随机信号分析(第3版)第六章习题及答案
- 格式:doc
- 大小:771.50 KB
- 文档页数:6
第三章 习 题1.甲乙两人进行某种比赛,设每局比赛中甲胜的概率为p ,乙胜的概率为q ,平局的概率为r ,其中,,0,1p q r p q r ≤++=,设每局比赛后,胜者得1分,负者得1-分,平局不记分,当两个人中有一个人得到2分时比赛结束,以n X 表示比赛至第n 局时甲获得的分数,则{,1}n X n ≥是一齐冯马尔可夫链.(1)写出状态空间;(2)求一步转移概率矩阵;(3)求在甲获得1分的情况下,再赛2局甲胜的概率. 解(1){,0}n X n ≥的状态空间为{2,1,0,1,2}S =--(2){,0}n X n ≥的一步转移概率矩阵为1000000000001q rp q r p q r p ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦P (3)因为两步转移概率矩阵为22(2)22222210000202220200001q rq r pq pr p q rq r pqpr p q qr pq r p pr ⎡⎤⎢⎥++⎢⎥⎢⎥==+⎢⎥++⎢⎥⎢⎥⎣⎦P P所以在甲获得1分的情况下,再赛2局甲胜的概率为(2)12(1)p p pr p r =+=+2.设{,1,2,}i Y i =L 为相互独立的随机变量序列,则 (1){,1,2,}i Y i =L 是否为Markov 链? (2)令1nn ii X Y ==∑,问{,1,2,}iX i =L 是否为Markov 链?解(1)由于11221112211122111221111221(,,,,) (,,,)(,,,)()()()()()()(,,,)n n n n n n n n n n n P Y i Y i Y i Y j P Y j Y i Y i Y i P Y i Y i Y i P Y i P Y i P Y i P Y j P Y j P Y j Y i P Y i Y i Y i ------=========================L L L L L因此,{,1,2,}n Y n =L 是马尔可夫链.(2)取1111()f U X U ==,当11U i =时,212X U U =+是2U 的函数,记为22().f U 依次类推,1121n n X U U U --=+++L 为1n U -的函数,记为1112(),n n n n f U X U U U --=+++L 为n U 的函数,记为().n n f U 由于12,,,,n U U U L L 相互独立,则其相应的函数1122(),(),,(),n n f U f U f U L L 也相互独立,从而122111221111112211 (,,,)(,,,)(,,,)()()nn n i n i n n n n n n P X j X i X i X i P Y j X i X i X i P X Y j X i X i X i P Y j i P X j X i --=---==========+======-===∑L L L因此{,1,2,}n X n =L 是马尔可夫链.3 设,1,2,i X i =L 是相互独立的随机变量,且使得(),0,1,i j P X j a j ===L ,如果max{,1,2,,1}n i X X i n >=-L ,其中0X =-∞,就称在时刻n 产生了一个记录.若在时刻n产生了一个记录,就称n X 为记录值,以n R 表示第n 个记录值. (1)证明,{,1,2,}n R n =L 是Markov 链,并求其转移概率;(2)以i T 表示第i 个与第1i +记录之间的时间,问{,1,2,}n T n =L 是否是Markov 链,若是,则计算其转移概率.证明:(a )根据题意有:k n k n n X R X R X R ===,....,2121,……满足........21k n n n X X X << 且........121k n n n <<<故},...,|{11111i R i R i R z R P k k k k k ====--+}...|{111i i i j z R P k k k >>>>==-+ }|{1k k i j z R P >==+}|{1k k k i R z R P ===+ 故}1,{≥i R i 是一个马尔可夫链且⎩⎨⎧≤>======++i j ij a i X z X P i R z R P j k n n k k k k k ,0,}|{}|{11 (由于i X 的独立性)(b )记i T 为第i 个记录与第1i +个记录之间的时间,i T 是相互独立的随机变量,因为{}i P T t =}1...,2,1,,|{k 1-=<=====+++t k i X i X R z X R P i i i n n i t n i 且}{1z X R P tn i i ===++=⎩⎨⎧≤>ij i j a j ,0,(由于i X 的独立性)故{i T ,1≥i }是一个马尔可夫链 令(,),1i i i Z R T i =≥ 则{}111,,,i i i P Z Z Z Z +-…{}111111(,)(,),(,),,(,)i i i i i i P R t R t R t R t ++--=…{}1111112111111211(,)(,),(,),,(,),(,)i i i t t i t t i t t i t t P X t X t X t X t X t +-+++++++-++=…+?+?+… {}111111(,)(,)i i t t i t t i P X t X t ++++++=…+?+ {}111111(,)(,)i i t t i t t i P X z t X i t ++++++===…+?+,0,j j i j iα>⎧=⎨≤⎩ 故}{,(),1i i R T i ≥是一个马尔可夫链。
湖南大学本科课程《随机过程》第6章习题及参考答案主讲教师:何松华 教授1. 给定实数x 和一个平稳随机过程()X t ,定义理想门限系统的特性为1()()0()X t xY t X t x≤⎧=⎨>⎩ 试证:(1) [()]()X E Y t F x =;(2) ()](,,)Y X R F x x ττ=证:(1) ()Y t 在任意时刻为只有两种取值1,0的随机变量,则[()]1{()1}0{()0}{()1}{()}(,)() ()X X E Y t P Y t P Y t P Y t P X t x F x t F x =⨯=+⨯====≤==根据平稳性(2)根据相关函数定义,有()][()()]11{()1,()1}01{()0,()1} 10{()1,()0}00{()0,()0}{()1,()1}{(),()}(,;,)(,;) ()Y X X R E Y t Y t P Y t Y t P Y t Y t P Y t Y t P Y t Y t P Y t Y t P X t x X t x F x x t t F x x ττττττττττ=+=⨯⨯+==+⨯⨯+==+⨯⨯+==+⨯⨯+===+===+≤≤=+=根据平稳性2.设平方律检波器的传输特性为2y x =,在检波器输入端加入一窄带高斯随机过程()X t ,其概率密度函数为22()()}2X Xx a f x σ-=- 在检波器后联接一个理想低通滤波器,求低通滤波器输出过程的一维概率密度和均值;当0a =时结果有何变化。
解:根据题意,()X t 为非零均值的中频窄带随机过程,可以表示为:00()()cos()()sin()C S X t a A t t A t t ωω=+-其中()C A t 、()S A t 为零均值窄带随机过程的同向分量以及正交分量,都服从均值为0、方差为2X σ的正态分布,且在同一时刻互不相关,则检波器输出信号22002222200000()[()cos()()sin()]1111()()2()cos()()cos(2)()cos(2)2222 2()sin()()()sin(2)C S C S C C S S C S X t a A t t A t t a A t A t aA t t A t t A t t aA t t A t A t t ωωωωωωω=+-=++++--- 通过理想低通滤波后,滤波器输出信号为2221()[()()]2C S Z t a A t A t =++由于随机变量()C A t 、()S A t 为互不相关(正态分布情况与独立等价)的正态随机变量,则22122()()()C S XXA t A t Z t σσ=+服从自由度为2的卡方分布,即11121/22/211221()22(2/2)z z Z z ef z e ---==Γ 221()()2X Z t Z t a σ=+,2122[()]()[()]XZ t a Z t h Z t σ-==,根据随机变量函数的概率密度关系,()Z t 的一维概率密度分布函数为22122()1()[()] ()X z a Z Z Xdh z f z f h z e z a dz σσ--==≥2222222211[()]{[()()]}[]22C S X X X E Z t E a A t A t a a σσσ=++=++=+当0a =时,221() (0)X zZ Xf z e z σσ-=≥,2[()]X E Z t σ=。
完美 WORD 格式1-9 已知随机变量X的分布函数为0 , x 02F (x) kx , 0 x 1X1 , x 1求:①系数 k;②X落在区间(0.3,0.7) 内的概率;③随机变量X的概率密度。
解:第①问利用F X (x) 右连续的性质k =1P 0.3 X 0.7 P 0.3 X 0.7 P X 0.7 第②问F 0.7 F 0.3第③问f (x)Xd F(x)Xdx2x 0 x 10 else专业知识分享完美 WORD 格式x1-10 已知随机变量X 的概率密度为( ) ( )f x ke xX(拉普拉斯分布),求:①系数k ②X落在区间 (0,1)内的概率③随机变量 X的分布函数解:第①问f x dx 1 k12第②问x2P x X x F x F x f x dx1 2 2 1x1随机变量 X落在区间( x1 , x2 ] 的概率 P{ x1 X x2} 就是曲线y f x 下的曲边梯形的面积。
1P 0 X 1 P 0 X 1 f x dx1 2 1 e1第③问12 f x12xe xxe xxF x f ( x)dx1 1x x xe dx x 0 e x 02 20 1 1 1xx x xe dx e dx x 0 1 e x 02 0 2 2专业知识分享完美 WORD 格式1-11 某繁忙的汽车站,每天有大量的汽车进出。
设每辆汽车在一天内出事故的概率为0.0001,若每天有1000 辆汽车进出汽车站,问汽车站出事故的次数不小于 2 的概率是多少?n=1- 分布 (0 1)n ,p 0,np=二项分布泊松分布n 成立,0不成立, p q高斯分布实际计算中,只需满足,二项分布就趋近于泊松分布n 10 p 0.1P X kk e==np k!汽车站出事故的次数不小于 2 的概率P(k 2) 1 P k 0 P k 10.1P(k 2) 1 1.1e 答案专业知识分享完美 WORD 格式1-12 已知随机变量 (X,Y)的概率密度为f (x, y) XY(3 x 4 y),ke x 0, y 0, 其它0求:①系数k?②( X ,Y)的分布函数?③P{0 X 1,0 X 2} ?第③问方法一:联合分布函数F XY (x, y) 性质:若任意四个实数 a ab b ,满足1, 2, 1, 2a a bb ,满足a1 a2,b1 b2 ,则P{a X a ,b Y b}F XY(a ,b ) F XY(a ,b) F XY(a ,b ) F XY(a ,b)1 2 1 2 2 2 1 1 1 2 2 1P{0X 1,0 Y 2} F XY(1,2) F XY(0,0) F XY(1,0) F XY(0,2)方法二:利用P{( x, y) D } f XY u,v dudvD2 1P{0X 1,0 Y 2} f XY x,y dxdy0 0专业知识分享完美 WORD 格式1-13 已知随机变量(X,Y) 的概率密度为f (x, y)1, 0 x 1, y x0 , 其它①求条件概率密度 f X (x| y)和f Y ( y | x) ?②判断X 和Y 是否独立?给出理由。
由于百度文库格式转换的原因,不能整理在一个word 文档里面,下面是三四章的答案。
给大家造成的不便,敬请谅解随机信号分析 第三章习题答案、随机过程 X(t)=A+cos(t+B),其中A 是均值为2,方差为1的高斯变量,B 是(0,2π)上均匀分布的随机变量,且A 和B 独立。
求(1)证明X(t)是平稳过程。
(2)X(t)是各态历经过程吗?给出理由。
(3)画出该随机过程的一个样本函数。
(1)(2)3-1 已知平稳过程()X t 的功率谱密度为232()(16)X G ωω=+,求:①该过程的平均功率?②ω取值在(4,4)-范围内的平均功率?解[][]()[]2()cos 211,cos 5cos 22X E X t E A E t B A B R t t EA τττ=++=⎡⎤⎣⎦+=+=+与相互独立()()()21521()lim2TT T E X t X t X t X t dt AT-→∞⎡⎤=<∞⇒⎣⎦==⎰是平稳过程()()[]()()4112211222222242'4(1)24()()444(0)41132(1)224414414(2)121tan 13224X X XE X t G d RFG F e R G d d d arc x x ττωωωωωππωωπωωπωπωω∞----∞∞-∞-∞∞--∞∞⎡⎤⨯⎡⎤==⋅=⋅⎢⎥+⎣⎦====+==⎛⎫+ ⎪==⎣⎦=++⎝⎭=⎰⎰⎰⎰⎰P P P P 方法一()方:时域法取值范围为法二-4,4内(频域的平均率法功)2d ω=3-7如图3.10所示,系统的输入()X t 为平稳过程,系统的输出为()()()Y t X t X t T =--。
证明:输出()Y t 的功率谱密度为()2()(1cos )Y X G G T ωωω=-[][]:()[()()]{()()}{()(}2()()()()()()()()2(()[)()(()()]()())Y X X X Y X X Y Y Y X X X Y Y j T j T R E Y t Y t E X t X t T X t X t T R R R R E Y t Y t G F R T T e e G R G R G G G G ωωτττττωτωττωττττωωωω-⇒⇒=+=--+-+-=--=+=-⇔⇔∴=-+-=已知平稳过程的表达式利用定义求利用傅解系统输入输出立叶平变稳换的延时特性2()2()22()(1cos )j T j T X X X e e G G G T ωωωωωω-⎡⎤+-⎢⎥⎣⎦=-3-9 已知平稳过程()X t 和()Y t 相互独立,它们的均值至少有一个为零,功率谱密度分别为216()16X G ωω=+22()16Y G ωωω=+令新的随机过程()()()()()()Z t X t Y t V t X t Y t =+⎧⎨=-⎩ ①证明()X t 和()Y t 联合平稳; ②求()Z t 的功率谱密度()Z G ω ③求()X t 和()Y t 的互谱密度()XY G ω ④求()X t 和()Z t 的互相关函数()XZ R τ ⑤求()V t 和()Z t 的互相关函数()VZ R τ 解:()()4124(1)()()()2[()]()0[()]0()2[()]0()()(,)[()][()]0()()(2)()()()()[()()][()()][()X X X Y XY Z X t Y t R F G e E X t R E X t R eE Y t X t Y t R t t E X t E Y t X t Y t Z t X t Y t R E Z t Z t E X t Y t X t τττωτδττττττ---==∞=⇒=⎡⎤⎣⎦=-⇒=∴+=⋅+=⇒=+=+=++、都平稳=与与联合独平立稳[][]{}2214||()]()()()()()0()()()16()()()116(3)()0()0(4)()[()()]()()()()()()[()]2(5)(X YX XY Y XY Z X Y Z X Y XY XY XZ X XY X X VZ Y t R R R R R R R R G G G R G R E X t Z t E X t X t Y t R R R F G e R ττττττττττωωωωωτωτττττττωτ--++=+++=∴=++∴=+==+=→==+=+++=+==={}4||)[()()][()()][()()]()()()4X Y E V t Z t E X t Y t X t Y t R R e ττττττδτ-=+=-+++=-=+-3-11 已知可微平稳过程()X t 的自相关函数为2()2exp[]X R ττ=-,其导数为()()Y t X t '=。
随机过程-习题-第6章(总11页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--设有n 维随机矢量)(21n ξξξξτ =服从正态分布,各分量的均值为n i a E i ,,2,1, ==ξ,其协方差矩阵为⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=2222222000000σσσσσσσa a a B试求其特征函数。
解:n 元正态分布的特征函数为}21exp{),,,(21][Bt t t j t t t n '-'=μφξn i a E i ,,2,1, ==ξ ),,,(21n t t t t =' ,则∑=='ni ijat t j 1μ()()),,,(2122322222121'++='n n t tt t t a t t a t t Bt t σσσσσσ=22223232222221221σσσσσσn t t a t t t a t t t ++++++ =∑∑-=+=+1121122n i i i ni i a t t t σσ∴]21exp[)]21(exp[),,,(112112221][∑∑-=+=--=n i i i ni i i n a t t t jat t t t σσφξ. 设n 维正态分布随机矢量)(21n T ξξξξ =各分量的均值为i E i =ξ,n i ,3,2,1=,各分量间的协方差为n i m i m n b i m ,3,2,1,|,|,=--=设有随机变量∑==ni i 1ξη,求?的特征函数。
解:易得:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n ξξξη 21]111[2)1(][][11+===∑∑==n n i E E ni ni i ξη 协方差矩阵为: ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡------=n nn n n n n n n n321312211121B所以 ]111[]111['⋅⋅= B ηD =223n n +由于高斯分布的随机变量的线形组合依旧是高斯分布的,所以η的特征函数为:⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧++-+=2456822)1(exp )(t n n n t n n j t ηΦ设有三维正态分布随机矢量)(321ξξξξ=T ,其各分量的均值为零,即0][=i E ξ)3,2,1(=i ,其协方差矩阵为⎪⎪⎪⎭⎫⎝⎛=333231232221131211b b b b b b b b b B其中,2332211σ===b b b ,试求:(1)[]321ξξξE(2)[]232221ξξξE (3))])()([(223222221σξσξσξ---E 解:(1) 由教材467P 页可看出()()3,2,1,,,,321321=Φ-=∂Φ∂i t t t u t t t t i i()()()j i j i t t t u u t t t b t t t t t j i ij ji ≠=Φ+Φ-=∂∂Φ∂且3,2,1,,,,,,,3213213212,()()()()()()()3213211232133123213213211233212133213123213213,,,,,,,,,,,,t t t u u u u b u b u b t t t u u u t t t u b t t t u b t t t u b t t t t t t Φ-++=Φ-Φ+Φ+Φ=∂∂∂Φ∂ 其中:()321,,t t t Φ为零均值的三元正态分布随机变量321,,ξξξ的特征函数()⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧-=Φ∑=3132121exp ,,k k k u t t t t∑==31i i ki k t b u令0321===t t t ,则()3,2,1,0,10,0,0===Φk u k ,所以[]()()0,,032132133213213=∂∂∂Φ∂====-t t t t t t t t t jE ξξξ(2)设()321123213312u u u u b u b u b N -++=,则()()3213213213,,,,t t t N t t t t t t Φ=∂∂∂Φ∂21333123321333123312321233122321222132312221133112321111231312123131222213332122231133221132132222u u b u u b u u b b b b b t Nu u b u u b u u b b b b b t Nu u b u u b u u b b b b b t Nb b b b b b b b b b b b t t t N---+=∂∂---+=∂∂---+=∂∂++++=∂∂∂∂()()()()()()()2313123322110132321223132123213212321321303213213023222132164,,,,,,,,,,,,321321321b b b b b b t N t t t t t t N t t t t t t N t t t t t t t t t t t N t t t t t t N t t t t t t t t t t t t t t t -=⎪⎪⎭⎫ ⎝⎛∂∂∂∂Φ∂+∂∂∂∂Φ∂+∂∂∂∂Φ∂+Φ∂∂∂∂=∂∂∂Φ∂=∂∂∂Φ∂========= []()()()()231312332211023222132162322214,,63216b b b b b b jt t t t t t jE t t t -=∂∂∂Φ∂=--===ξξξ(3)()()()[]()()()()[]()2121122221222121122122112221121222112121122122221214,2,,t t u u b u u b u u u b b u u b u b b b b t t u u b t t t t t t Φ-+--++-+=Φ+-∂∂∂=∂∂Φ∂()()()[]()()()()[]()3131132321332131132133113231121333113131133122321314,2,,t t u u b u u b u u u b b u u b u b b b b t t u u b t t t t t t Φ-+--++-+=Φ+-∂∂∂=∂∂Φ∂()()()[]()()()()[]()3232232322332232232233223232222333223232233222322324,2,,t t u u b u u b u u u b b u u b u b b b b t t u u b t t t t t t Φ-+--++-+=Φ+-∂∂∂=∂∂Φ∂[]()21222110222121422212,21b b b t t t t E t t +=∂∂Φ∂===ξξ []()21333110232131423212,31b b b t t t t E t t +=∂∂Φ∂===ξξ []()22333220232232423222,32b b b t t t t E t t +=∂∂Φ∂===ξξ()()()[][][][][]()()()22321321222313126232221423222321222122322212232222212224b b b b b b E E E E E E E E ++--=-+++++-=---σσξξξσξξξξξξσξξξσξσξσξ另一种方法是利用设有三维正态分布的随机矢量T ξ=[1ξ,2ξ,3ξ]的概率密度为f []ξ(x 1,x 2,x 3)=C )}422(21exp{2321222121x x x x x x x +-+--(1)证明经过线性变换η=A ξ=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡---100721021411⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡321ξξξ 得矢量T η=[321,,ηηη],则321,,ηηη是相互统计独立的随机变量。
随机信号分析基础课后练习题含答案第一部分随机变量和概率分布练习题1设离散随机变量X的概率分布函数为:X0 1 2 3 4P X0.05 0.15 0.35 0.30 0.15求E(X)和D(X)。
答案1根据概率分布函数的公式有:$$E(X)=\\sum_{i=1}^n x_i P_X(x_i) = 0 \\times 0.05 + 1\\times 0.15 + 2 \\times 0.35 + 3 \\times 0.30 + 4 \\times 0.15 = 2.25$$$$D(X)=\\sum_{i=1}^n (x_i-E(X))^2P_X(x_i) = 0.710625$$ 练习题2已知随机变量X的概率密度函数为:$$f_X(x) = \\begin{cases} \\frac{1}{3}e^{-\\frac{x}{3}} & x \\geq 0 \\\\ 0 & x < 0 \\end{cases}$$求E(X)和D(X)。
答案2根据概率分布函数的公式有:$$E(X)=\\int_{-\\infty}^{+\\infty}xf_X(x)dx =\\int_{0}^{+\\infty}x\\frac{1}{3}e^{-\\frac{x}{3}}dx=3$$ $$D(X)=E(X^2)-(E(X))^2=\\int_{-\\infty}^{+\\infty}x^2f_X(x)dx-(E(X))^2=\\int_{0}^{+\\infty}x^2\\frac{1}{3}e^{-\\frac{x}{3}}dx-9=\\frac{27}{4}$$第二部分随机过程练习题3设二阶矩有限的离散时间随机过程X n的均值序列为m n,自相关函数为R n(i,j)=E(X i−m i)(X j−m j),其中 $0 \\leq i,j \\leq N$。
若m n=n2,R n(i,j)=ij(i+j),求 $E(\\sum_{n=0}^N X_n)$。
6.1 复随机过程0()()jtZte,式中0为常数,是在(0,2)上均匀分布的随机变量。
求:(1)[()()]EZtZt和[()()]EZtZt;(2)信号的功率谱。
解:
(1)
00
00
[()][]201[()()]212jtjtjjEZtZteedede
00
0
0
[()][]2[(2)2]02(2)201[()()]212120jtjtjtjtjEZtZteededeed
(2)
0
0
()[()]{[()()]}[]2()ZZjSFRFEZtZtFe
6.2
6.3
6.4 已知()at的频谱为实函数()A,假定时,()0A,且满足0,试
比较:
(1) 0()cosatt和0(12)()exp()atjt的傅立叶变换。
(2) 0()sinatt和0(2)()exp()jatjt的傅立叶变换。
(3) 0()cosatt和0()sinatt的傅立叶变换。
解:
由傅立叶变换的定义可以得到:
(1)
0
000
0
()cos[()()]1()()2FTjtFTattAAateA
0
1
()2jtate
的傅立叶变换是0()cosatt的傅立叶变换的正频率部分。
(2)
0
000
0
()sin[()()]()()2FTjtFTattAAjjateAj
0
()2jtjate
的傅立叶变换是0()sinatt的傅立叶变换的正频率部分。
(3)
0
()cosatt
和0()sinatt的傅立叶变换是希尔伯特变换对。
6.5
6.6
6.7 若零均值平稳窄高斯随机信号()Xt的功率谱密度如题图6.7
(1) 试写出此随机信号的一维概率密度函数;
(2) 写出()Xt的两个正交分量的联合概率密度函数。
N
S
A
0
0
0
W
题图6.7
解:
(1) 零均值平稳窄带高斯信号()Xt的正交表达式为
00()()cos()sinxtittqtt
基于功率谱计算功率得
2
1(0)()22XXXAW
PRSd
()Xt
为0均值的高斯随机信号,所以 2()(0,)XtN
所以一维概率密度
2
2
2
1
()2xfxe
,22AW
(2) 又因为()Xt的功率谱关于中心频率0偶对称
由(6.37)得 ()0qiS
即 12()[()()]0qiREitqt
所以(),()itqt彼此正交,做为零均值的高斯信号也彼此独立,所以
222()2121221(,;,)(,)(,)2iqiqiqfiqttfitfqte , 22AW
6.8 对于窄带平稳随机过程00()()cos()sinxtittqtt,若其均值为零,功率谱密度为
00
00cos[()/],/2()cos[()/],/20x
PSP
,其它
式中0,P及都是正实常数。试求
(1) x(t)的平均功率;
(2) i(t)的功率谱密度;
(3) 互相关函数()iqR或互谱密度()iqS;
(4) i(t)与q(t)是否正交或不相关?
解:
(1)()xt的平均功率:
0
0
2022211()cos2cosNNPSdPdPd
22222sinNPPP
(2)()Nt是零均值平稳窄带随机信号,所以有:
002cos,()()()()020,NN
iq
P
SSwSSwother
(3)互相关函数iqR或互谱密度iqS
因为()Nt是零均值平稳窄带随机信号,并且NS是关于0偶对称,有9.3的性
质,定理可知,互谱密度iqS为0,互相关函数iqR也为0
(4)由0iqR,所以()it与()qt任意时刻正交。因为()it与()qt是零均值的,所以
()it
与()qt是不相关的。
6.9
6.10
6.11 已知零均值窄带平稳噪声00()()cos()sinXtAttBtt的功率谱密度如题图
6.11所示。画出下列情况下随机过程 ()At,()Bt各自的功率谱密度:
(1) 01 (2)02
(3) 012()/2
判断上述各种情况下,过程()At,()Bt是否互不相关。
0
1
()XS
1
2
2
1
题图6.11
解:
因为()Xt是零均值平稳窄带随机信号,所以有:
000()()()()0xx
AB
SSSS
其它
000[()()]()()0xxBAABjSSSS其它
功率谱图形如下:
(1)
022()XS1
(2)
1
1
0
()XS
1
(3)
0
21
2
21
2
()XS
1
由于()Xt的功率谱不以中心频率0偶对称,所以互功率谱密度()BAS在三种情况
下都不为0, 所以 A(t),B(t)相关.
6.12
6.13 同步检波器如下题图6.13所示,输入()Xt为窄带平稳噪声,它的自相关函数为
2
0()cosXX
Re
,0。
若另一输入0()sin()YtAt,其中A为常数,服从(0,2)上的均匀分布,且
与()Xt独立。求检波器输出()Zt的平均功率。
理想低通
滤波器
()Xt
()Yt
()Zt
题图6.13
解:
由题意知
0
2
0
0
[()][sin()]1sin()02EYtEAtAtd
2
00
0
2
0(,)[()()]1sin[()]sin()2cos()2YY
RttEYtYtAtAtdARt
所以()]Yt也是平稳的.
设 ()()()MtXtYt 由于(),()XtYt独立, 不难得:
[()][()()][()][()]0EMtEXtYtEXtEYt
,
222
0(,)[()()()()][()()][()()]()()1cos2MXYX
RttEXtYtXtYtEXtXtEYtYtRRAe
所以经过低通滤波器LPF后,由于
2220220222201()cos21cos212211cos244MXXXXRAeAeAeAe
其中高频成分:2201cos24XAe 被滤掉,所以
221()4ZXRAe
所以()Zt的平均功率
22
1
(0)4ZZXPRA