当前位置:文档之家› 离散事件仿真复习基本概念

离散事件仿真复习基本概念

离散事件仿真复习基本概念
离散事件仿真复习基本概念

系统(System): A collection of entities (people, parts, messages, machines, servers) that act and interact together toward some end

模型(Model):set of assumptions about how the system works

模型分类--Types of Models

Physical (iconic) models

Logical (mathematical) models

仿真模型的分类--Classification of simulation models

Static-dynamic

Deterministic-stochastic

Continuous-discrete

离散事件仿真模型--Most operational models are dynamic,stochastic and discrete,will be called discrete-event simulation models

典型用途--Typical Purposes

Will the system work as intended? (Evaluation and prediction)

Why doesn't it work? (Bottleneck determination and optimization) Which is the best alternative? (Comparison and sensitivity analysis)

目的-Objectives:

must define the kind of decisions that must be questions.

建模的步骤--Stages of modeling

1.定义问题--Identify problem

objectives

Control variables

Measures of effectiveness

Constraints

2.建立模型--Formulate model

Collect/prepare data

Verify(验证)/validate(确认)model

3.实验和解释仿真结果--Experiment and interpret results

Conclude and implement

仿真研究的步骤--Steps In A Simulation Study:

Problem Formulation-Model Building-Data Collection-Coding-Verification-Validation-Experimental

Design-Production Runs-Analysis Of Results-Document Program and report results-Implementation

离散事件仿真系统--DESS(Discrete-event simulation system) Modeling of a system as it evolves over time by a representation where the state variables change instantaneously at separated points in time

事件--Event: Instantaneous occurrence that may change the state of the system

仿真模型的组成元素-entity/attribute/state/event/activity/process

1.Entity(实体)

Type of entities:

Temporary(临时的)entities, arrive at system from outside, pass through, leave. also active components

Permanent(永久的)entities, permanently stay in the also referred as passive components

2.Attribute(属性)

Reflect characteristics of the entity

Related to the objectives of study

3.State(状态)

Collection of the attributes of all the entities of the system at a given time.

4.Event(事件)

Event is the behavior to change the state of the system

It is an instantaneous behavior in time

DESS is driven by event

5.Activity(活动)

The duration of an entity to maintain its state between 2 events. The start and end of an actity are caused by event.

6.Process(进程)

Consist of events and activities ralated to an entity

Describe the logical relations and temporal(时间的)

relations among its events and activities

事件表--Event List

Event type of the future events

Event time

Related parameters

仿真时钟--Simulation Clock

Simulation clock: Variable that keep the current value of simulation time in the model(TNOW)

时间优先机制--Time-Advance Mechanisms

Next-event time advance

Fixed-increment(增量)time advance

事件优先机制-Event-advance Mechanism

Event scheduling(事件调度法)

Activity scanning(活动扫描法)

Process interaction(进程交互法)

离散系统和连续系统比较--Discrete System vs. Continuous System: Refer to the Model characteristics

Depend on the objectives of study

System behavior: statistic performance vs.point trajectory(轨迹)

事件调度过程--Event scheduling

Choose event with the smallest time –时戳)

Advance time to the time-stamp

Calling event processing subroutine:modify state

scheduling new event

Return to time control program

Repeat until end

仿真运行和设计语言比较

仿真运行的优点--Advantages of simulation packages

1.Provide most modeling features, so“programming”effort,

cost is reduced, often significantly

2.Natural framework for simulation modeling

https://www.doczj.com/doc/f21964439.html,ually make it easier to modify models

4.Better error detection for simulation-specific errors

设计语言的优点--Advantages of general-purpose programming languages

1.More widely known, available

https://www.doczj.com/doc/f21964439.html,ually executes faster...if we written

3.May allow more modeling flexibility

4.Software cost is usually lower

仿真软件--General-purpose simulation software:

GPSS/H,SLAM一II、SIMAN一V、SIMSCRIPT II.5/SIMGRAPHICS 仿真环境--simulation environment:

ARENA; SIMPLE++:OO GUI; MAST;MOGUL,ANPS

(RV)随机变量--General types of random variables

Discrete

Continuous

Can also be mixed random variables

Functions

Probability distribution Functions(概率分布函数)

Density functions(概率密度函数)

Probability mass Functions(概率质量函数)

Confidence Intervals(置信区间)

A confidence interval for a measure is an interval that contains a set of plausible values of the measure. It is associated with a confidence level 1-α, which is the percentage of confidence intervals (constructed from random data samples)that contain the unknown measure.

数据收集--Data Collection

1.Sampling

2.Collect data to estimate values for input variables

3.Descriptive statistics

4.Identify standard distributions for input variables

5.Parameter estimation

6.Goodness of fit tests (拟合检验)

7.Estimate values for input variables

验证--Verification

1.Testing random number generators

2.Parameter estimation

3.Goodness of fit tests

4.Tests for randomness

5.Testing random variate generators

确认--Validation

1.Sampling

2.Estimate response variable from output

3.Autocorrelation(自相关) analysis

4.Construct confidence interval for estimate

Parameter estimation

Confidence intervals

https://www.doczj.com/doc/f21964439.html,paring model response estimates to system estimates

Hypothesis tests

https://www.doczj.com/doc/f21964439.html,paring model response distribution to system distribution

Parameter estimation

Goodness of fit tests

仿真中统计技术的总结--Summary of Statistical Techniques Used Simulation

Sampling

Parameter Estimation

Confidence Intervals

Hypothesis Tests Goodness Of Fit Tests Random Number Generation Random Variates Generation test for randomness

auto correlation analysis regression analysis analysis of variance factorial experiments response surface analysis

离散系统稳定性分析

实验一 离散系统稳定性分析 实验学时:2 实验类型:常规 实验要求:必作 一、实验目的: (1)掌握利用MATLAB 绘制系统零极点图的方法; (2)掌握离散时间系统的零极点分析方法; (3)掌握用MATALB 实现离散系统频率特性分析的方法; (4)掌握逆Z 变换概念及MATLAB 实现方法; (5)掌握用MATLAB 分析离散系统稳定性。 二、实验原理: 1、离散系统零极点图及零极点分析; 线性时不变离散系统可用线性常系数差分方程描述,即 ()()N M i j i j a y n i b x n j ==-= -∑∑ (8-1) 其中()y k 为系统的输出序列,()x k 为输入序列。 将式(8-1)两边进行Z 变换的 00 ()()()() () M j j j N i i i b z Y z B z H z X z A z a z -=-== = = ∑∑ (8-2) 将式(8-2)因式分解后有: 11 () ()() M j j N i i z q H z C z p ==-=- ∏∏ (8-3) 其中C 为常数,(1,2,,)j q j M = 为()H z 的M 个零点,(1,2,,)i p i N = 为()H z 的N 个极点。 系统函数()H z 的零极点分布完全决定了系统的特性,若某系统函数的零极点已知,则系统函数便可确定下来。 因此,系统函数的零极点分布对离散系统特性的分析具有非常重要意义。通过对系统函数零极点的分析,可以分析离散系统以下几个方面的特性: ● 系统单位样值响应()h n 的时域特性; ● 离散系统的稳定性;

离散系统的频率特性; 1.1、零极点图的绘制 设离散系统的系统函数为 ()()() B z H z A z = 则系统的零极点可用MA TLAB 的多项式求根函数roots()来实现,调用格式为: p=roots(A) 其中A 为待根求多项式的系数构成的行矩阵,返回向量p 则是包含多项式所有根的列向量。如多项式为231()4 8 B z z z =+ + ,则求该多项式根的MA TLAB 命令为为: A=[1 3/4 1/8]; P=roots(A) 运行结果为: P = -0.5000 -0.2500 需注意的是,在求系统函数零极点时,系统函数可能有两种形式:一种是分子、分母多项式均按z 的降幂次序排列;另一种是分子、分母多项式均按1z -的升幂次序排列。这两种方式在构造多项式系数向量时稍有不同。 (1)()H z 按z 的降幂次序排列:系数向量一定要由多项式最高次幂开始,一直到常数项,缺项要用0补齐;如 3 4 3 2 2()3221 z z H z z z z z += ++++ 其分子、分母多项式系数向量分别为A=[1 0 2 0]、B=[1 3 2 2 1]。 (2)()H z 按1z -的升幂次序排列:分子和分母多项式系数向量的维数一定要相同,不足的要用0补齐,否则0z =的零点或极点就可能被漏掉。如 1 1 2 12()11124 z H z z z ---+= + + 其分子、分母多项式系数向量分别为A=[1 2 0]、B=[1 1/2 1/4]。 用roots()求得()H z 的零极点后,就可以用plot()函数绘制出系统的零极点图。下面是求系统零极点,并绘制其零极点图的MA TLAB 实用函数ljdt(),同时还绘制出了单位圆。 function ljdt(A,B) % The function to draw the pole-zero diagram for discrete system p=roots(A); %求系统极点 q=roots(B); %求系统零点 p=p'; %将极点列向量转置为行向量

排队论与离散事件仿真理论

2排队论与离散事件仿真理论 2. 1排队论概述 排队是生活中经常出现的现象,如学生或老师去图书馆借阅资料、书籍时等待等级 的情况,病人去医院看病在门诊处等待挂号,参加公司招聘在外面等待进入面试的过程,订单请求在配送中心计算机终端内的等待处理过程以及超市中顾客购物完毕之后在收 银台前等待付账的过程等均为排队现象。 研究排队问题即是研究服务机构设置与接受服务者数量之间的关系。若来到系统内 的顾客数目多于服务台的数目,这样就无法在第一时间办理业务,需要进入队列等候, 这便是排队现象,现实生活中不难发现,顾客的到达和服务的时间都是随机的,这就导 致了排队现象是无法完全消除的。2排队论与离散事件仿真理论 2. 1排队论概述 排队是生活中经常出现的现象,如学生或老师去图书馆借阅资料、书籍时等待等级 的情况,病人去医院看病在门诊处等待挂号,参加公司招聘在外面等待进入面试的过程,订单请求在配送中心计算机终端内的等待处理过程以及超市中顾客购物完毕之后在收 银台前等待付账的过程等均为排队现象。 研究排队问题即是研究服务机构设置与接受服务者数量之间的关系。若来到系统内 的顾客数目多于服务台的数目,这样就无法在第一时间办理业务,需要进入队列等候, 这便是排队现象,现实生活中不难发现,顾客的到达和服务的时间都是随机的,这就导 致了排队现象是无法完全消除的。2. 1. 4排队问题的求解 首先需要知道系统中各项因素的数据情况,即研究系统中服务机构的数量、服务效率、规则、顾客到达数量、到达间隔时间、排队规则等,从而分析系统特征,得到系统(1) LS:系统状态平稳时的队长的平均值(包括正在接受服务的顾客),是系统内顾客 数的均值。 (2) Lq:系统的平均等待队长,是系统内排队等候的顾客的均值。 (3) WS:平稳状态下顾客在系统中的平均逗留时间,即顾客在系统内逗留时间的均值。 (4) Wq:平稳状态下顾客在系统中的平均等待时间,它是顾客排队等候服务时间的 均值,如果设顾客接受服务的时间的均值为L}},则有WS一Wq + L}} o (5)绝对通过能力A,它为单位时间内被服务完顾客的均值。 (6)相对通过能力Q,它为单位时间内被服务完顾客数与请求服务顾客数之比值。 (7)服务窗连续繁忙的时间长度,即忙期Tb o 系统的状态是指系统中的顾客数,如果有n个顾客就说系统的状态为n,计算以上 这些指标的基础是表达系统状态的概率。系统的状态可能有以下几种情况: ①不限制队长,n=0,1,2,}}} ②限制队长,最大数位N , n = 0,1,2,}}}, N ③即时制,服务台个数为。时,n = 0,1,2, } } }, c 则Pn (t)表示在时刻t、系统状态为n时概率。

ns-3离散事件仿真引擎实现分析

NS-3离散事件仿真引擎实现 赵问道 浙江大学信息与通信工程研究所 2009年11月

目录 一、ns-3离散事件仿真引擎的基本概念 (3) 二、ns-3离散事件仿真引擎的基本原理 (4) 三、基本的仿真器类:Simulator (5) 四、仿真器实现类:SimulatorImpl类及其派生类 (10) 五、事件调度器类:Scheduler及其派生类 (12)

NS-3离散事件仿真引擎实现分析 一、ns-3离散事件仿真引擎的基本概念 Ns-3是一个基于事件的(event-based)仿真系统。除了系统状态变量和系统事件发生逻辑外,基于事件仿真还包括以下组成部分: (1)时钟(Clock) 仿真系统必须要保持对当前仿真时间的跟踪。离散事件仿真与实时仿真(real time simulations)不同,在离散事件仿真中时间是跳跃的(time ‘hops’ ),因为事件是瞬时发生的– 随着仿真的进展,时钟跳跃到下一事件的开始时间。 Ns-3内部仿真时钟用一个64比特的整数表示,其单位由用户通过TimeStepPrecision::Set函数设定。 (2)事件列表(Events List) 仿真系统至少要维护一个仿真事件列表,一个事件用事件发生的时刻和类型来描述,事件类型标识用于仿真事件的代码,一般事件代码都是参数化的,事件描述中还包含表示事件代码的参数。 Ns-3的事件列表由Scheduler类及其派生类实现,Simulator类提供创建具体的Scheduler对象的方法,以及插入各种事件的静态接口函数。 (3)随机数发生器(Random-Number Generators) 根据系统模型,仿真系统需要产生各种类型的随机变量(random variables)。这由一个或多个伪随机数发生器(Pseudorandom number generators)产生。 NS-3包含一个内置的伪随机数发生器,随机数由RandomVariable类及其派生类实现,可以产生具有各种分布特性的随机数,具体有UniformVariable类、ConstantVariable类、SequentialVariable类、ExponentialVariable类、ParetoVariable类、WeibullVariable类、NormalVariable类、EmpiricalVariable类、IntEmpiricalVariable类、DeterministicVariable类、LogNormalVariable类、GammaVariable类、ErlangVariable类、ZipfVariable类和TriangularVariable类等。 (4)统计(Statistics) 仿真系统通常会记录系统的统计数据,用以表示感兴趣的一些统计量。 (5)结束条件(Ending Condition) 因为事件是自举的,理论上来说离散事件仿真系统可以永远运行下去。因此,仿真系统设计者必须决定仿真什么时候结束。典型的选择是“在事件t”(“at time t” )或者“在处理n个事件后”(“after processing n number of events”)或者,更一般地,“当统计量X达到值x时”(“when statistical measure X reaches the value x”)。 一个仿真系统的主循环结构如下: (1)开始(Start):初始化结束条件(Ending Condition)为FALSE。初始化系统状态变量。初

离散事件模拟

//离散事件模拟,模拟银行营业时的排队情况 //不考虑顾客中途离开,顾客到达事件随机,业务办理时间 //长度随机,选择最短的队排队,不再换队 //作者:nuaazdh //时间:2011年12月10日08:52:37 #include #include #include #define OK 1 #define ERROR 0 #define TRUE 1 #define FALSE 0 typedef int Status; typedef struct Event{ //事件类型 int OccurTime; //事件发生时刻 int NType; //事件类型,0表示到达事件,1至4表示四个窗口的离开事件 struct Event *next; }Event,ElemType; typedef struct{ //单向链表结构 ElemType *head;//头指针 ElemType *tail;//尾指针 int len; //长度 }LinkList; typedef LinkList EventList; //事件链表 typedef struct QElemType{ //队列元素 int ArriveTime;//到达时间 int Duration;//办理业务所需时间 struct QElemType *next; }QElemType; typedef struct{//队列结构 QElemType *head;//头指针 QElemType *tail;//尾指针 }LinkQueue; Event NewEvent(int occurT,int nType); //根据OccurTime和NType值,创建新事件 Status InitList(LinkList *L);

离散事件建模及仿真

第7章离散事件系统建模与仿真 离散事件系统指的是一组实体为了达到某些目的,以某些规则相互作用、关联而集合在一起。与连续事件系统不同,离散事件系统所包含的事件在时间上和空间上都是离散的。离散事件系统在生产和生活中是很常见的,例如一个超市就是一个离散事件系统,它由顾客和收银员组成。在离散事件系统中,各事件以某种顺序或在某种条件下发生,并且大都是随机性的,所以,其模型很难用某种规范的形式,一般采用流程图或者网络图的形式来定义实体在系统中的活动。这类系统在建模时,只要考虑系统内部状态发生变化的时间点和发生这些变化的原因,而不用描述系统内部状态发生变化的过程。本章将介绍几种常见的离散事件系统和离散事件系统建模方法。 7.1 离散事件系统模型 离散事件系统是指系统的状态仅在离散的时间点上发生变化的系统,而且这些离散时间点一般是不确定的。这类系统中引起状态变化的原因是事件,通常状态变化与事件发生是一一对应的。事件的发生没有持续性,可以看作在一个时间点上瞬间完成,事件发生的时间点是离散的,因而这类系统称为离散事件系统。首先看一个典型的离散系统的例子。 例7.1 超市服务系统 某理发店只有一名理发师。在正常的工作时间内,如果理发店没有顾客,则理发师空闲;如果有顾客,则为顾客理发。如果顾客到达理发店时,理发师正在为其他顾客服务,则新来的顾客在一旁排队等候。显然,每个顾客到达理发店的时间是随机的,而理发师为每个顾客服务的时间也是随机的,进而队列中每个顾客的等候时间也是随机的。 下面,结合例7.1介绍一下在离散事件系统仿真中所用到的一些基本概念。 (1)实体 实体是指有可区别性且独立存在的某种事物。在系统中,构成系统的各种成分称为实体,用系统论的术语,它是系统边界内的对象。在离散事件系统中,实体可分为两大类:临时实体和永久实体。临时实体指的是只在系统中存在一段时间的实体,这类实体由系统外部到达系统,在系统仿真过程中的某一时刻出现,最终在仿真结束前从系统中消失。例7.1中,顾客是临时实体,他们按一定的规律到达,经过理发师服务(可能要排队等待一段时间),最终离开系统。那些虽然达到,但未进入理发店的顾客则不能称为该系统的临时实体。永久实

离散事件系统仿真实验

实验二离散事件系统仿真实验 目录 实验题目 (1) 一、实验目标 (1) 二、实验原理 (1) 1. 排队系统的一般理论 (1) 2. 离散系统常用的仿真策略 (2) 3. 本实验采用单服务台模型 (3) 4. 仿真运行方式 (3) 三、理论分析 (4) 1. 涉及的基本概念 (4) 2. 仿真的总体规划设计 (5) 四、建模过程 (7) 1. 思路分析 (7) 2. 仿真策略 (7) 3. 事件列表 (8) 4. 变量定义 (8) 5. 系统流程框图 (9) 五、仿真源程序(Matlab) (10) 六、结果分析 (12) 七、感受及建议 (15)

实验题目 实体(临时实体)到达模式:实体到达模式是顾客到达模式,设到达时间间隔Ai 服从均值5min A β=的指数分布 /1 ()(0) A A A f A e A ββ?=≥服务模式:设服务员为每个顾客服务的时间为Si .它也服从指数分布,均值为4min S β=/1 ()(0) S S s f S e S ββ?=≥服务规则:由于是单服务台系统,考虑系统顾客按单队排列,并按FIFO 方式服务 一、实验目标 通过单服务台排队系统的方针,理解和掌握对离散事件的仿真建模方法,以便对其他系统进行建模,并对其系统分析,应用到实际系统,对实际系统进行理论指导。 二、实验原理 1. 排队系统的一般理论 一般的排队系统都有三个基本组成部分:

(1)到达模式:指动态实体(顾客)按怎样的规律到达,描写实体到达的统计特性。通常假定顾客总体是无限的。 (2)服务机构:指同一时刻有多少服务设备可以接纳动态实体,它们的服务需要多少时间。它也具有一定的分布特性。通常,假定系统的容量(包括正在服务的人数加上在等待线等待的人数)是无限的。 (3)排队规则:指对下一个实体服务的选择原则。通用的排队规则包括先进先出(FIFO),后进先出(LIFO),随机服务(SIRO)等。 2. 离散系统常用的仿真策略 (1)事件调度法(Event Scheduling): 基本思想:离散事件系统中最基本的概念是事件,事件发生引起系统状态的变化,用事件的观点来分析真实系统。通过定义事件或每个事件发生系统状态的变化,按时间顺序确定并执行每个事件发生时有关逻辑关系。 (2)活动扫描法: 基本思想:系统有成分组成,而成分又包含活动。活动的发生必须满足某些条件,且每一个主动成分均有一个相应的活动例程。仿真过程中,活动的发生时间也作为条件之一,而且较之其他条件具有更高的优先权。 (3)进程交互法: 基本思想:将模型中的主动成分历经系统所发生的事件及活动,按时间发生的顺序进行组合,从而形成进程表。系统仿真钟的推进采

离散时间系统最优控制

第五章离散时间系统最优控制

引言 ?前面所讨论的都是关于连续时间系统的最优控制问题。?现实世界中,很多实际系统本质上是时间离散的。 机 ?即使是系统是时间连续的,因为计算机是基于时间和数值上都离散的数字技术的,实行计算机控制时必须 将时间离散化后作为离散系统处理。 ?因此,有必要讨论离散时间系统的最优控制问题。 ?离散时间系统仍然属于连续变量动态系统(CVDS)范畴。 注意与离散事件动态系统(DEDS)的区别。 ?CVDS与DEDS是自动化领域的两大研究范畴,考虑不同的自动化问题。

5.1 离散时间系统最优控制问题的提法 (1) 离散系统最优控制举例——多级萃取过程最优控制 ?萃取是指可被溶解的物质在两种互不相溶的溶剂之间的转移,一般用于将是指可被溶解的物质在两种互不相溶的溶剂之间的转移,般用于将要提取的物质从不易分离的溶剂中转移到容易分离的溶剂中。 ?多级萃取是化工生产中提取某种价值高、含量低的物质的常用生产工艺。 萃取V u (0) u (1) u (k -1) u (N -1) V V V V V V 萃取器1萃取器2 萃取器 k 萃取器N x (0) x (1)x (2) x (k -1) x (k ) x (N )x (N -1) 含物质z (0)z (1) z (k-1) z (N -1) 多级萃取过程 A 的混合物以流量V 进入萃取器1,混合物中A 浓度x (0); 萃取剂以流量u (0)通过萃取器1,单位体积萃取剂带走A 的量为z (0); 一般萃取过程的萃取物含量均较低,可认为通过萃取器1后混合物流量仍为V ; 流出萃取器1的混合物中A 物质的浓度为x (1)。以此类推至萃取器N 。

数据结构课程设计之银行离散事件模拟

《数据结构》课程设计报告

银行业务模拟与离散事件模拟 一、实验目的 1. 通过此次课程设计中银行业务模拟的题目,掌握队列(或者链表) 等数据结构的基本操作方面的知识,并能灵活的解决一些基本的问题,加深对其性质及各项操作的理解; 2. 将所学数据结构方面的知识与一门具体的语言相结合(C/C++)来进行实现,感受数据结构的强大作用,加深理解。 二、问题描述 1.问题描述 假设某银行有4个窗口对外接待客户,从早晨银行开门(开门9:00am,关门5:00pm)起不断有客户进入银行。由于每个窗口在某个时刻只能接待一个客户,因此在客户人数众多时需要在每个窗口前顺次排队,对于刚进入银行的客户(建议:客户进入时间使用随机函数产生),若某个窗口的业务员正空闲,则上前办理业务;反之,若4个窗口均有窗户所占,他便会排在人数最少的队伍后面。 2. 任务要求 编制一个程序以模拟银行的这种业务活动并计算一天中客户在银行逗留的平均时间。建议有如下设置: (1)客户到达时间随机产生,一天客户的人数设定为100人。 (2)银行业务员处理时间随机产生,平均处理时间10分钟。 (3)将一天的数据(包括业务员和客户)以文件方式输出。 三、算法的思想与算法实现步骤 1. 基本思想 通过队列数据类型进行基本操作,主要有三个模块:分别是主函数模块、 主要操作函数及基本操作函数。其中,主函数负责其他子函数的调用实现以及基本界面的操作,主要函数包括开门函数的实现:OpenForDay,顾客到达函数:CustomerArrived,顾客离开的函数:CustomerDepartion等;而基本操作函数

就是对其中牵扯到的操作进行具体的实现,如按时间先后插入队列OrderInsert、寻求最短的队列MinCuQueue、删除队列元素以及销毁等。 2. 实现步骤 首先,分析题目要求划分实现模块、画出大致的流程图,定义基本数据类型,诸如结构体、队列等; 其次,考虑基本大致的操作,比如要拟定开门的时间、顾客到来为其提供服务以及离开时的操作等; 再次,针对上述的基本操作实现具体需要进行的操作,具体实现每个环节需要进行的基本操作,即具体编写每个小函数实现功能; 最后,编写主函数对每个实现进行按需调用,实现操作。 3. 流程图 图-1 事件流程图

单服务台排队系统离散事件系统仿真实验

离散事件系统仿真实验 一、实验目标 通过单服务台排队系统的方针,理解和掌握对离散事件的仿真建模方法,以便对其他系统进行建模,并对其系统分析,应用到实际系统,对实际系统进行理论指导。 二、实验原理 1.排队系统的一般理论 一般的排队系统都有三个基本组成部分: (1)到达模式:指动态实体(顾客)按怎样的规律到达,描写实体到达的统计特性。通常假定顾客总体是无限的。 (2)服务机构:指同一时刻有多少服务设备可以接纳动态实体,它们的服务需要多少时间。它也具有一定的分布特性。通常,假定系统的容量(包括正在服务的人数加上在等待线等待的人数)是无限的。 (3)排队规则:指对下一个实体服务的选择原则。通用的排队规则包括先进先出(FIFO),后进先出(LIFO),随机服务(SIRO)等。 2.对于离散系统有三种常用的仿真策略:事件调度法、活动扫描法、进程交互法。 (1)事件调度法(Event Scheduling): 基本思想:离散事件系统中最基本的概念是事件,事件发生引起系统状态的变化,用事件的观点来分析真实系统。通过定义事件或每个事件发生系统状态的变化,按时间顺序确定并执行每个事件发生时有关逻辑关系。 (2)活动扫描法: 基本思想:系统有成分组成,而成分又包含活动。活动的发生必须满足某些条件,且每一个主动成分均有一个相应的活动例程。仿真过程中,活动的发生时间也作为条件之一,而且较之其他条件具有更高的优先权。 (3)进程交互法: 基本思想:将模型中的主动成分历经系统所发生的事件及活动,按时间发生的顺序进行组合,从而形成进程表。系统仿真钟的推进采用两张进程表,一是当前事件表,二是将来事件表。 3.本实验采用的单服务台模型 (1)到达模式:顾客源是无限的,顾客单个到达,相互独立,一定时间的到达数服从指数

排队系统的离散事件模拟-示例

2.4 M/M/1排队系统的模拟 这个排队系统的服务员为一人。顾客到达系统的间隔时间为平均值等于1分的指数分布随机变量。单位顾客服务时间为平均值等于0.5分的指数分布随机变量。单列排队,采取先进先出的规则,排队行列的最大容量为100。模拟的终止条件为有1000个顾客服务结束离开系统。 2.4.1 系统的实体、属性和事件 事件类型有顾客到达事件、服务开始事件以及服务结束事件。但是,服务开始事件一般与顾客到达事件或服务结束事件相互重合,所以决定有两类事件: a. 第1类事件——顾客到达事件; b. 第2类事件——顾客在服务结束后离开系统。 2.4.2 系统模拟程序 为了进行模拟,除了主程序外,还编制了一系列的子程序或函数,它们的功能如表1.2.3所示。 表1.2.3 排队服务系统模拟的子程序和函数 表1.2.4列举模型的变量的名称和定义。 表1.2.4 本模型的变量

图1.2.8是本模拟模型的主程序,它的主要功能如下: MAIN PROGRAM NEVNTS = 2 //事件类型 READ 10, MARRVT, MSERVT //到达间隔时间为1,服务时间为0.5 10 FORMA T(2F10.0) READ 20, TOTCUS //结束服务顾客总数1000 20 FORMA T(I 10) CALL INIT 30 CALL TIMING GO TO (40, 50), NEXT //NEXT = 1, GO TO 40; NEXT = 2, GO TO 50 40 CALL ARRIVE GO TO 60 50 CALL DEPART 60 IF(NUMCUS .LT. TOTCUS) GO TO 30 CALL REPORT STOP END 图1.2.8 排队服务系统模拟的主程序 SUBROUTINE INIT TIME = 0.0 STATUS = 0.0 //服务员状态 NIQ = 0 //系统中的停留人数 TLEVNT = 0.0 //上次事件时间 NUMCUS = 0 //已结束服务的顾客数 TOTDEL = 0.0 //顾客停留时间总和 ANIQ = 0.0 //系统中人数的时间积分值

银行业务模拟与离散事件模拟

兰州商学院陇桥学院 工学系课程设计报告 设计题目:银行业务模拟与离散事件模拟系别:工学系 专业 (方向): 年级、班: 学生姓名: 学生学号: 指导教师: 年月日

目录 一、系统开发的背景。 (1) (一)系统功能要求 (1) (二)系统模块结构设计 (1) 三、系统的设计与实现 (2) (一)开门函数: (3) (二)顾客到达函数: (4) (三)顾客离开函数: (5) 四、系统测试 (6) 五、总结 (7) 六、附件(代码、部分图表) (7)

银行业务模拟与离散事件模拟 一、系统开发的背景。 为了在现实生活中,方便银行业务员更好的操作和管理银行出现的各种事件,以及方便算出各种时间,我们设计了银行业务模拟与离散事件模拟系统。 通过此次课程设计中银行业务模拟的题目,掌握队列,或链表等数据结构的基本操作方面的知识并能灵活的解决一些基本的问题,加深对其性质及操作的理解。 将所学数据结构方面的知识与一门具体的语言相结合来进行实现,感受数据结构的强大作用,加深理解。 (一)系统功能要求 编制一个程序,可以以模拟银行的这种业务活动并计算一天中客户在银行逗留的平均时间 1、客户到达时间随机产生,一天客户的人数设定为100人; 2、银行业务员处理时间随机产生,平均处理时间为10分钟; 3、将一天的数据结构(包括业务员和客户)以文件方式输出。 . (二)系统模块结构设计 通过对系统功能的分析,银行业务模拟与离散事件模拟系统功能如下图所示。

银行业务模拟与离散事件模拟系统 通过上图的功能分析,把整个系统划分为3个模块: 1、开门函数,该模块主要实现:银行开始正常营业时间,借助函数OpenForDay()来实现; 2、顾客到达函数,该模块主要实现:客户在银行里从排队到办理完银行业务的功能,借助函数CustomerArrive()来实现; 3、顾客离开函数,该模块主要实现:银行下班时间及顾客全部离开的功能,借助函数CustomerDepart()来实现。 三、系统的设计与实现 【流程图】

离散事件系统的建模仿真技术

离散事件系统的建模仿真技术 摘要:在现代社会,系统仿真,特别是离散事件系统仿真,已成为各种科研领域的研究热点,也是国家和国防关键技术发展计划之一。离散事件系统是一类在工程技术、经济、军事等领域常见的系统,它们的状态在一些不均匀的离散时刻发生变换且状态变换的内部机制比较复杂,往往无法用常规的数学方法来描述,而离散事件系统仿真是当前研究这一类系统的最有用处的方法之一。本文主要介绍了离散事件系统的概念、特点、要素、建模步骤,并以售票窗口服务系统为例介绍了建模的主流方法,即实体流图法和活动周期图法。 关键词:离散事件系统;仿真;建模 一、离散事件系统仿真一般概念 1、离散事件系统(Discrete Event System,DES):指系统的状态在一些离散时间点上由于某种事件的驱动而发生变化。 2、离散事件系统的特点 (1)系统中的状态只是在离散时间点上发生变化,而且这些离散时间点一般是不确定的; (2)系统中的状态变化往往无法用数学公式表示; (3)描述方式通常为图、表等接近自然语言的方式; (4)时间是仿真中的一个关键变量; (5)离散事件系统总包含排队过程[1]。 3、离散事件系统的要素 (1)实体(Entity):组成系统的物理单元。 永久实体:在整个仿真过程中始终存在。也称被动实体。 临时实体:在系统中只存在一段时间。也称主动实体、活动实体。 (2)属性(Attributes) :是指某一实体的特性,是实体所拥有的全部特征的一个子集,用特征参数变量表示。 (3)状态(Status) :是指系统在某一时刻实体及其属性值的集合。机器的状态:{开、停};或者{忙、空闲、停止} 。 状态可作为动态属性进行描述。 (4)事件(Event) : 引起离散事件系统状态发生变化的行为。

离散事件仿真

离散事件仿真基本原理 赵问道 浙江大学信息与通信工程研究所

目录 一、离散事件仿真的基本概念 (3) 1. 基于事件的(event-based)离散事件仿真 (3) 2. 基于活动的(activity-based)离散事件仿真 (3) 3. 基于进程的(process-based)离散事件仿真 (3) 4. 三阶段(three-phase)离散事件仿真 (3) 二、离散事件仿真系统的组成 (4) 1. 时钟(Clock) (4) 2. 事件列表(Events List) (4) 3. 随机数发生器(Random-Number Generators) (5) 4. 统计(Statistics) (5) 5. 结束条件(Ending Condition) (5) 三、仿真引擎逻辑(Simulation Engine Logic) (5) 1. 开始(Start) (5) 2. 循环(“Do loop” or “While loop”) (6) 3. 结束(End) (6)

离散事件仿真基本原理 一、离散事件仿真的基本概念 在离散事件仿真中,系统的操作通过按时间顺序排列的一组事件序列来表示。每个事件发生在某一时刻,表示系统的状态改变。例如,如果仿真电梯,那么事件可以是“6层的按钮按下了”,随之系统状态改成“电梯移动”,并且最后到达状态“电梯位于6层”i。 学习如何建立离散时间仿真的一个普通例子是仿真一个队列(queue),如顾客到达银行接受出纳员的服务,这里的系统实体是“顾客队列”(CUSTOMER-QUEUE)和“出纳员”(TELLERS)。系统事件是“顾客到达”(CUSTOMER-ARRIV AL)和“顾客离开”(CUSTOMER-DEPARTURE)(事件“出纳员开始服务”(TELLER-BEGINS-SERVICE )可以是到达和离开事件逻辑的组成部分) 。可以由这些事件改变的系统状态有“队列中的顾客数量”(NUMBER-OF-CUSTOMERS-IN-THE-QUEUE (是一个从0到n的整数) )和“出纳员状态”(TELLER-STATUS (忙或空闲))。为了仿真系统随机性需要的随机变量(random variables)是“顾客到达间隔时间”(CUSTOMER-INTERARRIV AL-TIME)和“出纳员服务时间”(TELLER-SERVICE-TIME)。 目前已经提出的实现离散时间仿真的基本方法有基于事件的(event-based)、基于活动的(activity-based)、基于进程的(process-based)和三阶段(three-phase,Pidd1998)等方法。三阶段方法在很多商业化仿真软件包中得到了应用,但从用户角度看,所采用的仿真方法的细节一般是被隐藏掉的。 1. 基于事件的(event-based)离散事件仿真 2. 基于活动的(activity-based)离散事件仿真 3. 基于进程的(process-based)离散事件仿真 4. 三阶段(three-phase)离散事件仿真

第四章 离散事件系统 )

第四章 离散事件系统 如前所述,根据变量的性质,可分为连续事件系统和离散事件系统。连续事件系统的状态变量随时间连续变化,其主要特征可通过微分方程描述。离散事件系统的状态仅在离散的时间点上发生变化,而这些离散时间点一般不确定,即离散事件系统内部的状态变化是随机的,同一内部状态可以向多种状态转变,这种变化只在随机时间点发生,且在一段时间内保持不变。系统内部状态的变化虽然遵循一定的统计规律,却很难用函数描述。因此,离散事件系统的建模有其独特性,本章讨论离散事件系统模型及其建模方法。 第一节 离散事件系统模型 一、离散事件系统的基本要素 离散事件系统的类型虽然多种多样,但它们的主要组成要素基本相同。从仿真的角度,离散事件系统由实体(entity )、活动(activity )、资源(resource )以及控制(control )等基本要素构成(见图4-1-1)。 (一)实体(entity ) 构成系统的各种成分称为实体。实体是经过系统处理的事项。例如产品、顾客、文件等等。实体用诸如成本、形状、优先权、质量等特征予以定义。实 体可分为: 1. 生命体(如顾客、病人 等); 2. 无生命体(如文件、纸币、帐单等); 3. 无法感知的事物或无形物(如电话、电子邮件等)。 与实体相关的一个重要概念 是属性(attributes ),属性反映实体的某些性质,其集合描述实体的状态。例如,在超市服务系统中,顾客是一个实体,性别、身高、年龄、到达时间、服务时间和离开时间等是他的属性。一个客观实体有很多属性,对特定系统而言,并非所有属性与所研究问题有关,如顾客的性别、身高、年龄与超市服务的关系不大,则不必作为顾客的一个属性,而顾客到达时间、服务时间和离开时间是研究超市服务效率的重要依据,则是超市服务系统中的顾客属性。 (二)活动(activity ) 导致系统状态发生变化的过程称为活动。例如,对顾客的服务、对设备的一次大修、更换设备某一部件,在仿真中均属于一项活动。活动占用一定时间和资源,直接或间接地涉及到实体。活动可分为: 1. 实体过程(如登记验票、手术、检验、装配等); 2. 实体或资源运动(如铲车装卸货物、乘电梯等); 3. 资源的调节、维护和补给(如机器的调试、零配件的准备等)。 (三)资源(resource ) 资源是与系统状态发生变化有关的因素,是活动得以实现的资料。资源为实施 活动提 图4-1-1 系统要素

离散事件系统仿真论

摘要 近年来,随着我国铁路事业的迅猛发展,铁路的运输能力得到了大幅度提升。在客运技术与速度提高的同时,作为旅客体验铁路服务的一个必要环节,售票环节的重要性也随之提高。然而大型客运站真实的售票过程极为复杂,旅客的行为受事件驱动,他们的状态在一些不均匀的离散时刻发生改变且其变化的内部机理非常复杂,离散时间点一般不能确定,这是典型的离散事件系统,通常无法利用一般的数学方法进行描述。我们通常采用离散事件系统仿真的方法来解决此类问题,它是解决此类问题的最有用处的方法之一。 要对系统进行仿真研究,首先就必须建立起系统的仿真模型。本文在阅读大量文献的基础上,简单介绍了离散事件系统的建模与仿真方法,并对北京西客站售票大厅建立离散事件系统仿真模型,对旅客售票过程进行了优化改善。 关键词:离散事件,系统仿真

Abstract In recent years, with the rapid development of China's railway business, railway transport capacity has been improved significantly. The process of Buy a ticket became more and more important , while the technology and speed had Substantially Improved.But the process in the real world is so complex that we can not use Mathematical methods to study it. The most useful way to study this case is to Simulate the Discrete Event System. Simulation study of a system, we must first establish a system simulation model. On the base of studying a lot of academic articles this thesis simplely introduced the discrete event systems modeling and simulation methods and established the discrete event systems of Beijing West Railway Station. Simulated and optimizated the process of Buy a ticket KEYWORDS:discrete event , system simulation . 1. 概述 (4) 1.1. 售票服务环节研究 (4)

Python离散事件模拟和SimPy简介

Introduction to Discrete-Event Simulation and the SimPy Language Norm Matloff February13,2008 c 2006-2008,N.S.Matloff Contents 1What Is Discrete-Event Simulation(DES)?3 2World Views in DES Programming3 2.1The Activity-Oriented Paradigm (3) 2.2The Event-Oriented Paradigm (4) 2.3The Process-Oriented Paradigm (6) 3Introduction to the SimPy Simulation Language7 3.1SimPy Overview (8) 3.2Introduction to SimPy Programming (9) 3.2.1MachRep1.py:Our First SimPy Program (10) 3.2.2MachRep2.py:Introducing the Resource Class (14) 3.2.3MachRep3.py:Introducing Passivate/Reactivate Operations (16) 3.2.4MMk.py:“Do It Yourself”Queue Management (18) 3.2.5SMP.py:Simultaneous Possession of Resources (20) 3.2.6Cell.py:Dynamic Creation of Threads (22) 3.3Note These Restrictions on PEMs (25) 3.4SimPy Data Collection and Display (25) 3.4.1Introduction to Monitors (25) 3.4.2Time Averages (26) 3.4.3The Function Monitor.timeAverage() (27) 3.4.4But I Recommend That You Not Use This Function (27)

第4章 离散事件系统仿真(本)

第4章 离散事件系统仿真

4.1 离散事件仿真的基本概念 4.1.1.事件 ?事件是描述系统的一个基本要素。事件是指引起系统状态变化的行为,系统的动态过程是靠事件来驱动的。例如,在物流系统中,工件到达可以定义为一类事件。因为工件到达仓库,仓库货位的状态会从空变为满,或者引起原来等待入库的队列长度的变化。 ?事件一般分为两类:必然事件和条件事件。只与时间有关的事件称为必然事件。如果事件发生不仅与时间因素有关,而且还与其它条件有关,则称为条件事件。系统仿真过程,最主要的工作就是分析这些必然事件和条件事件。

4.1.2 成分 描述系统的另一基本要素是成分。成分与实体是同一概念,只是根据习惯,在描述系统时用实体,而在模型描述中用成分。成分分为主动成分和被动成分。 可以主动产生活动的成分称为主动成分,如物流系统中的工件,它的到达将产生入库活动或排队活动。本身不产生活动,只在主动成分作用下才产生状态变化的那些成分称为被动成分。

4.1.3 进程 由若干事件与若干活动组成的过程称为进程。它描述了各事件活动发生的相互逻辑关系及时序关系。例如,工件由车辆装入进货台;经装卸搬运进入仓库;经保管、加工到配送至客户的过程就是一个进程。事件、活动与进程的关系如图 3-1所示进程

4.1.4.仿真时钟 ?仿真时钟用于表示仿真事件的变化。 ?由于仿真实质上是对系统状态在一定时间序列的动态描述,因此,仿真时钟一般是仿真的主要自变量,仿真时钟的推进是系统仿真程序的核心部分。 ?应当指出,仿真时钟所显示的是仿真系统对应实际系统的运行时间,而不是计算机运行仿真模型的时间。仿真时间与真实时间将设定成一定比例关系,使得像物流系统这样复杂的系统,利用计算机仿真只需要几分钟就可以完成,而真实系统的运行则需要若干天,甚至若干月。

离散事件

关于离散事件系统仿真的总结 1、离散系统仿真的认识 1.1系统仿真与系统 系统仿真是以相似原理、系统技术、信息技术及其应用领域有关专业技术为基础,以计算机和各种专用物理效应设备为工具,利用系统模型对真实的或假想的系统进行动态研究的一门多学科的综合性技术口。相似论是系统仿真的主要理论依据。 系统仿真研究的对象是系统。系统是指具有某些特定功能、按照某些规律结合起来、互相作用、互相依存的所有事物的集合或总和。 任何系统都存在三方面需要研究的内容,即实体、属性和活动。实体是存在于系统中的每一项确定的物体。属性是实体所具有的每一项有效的特性。活动是导致系统状态发生变化的一个过程。活动是在一段时间内发生的情况,活动反映了系统的变化规律。存在系统内部的实体、属性和活动组成的整体称为系统的状态。处于平衡状态的系统统称为静态系统,状态随时间不断变化着的系统为动态系统。 根据系统状态的变化是否连续可将系统分为连续系统和离散系统及连续离散混合系统。连续系统的状态变量是连续变化的。离散系统包括离散时间系统和离散事件系统,离散时间系统的状态变量是间断的,但是它和连续系统具有相似的性能,它们的系统模型都能用方程的形式加以描述。 1.2离散事件系统 离散事件系统是指受事件驱动、系统状态跳跃式变化的动态系统。离散事件系统的系统状态仅在离散的时间点上发生变化,而且这些离散时间点一般是不确定的。例如:单人理发馆系统,设上午9:00开门,下午5:00关门。顾客到达时间一般是随机的,为每个顾客服务的时间长度也是随机的。 这类系统中引起状态变化的原因是事件,通常状态变化与事件的发生是一一对应的。事件的发生一般带有随机性,即事件的发生不是确定性的,而是遵循某种概率分布。而且事件的发生没有持续性,在一个时间点瞬间完成。离散事件系统的系统模型不能用方程的形式描述。离散事件系统的研究方法是排队论和运筹论。针对离散事件系统的仿真就称为离散事件系统仿真. 1.3系统模型 系统模型是对实际系统的一种抽象,是系统本质的表述,是人们对客观世界反复认识、分析,经过多级转换、整合等相似过程而形成的最终结果,它具有与系统相似的数学描述形式或物理属性,以各种可用的形式给出研究系统的信息。 系统仿真中所用的模型分为实体模型和数学模型.在离散事件系统仿真中使用的是数学模型.

相关主题
文本预览
相关文档 最新文档