直线和平面垂直,则该线与平面内任一直线垂直。 (2)平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直。 A B C αl β a α a β l α α a b

高考数学立体几何解题方法技巧

高考数学立体几何解题方法技巧 立体几何是历年高考数学必考的题目之一,立体几何的学习离不开图形,下面就是给大家带来的高考数学立体几何解题方法技巧,希望大家喜欢! 一、作图 作图是立体几何学习中的基本功,对培养空间概念也有积极的意义,而且在作图时还要用到许多空间线面的关系.所以作图是解决立体几何问题的第一步,作好图有利于问题的解决.例1 已知正方体中,点P、E、F分别是棱AB、BC、的中点(如图1).作出过点P、E、F三点的正方体的截面. 分析:作图是学生学习中的一个弱点,作多面体的截面又是作图中的难点.学生看到这样的题目不知所云.有的学生连结P、E、F得三角形以为就是所求的截面.其实,作截面就是找两个平面的交线,找交线只要找到交线上的两点即可.观察所给的条件(如图2),发现PE就是一条交线.又因为平面ABCD//平面,由面面平行的性质可得,截面和面的交线一定和PE平行.而F 是的中点,故取的中点Q,则FQ也是一条交线.再延长FQ和的延长线交于一点M,由公理3,点M在平面和平面的交线上,

连PM交于点K,则QK和KP又是两条交线.同理可以找到FR 和RE两条交线(如图2).因此,六边形PERFQK就是所求的截面. 二、读图 图形中往往包含着深刻的意义,对图形理解的程度影响着我们的正确解题,所以读懂图形是解决问题的重要一环.例2 在棱长为a的正方体中,EF是棱AB上的一条线段,且EF=b<a,若Q是上的定点,P在上滑动,则四面体PQEF的体积(). (A)是变量且有最大值(B)是变量且有最小值(C)是变量无最大最小值(D)是常量 分析:此题的解决需要我们仔细分析图形的特点.这个图形有很多不确定因素,线段EF的位置不定,点P在滑动,但在这一系列的变化中是否可以发现其中的稳定因素?求四面体的体 积要具备哪些条件? 仔细观察图形,应该以哪个面为底面?观察,我们发现它的形状位置是要变化的,但是底边EF是定值,且P到EF的距离也是定值,故它的面积是定值.再发现点Q到面PEF的距离也是定值.因此,四面体PQEF的体积是定值.我们没有一点计算,对图形的分析帮助我们解决了问题. 三、用图

高考文科数学立体几何解题技巧

高考文科数学立体几何解题技巧 1.平行、垂直位置关系的论证的策略: 1由已知想性质,由求证想判定,即分析法与综合法相结合寻找证题思路。 2利用题设条件的性质适当添加辅助线或面是解题的常用方法之一。 3三垂线定理及其逆定理在高考题中使用的频率最高,在证明线线垂直时应优先考虑。 2.空间角的计算方法与技巧: 主要步骤:一作、二证、三算;若用向量,那就是一证、二算。 1两条异面直线所成的角①平移法:②补形法:③向量法: 2直线和平面所成的角 ①作出直线和平面所成的角,关键是作垂线,找射影转化到同一三角形中计算,或用 向量计算。 ②用公式计算. 3二面角 ①平面角的作法:i定义法;ii三垂线定理及其逆定理法;iii垂面法。 ②平面角的计算法: i找到平面角,然后在三角形中计算解三角形或用向量计算;ii射影面积法;iii向量 夹角公式. 3.空间距离的计算方法与技巧: 1求点到直线的距离:经常应用三垂线定理作出点到直线的垂线,然后在相关的三角 形中求解,也可以借助于面积相等求出点到直线的距离。 2求两条异面直线间距离:一般先找出其公垂线,然后求其公垂线段的长。在不能直 接作出公垂线的情况下,可转化为线面距离求解这种情况高考不做要求。 3求点到平面的距离:一般找出或作出过此点与已知平面垂直的平面,利用面面垂直 的性质过该点作出平面的垂线,进而计算;也可以利用“三棱锥体积法”直接求距离;有时 直接利用已知点求距离比较困难时,我们可以把点到平面的距离转化为直线到平面的距离,从而“转移”到另一点上去求“点到平面的距离”。求直线与平面的距离及平面与平面的 距离一般均转化为点到平面的距离来求解。

相关主题
文本预览
相关文档 最新文档