当前位置:文档之家› plc水箱液位控制课程设计

plc水箱液位控制课程设计

plc水箱液位控制课程设计
plc水箱液位控制课程设计

PLC控制的水箱液位控制系统

摘要

在人们生活以及工业生产等诸多领域经常涉及到液位和流量的控制问题, 例如居民生活用水的供应, 饮料、食品加工, 溶液过滤, 化工生产等多种行业的生产加工过程, 通常需要使用蓄液池, 蓄液池中的液位需要维持合适的高度, 既不能太满溢出造成浪费, 也不能过少而无法满足需求。由于液体本身的属性及控制机构的摩擦、噪声等的影响,控制对具有一定的纯滞后和容量滞后的特点,液位上升的过程缓慢,呈非线性。因此液位控制装置的可靠性与控制方案的准确性是影响整个系统性能的关键,因此液面高度是工业控制过程中一个重要的参数,特别是在动态的状态下,采用适合的方法对液位进行检测、控制,能收到很好的效果。可编程控制器(PLC)是计算机家族中的一员,是为工业控制应用而设计制造的,主要用来代替继电器实现逻辑控制。 PID控制(比例、积分和微分控制)是目前采用最多的控制方法。

本文主要是对一水箱液位控制系统的设计过程,涉及到液位的动态控制、控制系统的建模、PLC控制、PID算法、传感器和调节阀等一系列的知识。作为单容水箱液位的控制系统,其模型为一阶惯性函数,控制方式采用了PID算法,控制核心为S7-200系列的CPU222以及A/D、D/A转换模块,传感器为扩散硅式压力传感器,调节阀为电动调节阀。选用以上的器件设备、控制方案和算法等,是为了能最大限度地满足系统对诸如控制精度、调节时间和超调量等控制品质的要求。

关键词PLC,PID,液位控制

目录

PLC控制的水箱液位控制系统.................................................................................................................. I 摘要 ............................................................................................................................................................ I 第一章绪论 ...................................................................................................................................... - 1 - 第二章设计任务与要求..................................................................................................................... - 2 -

2.1基本任务 ............................................................................................................................... - 2 -

2.2 基本要求 .............................................................................................................................. - 2 -

2.3给定条件 ............................................................................................................................... - 2 -

2.4 主要性能指标....................................................................................................................... - 2 -

2.5扩展功能 ............................................................................................................................... - 3 - 第三章总体论证 ................................................................................................................................ - 3 -

3.1 总体方案的选择................................................................................................................... - 3 -

3.1.1 控制方法选择................................................................................................................... - 3 -

3.1.2 系统组成 .......................................................................................................................... - 4 -

3.2 确定系统功能、性能指标................................................................................................... - 4 - 第四章系统设计 ................................................................................................................................ - 5 -

4.1 建模过程 .............................................................................................................................. - 5 -

4.2模型参数的确定................................................................................................................. - 6 -

4.3软、硬件功能划分............................................................................................................. - 6 -

4.4系统功能划分、指标分配和框图构成............................................................................. - 7 -

4.4.1 PLC系统.................................................................................................................. - 7 -

4.4.2 前向通道................................................................................................................. - 7 -

4.4.3 后向通道................................................................................................................. - 8 - 第五章系统开发 ................................................................................................................................ - 8 -

5.1 硬件开发——系统配置....................................................................................................... - 8 -

5.1.1 PLC系统——CPU、模/数转换模块、数/模转换模块.................................................. - 8 -

5.1.2 前向通道——传感器....................................................................................................... - 8 -

5.2 PID操作指令........................................................................................................................ - 9 -

5.2.1 PID算法 ........................................................................................................................... - 9 -

5.2.2 回路输入、输出转换及标准化......................................................................................- 11 -

5.2.3 控制方式 .........................................................................................................................- 11 -

5.2.4 ID的编程步骤................................................................................................................ - 12 -

5.3 软件开发 .......................................................................................................................... - 12 -

5.3.1 确定输入/输出关系,建立数学模型,寻找合适算法............................................... - 12 -

5.3.2 调节器参数整定............................................................................................................. - 13 -

5.3.3 程序流程图..................................................................................................................... - 14 -

5.3.4 程序 ................................................................................................................................ - 14 - 第六章连机调试 .............................................................................................................................. - 17 - 第七章注意事项 .............................................................................................................................. - 18 -

7.1 安全注意事项...................................................................................................................... - 18 -

7.1.1防止触电.................................................................................................................. - 18 -

7.1.2防止烫伤.................................................................................................................. - 18 -

7.1.3防止损坏.................................................................................................................. - 18 - 总结 ................................................................................................................................................ - 19 - 致谢 ................................................................................................................................................ - 20 - 参考文献 ............................................................................................................................................ - 21 -

第一章绪论

可编程控制器(简称PLC或PC)是一种新型的具有极高可靠性的通用工业自动化控制装置,是一种数字运算操作的电子系统。它以微处理器为核心,有机地将微型计算机技术、自动化控制技术及通信技术容为一体,主要用来代替继电器实现逻辑控制,随着技术的发展,这种装置的功能已经大大超过了逻辑控制的范围。它具有控制能力强、可靠性高、配置灵活、编程简单、使用方便、易于扩展等优点,是当今及今后工业控制的主要手段和重要的自动化控制设备。德国西门子(SIEMENS)公司生产的可编程序控制器在我国的应用也相当广泛,在冶金、化工、印刷生产线等领域都有应用。西门子S7系列PLC体积小、速度快、标准化,具有网络通信能力,功能更强,可靠性更高。S7系列PLC产品可分为微型PLC(如S7-200),小规模性能要求的PLC (如S7-300)和中、高性能要求的PLC(如S7-400)等。

液面高度是工业控制过程中一个重要的参数,特别是在动态的状态下,采用适合的方法对液位进行检测、控制,能收到很好的效果。液位控制是工业生产中典型的过程控制问题,对液位准确的测量和有效的控制是一些设备优质、高产、低耗和安全生产的重要指标。由于它便于直接观察、容易测量、获取方便、过程时间常数一般比较小、价格低廉等特点,所以被广泛应用于工业测量。

在工业过程控制系统中,目前采用最多的控制方式依然是PID控制。即使在美国、日本等工业发达国家,PID控制的使用率仍达90%,可见PID控制在工业过程控制中占有异常重要的地位。PID控制技术经历了数十年的发展,从模拟PID控制发展到数字PID控制,技术不断完善与成熟。尤其近十多年来,随着微处理技术的发展,国内外对智能控制的理论研究和应用研究十分活跃,智能控制技术发展迅速,如专家控制、自适应控制、模糊控制等,现己成为工业过程控制的重要组成部分。

由于液体本身的属性及控制机构的摩擦、噪声等的影响,控制对具有一定的纯滞后和容量滞后的特点,液位上升的过程缓慢,呈非线性。因此液位控制装置的可靠性与控制方案的准确性是影响整个系统性能的关键。本课题针对液位控制设计了一个由压力传感器、PLC、电动调节阀等组成的系统,并采用了增量式PID算法对其控制。

第二章设计任务与要求

2.1基本任务

对单容水箱液位/压力控制系统。这是一个单回路反馈控制系统,控制的任务是使水箱的液位/压力等于给定值,减小或消除来自系统内部或外部扰动的影响。用液位/压力参数为被控对象。交流电动机带动齿轮泵通过阀1向上水箱供水,调节阀2使之同时向外排水,令入水的速度大于出水的速度,达到被控参数(液位/压力)的动态调整。

2.2 基本要求

对单容水箱,用西门子S7-200为控制核心,辅助以单片机系统配套的A/D、D/A 转换单元及电路,通过执行数字PID程序实现参数的自动调整(设定值在单片机键盘上完成),使水箱的实际液位/压力值与设定值接近,最终稳定于设定值。组成单闭环水位调节系统,,要求水位可以在一定范围内由人工设定,且各种测量、控制参数可在人机界面上显示、设定。

2.3给定条件

控制对象:单容水箱为核心的水循环系统

检测元件:压力式液位传感器

执行元件:电动调节阀

2.4 主要性能指标

液位控制范围:0-30cm

最小区分度:1cm

控制精度:液位控制的静态误差≤1cm

2.5扩展功能

通讯端口采用的是RS-485总线,允许将S7-200 CPU 同编程器或其它一些设备连接起来。

通过扩展模块可增加CPU 的I/O 点数,也可提供其它通讯功能。

人机界面——触摸屏

第三章 总体论证

3.1 总体方案的选择 单容水箱的液位控制系统是一阶惯性系统,原因是此系统的数学模型为:000()()()1K H S W S Q S T S ==+,此模型为一阶传递函数。

3.1.1 控制方法选择

单容水箱液位控制系统可归属于一阶惯性环节,一般来说,对一阶惯性环节的过渡过程控制。

PID 控制适用与负荷变化大、容量滞后较大、控制品质要求又较高的控制系统。另外,PID 算法有两种常见的实现形式:位置型PID 算法和增量型PID 算法,结合本系统设计任务与要求,以及以上对几种控制方法的分析来看,增量式PID 控制方法最适合本系统采用。

3.1.2 系统组成

以现代控制理论和PLC为基础,采用数字控制、显示、A/D与D/A转换,配合执行器与控制阀构成的PLC控制系统,在过程控制中得到越来越广泛的应用。

应以PLC为核心组成一个专用PLC应用系统,以满足检测、控制应用类型的功能要求。

3.2 确定系统功能、性能指标

1)可以进行水位设定,并自动调节水位到给定水位值;

2)可以调整PID控制参数,以满足不同控制对象与控制品质的要求;

3)可以实时显示给定值与水位实测值。

4)系统主要性能指标如下:

5)液位控制范围:0-30cm

6)最小区分度:1cm

7)控制精度:液位控制的静态误差≤1cm

第四章 系统设计

4.1 建模过程

系统示意图如图4-1所示:

其具体的建模过程为:被控过程的数学模型就是液位高度h 与流入量Q1 之间的数学表达式。根据动态物料平衡关系,有:

12dh

Q Q A dt -=

写成增量形式:

12d h

Q Q A dt ??-?= (1)

式中,1Q ?、2Q ?和h ?分别为偏离某平衡状态10Q 、 20Q 和0h 的增量,A 为水箱

的横截面积。

静态时应有12Q Q =,0dh dt =。1Q 发生变化,液位h 也随之变化,使水箱出口处

静压力发生变化,因此2Q 也发生变化,与h 的近似线性关系为:

22h

Q R ??=

…………2 式中,R2为阀门2的阻力系数,称为液阻。将1、2两式整理得:

221d h R A h R Q dt ?+?=? 经拉氏变换,得单容液位过程传递函数为: 020120()()()11K R H s W s Q s R Cs T s =

==++…………3 式中,0K 为过程放大系数,02K R =;0T 为过程的时间常数,02T R C =;C 为过

程容量,C A =。

式3为一阶传递函数,可知单容水箱液位控制系统为一阶惯性系统。确定其放大系数和过程的时间常数便可以完整的把模型建好,以下便讨论模型参数的确定过程。

4.2 模型参数的确定

由公式3我们知道,放大系数和时间常数与液阻和过程容量有关,又根据公式2

可知液阻R2可由

22h

R Q ?=? 得出,而这些值可以由实验获得,其具体过程如下: 在不考虑容器扰动影响的情况下,管口流出处液体的速度为:

v D 为水箱底部出水口的直径,其测量值为 0.007m ,所以出水口的横截面积S=0.00003848m2。

在此实验中,由于出水阀开度保持不变,出水速度只与液位高度有关。因出水管的流量为 =S v q v ,通过查阅数据,多次求平均可得液阻值为6370.207。

另外,水箱底部截面积的实验测量值为 0.06605 m2,由此可求得过程放大系数K0=6370.207,过程的时间常数T0=420.7648。所以系统无时延模型为:

0006370()14201K W s T s s ==++

4.3 软、硬件功能划分

为了简化系统硬件、降低硬件成本、提高系统灵活性和可靠性,有关PID

运算、输入信号滤波及大部分控制过程都可由软件来完成,硬件的主要功能是液位信号的传感、A/D转换、D/A转换及输出命令的执行。

4.4系统功能划分、指标分配和框图构成

根据系统总体方案,系统由四个主要功能模块组成,其总体框图如图4-2所示:

图4-2 水位控制系统总体框图

4.4.1 PLC系统

PLC系统是整个控制系统的核心,它完成整个系统信息处理及协调控制功能。由于系统对控制速度、精度及功能的要求无特别之处,因此可以选用目前广泛使用的MCS-51系列的单片机以及西门子S7-200系列的PLC。所以本系统选用了西门子S7-200系列的PLC。PLC本身的CPU不带有A/D、D/A转化功能,而本系统有模拟输入、输出量,所以PLC系统中还要包括扩展模块:模/数转换模块、数/模转换模块。

4.4.2 前向通道

前向通道是信息采集的通道,主要包括传感器、信号放大等电路。由于液位变化

是一个相对缓慢的过程,因此前向通道中没有使用采样保持电路。另外,信号的滤波可由软件实现,以简化硬件,降低硬件成本。

4.4.3 后向通道

后向通道是实现信号输出的通道,PLC系统产生的控制信号控制电动调节阀的转动角度,实现对进水量的控制,从而最终实现对液位的控制目的。

第五章系统开发

5.1 硬件开发——系统配置

5.1.1 PLC系统——CPU、模/数转换模块、数/模转换模块

PLC系统以西门子S7-200系列CPU222为系统的核心,外扩EM 231作为A/D转换模块和EM 232作为D/A转换模块。

(1)CPU:因本系统只有1模拟量输入——液位,1模拟量输出——电动调节阀转动的角度,而且要有扩展能力,所以选用PLC的型号为:西门子S7-200系列的CPU 222 DC/DC/DC,即直流输入、直流输出、晶闸管输出型。

(2)模拟量输入模块——EM 231

(3)模拟量输出模块-EM 232

5.1.2 前向通道——传感器

液位经压力式液位传感器和信号放大电路产生0-5V的模拟电压信号送入A/D 转换器的输入端。前向通道的设计主要是传感器的选择。本系统为液位控制系统,其目的是把水箱液体的高度控制在给定值,被控参数是高度h,而不同的高度会产生不

同的液压,所以液位控制系统选用压力式液位传感器,我们这里选用了扩散硅式压力传感器。

5.2 PID 操作指令

S7-200 CPU 提供PID 回路指令(成比例、积分、微分循环),进行PID 计算。PID 回路的操作取决于存储在36字节回路表内的9个参数。

5.2.1 PID 算法

PID 控制器管理输出数值,以便使偏差(e )为零,系统达到稳定状态。偏差是给定值SP 和过程变量PV 的差。PID 控制原则以下列公式为基础,其中将输出M (t )表示成比例项、积分项和微分项的函数: 0()t

p i d

inital de M t K e K edt K M dt =+++?

式中,()M t ——PID 运算的输出,是时间的函数;

p K ——PID 回路的比例系数;

i K ——PID 回路的积分系数; d K ——PID 回路的微分系数;

e ——PID 回路的偏差;

inital M ——PID 回路输出的初始值。

为了在数字计算机内运算此控制函数,必须将连续函数化成为偏差值的间断采样。数字计算机使用下列相应公式为基础的离散化PID 运算模式:

11()

n n p n i l inital d n n l M K e K e M K e e -==+++-∑

式中,n M ——采样时刻n 的PID 运算输出值;

n e ——采样时刻n 的PID 回路的偏差;

1

n e -——采样时刻n-1 的PID 回路的偏差;

l e ——采样时刻l 的PID 回路的偏差。 利用计算机处理的重复性,可对上述公式进行简化。简化后的公式为:

1()()n p n i n d n n M K e K e MX K e e -=+++-

式中,MX ——积分项前值。

1.比例项

比例项MP 是PID 回路的比例系数p K 及偏差e 的乘积,其中比例系数控制输出计算的敏感性,而偏差是采样时刻设定值SP 及过程变量PV 之间的差。为了方便计算取p c K K =。CPU 采用的计算比例项的公式为:

n MP =c K (SPn-PVn )

式中,c K ——回路的增益;

SPn ——采样时刻n 的设定值;

PVn ——采样时刻n 的过程变量。

2.积分项

积分项MI 与偏差和成比例。为了方便计算取

c s i i K T K T =。CPU 采用的积分项公式为:

()c s n i n n K T MI MX T SP PV =+-

式中,MX ——采样时刻n-1 的积分项(又称为积分前项值)。

3.微分项

微分项MD 与偏差的改变成比例,为方便计算,取Kd=KcTd/Ts 。计算微分项的公式为:

11()()d n c n n n n s T MD K SP PV SP PV T --??=---??

5.2.2 回路输入、输出转换及标准化

1.输入转换及标准化

一个回路具有两个输入变量,设定值SP和过程变量PV。设定值通常为固定值,类似水箱液位控制的液位设定。过程变量是与回路输出有关的量,因此可测量回路输出对被控制系统的影响。在水箱液位保持在设定值的例子中,过程变量为电动调节阀的转动角度。

设定值及过程变量均为实际数值,它们的大小、范围及工程单位可能不同。在这些实际数值可用于PID指令之前,必须将其转化成标准化的、浮点数表示形式。

?实际数值转换为实数:第一步是将实际数值从16为整数数值转换为浮点数或实

数数值。

?数值标准化:下一步是将数值的实数表示转换为位于0.0~1.0之间的标准化数

值。可采用下列公式对设定值及过程变量实现这种转换:

Rnorn=(Rraw/Span)+Offset

水箱液位控制系统中的数值为单极性,其标准化公式为:

Rnorn=Rraw/32000

2.输出转换及标准化

回路输出转换成比例的整数数值:回路输出是控制变量,是标准化的、位于0.0-1.0之间的实数数值。在回路输出可用于驱动模拟输出之前,回路输出必须被转换为16位的、成比例的整数数值。这一过程是将过程变量转化及设定值转换为标准化的反过程。

5.2.3 控制方式

S7-200 PID 回路没有内置的自动和手动控制方式,只要PID块有效,就可以执行PID运算,从这种意义上说,PID运算存在一种自动运行方式;当PID运算不被执行时,则可以说那是一种手动运行方式。

同其他指令,PID指令有一个使能位(即允许位),当允许位检测到一信号出现正跳变时,PID指令将进行一系列运算,实现从手动方式到自动方式的转变。为了顺利转变为自动方式,在转换至自动方式之前由手动方式所设定的输出值必须作为PID

指令的输入写入回路表。PID指令对回路表内的数值进行下列计算,保证当检测到0-1过渡时从手动方式顺利转换为自动方式:

置设定值SPn=过程变量PVn

置过程变量前值PVn-1=过程变量PVn

置积分项前值MX=输出值Mn

5.2.4 ID的编程步骤

1.设定回路输入及输出选项

?回路输入选项:循环进程变量可指定为字地址或已经定义的符号。在回路计算之

前,应选好缩放比例。

?回路输出选项:确定PID回路输出变量是数字量还是模拟量。如果是模拟量输出,

可指定为字地址或已经定义的符号。如果是数字量输出,可指定为位地址或已经定义的符号。在循环计算之后,应选好缩放比例。

2.设定回路参数

在PID指令中,必须指定内存区内的36个字节参数表的首地址。其中,要选定过程变量、设定值、回路增益、采样时间、积分时间和微分时间,并转换成标准值存入回路表中。

不建议为参数表地址创建符号名,PID 向导生成的代码使用此参数表地址创建操作数,作为参数表内的相对偏移量。如果为参数表地址创建符号名,然后改变为该符号指定的地址,由PID向导生成的代码将不能正确执行。

5.3 软件开发

对于过程控制系统而言,控制方案的选择和调节器参数的整定是其两个重要的内容,如果控制方案设计的不合理,仅凭调节器参数的整定无法获得良好的控制质量;相反,控制方案很好,但是调节器参数整定得不合适,也不能使系统运行在最佳状态。

5.3.1 确定输入/输出关系,建立数学模型,寻找合适算法

系统的设定值是水箱满水位的百分数,过程变量是由扩散硅压力传感器给出的。

输出值是电动调节阀转过的角度,可以是允许最大值的0%~100%。设定值可以预先设定后直接输入回路表中。过程变量是来自压力传感器的单极性模拟量,回路输出值也是一个单极性的模拟量,用来控制电动调节阀的转度,这个模拟量的范围是0.0~1.0,分辨率为1/32000(标准化)。

5.3.2 调节器参数整定

系统整定,一般是指选择调节器的比例度δ、积分时间TI 和微分时间TD 的具体数值。系统整定的实质,就是通过改变系统参数,使调解器特性和被控过程特性配合好,以改善系统的动态和静态特性,求得最佳的控制效果。

由控制理论可知,在过程控制中,通常以瞬间响应的衰减率?=0.75作为系统性能的主要指标,以保证系统具有一定的稳定储备。

综合各种因素来说,简单易行的方法还是简易工程整定法。采用反应曲线法整定调节器的参数。

反应曲线法也称动态特性参数整定法,它是在系统开环情况下进行的,利用广义 在调节阀的输入端加入一阶跃信号,利用快速显示记录仪在变送器的输出端记录被控参数的响应曲线。

广义过程的传递函数为:

3.000001/1()11251s s s

K W s e e e T s T S s ττρ---===+++ 式中,0T 为过程的时间常数;τ为时延时间;ρ为自衡度。

由于τ/T0=3.0/25=0.12<0.2,根据?=0.75准则,查表可知自衡度ρ=1,则PID 调节器的个参数为:

比例度δ=0.102 积分时间TI =6min

微分时间TD=1.5min 采样时间TS=1s 再由1100%P K δ=

?得增益

1P K δ==0.98

5.3.3 程序流程图

有了前面所讲述的S7-200 CPU提供的PID操作指令、PID编程步骤、电动调节阀参数的整定过程,再结合水箱液位控制系统本身的特点,可以从整体上来构思和规划出本系统的程序流程图,它应包括主程序、初始化子程序、定时中断程序三部分:主程序OB1

主程序的功能是PLC首次运行时利用SM0.1调用初始化程序SBR0。

子程序SBR0

子程序SBR0的功能是形成PID的回路表,建立100ms的定时中断,并开中断。

5.3.4 程序

主程序OB1:

初始化子程序SBRO:

?

?定时中断程序INTO:

(a)模拟量输入

(b)PID指令

(c)模拟量输出

系统运行时,调节阀控制方式有两种,一是手动控制,一是自动控制,两种运行方式之间的切换由一个输入的开关量控制,具体描述如下:I0.0位控制手动到自动

方式的切换,0代表手动,1代表自动。

本系统的程序仅有自动控制方式的设计,I0.0=1时进行PID“自动”控制,把PID运算的输出值送到AQW0中,从而控制调节阀的开度,以使水箱的液位达到设定的水位高度。

第六章连机调试

连机调试就是在样机中全速运行系统软件,观察系统运行情况,并根据运行结果修改控制参数,或对软、硬件方案件进行必要的修改,重复调试过程,直到系统能满足各项性能指标要求为止。

本例中最主要的连机调试过程是进行PID参数整定。不同的控制对象和控制环境需要不同的PID参数,即使是同一个控制对象和控制环境,对控制品质的不同要求也需要对PID参数重新进行整定。

根据生产过程的实际情况,首先将检测传感器投入运行,观察其测量显示的参数是否正确;其次利用调节阀手动遥控,待被控参数在给定值附近稳定下来后,再从手动切换到自动控制。

在调节器从手动切换到自动运行前必须做好细致的检查工作,检查调节器的PID 参数是否配置好等。检查完毕后,当测量值与给定值的偏差为零时,将调节器由手动切换到自动,于是实现了系统的投运。

系统投入自动运行后,观察系统的控制质量指标是否达到设计要求,否则,在对调节器的PID参数适当的微调,以期达到较好的控制质量的设计。

水箱液位控制系统设计说明

过程控制综合训练 课程报告 16 —17 学年第二学期课题名称基于PLC和组态王的 系统 姓名 学号 班级 成绩

水箱液位控制系统 [摘要] 在工业生产过程中,液位贮槽如进料罐、成品罐、中间缓冲器、水箱等设备应用十分普遍,为了保证生产正常进行,物料进出需均衡,以保证过程的物料平衡。因此,工艺要求贮槽的液位需维持在给定值上下,或在某一小围变化,并保证物料不产生溢出。例如,锅炉系统汽包的液位控制,自流水生产系统过滤池、澄清池水位的控制等等。根据课题要求,设计一个单容水箱的液位过程控制系统,该系统能对一个单容水箱液位的进行恒高度控制。 关键词:过程控制液位控制PID控制 Abstract: In the process of industrial production, liquid storage tank such as product cans, buffer, tanks and other equipments are widely used. In order to ensure the normal production,material supply and demand must be balanced to guarantee the process of the production. So, the process requires that the liquid level in the tank should be maintained at a given value, or change in a small range,and ensure that the material does not overflow,for instance,system of boiler drum level control, level control of filter pool and clarification pool of self-flowing water production

过程控制课程设计报告材料-贮槽液位控制系统设计

过程控制课程设计 设计题目:贮槽液位控制系统设计 学院:电气工程学院 专业:自动化 班级:091班 2012年6月4日

小组成员: 序号学号姓名设计分工 16 0902100138 姚航程总方案的确定及原理、控制参数的整定、 simulink仿真 17 0902100140 韦寿德测量变送器的选型、控制参数的整定、查阅 资料 18 0902100141 张印测量变送器的选型、控制参数的整定 19 0902100142 邓世杰调节阀的选型、水箱的建模 20 0902100147 杨奉志总方案的确定及原理、控制参数的整定、 simulink仿真 21 0902100148 钟昌帅simulink仿真、调节阀的选型 22 0902100149 李晓明控制器的选型、控制参数的整定、设计总结、 整理报告 23 0902100202 张凯强simulink仿真、水箱的建模、查阅资料 24 0902100203 农志兴调节阀的选型、水箱的建模 25 0902100204 袁剑波控制器的选型、查阅资料 26 0902100206 李季调节阀的选型、控制器的选型 27 0902100208 黄灵浩测量变送器的选型、水箱的建模、查阅资料 28 0902100209 谭雷调节阀的选型、水箱的建模 29 0902100213 吴高阳控制参数的整定、水箱的建模、查阅资料 30 0902100216 潘敏调节阀的选型、测量变送器的选型

目录 一、设计目的 (4) 二、设计任务及要求 (4) 三、工艺过程及要求 (5) 四、系统总体方案的选择及说明 (6) 五、系统结构框图与工作原理 (7) 1.系统结构框图 (7) 2.工作原理 (8) 3.水箱建模 (8) 六、各单元软硬件 (10) 1.控制对象 (10) 2.控制器 (10) 3.调节阀 (11) 4.差压变送器 (12) 七、参数的整定及仿真结果 (13) 1.经验法(现场实验整定法) (13) 2.常见被控量的PID参数选择范围 (13) 3.控制器各校正环节的作用 (13) 4.仿真结果 (14) 八、分析总结 (16) 设备清单 (17) 参考文献 (18)

单片机水位控制系统课程设计

课程设计(论文) 题目名称: 课程名称: 学生姓名: 学号: 学院: 指导教师:

课程设计任务书

目录 摘要 (4) 引言 (5) 1几种方案的比较 (6) 1.1 简单的机械式控制方式 (6) 1.2 复杂控制器控制方案 (6) 1.3通过水位变化上下限的控制方式 (6) 2水塔水位控制原理 (8) 3电路设计 (9) 3.1原件的介绍 (9) 3.2引脚功能 (10) 3.3 水位检测接口电路 (13) 3.4报警接口电路 (14) 3.5 存储器扩展接口电路.................. .. (14) 4系统软件设计 (15) 4.1 流程图 (15) 4.2程序 (16) 5实验仿真 (18) 6结语 (19)

7参考文献 (19) 摘要 随着微电子工业的迅速发展,单片机控制的智能型控制器广泛应用于电子产品中,为了使学生对单片机控制的智能型控制器有较深的了解。经过综合分析选择了由单片机控制的智能型液位控制器作为研究项目,通过训练充分激发学生分析问题、解决问题和综合应用所学知识的潜能。另外,水位控制在高层小区水塔水位控制,污水处理设备和有毒,腐蚀性液体液位控制中也被广泛应用。通过对模型的设计可很好的延伸到具体应用案例中。设计一种基于单片机水塔水位检测控制系统。该系统能实现水位检测、电机故障检测、处理和报警等功能,实现超高、低警戒水位报警,超高警戒水位处理。介绍电路接口原理图,给出相应的软件设计流程图和汇编程序,并用Proteus软件仿真。实验结果表明,该系统具有良好的检测控制功能,可移植性和扩展性强。 关键词:单片机;水位检测;控制系统;仿真

水箱自动控制系统设计原理图及程序

课程:创新与综合课程设计 电子与电气工程学院实践教学环节说明书 题目名称水箱水位自动控制装置 学院电子与电气工程学院 专业电子信息工程 班级 学号 学生姓名 起止日期13周周一~14周周五

水箱液位控制系统是典型的自动控制系统,在工业应用上可以模拟水塔液位、炉内成分等多种控制对象的自动控制系统。 本次课程设计思路是以单片机为控制中心,对水位传感器、电机驱动模块、按键及显示进行控制。通过按键设置水位传感器的位置,在水龙头及阀门的各种开度下,通过控制水泵工作或不工作来维持水箱二的液面高度基本维持不变。 一、设计题及即要求 1、设计并制作一个水箱水位自动控制装置,原理示意图如下: 2、基本要求:设计并制作一个水箱水位自动控制装置。 (1)水箱1 的长×宽×高为50 ×40 ×40 cm;水箱2 的长

×宽×高为40×30 × 40 cm(相同容积亦可);水箱1 的放在地面,水箱2 放置高度距地0.8-1.2m。 (2)在出水龙头各种开度状态下装置能够自动控制水箱 2 中水位的高度不变, 误差≤1cm。 (3)水箱 2 中要求的水位高度及上下限可以通过键盘任意设置; (4)实时显示水箱2 中水位的实际高度和水泵、阀门的工作状态。 3、发挥部分: (1)在出水龙头各种开度状态下装置能够自动控制水箱 2 中水位的高度不变, 误差≤0.3 cm。 (2)由无线远程控制器实现基本要求,无线通讯距离不小于10 米。远程控 制器上能够同步实现超限报警显示。 (3)其他创新。 二、设计思路: 以单片机为控制中心,对水位传感器、电机驱动模块、按键及显示进行控制。通过按键设置水位传感器的位置,在水龙头及阀门的各种开度下,通过控制水泵工作或不工作来维持水箱二的液面高度基本

基于PID的上水箱液位控制系统设计课程设计

基于PID的上水箱液位控制系统设计 过程控制系统课程设计 基于PID的上水箱液位控制系 统设计

一、课程设计任务书 1.设计内容 针对某厂的液位控制过程与要求实现模拟控制,其工艺过程如下:用泵作为原动力,把水从低液位池抽到高液位池,实现对高液位池液位高度的自动控制。具体设计内容是利用西门子S7-200PLC作为控制器,实现对单容水箱液位高度的定值控制,同时利用MCGS组态软件建立单容水箱液位控制系统的监控界面,实现实时监控的目的。 2.设计要求 1、以RTGK-2型过程控制实验装置中的单个水箱作为被控对象、PLC作为控制器、静压式压力表作为检测元件、电动调节阀作为执行器构成一个单容水箱单闭环控制系统,实现对水箱液位的恒值控制。 2、PLC控制器采用PID算法,各项控制性能满足要求:超调量20%,稳态误差≤±0.1;调节时间ts≤120s; 3、组态测控界面上,实时设定并显示液位给定值、测量值及控制器输出值;实时显示液位给定值实时曲线、液位测量值实时曲线和PID输出值实时曲线; 4、选择合适的整定方法确定PID参数,并能在组态测控界面上实时改变PID参数; 5、通过S7-200PLC编程软件Step7实现PLC程序设计与调试; 6、分析系统基本控制特性,并得出相应的结论; 7、设计完成后,提交打印设计报告。

3.参考资料 1.邵裕森,戴先中主编.过程控制工程(第2版).北京:机械工业出版社.2003 2.崔亚嵩主编.过程控制实验指导书(校内) 3.廖常初主编.PLC编程及应用(第2版).北京:机械工业出版社.2007 4.吴作明主编.工业组态软件与PLC应用技术.北京:北京航空航天大学出版社.2007 4.设计进度(2010年12月27日至2011年1月9日) 时间设计内容 2010年12月27日布置设计任务、查阅资料、进行硬 件系统设计 2010年12月28日~ 2010年12月29日 编制PLC控制程序,并上机调试; 2010年12月30日~2010年12月31日利用MCGS组态软件建立该系统的工 程文件 2011年1月2日~2011年1月4日进行MCGS与PLC的连接与调试进行PID参数整定 2011年1月5日~2011年1月6日系统运行调试,实现单容水箱液体 定值控制 2011年1月7日~ 2011年1月9日 写设计报告书 5.设计时间及地点 设计时间:周一~周五,上午:8:00~11:00 下午:1:00~4:00 设计地点:新实验楼,过程控制实验室(310) 电气工程学院机房(320)

单片机水箱水位控制系统设计

单位代码0 2 学号 分类号TH6 密级 课程设计说明书 水箱水位控制系统设计 院(系)名称机械工程学院 专业名称机械设计制造及其自动化学生姓名 指导教师 2015年10 月27 日

黄河科技学院课程设计任务书 机械工程学院机械系机械设计制造及其自动化专业12 级1 班学号1200000000 姓名指导教师 题目: 水箱水位控制系统设计 课程:单片机应用技术 课程设计时间2015 年10 月13 日至10 月27 日共 2 周课程设计工作内容与基本要求(设计要求、设计任务、工作计划、所需相关资料)(纸张不够可加页) 1. 设计要求 在高塔的内部我们设计一个简易的水位探测传感器用来探测三个水位,即低水位,正常水位,高水位。低水位时送给单片机一个高电平,驱动水泵加水,红灯亮;正常范围的水位时,水泵加水,绿灯亮;高水位时,水泵不加水,黄灯亮。 2. 设计任务与要求(完成后需提交的文件和图表等) 1〉系统硬件电路设计 根据该系统设计的功能要求选择所用元器件,设计硬件电路。要求用Proteus 绘制整个系统电路原理图。 2〉软件设计 根据该系统设计的功能要求进行软件设计,要求用VISIO软件绘制整个系统及各部分的软件流程图。并根据流程图编写程序并汇编调试通过。列出软件清单,软件清单要加以注释。 3〉Proteus仿真 用Proteus对系统软硬件进行仿真调试通过。 4〉软硬件实际调试 5〉编写设计说明书一份,内容包括任务书、设计方案分析、硬件设计部分要绘制整个系统电路原理图,对各部分电路设计原理做出说明。软件设计部分要绘制整个系统及各部分的软件流程图,并列出软件清单,软件清单要求加注释,并在各功能块前加程序功能注释。调试结果整理分析及设计调试的心得体会。3.工作计划(进程安排) 第1周基本完成软、硬件的设计(分散在教学过程中完成)。第二周2天绘

水箱液位控制系统课程设计

、液位控制系统的原理分析 1.1水箱液位控制系统的原理框图 本次课程设计对水箱液位控制系统的设计是一个简单的控制系统, 所谓简单 液位控制系统通常是指有一个被控对象,一个检测变松单元一个控制器和一个执 行器所组成的单闭环负反馈控制系统,也成为单回路控制系统。 简单控制系统有着共同的特征,他们均有四个基本环节组成,即被控对象, 测量变送装置,控制器和执行器。对不同对象的简单控制系统尽管其具体装置和 变量不相同,但都可以用相同的方框图表示: 图1控制系统方框图 这是单回路水箱液位控制系统,单回路调节系统一般指在一个调节对象上用 一个调节器保持一个参数的恒定,而调节器只接受一个测量信号,其输出也只控 制一个执行机构。本系统所要保持的恒定参数是液位的给定高度, 即控制的任务 是控制水箱液位等于给定值所要求的高度。 根据控制框图,这是一个闭环反馈单 回路液位控制,采用工业智能仪表控制。 1.2被控过程传递函数的一般形式 根据被控过程动态特性的特点,典型工业过程控制所涉及及被控对象的传递 函数一般具有下述几种形式 1一阶惯性加纯迟延 2 二阶惯性环节加纯迟延 G(s) 二 k Ts 1 e s 1-1

3 N 阶惯性环节加纯迟延 二、建立被控对象数学模型 2.1求传递函数 根据阶跃响应的实验数据如表1 使用Matlab 编辑.m 文件,得出阶跃响应曲线。Matlab 程序如下: t = [0 10 20 40 60 80 100 140 180 250 300 400 500 600 700 800]; h = [0 0 0.2 0.8 2.0 3.6 5.4 8.8 11.8 14.4 16.5 18.4 19.2 19.6 19.8 20]; plot(t,h) grid on hold on 得到阶跃响应曲线再取0.39和0.62处的t 值如图2、图3 G(s) = (T i S 1)幽 1) V s (1-2) G(s) = K (Ts 1)n e —s (1-3) 上述3个公式只适用于自衡过程 个积分环节,即 G(s)二丄e 「s Ts G(s) - e 「s 71s(T 2 s +1) 对于非自衡过程,其传递函数应包含有一 (1-4) (1-5)

(完整版)水位控制系统设计

课题名称:水箱水位控制系统设计专业:电气工程及其自动化学号: 姓名:

水箱水位控制系统设计 摘要 本设计主要基于单片机的硬件电路设计,实现一种能够实现水位自动控制、具有自动保护、自动声光报警功能的控制系统。本控制系统由A/D转换部分、单片机控制部分、数码显示部分、电机驱动部分、电机控制部分等构成。同时对各个部分进行了详细的论述。在设计中对水塔水位控制原理进行分析,选用AT89C51单片机作为控制水塔水位的处理芯片,由AT89C51的P1口直接来控制.设计方案采用模块化程序设计方法,结合程序流程图,编写程序代码,最后利用KEIL公司的u Vision3软件及伟福仿真软件进行仿真实验,达到单片机自动控制水塔水位变化的目的. 关键词:单片机,水塔水位控制原理,AT89C51,伟福仿真软件

目录 前言 (1) 第1章设计内容 (2) 1.1 设计要求 (2) 1.2 方案设计 (2) 第2章硬件电路设计 (3) 2.1 系统框图设计 (3) 2.2 系统原理 (4) 第3章水塔水位控制系统的硬件电路设计 (5) 3.1 水位检测电路 (5) 3.2 水位显示电路 (5) 3.3电机控制电路 (6) 3.4振荡电路和复位电路 (7) 3.5声光报警电路 (7) 第4章软件程序设计 (8) 4.1 系统主程序流程图 (8) 4.2编写C程序 (9) 第5章硬件制作与调试 (10) 结论 (11) 附录 (12) 仿真总图 (12) 源代码 (13)

前言 水塔是在日常生活和工业应用中经常见到的蓄水装置,在我们的生活中起到了重要的作用,而水基于单片机的水塔水位控制系统使水塔水位自动保持在一定的位置,通过对其水位的控制对外供水,以满足需要。塔里面的水位控制是一个水塔发挥作用的关键。该系统使用水位传感器对水塔水位进行检测并将检测到的信号传给单片机来进行处理,通过调整定时器的定时时间来增大或者缩小占空比,并编写程序加以控制,从而实现电机的调速。最后,使用液晶屏显示当前水位状态以及电动机的转速。该系统通过了报警模块来实现了过低水位蜂鸣器鸣笛报警、过低警戒水位自动处理、正常水位蜂鸣器鸣笛报警以及正常水位处理。本系统适应在不同的用水场合下的用水速度需要,节省工作时间,提高了整体工作的效率,实现水塔水位的自动控制。 液位控制是工业控制中的一个重要问题,针对液位控制过程中存在大滞后、时变、非线性的特点,为适应复杂系统的控制要求,人们研制了种类繁多的先进的智能控制器,模糊PID控制器便是其中之一。模糊PID控制结合了PID控制算法和模糊控制方法的优点,可以在线实现PID参数的调整,使控制系统的响应速度快,过渡过程时间大大缩短,超调量减少,振荡次数少,具有较强的鲁棒性和稳定性,在模糊控制中扮演着十分重要的角色。

液位控制系统——过程控制课程设计

过程控制课程设计——液位控制系统综合设计 目录 目录 0 1.引言 (1) 2.系统工作原理 (1) 3. 硬件设计部分 (2) 3.1控制回路硬件图 (2) 3.2系统硬件设计 (3) 3.3控制系统的结构组成 (3) 3.4 设备连接 (4) 4.PID控制器程序设计 (4) 4.1 PID原理如下 (4) 4.2 A/D、D/A转换控制环节 (5) 4.3 PID控制程序 (5) 5.设计总结及心得体会 (7) 参考文献 (8)

1.引言 液位控制是工业中常见的过程控制,它对生产的影响不容忽视。单容液位控制系统具有非线性,滞后,耦合等特征,能够很好的模拟工业过程特征。对于液位控制系统,常规的PID控制采用固定的参数,难以保证控制适应系统的参数变化和工作条件变化,得不到理想效果,模糊控制具有对参数变化不敏感和鲁棒性强等特征,但控制精度不太理想。如果将模糊控制和传统的PID控制两者结合,用模糊控制理论来整定PID控制器的比例,积分,微分系统,就能更好的适应控制系统的参数变化和工作条件的变化。 本课程设计所控制的是单容下水箱液位,根据控制系统要求,设计采用过程控制器件液位变送器、电动调节阀以及可编程逻辑控制器组成单回路闭环控制系统。从而熟悉PID算法在过程控制中的应用和闭环回路调节系统的设计方法。 2.系统工作原理 整个液位控制系统采用典型的反馈式闭环控制,液位控制系统原理图如图2.1所示: 图2.1 液位控制系统原理图 图2.1为单回路上水箱液位控制系统,单回路调节系统一般指在一个调节对象上用一个调节器来保持一个参数的恒定,而调节器只接受一个测量信号,其输出也只控制一个执行机构。本系统所要保持的恒定参数是液位的给定高度,即控制的任务是控制上水箱液位等于给定值所要求的高度。根据控制框图,这是一个闭环反馈单回路液位控制,采用工业智能仪表控制。当调节方案确定之后,接下来就是整定调节器的参数,一个单回路系统设计安装就绪之后,控制质量的好坏与控制器参数选择有着很大的关系。合适的控制参数,可以带来满意的控制效果。反之,控制器参数选择得不合适,则会使控制质量变坏,达不到预期效果。因此,当一个单回路系统组成好以后,如何整定好控制器参数是一个很重要的实际问题。一个控制系统设计好以后,系统的投运和参数整定是十分重要的工作。 一般言之,用比例(P)调节器的系统是一个有差系统,比例度δ的大小不仅会影响到余差的大小,而且也与系统的动态性能密切相关。比例积分(PI)调节器,由于积分的作用,不仅能实现系统无余差,而且只要参数δ,Ti调节合理,也能使系统具有良好的动态性能。比例积分微分(PID)调节器是在PI调节器的基础上再引入微分D的作用,从而使系统既无余差存在,又能改善系统的动态性能(快速性、稳定性等)。在单位阶跃作用下,P、PI、PID 调节系统的阶跃响应分别如图3-2中的曲线①、②、③所示。

液位自动控制系统设计

第一章液位自动控制系统原理 液位自动控制是通过控制投料阀来控制液位的高低,当传感器检测到液位设定值时,阀门关闭,防止物料溢出;当检测液位低于设定值时,阀门打开,使液位上升,从而达到控制液位的目的。在制浆造纸工厂常见有两种方式的液位控制:常压容器和压力容器的液位控制,例如浆池和蒸汽闪蒸罐。液位自动控制系统由液位变送器(或差压变送器)、电动执行机构和液位自动控制器构成。根据用户需要也可采用控制泵启停或改变电机频率方式来进行液位控制。结构简单,安装方便,操作简便直观,可以长期连续稳定在无人监控状态下运行。 应用范围 在制浆造纸过程中涉及的所有池、罐、槽体液位自动控制。 图1.1 中,是控制器的传递函数,是执行机构的传递函数,是测量变送器的传递函数,是被控对象的传递函数。图5.1中,控制器,执行机构、测量变送器都属 于自动化仪表,他们都是围绕被控对象工作的。也就是说,一个过程控制的控制系统,是围绕被控现象而组成的,被控对象是控制系统的主体。因此,对被控对象的动态特性进行深入了解是过程控制的一个重要任务。只有深入了解被控对象的动态特性,了解他的内在规律,了解被控辩量在各种扰动下变化的情况,才能根据生产工艺的要求,为控制系统制定一个合理的动态性能指标,为控制系统的设计提供一个标准。性能指标顶的偏低,可能会对产品的质量、产量造成影响。性能指标顶的过高,可能会成不必要的投资和运行费用,甚至会影响到设备的寿命。性能指标确定后,设计出合理的控制方案,也离不开对被控动态特性的了解。不顾被控对象的特点,盲目进行设计,往往会导致设计的失败。尤其是一些复杂控制方案的设计,不清楚被控对象的特点根本就无法进行设计。有了正确的控制方案,控制系统中控制器,测量变送器、执行器等仪表的选择,必须已被控对象的特性为依据。在控制系统组成后,合适的控制参数的确定及控制系统的调整,也完全依赖与对被控对象动态特性的了解。由此可见,在控制工程中,了解被控制的对象是必须首先做好的一项工作。

上水箱液位控制系统-过控课设

摘要 在过程工业中被控制量通常有以下四种: 液位、压力、流量、温度。而液位不仅是工业过程中常见的参数,且便于直接观察,也容易测量。过程时间常数一般比较小。以液位过程构成实验系统,可灵活地进行组态,实施各种不同的控制方案。液位控制装置也是过程控制最常用的实验装置。国外很多实验室有此类装置,如瑞典LUND大学等。很多重要的研究报告、模拟仿真均出自此类装置! 本次设计也是基于这套水箱液位控制装置来实现的。这套系统由多个水箱,液位检测变送器,电磁流量计,涡轮流量计,自动调节阀,控制面板等喝多器件构成。 液位控制的发展从七十年代到九十年代经历了几个阶段,控制理论由经典控制理论到现代控制理论,再到多学科交叉;控制工具由模拟仪表到DCS,再到计算机网络控制;控制要求与控制水平也由原来的简单、安全、平稳到先进、优质、低耗、高产甚至市场预测、柔性生产。而其中应用最广泛的就是PID 控制器。 这次首先是用一天半的时间让我们熟悉各种建模的方法。学会建立了最初的四种模型。接着后几天就是开始熟悉各种控制系统,以及运用它们去控制水箱的液位,从而更加深刻的理解控制的概念。并且在过程中,要熟练学会调整PID的参数,学会使用MATLAB等。 关键词:水箱液位;PID控制;串级控制;前馈控制;经验凑试法

目录 1引言 (1) 2 实验设备 (2) 2.1 THJ-FCS型或THJ-3型高级过程控制系统实验装置 (2) 2.2计算机及相关软件。 (6) 2.2.1 SIMATIC WinCC简介 (6) 2.2.2 监控界面 (7) 3 设备工作原理及运行过程 (8) 3.1 设备工作原理 (8) 3.2 控制系统流程图 (9) 3.3系统投运及步骤 (10) 4 参数整定与结果分析 (12) 4.1 参数整定 (12) 4.1.1 比例(P)调节 (12) 4.1.2 比例积分(PI)调节 (14) 4.1.3 比例积分微分(PID)调节 (17) 4.2 结果分析 (19) 总结 (20) 参考文献 (21)

水箱水位自动控制系统设计与实施——毕业设计说明书资料

广西电力职业技术学院 毕业设计 题目名称水箱水位自动控制系统设计与实施 系(部)动力工程系 专业检测技术及应用 班级 1 1 1 5 学号 109111540 姓名谢城镔 指导教师梁云岳 广西电力职业技术学院教务科研处编制

摘要 随着科学技术的发展,电器控制技术在各领域,特别是在自动控制领域取得了长足的发展,有了越来越多的应用。PLC以可靠性高、灵活性强、易于扩展、通用性强、使用方便等优点不断发展,在处理速度、控制功能、通讯能力及控制领域等方面都有新的突破,成为工业自动化领域最重要、应用最广的控制设备之一,对国民经济建设有突出的贡献。近年来由于PLC与其他科学技术结合,使其在各个控制领域显示了较强的应用潜力和良好的应用前景。 本毕业设计采用PLC与继电器来实现水位的自动控制以及采用热电偶与压力变送器对温度、压力的监控,系统通过手自动控制,现场内控制与远程控制使其直观地表现出水箱水位自动控制系统的功能化与优良性。 关键字: PLC 水位自动控制热电偶压力变送器

目录 一前言 (3) 二设计方案 (4) (一)系统说明 (4) (二)工作原理及原理图 (6) (三)设备清单及I/O分配表 (7) 1 设备清单 (7) 2 I/O分配表............................................ (8) (四)主要设备及编程软件介绍 (9) 1 西门子PLC简介 (9) 2 V4.0 STEP 7 Micro SP7编程软件简介 (10) 3 组态王软件简介 (12) 三实施过程 (14) (一)水箱制作 (14) (二)管路连接 (14) (三)控制设备接线 (14) (四)控制组态界面设计 (15) (五) PLC程序设计 (16) (六)系统调试 (22) (七)存在问题及解决方法 (22) 四结论 (25) 五心得体会 (26) 致谢 参考文献与附录

水塔液位控制系统课程设计

水塔液位控制系统课程设计

集美大学 机制专业课程设计论文 (机电方向) 基于FX1N– 60MR可编程控制器的水塔液位控制系统 专业:机械设计制造及其自动化(09级) 姓名:陈剑民 班级:机械0995(机电方向) 学号:2009934139 指导教师:弓清忠雷慧

集美大学机械专业(机电方向)课程设计任务书 姓名:陈剑民院(系):集美大学诚毅学院 专业:机械工程及其自动化班级学号:机械0995班2009934151 任务起至日期:2012 年12 月 3 日至2012 年12 月21 日 课程设计题目: 基于FX1N– 60MR可编程控制器的自动售货机控制系统 立题的目的和意义: 现代制造业要求生产设备和自动化生产线的控制系统必须具备极高的可靠性和灵活性,可编程控制器正是顺应这一要求出现的。它已经成为当代工业自动化的三大支柱之一。《可编程控制器原理及其应用》课程是培养学生具有机电一体化设计能力的技术基础课,其专业课程设计是本课程的重要实践环节,是本专业方向第一次较全面的设计训练。专业课程设计要达到的如下主要目的: 1)培养学生综合运用本课程及其它有关先修课程的知识,去分析、解决实际工程问题的能力,深化、扩展本课程的理论知识; 2)能够对原有的继电器接触控制系统进行改造和设计新的控制系统; 3)使学生掌握可编程控制器系统设计的一般方法和步骤,培养学生独立的工程设计能力,树立正确的设计思想,为今后工作打下良好的本专业工程基础。 通过绘制完整的电器原理图,端子接线图,控制流程图,编制相应程序,进行系统调试等环节,掌握PLC系统软、硬件设计方法,了解这项技术的最新发展动态,熟悉国家标准,培养学生的基本技能,从而为接下来的毕业设计打下良好的

基于PID的上水箱液位控制系统课程设计报告

过程控制系统课程设计 基于PID的上水箱液位控制系 统设计

一、课程设计任务书 1.设计容 针对某厂的液位控制过程与要现模拟控制,其工艺过程如下:用泵作为原动力,把水从低液位池抽到高液位池,实现对高液位池液位高度的自动控制。具体设计容是利用西门子S7-200PLC作为控制器,实现对单容水箱液位高度的定值控制,同时利用MCGS 组态软件建立单容水箱液位控制系统的监控界面,实现实时监控的目的。 2.设计要求 1、以RTGK-2型过程控制实验装置中的单个水箱作为被控对象、PLC作为控制器、静压式压力表作为检测元件、电动调节阀作为执行器构成一个单容水箱单闭环控制系统,实现对水箱液位的恒值控制。 2、PLC控制器采用PID算法,各项控制性能满足要求:超调

量20%,稳态误差≤±0.1;调节时间ts≤120s; 3、组态测控界面上,实时设定并显示液位给定值、测量值及控制器输出值;实时显示液位给定值实时曲线、液位测量值实时曲线和PID输出值实时曲线; 4、选择合适的整定方法确定PID参数,并能在组态测控界面上实时改变PID参数; 5、通过S7-200PLC编程软件Step7实现PLC程序设计与调试; 6、分析系统基本控制特性,并得出相应的结论; 7、设计完成后,提交打印设计报告。 3.参考资料 1.邵裕森,戴先中主编.过程控制工程(第2版).:机械工业.2003 2.亚嵩主编.过程控制实验指导书(校) 3.廖常初主编.PLC编程及应用(第2版).:机械工业.2007 4.吴作明主编.工业组态软件与PLC应用技术.:航空航天大

学.2007 4.设计进度(2010年12月27日至2011年1月9日) 时间设计容 2010年12月27日 布置设计任务、查阅资料、进行硬 件系统设计 2010年12月28日~ 2010年12月29日 编制PLC控制程序,并上机调试; 2010年12月30日~2010年12月31日利用MCGS组态软件建立该系统的工 程文件 2011年1月2日~2011年1月4日进行MCGS与PLC的连接与调试进行PID参数整定 2011年1月5日~2011年1月6日系统运行调试,实现单容水箱液体 定值控制 2011年1月7日~ 2011年1月9日 写设计报告书

(完整版)《电力拖动自动控制系统》毕业课程设计变频液位自动控制

扬州大学能源与动力工程学院本科生课程设计 题目:变频液位自动控制系统 课程:电力拖动自动控制系统 专业:电气工程及其自动化 班级:电气 学号: 姓名: 指导教师: 完成日期:

第一部分 任 务 书

电力拖动自动控制系统课程设计任务书 一、课程设计的目的 通过电力拖动自动控制系统的设计、了解一般交直流调速系统设计过程及设计要求,并巩固交直流调速系统课程的所学内容,初步具备设计电力拖动自动控制系统的能力。为今后从事技术工作打下必要的基础。 二、课程设计的要求 1、熟悉交直流调速系统设计的一般设计原则,设计内容以及设计程序的要求。 2、掌握控制系统设计制图的基本规范,熟练掌握电气控制部分的新图标。 3、学会收集、分析、运用自动控制系统设计的有关资料和数据。 4、培养独立工作能力、创造能力及综合运用专业知识解决实际工程技术问题的能力。

三、课程设计的内容 完成某一给定课题任务,按给出的工艺要求、运用变频调速对系统进行控制。 四、进度安排:共1.5周 本课程设计时间共1.5周,进度安排如下: 1、设计准备,熟悉有关设计规范,熟悉课题设计要求及内容。(1.5天) 2、分析控制要求、控制原理设计控制方案(1.5天) 3、绘制控制原理图、控制流程图、端子接线图。(2天) 4、编制程序、梯形图设计、程序调试说明。(1.5天) 5、整理图纸、写课程设计报告。(1.5天) 五、课程设计报告内容 完成下列课题的课程设计及报告(课题工艺要求由课程设计任务书提供) 1、退火炉温度控制系统 2、变频液位自动控制系统设计 3、变频流量自动控制系统设计 4、变频供水系统设计 5、变频调速恒张力控制系统设计 6、变频器在温度控制系统中的应用 7、线缆设备恒张力变频器控制设计 六、参考书 1、陈伯时主编电力拖动自动控制系统(第二版) 机械工业出版社1992 2、陈伯时, 陈敏逊交流调速系统机械工业出版社1998

双容水箱液位串级控制系统课程设计

双容水箱液位串级控制系统课程设计 1. 设计题目 双容水箱液位串级控制系统设计 2. 设计任务 图1所示双容水箱液位系统,由水泵1、2分别通过支路1、2向上水箱注水,在支路一中设置调节阀,为保持下水箱液位恒定,支路二则通过变频器对下水箱液位施加干扰。试设计串级控制系统以维持下水箱液位的恒定。 1 图1 双容水箱液位控制系统示意图 3. 设计要求 1) 已知上下水箱的传递函数分别为: 111()2()()51p H s G s U s s ?==?+,22221()()1()()()201 p H s H s G s Q s H s s ??===??+。 要求画出双容水箱液位系统方框图,并分别对系统在有、无干扰作用下的动态过程进行仿真(假设干扰为在系统单位阶跃给定下投运10s 后施加的均值为0、方差为0.01的白噪声); 2) 针对双容水箱液位系统设计单回路控制,要求画出控制系统方框图,并分别对控制系统在有、无干扰作用下的动态过程进行仿真,其中PID 参数的整定要求写出整定的依据(选择何种整定方法,P 、I 、D 各参数整定的依据如何),对仿真结果进行评述; 3) 针对该受扰的液位系统设计串级控制方案,要求画出控制系统方框图及实施方案图,对控制系统的动态过程进行仿真,并对仿真结果进行评述。 4.设计任务分析

系统建模基本方法有机理法建模和测试法建模两种,机理法建模主要用于生产过程的机理已经被人们充分掌握,并且可以比较确切的加以数学描述的情况;测试法建模是根据工业过程的实际情况对其输入输出进行某些数学处理得到,测试法建模一般较机理法建模简单,特别是在一些高阶的工业生产对象。对于本设计而言,由于双容水箱的数学模型已知,故采用机理建模法。 在该液位控制系统中,建模参数如下: 控制量:水流量Q ; 被控量:下水箱液位; 控制对象特性: 111() 2()()51 p H s G s U s s ?==?+(上水箱传递函数); 22221()()1()()()201p H s H s G s Q s H s s ??= ==??+(下水箱传递函数)。 控制器:PID ; 执行器:控制阀; 干扰信号:在系统单位阶跃给定下运行10s 后,施加均值为0、方差为0.01的白噪声 为保持下水箱液位的稳定,设计中采用闭环系统,将下水箱液位信号经水位检测器送至控制器(PID ),控制器将实际水位与设定值相比较,产生输出信号作用于执行器(控制阀),从而改变流量调节水位。当对象是单水箱时,通过不断调整PID 参数,单闭环控制系统理论上可以达到比较好的效果,系统也将有较好的抗干扰能力。该设计对象属于双水箱系统,整个对象控制通道相对较长,如果采用单闭环控制系统,当上水箱有干扰时,此干扰经过控制通路传递到下水箱,会有很大的延迟,进而使控制器响应滞后,影响控制效果,在实际生产中,如果干扰频繁出现,无论如何调整PID 参数,都将无法得到满意的效果。考虑到串级控制可以使某些主要干扰提前被发现,及早控制,在内环引入负反馈,检测上水箱液位,将液位信号送至副控制器,然后直接作用于控制阀,以此得到较好的控制效果。 设计中,首先进行单回路闭环系统的建模,系统框图如下: 可发现,在无干扰情况下,整定主控制器的PID 参数,整定好参数后,分别改变P 、I 、D 参数,观察各参数的变化对系统性能的影响;然后加入干扰(白噪声),比较有无干扰两

锅炉汽包水位控制系统(过程控制仪表课程设计)

过程控制仪表课程设计 题目锅炉汽包水位控制系统 指导教师高飞燕 班级自动化071 学号 20074460107 学生姓名丁滔滔 2011年1月5号

附录:仪表配接图 (20) 锅炉汽包水位控制系统 1.系统简介: 控制系统一般由以下几部分组成 图1 自动控制系统简易图 锅炉水位系统如下图:

其单位阶跃响应图如下:

图3 蒸汽流量干扰下水位阶跃曲线 通过电容式液位计将检测来的液位信号变送给成标准信号,再输送给控制器,调节器再通过执行机构和阀来控制进水量,从而达到自动控制锅炉水位。 2.锅炉控制系统: 2.1锅炉: 锅炉是火力发电厂中主要设备之一。它的作用是使燃料在炉膛中燃烧放热,井将热量传给工质,以产生一定压力和温度的蒸汽,供汽轮发电机组发电。电厂锅炉与其他行业所用锅炉相比,具有容量大、参数高、结构复杂、自动化程度高等特点。 2.2过热器和再热器: 蒸汽过热器是锅炉的重要组成部分,它的作用是将饱和蒸汽加热成为具有一定温度的过热蒸汽,并要求在锅炉负荷或其他工况变动时,保证过

热气温的波动处在允许范围内。 提高蒸汽初压和初温可提高电厂循环热效率,但蒸汽初温的进一步提高受到金属材料耐热性能的限制。蒸汽初压的提高随可提高循环热效率,但过热蒸汽压力的进一步提高受到汽轮机排气湿度的限制,因此为了提高循环热效率及降低排气湿度,可采用再热器。通常,再热蒸汽压力为过热蒸汽压力的20%左右,再热蒸汽温度与过热蒸汽温度相近。 过热器和再热器内流动的为高温蒸汽,其传热性能差,而且过热器和再热器又位于高烟温区,所以管壁温度较高。如何使过热器和再热器管能长期安全工作是过热器和再热器设计和运行中的重要问题。 在过热器和再热器的设计及运行中,应注意下列问题: ⑴运行中应保持汽温的稳定,汽温波动不应超过±(5~10)℃。 ⑵过热器和再热器要有可靠的调温手段,使运行工况在一定范围内变化时能维持额定的汽温。 ⑶尽量防止和减少平行管子之间的偏差。 2.3省煤器和空气预热器: 省煤器和空气预热器通常布置在锅炉对流烟道的尾部,进入这些受热面的烟气温度已较低,因此常把这两个受热面称为尾部受热面或低温受热面。 省煤器是利用锅炉尾部烟气的热量来加热给水的一种热交换装置。它可以降低排烟温度,提高锅炉效率,节省燃料。在现代大型锅炉中,一般都利用汽轮机抽汽来加热给水,而且随着工质参数的提高,常采用多级给水加热器。 空气预热器不仅能吸收排烟中的热量,降低排烟温度,从而提高锅炉效率;而且由于空气中的预热,改善了燃料的着火条件,强化了燃烧过程,减少了不完全燃烧热损失,这对于燃用难着火的无烟煤及劣质煤尤为重要。使用预热空气,可使炉膛温度提高,强化炉膛辐射热交换,使吸收同样辐射热的水冷壁受热面可以减少。较高温度的预热空气送到制粉系统作为干燥剂,在磨制高水分的劣质煤时更为重要。因此空气预热器也成为现

水箱液位控制系统课程设计

一、液位控制系统的原理分析 1.1水箱液位控制系统的原理框图 本次课程设计对水箱液位控制系统的设计是一个简单的控制系统,所谓简单液位控制系统通常是指有一个被控对象,一个检测变松单元一个控制器和一个执行器所组成的单闭环负反馈控制系统,也成为单回路控制系统。 简单控制系统有着共同的特征,他们均有四个基本环节组成,即被控对象,测量变送装置,控制器和执行器。对不同对象的简单控制系统尽管其具体装置与变量不相同,但都可以用相同的方框图表示: 图1控制系统方框图 这是单回路水箱液位控制系统,单回路调节系统一般指在一个调节对象上用一个调节器保持一个参数的恒定,而调节器只接受一个测量信号,其输出也只控制一个执行机构。本系统所要保持的恒定参数是液位的给定高度,即控制的任务是控制水箱液位等于给定值所要求的高度。根据控制框图,这是一个闭环反馈单回路液位控制,采用工业智能仪表控制。 1.2被控过程传递函数的一般形式 根据被控过程动态特性的特点,典型工业过程控制所涉及及被控对象的传递函数一般具有下述几种形式

1一阶惯性加纯迟延 s e Ts k s G τ-+=1 )( ()11- 2 二阶惯性环节加纯迟延 s e s T s T K s G τ-++= ) 1)(1()(21 )21(- 3 N 阶惯性环节加纯迟延 s n e Ts K s G τ-+= )1()( )31(- 上述3个公式只适用于自衡过程。对于非自衡过程,其传递函数应包含有一个积分环节,即 s e Ts s G τ-=1)( )41(- s e s T s T s G τ-+=) 1(1 )(21 )51(- 二、建立被控对象数学模型 2.1求传递函数 根据阶跃响应的实验数据如表1

水箱液位监控系统设计讲解

科信学院 课程设计说明书(2012 /2013 学年第一学期) 课程名称:工业监控系统工程设计 题目:水箱液位监控系统设计 专业班级: 学生姓名: 学号: 指导教师:刘增环、段广玉、杜永等 设计周数: 2周 设计成绩: 2013年 1月 4日

目录 1 课程实际目的 (2) 2 课程设计征文 (2) 2.1监控组态软件的概念 (2) 2.2监控组态软件的组成及原理 (3) 2.3技术要求 (5) 2.4组态界面的建立 (5) 2.5变量组态 (5) 2.6动画连接 (7) 3动作脚本程序 (9) 3.1脚本程序 (10) 4课程设计总结或结论 (12) 5参考文献 (13)

1、课程设计目的 (1)了解过程控制实验装置的结构,了解实验的原理、实验过程、操作方法和控制算法。 (2)了解各路检测信号到远程数据采集模块的输入通道的构成,了解输入信号的有效范围和实际变化范围。了解远程数据采集模块各输出通道的构成,了解输出信号的有效范围。 (3)了解远程数据采集模块与计算机的连接方法和工作关系,了解所用的ICP-7017模拟量输入模块和ICP-7024模拟量输出模块的工作原理,性能指标和模拟量输入输出信号的编址。 (4)根据制定实验“上水箱中水箱液位串级控制实验”实验的需要开发计算机上的监控系统软件。 (5)撰写设计说明书。阐明使用到的各路输入输出信号的功能,画出系统电路原理图或结构图,说明监控软件使用的控制算法以及程序设计思路,并附组态软件脚本程序。 2、课程设计正文 2.1监控组态软件的概念 随着现代化生产过程控制技术飞速发展,生产装置大型化,生产过程连续化和自动化程度的不断提高,对过程工业生产的实时控制和监控的需求越来越高。当然,目前极为成熟的集散控制系统足以解决所有的控制要求。但是,出于成本及其他因素考虑,诸如控制点较少的小规模生产设备,动用大型的集散控制系统设备是耗资且繁琐的,这样,各种各样的监控组态软件便成为了解决这些问题的很好选择。迄今为止,监控组态软件已经得到了蓬勃的发展,技术以趋于成熟并已经成为工业自动化系统的必要组成部分,即“基本单元”或“基本元件”。作为自动化通用软件,监控组态软件始终处于“承上启下”的地位。它的控制品质及数据采集的实时性都可以很好的达到预期目标。正因如此,监控组态软件几乎已经应用于所有的工业信息化项目中了。力控监控组态软件作为占有国内市场的主要品牌之一,凭借着自身的许多优越性而越来越受到自动控制行业的关注,被更好的利用到实际生产实践当中去了。 “组态(configure)”的概念是伴随着集散控制系统(Distributed Control System, DCS)的出现才开始被广大的生产过程自动化技术人员所熟识的。每套DCS都是比较通用的控制系统,可以应用到很多的领域,为了使用户在不需要编写程序的情况下便可以生成适合自己需求的应用系统,每个DCS厂商在DCS中都预装了系统软件和应用软件,其中的应用软

相关主题
文本预览
相关文档 最新文档