当前位置:文档之家› 热交换器的选型和设计指南三

热交换器的选型和设计指南三

热交换器的选型和设计指南三
热交换器的选型和设计指南三

热交换器的选型和设计指南三

2010-01-26 20:15:11 来源:热泵热水器技术网浏览:136次

11管壳式换热器的设计要点

换热器的设计过程包括计算换热面积和选型两个方面。有关换热器的选型问题,前面已经讲过了,下面主要介绍管壳式换热器的设计要点及如何分析计算结果、调整计算,而设计出满足工艺需要的、传热效率高的换热器。

11.1设计计算的基本模型及换热器的性能参数

换热器的性能主要是通过下列公式来描述的。

a.冷、热两流体间热量平衡

Qreq=(WCpΔT)hot=(WCpΔT)cold

W--流体质量流量

Cp--流体的比热

hot--热流体

cold--冷流体

ΔT--进出口温度差

b.传热率方程

Qact=(A)(ΔTm)(1/ΣR)

ΣR=(1/hi)o+(1/ho)o+(Rf)o+(Rw)o

ΣR--总热阻

A--传热面

hi、ho--分别为两流体的传热膜系数

Rf--两流体的污垢热阻

Rw--金属壁面热阻

ΔTm--平均温度差

O--通常换热计算以换热管外表面为基准

c.传热率的估算

Qact≥Qreq

d.对压力降的限制条件

(ΔPi)act≤(ΔPi)allow

(ΔPo)act≤(ΔPo)allow

ΔP--压力降

下标i表示管内

下标o表示管外

11.2换热器的计算类型

换热器的计算类型常分为设计计算和校核计算两大类。换热器计算一般需要三大类数据:结构数据、工艺数据和物性数据,其中结构数据的选择在换热器中最为重要。在管壳式换热器的设计中包含有一系列的选择问题,如壳体型式、管程数、管子类型、管长、管子排列、折流板型式、冷热流体流动通道方式等方面的选择。工艺数据包括冷、热流体的流量、进出口温度、进口压力、允许压降及污垢系数等。物性数据包括冷、热流体在进出口温度下的密度、比热容、粘度、导热系数、表面张力。

a.设计计算 Design

设计计算就是通过给定的工艺条件,来确定一台未知换热器的结构参数,并使其结构最优、尺寸最小。对设计计算应先确定下列基本的几何参数:

--管长

--管间距

--流向角

--换热管外径及管壁厚

b.校核计算 Rating

校核计算就是评估一台已知换热器的传热性能,即通过校核设备的几何尺寸来看其是否能满足传热要求。校核计算应已知下列基本的几何参数:--管程数

--壳内径/管数

--折流板间距/折流板数

--管长/管间距

--流向角

--管内径/管壁厚

11.2.1设计元素的选取

设计计算时应考虑下列的几个基本设计元素:

--壳体型式:TEMAE,F,G,J,K,X。

--壳内径:通常最大为2米。

--换热管几何尺寸:光管、翅片管

管径(19mm,25.4mm等)

管长系列(3m,5m,6m,7.2m等)

--管子排列角:30°,60°,45°,90°

--管间距:1.25~1.50倍的管子外径

--折流板型式:单圆缺、双圆缺、管窗内不排管及为防止管子振动而加的支承板。

11.3最终计算结果的分析

目前,换热器计算常用的计算软件为美国的HTRI和英国的HTFS,这两大软件均为在国际上享有盛誉的传热设备专用计算软件。当设计计算结束后,如何根据实际的工况,来判断计算结果是否满足要求,出现问题后如何解决,这对设计者来说都是很重要的,在评价最终设计计算时应考虑并校核以下各项。

11.3.1总体设计尺寸

细长型的换热器比短粗型要经济,通常情况下管长和壳径之比为5~10,但有时根据实际需要,长、径之比可增到15或20,但不常见。对立式热虹吸再沸器,要控制其长、径比在3~10之内。

11.3.2热阻大小

首先根据流体的物系及实际经验来推断一下传热系数值是否合理,应特别注意管内雷诺数的大小。在层流流动(管侧Re<2000,壳侧Re<300)和过渡区流动中,应使用分段计算的方式(HTFS程序无此功能),以确保传热系数值计算的正确。在评估计算结果的同时,应考虑程序计算的精确度。如果热阻在管侧和壳侧分布平衡,则该设计是好的,如果一侧热阻值过大,应该分析原因,分析管、壳侧冷、热流体的分布是否合理,如果是由于某一侧污垢系数过大而引起的,则可不必进一步修改原设计。

11.3.3设计余量

换热器设计计算时设计余量值的大小取决于计算精度、实际经验及对现场的操作控制等。例如:对冷却水换热器,当水流速大于1.5m/s时,没必要给出过大的设计余量,过大的余量反而会造成水流速的降低。但对层流和过渡区流动,由于计算精度不好,故需要给出较大的设计余量,通常需要在考虑了传热阻力值的大小和程序的计算精度后决定。对再沸腾器,过大的设计余量反而是无益的,特别是在设备运转初期,会发生如控制困难等操作问题。另外,有些设计计算,为了满足允许压降值的限制,可能会造成设计余量较大,此时应根据实际经验来判定计算结果是否正确或对允许压降值的大小作适当的调整。

11.3.4压降的利用和分布

允许压降必须尽可能加以利用,如果计算压降与允许压降有实质差别,则必须尝试改变设计参数。在校核了计算所得压降值是否小于允许值之后,应对压降的分布作进一步的校核,这其中包括有进、出口接管处压降、错流和管窗流的压降,压力降必须大部分分布在换热率高的地方,如横掠管束的错流流动处;如果在接管或管窗处的压降占总压降的比例较大,应考虑增大接管尺寸及折流板间距。一般对进、出口接管的压降希望控制在总压降的30%左右。特别对有轴向接管的换热器,接管部分的压降最好控制在总压降的30%以下,否则会造成管子进口处的偏流。为防止物流对壳程入口处的管子进行冲击,引起振动和腐蚀,一般均在换热器壳程进口处设置防冲板或分布器,在计算压降时要有所考虑。另一个必须记住的事实是,允许压降是人为给定的,所以,如果在设计中允许压降得到了充分利用,而增加一点压降会增加很大的经济性,则应再行设计并考虑增加允许压降的可能性。

11.3.5流速

需校核管子进出口处、壳侧进口处和接管内的流速。一般来说流体流速在允许压降范围内应尽量选高一些,以便获得较大的换热系数和较小污垢沉积,但流速过大会造成腐蚀并发生管子振动,而流速过小则管内易结垢。对冷却水系统,设计计算时可参考下表中推荐的值(碳钢管)。

最小流速最大流速推荐值管侧 1.0 m/s 3.0 m/s大于 1.5m/s

壳侧 0.5 m/s 1.5 m/s 0.7~1.0m/s

如果冷却水的流速低于上表中的最小流速,最好征得工艺工程师的同意增大允许压降或变化冷却水的流率。

对冷却水以外的单相和两相流用ρv2值判断。对壳侧进口流速,按TEMA规定ρv2值不能超过5950 Kg/MS2(碳钢管)。对管窗内不排管换热器,管窗流速应为错流速度的2~2.5倍,气体和蒸汽的流速可在8~30m/s之间。

11.3.6壳侧流路分析

HTRI程序在计算结果中对壳侧各流路给出了较详细的分析,可以参考下表

中给 A,B,C,E,F流的推荐值。

流路A--折流板管孔和管子之间的泄漏流路;

流路B--错流流路;

流路C--管束外围和壳内壁之间的旁流流路;

流路E--折流板与壳内壁之间的泄漏流路;

流路F--管程分程隔板处的中间穿流流路。

流路名称Flow Fraction

B错流>0.6(湍流,Re>300)

>0.4(层流,Re>300)

B流路对传热有利,其值应尽量大。

C F 旁流0.1C,F值最好不超过 0.1,为满足这一条

件,可使用密封装置。对浮头式或小壳

径壳体的换热器,如果C值较大,应使

用密封装置。对U型管或管程数较多的

换热器,通常F值会较大,应考虑在管

程分程隔板处使用密封装置(如密封垫

或密封杆)或改变管子排列方式和折流

板圆缺位置。

A泄漏流0.15应尽量减少泄漏,但当污垢系数超过

0.0008m2h°C/kcal时,由于污垢可能会

将管子和折流板管孔之间的间隙堵塞,因

此,A值较大也无妨,但此时对壳侧压

力损失应留有余量,最好计算一下。一

但间隙被堵塞,壳侧压降为多大。

E泄漏流0.05E值会造成温度剖面的变形,如果E值大

于0.15,可使用双圆缺折流板。

最大限度地加大B-stream(错流),减少泄漏流,而事实上漏流不可能也不必要被全部阻止,因为安装换热器时总需要有间隙。

11.3.7对折流板的设计分析

单圆缺和双圆缺折流板为管壳式换热器中常用的折流板型式,换热器中折流

板的布置对设计计算有很大影响,一般从下面几各方面来检查原设计是否合理。

a.从流体流动、传热和污垢系数等方面考虑,最好将折流板的圆

缺高度控制在壳体直径的20~30%,而板间距则控制在壳体直径30~

50%之间,并不应小于50mm。

b.避免大圆缺小间距或小圆缺大间距的设计。应优化选取折流板

圆缺的大小和板间距大小,通常β值(折流板圆缺修正系数)最好在

0.9~0.92之间。

c.除了管窗内不排管以外,流体的错流速度和在管窗内的流动

速度不应相差太大,流体在 X-flow和 Window内的速度大并且越接

近越好。

d.如果壳侧压降受到允许压降的限制,考虑使用双圆缺折流板,

若还是不行,考虑变化壳体型式,选用TEMA的J、G、H、X型壳体。

11.3.8有效平均温差

在HTRI程序中是这样描述有效平均温差的:

EffectiveMTD=(LMTD)(F)(DELTA)

其中:LMTD为对数平均温差

F=(TUBE)(BAFFLES)(F/G)(HOT/COLD)

TUBE:即Ft,是对管侧多管程流动的修正系数。通常设计计算时应保证Ft 大于0.8。当Ft小于0.8时,换热器的经济效益是不合理的,此时应另选其它流动型式,以提高 Ft值。如:增加管程数或壳程数,或着用几台换热器串联,必要时亦可调整温度条件。但在特殊情况下,如温度有0.5~1.0°C交叉时,Ft=0.75,也能接受。

BAFFLE:即折流板数修正系数。当折流板数较少时,壳侧流体的混合流动性能较低,故需进行修正。通常此值等于1.0。

DELTA:温度变形系数。这个系数是用来计算E流对温度差的影响大小的。设计计算时希望δA>0.8,若δA<0.8,应考虑采用E流路小的折流板型式,也可增加换热器的串联数。

HOT/COLD:是对由于物性参数变化而造成的总传热系数变化的修正,通常为0.98~1.0。

F/G:在TEMAF型壳体和G型壳体中,有一纵向横隔板,F/G就是对通过此板的热量泄漏的修正。如果F/G 0.95,考虑使用保温板或增加壳程串联数。11.3.9总传热系数

首先从流体的相态、物性和以往经验上来分析计算结果是否合理。另外,污垢系数的选取对传热系数也有很大的影响,对计算结果应综合分析,并结合实际经验来评定。

11.3.10管子振动

换热管的管束属于弹性体,被流过的流体扰动,离开其平衡位置,管子产生振动。在壳侧,拉杆和隔板也有振动的倾向,但这些部件的刚性比管子大,所以不容易被激起振动。设计计算结束后为保证换热器的稳定操作,应校核计算结果中的有关管振动各项数值,如:临界流动速度(criticalvelocity)、涡流脱落(vortexshedding)、湍流抖振(turbulentbuffeting)、声音共振(acousticresonance)和振幅等。通常当折流板间距(包括进、出口处)超过400mm 时,有可能发生管子振动。当壳侧物流为液体时,需仔细检查临界流动速度及涡流脱落频率值的大小;而当壳侧物流是气体时,应仔细检查临界流动速度、涡流脱落、湍流抖振、声音共振和振幅等值是否满足无振动的要求。如果因为在进、出口处的折流板间距过大而造成了振动,可通过在接管口下增加支撑板来避免。另外为避免振动的发生,折流板间距应小于TEMA最大不支撑长度的80%。

11.4如何调整设计方案,得到最佳计算结果

通常情况下,象温度、压降和传热系数等设计计算控制要素很少彼此较好地相配合,经常是某一设计要素为设计计算的控制因素,由于一个简单的设计变更能带来设备尺寸的减小,因此找出控制因素能尽快有效的帮你解决问题。

11.4.1传热系数为控制因素时

总传热阻力的大小主要是由壳侧、管侧、污垢和管子的金属阻力来决定的,为了提高总传热系数的大小,应分析是哪一侧的传热系数影响了它,采用何种方法,可以提高传热系数值。

a.提高壳侧传热系数的方法

-使用低翅管

-减小换热管外径和管间距

-提高B流速度(可使用密封设备或减小壳体和折流板之间的间距)

-选用F型或G型壳体

b.提高管侧传热系数的方法

-减小管外径

-增加管长

-变换流动分布,管侧流动改为壳侧流动

11.4.2压力降为控制因素时

a.可通过下述方法来减小壳侧压力降

-使用双圆缺折流板或管窗内不排管

-选用TEMA J型壳体

-增加管间距

-改变流向角,可选用45°或90°

b.可通过下述方法来减小管侧压力降

-增大管子外径

-减小管长

11.4.3温差推动力为限制因素时

为提高温差推动力,最好选用纯逆流型设备。

-增加壳程数

-减小E流的大小

11.4.4设计中预料到振动时应采取什么措施

应采取以下措施中的一种或多种,以降低扰动频率或增加自然频率。

1)减小管子跨距长度:这可以增加自然频率同时也使错流速度增加。

2)减小壳侧流体速度:可以用减小流量和改变管距或流向角的方法达到这个目的,结果是使扰动频率降低。

3)改变折流板型式:折流板窗中无管的设计,使所有的管子都受到支撑,因此,将折流板改变成这种形式,可以减少最长跨距的管子,因而可以增加自然频率。

4)降低壳体入口流速:如果对进口区域的可靠性有疑问,应使用较大的进口管直径、防冲板,并环绕壳体安装一个挡板,以便提供较大的进口面积,这样

可以减少干扰频率。

5)增加折流板厚度。

6)将管与折流板孔之间的间隙减至最小。

7)折流板材料不应比管子材料硬。

8)使用厚壁管并使管子紧固。

9)如果预计有声学振动,则可采用解谐隔板。

10)堵塞所有旁路流和流程分隔漏流,因为这些地方流速高(由于流动阻力),可能局部损坏管子。

在上面1)~3)项中,换热器的热力性能和压降都必须重新计算。第4)~9)项不明显影响换热器的热力性质。第5)~8)项增加了自然频率。第10)项可以加强热力性能。

12空冷器的设计要点

空冷器主要由管束、风机和构架组成。设计计算的目的是要估算出换热面积的大小、设备占地面积及电机功率。空冷器的管束通常是由几排以30度角排列的管子组成的矩形管束,与空气进行逆流传热,即热流体进入管束的上部,而空气则垂直向上通过管束,设计计算时要考虑运输条件对管束最大宽度和层数的限制,通常单片管束的宽度可到3.6米,最大层数为8。尽管在管子系列中可供选择的管子有很多,但多数情况下常选用9米长的换热管。另外,选长管子和多管层的管束在单位面积上所占的空间较小。

12.1空冷器的优缺点

在3.7.1中已对空冷器的选用原则作了描述,为进一步了解空冷器的优缺点,选择合适的空冷器,现将其优缺点列表如下:

优点

缺点

1.空气不计费用,随地可取 1.空气比热小,要求换热面积大

2.装置地点不受气源限制 2.只能冷却到干球温度,热流体出口温度较高

3.空气很少有腐蚀性,不需要防

垢和清扫(海边情况除外)

3.风机有噪音和振动

4.操作费用低,因为压降仅为12 4.受气候影响大

~25mm水柱

5.对环境污染少 5.安装时要考虑周围其他设备或建筑物的影响,

防止形成热环流

6.维修费用低,仅为水冷的20~

6.热流体出口温度波动较大,精确控制较困难

30%

7.设计时技巧性强

12.2风机型式

空冷器按通风方式分类有鼓风式(forced draft)和引风式(induced draft)两种,每种型式都有其特点,在选用前要仔细权衡考虑。

鼓风式空冷器的优点:

1)当空气侧温升大于28°C时,风机功率通常较小;

2)风机可设于地面,装置紧凑,维修方便,并因风机和V形皮带组合件

不暴露于装置出口的热空气流中,结构费用较低,机械使用寿命较长;

3)空气侧传热膜系数由于风扇叶片的扰动而增大,相对可节省功率消耗;

4)可通过控制空气的再循环,来避免冷冻物和凝固物的产生;

5)当空气出口温度超过93°C或进口工艺物料的温度超过121°C时,推荐

使用鼓风式风机,而在空气出口温度较高,风机停止或在低空气流量的

情况下运行时,若选用引风式风机会造成叶片、轴承和V形皮带的损坏;

6)在冷气候下易采用热空气再循环调节。

鼓风式空冷器的缺点:

1)在整个管束上的空气分配不均;

2)由于出口流速低,造成热风循环,受气候因素的影响较大;

3)当由于停电或其他原因造成风机不工作时,由于缺少自然抽力,故自

然通风不好;

4)管束全部暴露在雨水、冰雹和阳光下,对工艺物料温度的控制和稳定

性操作造成困难。

引风式空冷器的优点:

1)当空气侧温升小于28°C时,风机功率通常较小;

2)在整个管束上气流分布均匀;

3)由于出口风速大(是鼓风式出口空气速度的2~3倍),热风循环小;

4)在突然的温度变化可能引起产品破坏和损失的操作中,引风式装置可

给予更好的防护,由于引风式的烟囱自然抽力作用比较大,增强了风扇

故障时的抽气能力。另外,与鼓风式相比仅有小部分表面暴露于太阳、

降雨、冰雹和雪中。

引风式空冷器的缺点:

1)空气出口温度不得超过93°C,以保护放在管束上方的风机叶片、轴

承和V形皮带不受损坏;

2)由于风扇安装在热空气中,要求风机的功率较大,安装较困难;

3)如果将风机、齿轮和V形皮带放在管束下方,则风机的轴被设计成通

过管束,这样将要增大管束的宽度。

12.3管束

管束的主要部件是翅片管和顶盖。管束的迎风面积是它的长度乘宽度,空气通过管束的净有效面积约为管束迎面面积的50%。标准空气的迎面速度(FV)是标准空气穿过管束的速度,通常的变化范围为:1.5~3.6m/s。

12.4管子

常用的管子外径为25.4mm,翅片高度为12.7~15.9 mm,翅片间距为3.6~2.3 mm,管子三角形节距为50.8~63.5 mm。扩展表面与光管外表面的比值约为7~ 20。管子的长度是不同的,可以长达18.3米,当管长超过12.2米时,在每个机区通常安装三台通风机,经常使用的管长为6.1~12.2 米。

12.5翅片管结构

通常应用的翅片管结构如下:

1.嵌入型(mechanically embedded fin):在拉力作用下缠绕的矩

形截面的铝翅片,用机械方法被嵌入深0.25±0.05mm的凹槽中,呈螺

旋形切入管子外表面,金属设计温度低于399°C。

2.整体型(extruded fin):用机械方法将已挤压成型的由翅片制成

的铝外管结合在内管或衬管上,金属设计温度低于288°C。

3.重叠L型(overlapped footed tension wound fin):将L型铝

翅片在拉力作用下缠绕在管子外表面上,同时管子被在翅片下边和两

翅片之间的重叠根部所完全覆盖,金属设计温度低于232°C。

4.L型:(footed tension wound fin)将L型铝翅片在拉力作用下,

缠绕在管子的外表面上,同时管子被两翅片间的根部完全覆盖,金属

设计温度低于177°C。

12.6风机

风机通常装有四或六个叶片,较大的风机可能有更多的叶片,风机直径通常较机区的宽度略小些,总的风机效率约为75%。可通过调整叶片角和转动速度,变化空气流量。叶片角可以是固定的;手动调整的或是自动调整的。风机安装,对于送风式空冷器,在风机和地面之间,最低应保持在直径的二分之一到四分之三距离;对于抽风式空冷器,管子和风机之间,最低距离应保持在直径的二分之一。

12.7风机驱动装置

最常用的是电动机或蒸汽透平,用齿轮或V形皮带连接。V形皮带传动一般用于风机直径小于3米、功率小于22.4KW的电动机;而直齿轮传动则用于风机直径超过3米的风机,对于超过22.4KW的电动机,用蒸汽透平驱动。

13空冷器设计基础数据

13.1空冷器设计温度的选取

设计计算时应对空气入口温度选择合理,使得空冷器面积在夏天不会太紧张,而冬天又不致太富裕。一般有以下几种选择:

1.最热月最高温度的平均值

2.设计温度较大气最高干球温度低10~20 ?F (5.56~11.11?C)

3.在全年最热三个月中处于设计温度以上的时间占5%( 4~5天),考虑

到涡流的影响还要加上5?F(2.78?C)

4.全年1~3%时间处于设计温度以上

5.7、8两月中,日最高气温的月平均值,再加上该值的10%

在下表中给出了不同地区空气设计温度的参考值:

地区最大干球

温度?F

年干球温度或超过

这个温度的时间

年平均干

球温度?F

推荐设计

温度?F

1% 2% 3%

Beaumont,Texas102 93 91 90 69 91 Victoria, Texas 110 89 96 95 71 96 New Orleans, La. 102 92 91 89 70 91 Wilmington,Del. 106 88 85 84 55 85 Grand Rapids, Mich. 99 83 80 78 47 80注:1%= 88小时,2%=175小时,3%=263小时

气温

?C

每年不超过5天的最高气温?C

城市极端最高最热月、日最高

气温的月平均值最热月、日平均

气温的月平均值

干球湿球

哈尔滨 36.4 28.2 23.3 28.8 24.1北京 39.6 30.9 26.1 31.1 26.4上海 38.9 32.3 27.2 32.4 28.6武汉 39.4 33.0 28.8 34.0 28.5广州 38.7 32.6 28.3 31.6 27.8成都 37.3 30.2 26.4 30.0 26.5昆明 31.5 24.3 20.1 24.4 19.9西安 40.8 32.3 27.6 33.0 25.8兰州 39.1 29.7 22.8 28.3 20.2乌鲁木齐 38.1 29.0 23.8

29.6

18.1

拉萨 29.4 23.0

20.5

13.2注:设计周围环境空气温度通常认为是干球温度。

13.2空气再循环

空冷器组应放在较开扩地带,远离热源,至少距离高大建筑物或妨碍空气进入的物体23~31 米(75~100 ft),使空气再循环减至最低程度。如果距离近,排出的热空气造成的热风循环会将进口空气的温度提高2~3?F(1.11~1.66 ?C),

或高于现场无障碍物时的空气环境温度。如果在拥挤的场地上风速较高,由于空气再循环,应将温度升高3?F。在一个机组里,所有的空冷器应是一种型式,即全是鼓风式或引风式。

13.3冬天操作

为避免因低温空气进入空冷器而引起工艺流体的操作问题,安装防寒装置是设计本身、工艺规程或系统的预防措施。这些操作问题通常包括:液体冻结、固化、结蜡、形成水合物、滞流和在露点凝结(可引起腐蚀)。有些有机化合物的水溶液,在冬季作业期间,会凝结在空冷器中。烷烃和烯烃的气体,当冷却时,被水蒸汽饱和形成水合物,这些水合物是固体结晶,它可能聚积起来,堵塞换热管。另外对大雨、强风及水分在叶片上的凝结等也应采取预防措施。常用的措施是:使用双速电机、变速驱动器、可控的风机间距、手动或自动可调百叶窗,以及空气再循环。

13.4噪音

两个同样的风机具有的噪音水平比一个风机高3分贝,而八个同样的风机的噪音水平比一个单独的风机高9分贝。空冷器的广泛应用,对工厂噪音水平有较大的影响。

13.5空气侧的污垢

翅片管外侧的污垢通常是很小的,设计计算时一般可忽略,但应认识到翅片侧的污垢通常只有在0.0001~0.0015m2.h..c/kcal之间才是安全的。翅片表面应定期清扫,以防止过多的灰尘、油膜和其他物质的沉积。

13.6大气腐蚀

空冷器不应安装在排气管排出的腐蚀性蒸汽和烟雾将要穿过的地方。

13.7在询价或设计计算时,应阐明希望得到的温度操作范围,并应指明系统中的临界温度或特殊重要的温度点。

13.8安全措施

空气冷却装置中的漏气是直接散到大气中,可能引起火灾事故或有毒烟雾事故。但是,大量空气流过空冷器,大大降低了任何有毒气体的浓度。一般来说,将安置在其风向下游的设备的数量减至最小程度。

13.9逼近温度

逼近温度是工艺流体出口温度和设计的干球空气温度之差,其实际的最小值为8~14?C。当需要较低的过程流体出口温度时,可以设置空气增湿室,降低入口空气温度,使其接近于湿球温度。

13.10平均温差(MTD)校正因子

当两个流体温度出口温度相同时,对于单程空冷器,该因子为0.91,双程时为0.96,而三程时,当通道排列成逆流时,因子为0.99。

13.11维修费用

空气冷却的维修费用,大约为水冷装置维修费用的0.3~0.5。

13.12操作费用

如果采用适当的气流控制方法,空冷器的需用功率可较夏天的设计条件为低。空冷器的年需用功率是和气流控制方法、空冷器操作、空气温升和逼近温度相关的

板式换热器选型参数表

选择板式换热器要注意以下三个事项 1、板式换热器板型的选择板片型式或波纹式应根据换热场合的实际需要而定。对流量大允许压降小的情况,应选用阻力小的板型,反之选用阻力大的板型。根据流体压力和温度的情况,确定选择可拆卸式,还是钎焊式。确定板型时不宜选择单板面积太小的板片,以免板片数量过多,板间流速偏小,传热系数过低,对较大的换热器更应注意这个问题。艾瑞德每种规格的板片,均具有至少两个板型,采用热混合技术,可以综合换热器的传热和压降,使其运行在最佳工作点。内旁通,双流道技术和不等流通截面积装配为两侧介质流量相差较大的工况提供了完美的解决方案。ARD艾瑞德板式换热器(江阴)有限公司板式换热器有AB系列、AM系列、AL系列、AP系列、AS系列等几大系列百余种板型。各种型号都有深波纹、浅波纹、大角度、小角度等,完全确保满足不同用户的需要,特殊工况可按用户需要专门设计制造。 2、流程和流道的选择流程指板式换热器内一种介质同一流动方向的一组并联流道,而流道指板式换热器内,相邻两板片组成的介质流动通道。一般情况下,将若干个流道按并联或串联的费那个是连接起来,以形成冷、热介质通道的不同组合。流程组合形式应根据换热和流体阻力计算,在满足工艺条件要求下确定。尽量使冷、热水流道内的对流换热系数相等或接近,从而得到最佳的传热效果。因为在传热表面两侧对流换热系数相等或接近时传热系数获得较大值。虽然板式换热器各板间流速不等,但在换热和流体阻力计算时,仍以平均流速进行计算。由于“U”形单流程的接管都固定在压紧板上,拆装方便。 3、压降校核在板式换热器的设计选型使,一般对压降有一定的要求,所以应对其进行校核。如果校核压降超过允许压降,需重新进行设计选型计算,直到满足工艺要求为止。 艾瑞德板式换热器(江阴)有限公司是专业生产可拆式板式换热器(PHE)、换热器密封垫(PHE GASKET)、换热器板片(PHE PLATE)并提供板式

板式换热器选型计算书

目录 1、目录 1 2、选型公式 2 3、选型实例一(水-水) 3 4、选型实例二(汽-水) 4 5、选型实例三(油-水) 5 6、选型实例四(麦芽汁-水) 6 7、附表一(空调采暖,水-水)7 8、附表二(空调采暖,汽-水)8 9、附表三(卫生热水,水-水)9 10、附表四(卫生热水,汽-水)10 11、附表五(散热片采暖,水-水)11 12、附表六(散热片采暖,汽-水)12

板式换热器选型计算 1、选型公式 a 、热负荷计算公式:Q=cm Δt 其中:Q=热负荷(kcal/h )、c —介质比热(Kcal/ Kg.℃)、m —介质质量流量(Kg/h )、Δt —介质进出口温差(℃)(注:m 、Δt 、c 为同侧参数) ※水的比热为1.0 Kcal/ Kg.℃ b 、换热面积计算公式:A=Q/K.Δt m 其中:A —换热面积(m 2)、K —传热系数(Kcal/ m 2.℃) Δt m —对数平均温差 注:K值按经验取值(流速越大,K值越大。水侧板间流速一般在0.2~0.8m/s 时可按上表取值,汽侧 板间流速一般在15m/s 以时可按上表取值) Δt max - Δt min T1 Δt max Δt min Δt max 为(T1-T2’)和(T1’-T2)之较大值 Δt min 为(T1-T2’)和(T1’-T2)之较小值 T T1’ c 、板间流速计算公式: T2 其中V —板间流速(m/s )、q----体积流量(注意单位转换,m 3/h – m 3/s )、 A S —单通道截面积(具体见下表)、n —流道数 2、板式换热器整机技术参数表: 计压力1.0Mpa 、垫片材质EPDM 、总换热面积为9 m 2 板式换热器。 注:以上选型计算方法适用于本公司生产的板式换热器。 选型实例一(卫生热水用:水-水) Ln Δt m =

热交换器的选型和设计指南(20210201114130)

热交换器的选型和设计指南内容 1 概述 2 换热器的分类及结构特点 3 换热器的类型选择 4 无相变物流换热器的选择 5 冷凝器的选择 6 蒸发器的选择 7 换热器的合理压力降 8 工艺条件中温度的选用 9 管壳式换热器接管位置的选取 10 结构参数的选取 11 管壳式换热器的设计要点 12 空冷器的设计要点 13 空冷器设计基础数据

1概述 本工作指南为工艺系统工程师提供换热器的选型原则和工艺参数的选取及计算方法2换热器的分类及结构特点。 3换热器的类型选择 换热器的类型很多,每种型式都有特定的应用范围。在某一种场合下性能很好的换热器, 如果换到另一种场合可能传热效果和性能会有很大的改变。 因此,针对具体情况正确地选择换热器的类型,是很重要的。换热器选型时需要考虑的因素是多方面的,主要有: 1)热负荷及流量大小 2)流体的性质 3)温度、压力及允许压降的范围 4)对清洗、维修的要求 5)设备结构、材料、尺寸、重量 6)价格、使用安全性和寿命

在换热器选型中,除考虑上述因素外,还应对结构强度、材料来源、加工条件、密封性、安 全性等方面加以考虑。所有这些又常常是相互制约、相互影响的,通过设计的优化加以解决。 针对不同的工艺条件及操作工况,我们有时使用特殊型式的换热器或特殊的换热管,以实现 降低成本的目的。因此,应综合考虑工艺条件和机械设计的要求,正确选择合适的换热器型 式来有效地减少工艺过程的能量消耗。对工程技术人员而言,在设计换热器时,对于型式的 合理选择、经济运行和降低成本等方面应有足够的重视,必要时,还得通过计算来进行技术 经济指标分析、投资和操作费用对比,从而使设计达到该具体条件下的最佳设计。 管壳式换热器 管壳式换热器的应用范围很广,适应性很强,其允许压力可以从高真空到 41.5MPa ,温度可 以从-100 °以下到1100°C 高温。此外,它还具有容量大、结构简单、造价低廉、清洗方便 等优点,因此它在换热器中是最主要的型式。 特殊型式的换热器 特殊型式的换热器包括有:板式换热器、空冷器、多管式换热器、折流杆式换热器、板翅式换 热器、螺旋板式换热器、蛇管式换热器和热管换热器等。它们的使用是受设计温度和设计压 力限制的。在下图中给出了特殊型式的换热器的适用范围,可供参考。 7001 -------------------------------------------- , 600- 500- 400 300- 表3- 1特殊型式换热器的使用范围 1C 0

热交换器的选型和设计指南

热交换器的选型和设计指南

目录 1 概述 (1) 2 换热器的分类及结构特点。 (1) 3 换热器的类型选择 (2) 4 无相变物流换热器的选择 (11) 5 冷凝器的选择 (13) 6 蒸发器的选择 (14) 7 换热器的合理压力降 (17) 8 工艺条件中温度的选用 (18) 9 管壳式换热器接管位置的选取 (19) 10 结构参数的选取 (19) 11 管壳式换热器的设计要点 (23) 12 空冷器的设计要点 (32) 13 空冷器设计基础数据 (35)

1 概述 本工作指南为工艺系统工程师提供换热器的选型原则和工艺参数的选取及计算方法。 2 换热器的分类及结构特点。 表 2-1 换热器的结构分类

3 换热器的类型选择 换热器的类型很多,每种型式都有特定的应用范围。在某一种场合下性能很好的换热器,如果换到另一种场合可能传热效果和性能会有很大的改变。 因此,针对具体情况正确地选择换热器的类型,是很重要的。换热器选型时需要考虑的因素是多方面的,主要有: 1) 热负荷及流量大小 2) 流体的性质 3) 温度、压力及允许压降的范围 4) 对清洗、维修的要求 5) 设备结构、材料、尺寸、重量 6) 价格、使用安全性和寿命 在换热器选型中,除考虑上述因素外,还应对结构强度、材料来源、加工条件、密封性、安全性等方面加以考虑。所有这些又常常是相互制约、相互影响的,通过设计的优化加以解决。针对不同的工艺条件及操作工况,我们有时使用特殊型式的换热器或特殊的换热管,以实现降低成本的目的。因此,应综合考虑工艺条件和机械设计的要求,正确选择合适的换热器型式来有效地减少工艺过程的能量消耗。对工程技术人员而言,在设计换热器时,对于型式的合理选择、经济运行和降低成本等方面应有足够的重视,必要时,还得通过计算来进行技术经济指标分析、投资和操作费用对比,从而使设计达到该具体条件下的最佳设计。 3.1管壳式换热器 管壳式换热器的应用范围很广,适应性很强,其允许压力可以从高真空到41.5MPa,温度可以从-100°C以下到 1100°C高温。此外,它还具有容量

换热器的选型和设计指南(全)

热交换器的选型和设计指南 1 概述 (1) 2 换热器的分类及结构特点。 (1) 3 换热器的类型选择 (2) 4 无相变物流换热器的选择 (11) 5 冷凝器的选择 (13) 6 蒸发器的选择 (14) 7 换热器的合理压力降 (17) 8 工艺条件中温度的选用 (18) 9 管壳式换热器接管位置的选取 (19) 10 结构参数的选取 (19) 11 管壳式换热器的设计要点 (23) 12 空冷器的设计要点 (32) 13 空冷器设计基础数据 (35)

1 概述 本工作指南为工艺系统工程师提供换热器的选型原则和工艺参数的选取及计算方法。 2 换热器的分类及结构特点。 表 2-1 换热器的结构分类

3 换热器的类型选择 换热器的类型很多,每种型式都有特定的应用围。在某一种场合下性能很好的换热器,如果换到另一种场合可能传热效果和性能会有很大的改变。 因此,针对具体情况正确地选择换热器的类型,是很重要的。换热器选型时需要考虑的因素是多方面的,主要有: 1) 热负荷及流量大小 2) 流体的性质 3) 温度、压力及允许压降的围 4) 对清洗、维修的要求 5) 设备结构、材料、尺寸、重量 6) 价格、使用安全性和寿命 在换热器选型中,除考虑上述因素外,还应对结构强度、材料来源、加工条件、密封性、安全性等方面加以考虑。所有这些又常常是相互制约、相互影响的,通过设计的优化加以解决。针对不同的工艺条件及操作工况,我们有时使用特殊型式的换热器或特殊的换热管,以实现降低成本的目的。因此,应综合考虑工艺条件和机械设计的要求,正确选择合适的换热器型式来有效地减少工艺过程的能量消耗。对工程技术人员而言,在设计换热器时,对于型式的合理选择、经济运行和降低成本等方面应有足够的重视,必要时,还得通过计算来进行技术经济指标分析、投资和操作费用对比,从而使设计达到该具体条件下的最佳设计。 3.1管壳式换热器 管壳式换热器的应用围很广,适应性很强,其允许压力可以从高真空到41.5MPa,温度可以从-100°C以下到 1100°C高温。此外,它还具有容量大、

热交换器原理与设计期末复习重点

热交换器原理与设计 题型:填空20%名词解释(包含换热器型号表示法)20% 简答10%计算(4题)50% 0 绪论 热交换器:将某种流体的热量以一定的传热方式传递给他种流体的设备。(2013-2014学年第二学期考题[名词解释]) 热交换器的分类:按照热流体与冷流体的流动方向分为:顺流式、逆流式、错流式、混流式 按照传热量的方法来分:间壁式、混合式、蓄热式。(2013-2014学年第二学期考题[填空]) 1 热交换器计算的基本原理(计算题) 热容量(W=Mc):表示流体的温度每改变1℃时所需的热量 温度效率(P):冷流体的实际吸热量与最大可能的吸热量的比率(2013-2014学年第二学期考题[名词解释]) 传热有效度(ε):实际传热量Q与最大可能传热量Q max之比2 管壳式热交换器 管程:流体从管内空间流过的流径。壳程:流体从管外空间流过的流径。 <1-2>型换热器:壳程数为1,管程数为2 卧式和立式管壳式换热器型号表示法(P43)(2013-2014学年第二学期考题[名词解释]) 记:前端管箱型式:A——平盖管箱B——封头管箱

壳体型式:E——单程壳体F——具有纵向隔板的双程壳体H——双分流 后盖结构型式:P——填料函式浮头 S——钩圈式浮头 U——U形管束 管子在管板上的固定:胀管法和焊接法 管子在管板上的排列:等边三角形排列(或称正六边形排列)法、同心圆排列法、正方形排列法,其中等边三角形排列方式是最合理的排列方式。(2013-2014学年第二学期考题[填空]) 管壳式热交换器的基本构造:⑴管板⑵分程隔板⑶纵向隔板、折流板、支持板⑷挡板和旁路挡板⑸防冲板 产生流动阻力的原因:①流体具有黏性,流动时存在着摩擦,是产生流动阻力的根源;②固定的管壁或其他形状的固体壁面,促使流动的流体内部发生相对运动,为流动阻力的产生提供了条件。 热交换器中的流动阻力:摩擦阻力和局部阻力 管壳式热交换器的管程阻力:沿程阻力、回弯阻力、进出口连接管阻力 管程、壳程内流体的选择的基本原则:(P74) 管程流过的流体:容积流量小,不清洁、易结垢,压力高,有腐蚀性,高温流体或在低温装置中的低温流体。(2013-2014学年第二学期考题[简答])

换热器的选型和设计指南全

热交换器的选型和设计指南 2换热器的分类及结构特点。...................... 3换热器的类型选择......................... 4无相变物流换热器的选择....................... 5冷凝器的选择............................ 6蒸发器的选择........................... 7换热器的合理压力降......................... 8工艺条件中温度的选用....................... 9管壳式换热器接管位置的选取..................... 10结构参数的选取.......................... 11管壳式换热器的设计要点...................... 12空冷器的设计要点........................ 13空冷器设计基础数据........................

1概述 本工作指南为工艺系统工程师提供换热器的选型原则和工艺参数的选取及计算方法。 2换热器的分类及结构特点。 表2-1换热器的结构分类

3换热器的类型选择 换热器的类型很多,每种型式都有特定的应用范围。在某一种场合下性能很好的换热器,如果换到另一种场合可能传热效果和性能会有很大的改变。 因此,针对具体情况正确地选择换热器的类型,是很重要的。换热器选型时需要考虑的因素是多方面的,主要有: 1)热负荷及流量大小 2)流体的性质 3)温度、压力及允许压降的范围 4)对清洗、维修的要求 5)设备结构、材料、尺寸、重量 6)价格、使用安全性和寿命 在换热器选型中,除考虑上述因素外,还应对结构强度、材料来源、加工条件、密封性、安全性等方面加以考虑。所有这些又常常是相互制约、相互影响的,通过设计的优化加以解决。针对不同的工艺条件及操作工况,我们有时使用特殊型式的换热器或特殊的换热管,以实现降低成本的目的。因此,应综合考虑工艺条件和机械设计的要求,正确选择合适的换热器型式来有效地减少工艺过程的能量消耗。对工程技术人员而言,在设计换热器时,对于型式的合理选择、经济运行和降低成本等方面应有足够的重视,必要时,还得通过计算来进行技术经济指标分析、投资和操作费用对比,从而使设计达到该具体条件下的最佳设计。 3.1 管壳式换热器 管壳式换热器的应用范围很广,适应性很强,其允许压力可以从高真空到 41.5MPa,温度可以从-100 ° C以下到1100° C高温。此外,它还具有容量大、结构简单、造价低廉、清洗方便等优点,因此它在换热器中是最主要的型式。 3.2 特殊型式的换热器 特殊型式的换热器包括有:板式换热器、空冷器、多管式换热器、折流杆式换热器、板翅式换热器、螺旋板式换热器、蛇管式换热器和热管换热器等。它们的使用

板式换热器选型与计算方法(DOC)

板式换热器选型与计算方法 板式换热器的选型与计算方法 板式换热器的计算方法 板式换热器的计算是一个比较复杂的过程,目前比较流行的方法是对数平均温差法和NTU法。在计算机没有普及的时候,各个厂家大多采用计算参数近似估算和流速-总传热系数曲线估算方法。目前,越来越多的厂家采用计算机计算,这样,板式换热器的工艺计算变得快捷、方便、准确。以下简要说明无相变时板式换热器的一般计算方法,该方法是以传热和压降准则关联式为基础的设计计算方法。 以下五个参数在板式换热器的选型计算中是必须的: 总传热量(单位:kW). 一次侧、二次侧的进出口温度 一次侧、二次侧的允许压力降 最高工作温度 最大工作压力 如果已知传热介质的流量,比热容以及进出口的温度差,总传热量即可计算得出。 温度 T1 = 热侧进口温度 T2 = 热侧出口温度 t1 = 冷侧进口温度 t2= 冷侧出口温度 热负荷 热流量衡算式反映两流体在换热过程中温度变化的相互关系,在换热器保温良好,无热损失的情况下,对于稳态传热过程,其热流量衡算关系为: (热流体放出的热流量)=(冷流体吸收的热流量)

在进行热衡算时,对有、无相变化的传热过程其表达式又有所区别。 (1)无相变化传热过程 式中 Q----冷流体吸收或热流体放出的热流量,W; mh,mc-----热、冷流体的质量流量,kg/s; Cph,Cpc------热、冷流体的比定压热容,kJ/(kg·K); T1,t1 ------热、冷流体的进口温度,K; T2,t2------热、冷流体的出口温度,K。 (2)有相变化传热过程 两物流在换热过程中,其中一侧物流发生相变化,如蒸汽冷凝或液体沸腾,其热流量衡算式为: 一侧有相变化 两侧物流均发生相变化,如一侧冷凝另一侧沸腾的传热过程 式中 r,r1,r2--------物流相变热,J/kg; D,D1,D2--------相变物流量,kg/s。 对于过冷或过热物流发生相变时的热流量衡算,则应按以上方法分段进行加和计算。 对数平均温差(LMTD) 对数平均温差是换热器传热的动力,对数平均温差的大小直接关系到换热器传热难易程度.在某些特殊情况下无法计算对数平均温差,此时用算术平均温差代替对数平均温差,介质在逆流情况和在并流情况下的对数平均温差的计算方式是不同的。在一些特殊情况下,用算术平均温差代替对数平均温差。 逆流时: 并流时:

热交换器的选型和设计指南(20210201124748)

热交换器的选型和设计指南 1概述 (2) 2换热器的分类及结构特点。 (2) 3换热器的类型选择 (3) 4无相变物流换热器的选择 (12) 5冷凝器的选择 (14) 6蒸发器的选择 (15) 7换热器的合理压力降 (18) 8工艺条件中温度的选用 (19) 9管壳式换热器接管位置的选取 (19) 10结构参数的选取 (20) 11管壳式换热器的设计要点 (23) 12空冷器的设计要点 (31) 13空冷器设计基础数据 (34)

1概述 本工作指南为工艺系统工程师提供换热器的选型原则和工艺参数的选取及计算方法2换热器的分类及结构特点。 表2- 1换热器的结构分类

3换热器的类型选择 换热器的类型很多,每种型式都有特定的应用范围。在某一种场合下性能很好的换热器,如果换到另一种场合可能传热效果和性能会有很大的改变。 因此,针对具体情况正确地选择换热器的类型,是很重要的。换热器选型时需要考虑的 因素是多方面的,主要有: 1)热负荷及流量大小 2)流体的性质 3)温度、压力及允许压降的范围 4)对清洗、维修的要求 5)设备结构、材料、尺寸、重量 6)价格、使用安全性和寿命 在换热器选型中,除考虑上述因素外,还应对结构强度、材料来源、加工条件、密封性、 安全性等方面加以考虑。所有这些又常常是相互制约、相互影响的,通过设计的优化加以解决。针对不同的工艺条件及操作工况,我们有时使用特殊型式的换热器或特殊的换热管,以实现降低成本的目的。因此,应综合考虑工艺条件和机械设计的要求,正确选择合适的换热器型式来有效地减少工艺过程的能量消耗。对工程技术人员而言,在设计换热器时,对于型式的合理选择、经济运行和降低成本等方面应有足够的重视,必要时,还得通过计算来进行技术经济指标分析、投资和操作费用对比,从而使设计达到该具体条件下的最佳设计。 3.1管壳式换热器 管壳式换热器的应用范围很广,适应性很强,其允许压力可以从高真空到41.5MPa,温度可以从-100 °C以下到1100 °C高温。此外,它还具有容量大、结构简单、造价低廉、清洗方

换热器选型详解讲解

换热器选型详解 各种类型的换热器作为工艺过程必不可少的设备,如何根据不同的工艺生产流程和生产规模,设计出投资省、能耗低、传热效率高、维修方便的换热器是一项非常重要的工作。 换热器分类 按工艺功能分类 冷却器、加热器、再沸器、冷凝器、蒸发器、过热器、废热锅炉等。按传热方式和结构分类 间壁传递热量式和直接接触传递热量式,其中间壁传热式又分为管壳式、板式、管式、液膜式等其他形式的换热器。 从工艺功能选择换热器 冷却器 间壁式冷却器 ☆当传热量大时,可以选择传热面积和传热系数较大的板式换热器比较经济,但是板式换热器的使用温度一般不大于150℃,压降较大。 ☆对于压降和温度压力较高的情况,选用管壳式换热器较为合理。 ☆板翅式换热器由于翅片的作用,适用于气体物料的冷却,其使用温度一般也小于150℃。

☆空冷器适用于高温高压的工艺条件,其热物流出口温度要求比设计温度高15~20℃。 直接接触式冷却器 ☆适用于需要急速降低工艺物料的温度、伴随有吸收或除尘的工艺物料的冷却、大量热水的冷却和大量水蒸气的冷凝冷却等工况。 加热器 高温情况:当温度要求高达500℃以上时可选用蓄热式或直接火电加热等方式。 中温情况:对于150~300℃工况一般采用有机载热体作为加热介质。分为液相和气相两种。 低温情况:当温度小于150℃时首先考虑选用管壳式换热器,只有工艺物料的特性或者工艺条件特殊时,才考虑其他形式,例如热敏性物料加热多采用降膜式或波纹板式换热器。 再沸器 图1 四种再沸器类型

多采用管壳式换热器,分为强制循环式、热虹吸式和釜式再沸器三种。其设计温差一般选用20~50℃,单程蒸发率一般为10%~30%。

热交换器原理与设计样题

南京工程学院试卷(1) 1、在以多流程等复杂方式流动的热交换器中,通常先按( 后乘以考虑因其流动方式不同而引入的修正系数来确定其对数平均温差。 a.纯叉流;b.纯顺流;c.纯逆流。 3、采用空气预热器回收烟气中余热,采用热管式换热器,管子上加翅片,翅片应该( ) a.(氐而厚 b.高而薄 c 低而薄 二、问答题(本题4小题,每题8分,共32分) 1、对两种流体参与换热的间壁式换热器,其基本流动式有哪几种?说明流动形式对换热器热 力工作性能的影响?( 8分) 课程所属部门: 考试方式: 开卷 20 /20 学年 第2学期 共5页第1页 能源与动力学院 课程名称:热交换器原理与设计 使用班级: 热能与动力工程(核电站集控运行) 题号 一一一 -二 二 -三 四 五 六 七 八 九 十 总分 得分 、选择题(本题3题,每题3分,共9 分) )算出对数平均温差,然 2、下图所示的换热器,是( )型管壳式换热器。 主管领导批准: 命 题人:张翠珍 教研室主任审核: 本题 得分 a. 2-1 b. 1-2 c 2-2 本题 得分

南京工程学院试卷共5页第2页 2、试述平均温差法(LMTD法)和效能一传热单元数法(&-NTU法)在换热器传热计算中各自的特点?(8分) 3、简述吸液芯热管的工作过程。(8分)

南京工程学院试卷 共5页 第3页 4、对管壳式换热器来说,两种流体在下列情况下,何种走管内,何种走管外? ⑴清洁与不清洁的;(2)腐蚀性大与小的;⑶温度高与低的;(4)压力大与小的; (5)流 量大与小的;(6)粘度大与小的。 (8分) 1 名 ■ 1 1 i 1 i i i i i 姓 i 号 i i i i i ■ 1 i i i 学 ■级 1 i i i i i i 班 i I 1 i i i i 三、思考题(本题2小题,每题15分,共30 分) 1、在圆管外敷设保温层与在圆管外侧设置肋片从热阻分析的角度有什么异同?在什么情况 下加保温层反而会强化其传热然而加肋片反而会削弱其传热? ( 15分) 2、热水在两根相同的管内以相同流速流动,管外分别采用空气和水进行冷却。经过一段时 间后,两管内产生相同厚度的水垢。试问水垢的产生对采用空冷还是水冷的管道的传热系 数影响较大?为什么?( 15分)

换热器设计

换热器设计: 一:确定设计方案: 1、选择换热器的类型 两流体温度变化情况,热流体进口温度130°C,出口温度80°C;冷流体进口温度40°C,出口温度65°C。该换热器用自来水冷却柴油,油品压力0.9MP,考虑到流体温差较大以及壳程压强0.9MP,初步确定为浮头式的列管式换热器。2、流动空间及流速的确定 由于冷却水容易结垢,为便于清洗,应使水走管程,柴油走壳程。从热交换角度,柴油走壳程可以与空气进行热交换,增大传热强度。选用Φ25×2.5 mm 的10号碳钢管。 二、确定物性数据 定性温度:可取流体进口温度的平均值。 壳程柴油的定性温度为 T1=130°C,T2=80°C,t1=40°C,t2=65°C T=(130+80)/2=105(°C) 管程水的定性温度为 t=(40+65)/2=52.5(°C) 已知壳程和管程流体的有关物性数据 柴油105°C下的有关物性数据如下: ρ=840 kg/m3 密度 定压比热容C o=2.15 kJ/(kg·k) 导热系数λo=0.122 W/(m·k) 粘度μo=6.7×10-4N·s/m2 水52.5°C的有关物性数据如下: ρ=988 kg/m3 密度 i C=4.175 kJ/(kg·k) 定压比热容 i λ=0.65 W/(m·k) 导热系数 i

粘度 μi =4.9×10-4 N·s/m 2 三、计算总传热系数 1.热流量 m 0=95000(kg/h) Q 0= m 0C o Δt o =95000×2.15×(130-80)=10212500kJ/h=2836.8(kw) 2.平均传热温差 m t '?=(Δt 1-Δt 2 )/ln(Δt 1/Δt 2)=[(130-65)-(80-40)]/ln[(130-65)/(80-40)]=51.5(°C) 其中Δt 1=T 1-t 2,Δt 2=T 2-t 1。 3.水用量 W c =Q 0/(C i Δt i )=10212500/[4.175×(65-40)]=97844.3kg/h=27.18kg/s 平均温差 1 221t t T T R --= =406580 130--=2 1112t T t t P --= =40 1304065--=0.28 选择卧式冷凝器,冷凝在壳程,为一壳程四管程,查图可得t ??=0.88。 m t m t t '??=???=0.88×51.5=45.32°C 管子规格5.225?φ,L=3m 。 管束排列方式:正三角形排列。 一壳程四管程三角形管束排列方式285.2175.011==n K ,。 四、传热面积初值计算 取总传热系数K=335W/(m 2.°C) 18632 .45335108.28363 =??=?=m t K Q F m 2 一管子面积 3102031???==-ππL d F i =0.1884m 2 管子数 9871884 .01861=== F F N t 管子中心距 o d t 25.1==1.25×25=31.25mm ,取t=32mm

换热器复习题

换热器复习题 一、选择题 1、高压容器的设计压力范围P为:() (a)P≥10MPa(b)1.6≤P<10MPa(c)10≤P<100MPa(d) P≥100 2、容器标准化的基本参数有:() (a)压力Pa(b)公称直径DN(c)内径(d)外径 3、为了防止管子与管板连接处产生不同程度的泄漏,应采用哪一种管板:() (a)平管板(b)薄管板(c)椭圆管板(d)双管板 4、下列哪一种换热器在温差较大时可能需要设置温差补偿装置?() (a)填料函式换热器(b)浮头式换热器(c)固定管板式换热器 5、管壳式换热器属于下列哪种类型的换热器?() (a)混合式换热器(b)间壁式换热器(c)蓄热式换热器(d)板面式换热器 6、U形管换热器的公称长度是指:() (a)U形管的抻开长度(b)U形管的直管段长度(c)壳体的长度 (d)换热器的总长度 7、换热管规格的书写方法为() (a)内径×壁厚(b)外径×壁厚(c)内径×壁厚×长(d)外径×壁厚×长

8、有某型号为: 2.59 8002004 1.625 BEM I ----的换热器,其中的200为() (a)公称换热面积(b)换热器的公称长度(c)换热器公称直径 (d)管程压力为1000Kg/m2 9、折流板间距应根据壳程介质的流量、粘度确定。中间的折流板则尽量等距布置,一般最 小间距不小于圆筒内直径的()。 (a)三分之一(b)四分之一(c)五分之一(d)六分之一 10、冷热两流体的对流给热系数h相差较大时,提高总传热系数K值的措施是() (a)提高小的h值;(b)提高大的h值;(c)两个都同等程度提高;(d)提高大的h值, 同时降低小的h值。 11、顺流式换热器的热流体进出口温度分别为100℃和70℃,冷流体进出口温度分别为 20℃和40℃,则其对数平均温差等于() A.60.98℃B.50.98℃ C.44.98℃D.40.98℃

换热器地选型和设计指南设计(全)

目录 热交换器的选型和设计指南 1 概述 (1) 2 换热器的分类及结构特点。 (1) 3 换热器的类型选择 (2) 4 无相变物流换热器的选择 (11) 5 冷凝器的选择 (13) 6 蒸发器的选择 (14) 7 换热器的合理压力降 (17) 8 工艺条件中温度的选用 (18) 9 管壳式换热器接管位置的选取 (19) 10 结构参数的选取 (19) 11 管壳式换热器的设计要点 (23) 12 空冷器的设计要点 (32) 13 空冷器设计基础数据 (35)

1 概述 本工作指南为工艺系统工程师提供换热器的选型原则和工艺参数的选取及计算方法。 2 换热器的分类及结构特点。 表 2-1 换热器的结构分类

3 换热器的类型选择 换热器的类型很多,每种型式都有特定的应用围。在某一种场合下性能很好的换热器,如果换到另一种场合可能传热效果和性能会有很大的改变。 因此,针对具体情况正确地选择换热器的类型,是很重要的。换热器选型时需要考虑的因素是多方面的,主要有: 1) 热负荷及流量大小 2) 流体的性质 3) 温度、压力及允许压降的围 4) 对清洗、维修的要求 5) 设备结构、材料、尺寸、重量 6) 价格、使用安全性和寿命 在换热器选型中,除考虑上述因素外,还应对结构强度、材料来源、加工条件、密封性、安全性等方面加以考虑。所有这些又常常是相互制约、相互影响的,通过设计的优化加以解决。针对不同的工艺条件及操作工况,我们有时使用特殊型式的换热器或特殊的换热管,以实现降低成本的目的。因此,应综合考虑工艺条件和机械设计的要求,正确选择合适的换热器型式来有效地减少工艺过程的能量消耗。对工程技术人员而言,在设计换热器时,对于型式的合理选择、经济运行和降低成本等方面应有足够的重视,必要时,还得通过计算来进行技术经济指标分析、投资和操作费用对比,从而使设计达到该具体条件下的最佳设计。 3.1管壳式换热器 管壳式换热器的应用围很广,适应性很强,其允许压力可以从高真空到41.5MPa,温度可以从-100°C以下到 1100°C高温。此外,它还具有容量大、

热交换器原理与设计

绪论 1. 2.热交换器的分类: 1)按照材料来分:金属的,陶瓷的,塑料的,是摸的,玻璃的等等 2)按照温度状况来分:温度工况稳定的热交换器,热流大小以及在指定热交换区域内的温度不随时间而变;温度工况不稳定的热交换器,传热面上的热流和温度都随时间改变。3)按照热流体与冷流体的流动方向来分:顺流式,逆流式,错流式,混流式 4)按照传送热量的方法来分:间壁式,混合式,蓄热式 恒在壁的他侧流动,两种流体不直接接触,热量通过壁面而进行传递。 过时,把热量储蓄于壁内,壁的温度逐渐升高;而当冷流体流过时,壁面放出热量,壁的温度逐渐降低,如此反复进行,以达到热交换的目的。 第一章 1.Mc1℃是所需的热量,用W表示。两种流体在热交换器内的温度变化与他们的热容量成反比;即热容量越大,流体温度变化越小。 2.W—对应单位温度变化产生的流动流体的能量存储速率。 4.顺流和逆流情况下平均温差的区别:在顺流时,不论W1、W2值的大小如何,总有μ>0,因而在热流体从进口到出口的方向上,两流体间的温差△t总是不断降低;而对于逆流,沿着热流体进口到出口方向上,当W1<W2时,μ>0,△t不断降低,当W1>W2时,μ<0,△t不断升高。 5.P(定义式P12) 物理意义:流体的实际温升与理论上所能达到的最大温升比,所以只能小于1。 6.R—冷流体的热容量与热流体的热容量之比。(定义式P12) 7.从φ值的大小可看出某种流动方式在给定工况下接近逆流的程度。除非处于降低壁温的目的,否则最好使φ>0.9,若φ<0.75就认为不合理。 (P22 例1.1) 8.所谓Qmax是指一个面积为无穷大且其流体流量和进口温度与实际热交换器的流量和进口温度相同的逆流型热交换器所能达到的传热量的极限值。 9.实际传热量Q与最大可能传热量Qmaxε表示,即ε=Q/Qmax。意义:以温度形式反映出热、冷流体可用热量被利用的程度。 10.根据ε的定义,它是一个无因次参数,一般小于1。其实用性在与:若已知ε及t1′、t2′时,就可很容易地由Q=εW min(t1′-t2′)确定热交换器的实际传热量。 11.带翅片的管束,在管外侧流过的气体被限制在肋片之间形成各自独立的通道,在垂直于 流动方向上(横向)不能自由运动,也就不可能自身进行混合,

板式换热器选型计算

板式换热器选型计算 板式换热器是一种高效紧凑型热交换设备,它具有传热效率高、阻力损失小、结构紧凑、拆装方便、操作灵活等优点,目前广泛应用于冶金、机械、电力、石油、化工、制药、纺织、造纸、食品、城镇小区集中供热等各个行业和领域,因此掌握板式换热器的选型计算对每个工程设计人员都是非常重要的。目前板式换热器的选型计算一般分为手工简易算法、手工标准算法及计算机算法三种,以下就三种算法的特点进行简要的说明。 一、手工简易算法 计算公式: F=Wq/(K*△T) 式中 F —换热面积 m2 Wq—换热量 W K —传热系数 W/m2·℃ △T—平均对数温差℃ 根据选定换热系统的有关参数,计算换热量、平均对数温差,设定传热系数,求出换热面积。选定厂家及换热器型号,计算板间流速,通过厂家样本提供的传热特性曲线及流阻特性曲线,查出实际传热系数及压降。若实际传热系数小于设定传热系数,则应降低设定传热系数,重新计算。若实际传热系数大于设定传热系数,而实际压降大于设定压降,则应进一步降低设定传热系数,增大换热面积,重新计算。经过反复校核,直到计算结果满足换热系统的要求,最终确定换热器型号及换热面积大小。这种算法的优点是计算简单,步骤少,时间短;缺点是结果不准确,应用范围窄。造成结果不准确的原因主要是样本所提供的传热特性曲线及流阻特性曲线是一定工况条件下的曲线,而设计工况可能与之不符。此外样本所提供的传热特性曲线及流阻特性曲线仅为水―水换热系统,在使用中有很大的局限性。 以下给出佛山显像管厂总装厂房低温冷却水及40℃热水两套换热系统实例加以说明采用手工简易算法得出的计算结果与实测结果的差别:

板式换热器选型所需的参数及原则

1板式换热器选型所需要的参数主要有:两种介质的成份、进出口的温度、流量。如果不能提供流量的必须要提供换热量,如果用于供热行业的,没有流量也可以提供换热面积及所用于的地区(因为地区不一样,单位平米的供热量也不一样)。 2设计的原则是经济合理。以达到换热效果为最终目的,由于现在的市场竞争非常的激烈,同等条件下,往往价格是很多业主考虑是否采用哪家供应商的最主要标准。在这种情况下,面积和型号的选择显得尤为重要。 3必须对本公司产品要相当的了解,对每一种型号的参数和使用范围都要烂熟于心。作为一个合格的技术人员,必须要对所有的型号都非常的熟悉,不仅仅是常用的型号,在一些特殊的工况中老型号反而占有很大的优势。 4不能依赖设计软件,软件的选型都有很大的局限性。型号比较固定,如果养成这样的习惯,将无法适应目前市场多变的环境。

艾瑞德板式换热器(江阴)有限公司作为专业的可拆式板式换热器生产商和制造商,专注于可拆式板式换热器的研发与生产。ARD艾瑞德专业生产可拆式板式换热器(PHE)、换热器密封垫(PHEGASKET)、换热器板片(PHEPLATE)并提供板式换热器维护服务(PHEMAINTENANCE)的专业换热器厂家。 ARD艾瑞德拥有卓越的设计和生产技术以及全面的换热器专业知识,一直以来ARD致力于为全球50多个国家和地区的石油、化工、工业、食品饮料、电力、冶金、造船业、暖通空调等行业的客户提供高品质的板式换热器,良好地运行于各行业,ARD已发展成为可拆式板式换热器领域卓越的厂家。 ARD艾瑞德同时也是板式换热器配件(换热器板片和换热器密封垫)领域专业的供应商和维护商。能够提供世界知名品牌(包括:阿法拉伐/AlfaLaval、斯必克/SPX、安培威/APV、基伊埃/GEA、传特/TRANTER、舒瑞普/SWEP、桑德斯/SONDEX、艾普尔.斯密特/API.Schmidt、风凯/FUNKE、萨莫威孚 /Thermowave、维卡勃Vicarb、东和恩泰/DONGHWA、艾克森ACCESSEN、MULLER、FISCHER、REHEAT等)的所有型号将近2000种的板式换热器板片和垫片,ARD艾瑞德实现了与各品牌板式换热器配件的完全替代。全球几十个国家的板式换热器客户正在使用ARD提供的换热器配件或接受ARD的维护服务(包括定期清洗、维修及更换配件等维护服务)。 无论您身在何处,无论您有什么特殊要求,ARD都能为您提供板式换热器领域的系统解决方案。

换热器的设计选型与使用

换热器的设计选型与使用 李 红 (新疆钢铁设计院 乌鲁木齐830022) 摘 要 针对几种间壁传热换热器的特点及使用情况作以阐述,以供在换热器设计选型作比较。 关键词 换热器 设计选型 使用 能源是当前人类面临的重要问题之一,能源开发及转换利用已成为各国的重要课题,而换热器是能源利用过程中必不可少的设备,几乎一切工业领域都要使用,化工、冶金、动力、交通、航空与航天等部门应用尤为广泛。近几年由于新技术发展和新能源开发利用,各种类型的换热器越来越受到工业界的重视,而换热器又是节能措施中较为关键的设备,因此,无论是从工业的发展,还是从能源的有效利用换热器的合理设计、制造、选型和运行都具有非常重要的意义。 1 换热器的分类 1.1 直接传热式换热器。一种不需传热壁面,由冷流体与热流体直接接触进行换热的操作过程的换热器,此类换热器常用于工业生产中。 1.2 间壁传热式换热器。冷、热流体通过管子、板等壁面进行热量交换的传热操作过程的换热器,是最普通的也最常用的换热器,冷、热流体都是流体,可以是空气、烟气、蒸汽、水。这是本文重点进行讨论的换热器类型。 1.3 蓄热式换热器。系间歇传热,在废热再生器中是切实可行有效的回收废热的方式,常被用于回收燃烧气体的废热以及蒸汽等用量不均时作为调节手段。 2 几种换热器的特点及使用 在实际设计选型中,往往是已知高温流体与低温流体的两侧进出口温度,在做工艺设计选型时,需要考虑的是有尽可能小的换热面积下,有尽可能大的换热速率,以及较低的设备造价及施工费。另外,在操作运行及维护清洗较方便的前提下考虑换热器的设计选型。 传热基本方程式: Q=UAΔt K cal/h; 式中:U为传热系数,K cal/m2.h.℃;A为传热面积,m2;Δt为通过两种流体边界层的平均温度。 换热器的给热系数h,K cal/m2.h.℃和流速u,m/ s有如下关系: 管程给热系数h t: 层流区 (Re≤2100) h t∝u0.33 t 过渡流区(2100≤Re≤10000)h t∝u0.33~0.8 t 紊流区 (Re≥10000)h t∝u0.8t 壳程给热系数h g: 壳程流体因垂直流过管束,所以流型较乱,层流、 紊流区没有明显的区别:h t∝u0.55 g 对应的压力降ΔP、kg/cm2,管程和壳程大体相同: 层流、过渡流区 ΔP∝u1.0t 紊流区ΔP∝u1.8t 从上式可以看出,在一定的流速下,雷诺数越大,传热系数越大,同时,压力降也越大。 2.1 管壳式换热器。管壳式换热器是最常用的普通结构,它包括:固定管板式换热器、U型管壳式换热器、带膨胀节式换热器、浮头式换热器、分段式换热器、套管式换热器等。 固定管板式换热器具有结构简单、重量轻、造价低等优点;缺点就是由于热膨胀而引起管子拉弯。U 型管壳式换热器就是克服此缺点将管子作成“U”型,一端固定另一端活动,使得换热器不受膨胀的影响,结构较简单,重量轻,其缺点是不能机械清洗、管子不便拆换、单位容量及单位质量的传热量低,适用于温差大、管内流体介质比较干净的场合。 带膨胀节式换热器可解决膨胀问题,用膨胀接头的结构,故适用温差大的流体和高压流体,因为可将接头拆下来进行清洗,所以可处理易结垢流体,而对低压气体则不适宜,但其缺点就是制造复杂。 浮头式管壳换热器,其浮头不与外壳相连,可自由伸缩,这样既解决了热膨胀的问题,也方便清洗,检修时可将管芯抽出即可。 62新 疆 有 色 金 属 第1期

板式换热器选型计算

板式换热器选型计算

(四)计算换热量 Wq=Qh*γh*Cph*(Th1-Th2)=Qc*γc*Cpc*(Tc2-Tc1) W (五)设备选型 根据样本提供的型号结合流量定型号,主要依据于角孔流速。即:Wl=4*Q/(3600*π*D2) ≤3.5~4.5m/s Wl—角孔流速m/s Q —介质流量m3/h D —角孔直径m (六)定型设备参数(样本提供) 单板换热面积s m2 单通道横截面积 f m2 板片间距l m 平均当量直径de m (d≈2*l) 传热准则方程式Nu=a*Re b*Pr m 压降准则方程式Eu=x*Re y Nu—努塞尔数Eu—欧拉数 a.b.x.y—板形有关参数、指数 Re—雷诺数 Pr—普朗特数 m —指数热介质m=0.3 冷介质m=0.4 (七)拟定板间流速初值Wh 或Wc Wc=Wh*Qc/Qh (纯逆流时) W取0.1~0.4m/s (八)计算雷诺数 Re=W*de/ν W —计算流速m/s de—当量直径m ν—运动粘度m2/s (九)计算努塞尔数 Nu=a*Re b*Pr m

(十)计算放热系数 α=Nu*λ/de α—放热系数W/m2·℃ λ—导热系数W/m·℃ 分别得出αh、αc热冷介质放热系数(十一)计算传热系数 K=1/(1/αh+1/αc+r p+r h+r c) W/m2·℃ r p—板片热阻0.0000459m2·℃/W r h—热介质污垢热阻0.0000172~0.0000258m2·℃/W r c—冷介质污垢热阻0.0000258~0.0000602m2·℃/W (十二)计算理论换热面积 Fm=Wq/(K*△T) (十三)计算换热器单组程流道数 n=Q/(3600*f*W) (圆整为整数) Q—流量m3/h f—单通道横截面积m2 W—板间流速m/s (十四)计算换热器程数 N=(Fm/s+1)/(2*n)N为≥1的整数s—单板换热面积m2 (十五)计算实际换热面积 F=(2*N*n-1)*s (纯逆流) (十六)计算欧拉数 Eu=x*Re y (十七)计算压力损失 △P=Eu*γ*W2*N*10-6 MPa γ—介质重度Kg/m3 W—板间流速m/s N—换热器程数

相关主题
文本预览
相关文档 最新文档