当前位置:文档之家› 卷积神经网络入门教程

卷积神经网络入门教程

卷积神经网络入门教程
卷积神经网络入门教程

从入门到精通:卷积神经网络初学者指南

Part 1:图像识别任务

介绍

卷积神经网络,听起来像是计算机科学、生物学和数学的诡异组合,但它们已经成为计算机视觉领域中最具影响力的革新的一部分。神经网络在2012 年崭露头角,Alex Krizhevsky 凭借它们赢得了那一年的ImageNet 挑战赛(大体上相当于计算机视觉的年度奥林匹克),他把分类误差记录从26% 降到了15%,在当时震惊了世界。自那之后,大量公司开始将深度学习用作服务的核心。Facebook 将神经网络用于自动标注算法、谷歌将它用于图片搜索、亚马逊将它用于商品推荐、Pinterest 将它用于个性化主页推送、Instagram 将它用于搜索架构。

然而,应用这些网络最经典最流行的案例是进行图像处理。在图像处理任务中,让我们看一下如何使用卷积神经网络进行图像分类。

问题空间

图像分类是对输入图像的操作,最终输出一组最好地描述了图像内容的分类(如猫、狗等)或分类的概率。对人类来说,识别是打出生便开始学习的技能之一,对成人来说更是信手拈来,毫不费力。我们只需一眼便能快速识别我们所处的环境以及环绕在我们身边的物体。当我们看到一张图片或是环看四周的时候,无需刻意观察,多数时候也能立即描述出场景特征并标记出每一个对象。快速识别不同模式、根据早前知识进行归纳、以及适应不同的图像环境一直都是人类的专属技能,机器尚未享有。

输入与输出

当计算机看到一张图像(输入一张图像)时,它看的是一大堆像素值。根据图片的分辨率和尺寸,它将看到一个32 x 32 x 3 的数组(3 指代的是RGB 值)。为了讲清楚这一点,假设我们有一张JPG 格式的480 x 480 大小的彩色图片,那么它对应的数组就有480 x 480 x 3 个元素。其中每个数字的值从0 到255 不等,其描述了对应那一点的像素灰度。当我们人类对图像进行分类时,这些数字毫无用处,可它们却是计算机可获得的唯一输入。其中的思想是:当你提供给计算机这一数组后,它将输出描述该图像属于某一特定分类的概率的数字(比如:80% 是猫、15% 是狗、5% 是鸟)。

我们想要计算机做什么

现在我们知道了问题所在以及输入与输出,就该考虑如何处理了。我们想要计算机能够区分开所有提供给它的图片,以及搞清楚猫猫狗狗各自的特有特征。这也是我们人类的大脑中不自觉进行着的过程。当我们看到一幅狗的图片时,如果有诸如爪子或四条腿之类的明显特征,我们便能将它归类为狗。同样地,计算机也可以通过寻找诸如边缘和曲线之类的低级特点来分类图片,继而通过一系列卷积层级建构出更为抽象的概念。这是CNN(卷积神经网络)工作方式的大体概述,下面是具体细节。

生物学连接

首先介绍些背景。当你第一次听到卷积神经网络这一术语,可能会联想到神经科学或生物学,那就对了。可以这样说。CNN 的确是从视觉皮层的生物学上获得启发的。视觉皮层有小部分细胞对特定部分的视觉区域敏感。Hubel 和Wiesel 于1962 年进行的一项有趣的试验详细说明了这一观点,他们验证出大脑中的一些个体神经细胞只有在特定方向的边缘存在时才能做出反应(即放电)。例如,一些神经元只对垂直边缘兴奋,另一些对水平或对角边缘兴奋。Hubel 和Wisesl 发现所有这些神经元都以柱状结构的形式进行排列,而且一起工作才能产生视觉感知。这种一个系统中的特定组件有特定任务的观点(视觉皮层的神经元细胞寻找特定特征)在机器中同样适用,这就是CNN 的基础。

结构

回到细节上来。更为详细的CNN 工作概述指的是你挑一张图像,让它历经一系列卷积层、非线性层、池化(下采样(downsampling))层和完全连接层,最终得到输出。正如之前所说,输出可以是最好地描述了图像内容的一个单独分

类或一组分类的概率。如今,难点在于理解其中每一层的工作方法。我们先来看最重要的部分。

第一层——数学部分

CNN 的第一层通常是卷积层(Convolutional Layer)。首先需要了解卷积层的输入内容是什么。如上所述,输入内容为一个32 x 32 x 3 的像素值数组。现在,解释卷积层的最佳方法是想象有一束手电筒光正从图像的左上角照过。假设手电筒光可以覆盖 5 x 5 的区域,想象一下手电筒光照过输入图像的所有区域。在机器学习术语中,这束手电筒被叫做过滤器(filter,有时候也被称为神经元(neuron)或核(kernel)),被照过的区域被称为感受野(receptive field)。过滤器同样也是一个数组(其中的数字被称作权重或参数)。重点在于过滤器的深度必须与输入内容的深度相同(这样才能确保可以进行数学运算),因此过滤器大小为 5 x 5 x 3。现在,以过滤器所处在的第一个位置为例,即图像的左上角。当筛选值在图像上滑动(卷积运算)时,过滤器中的值会与图像中的原始像素值相乘(又称为计算点积)。这些乘积被加在一起(从数学上来说,一共会有75 个乘积)。现在你得到了一个数字。切记,该数字只是表示过滤器位于图片左上角的情况。我们在输入内容上的每一位置重复该过程。(下一步将是将过滤器右移 1 单元,接着再右移 1 单元,以此类推。)输入内容上的每一特定位置都会产生一个数字。过滤器滑过所有位置后将得到一个28 x 28 x 1 的数组,我们称之为激活映射(activation map)或特征映射(feature map)。之所以得到一个28 x 28 的数组的原因在于,在一张32 x 32 的输入图像上,5 x 5 的过滤器能够覆盖到784 个不同的位置。这784 个位置可映射为一个28 x 28 的数组。

(注意:包括上图在内的一些图片来自于Micheal Nielsen 的「神经网络与深度学习(Neural Networks and Deep Learning)」一书。我强烈推荐这本书。这本书可免费在线浏览.)

当我们使用两个而不是一个 5 x 5 x 3 的过滤器时,输出总量将会变成 28 x 28 x 2。采用的过滤器越多,空间维度(spatial dimensions)保留得也就越好。数学上而言,这就是卷积层上发生的事情。

第一层——高层次角度

不过,从高层次角度而言卷积是如何工作的?每个过滤器可以被看成是特征标识符(feature identifiers)。这里的特征指的是例如直边缘、原色、曲线之类的东西。想一想所有图像都共有的一些最简单的特征。假设第一组过滤器是7 x 7 x 3 的曲线检测器。(在这一节,为了易于分析,暂且忽略该过滤器的深度为 3 个单元,只考虑过滤器和图像的顶层层面。)作为曲线过滤器,它将有一个像素结构,在曲线形状旁时会产生更高的数值(切记,我们所讨论的过滤器不过是一组数值!)

左图:过滤器的像素表示;右图:曲线检测器过滤器的可视化;对比两图可以看到数值和形状的对应

回到数学角度来看这一过程。当我们将过滤器置于输入内容的左上角时,它将计算过滤器和这一区域像素值之间的点积。拿一张需要分类的照片为例,将过滤器放在它的左上角。

左图:原始图像;右图:图像上过滤器的可视化

切记,我们要做的是将过滤器与图像的原始像素值相乘。

左图:感受野的可视化;右图:感受野的像素表示* 过滤器的像素表示

简单来说,如果输入图像上某个形状看起来很像过滤器表示的曲线,那么所有点积加在一起将会得出一个很大的值!让我们看看移动过滤器时会发生什么。

这个值小了很多!这是因为图像的这一部分和曲线检测器过滤器不存在对应。记住,这个卷积层的输出是一个激活映射(activation map)。因此,在这个带有一个过滤器卷积的例子里(当筛选值为曲线检测器),激活映射将会显示出图像里最像曲线的区域。在该例子中,28 x 28 x 1 的激活映射的左上角的值为6600。高数值意味着很有可能是输入内容中的曲线激活了过滤器。激活地图右上角的值将会是0,因为输入内容中没有任何东西能激活过滤器(更简单地说,原始图片中的这一区域没有任何曲线)。这仅仅是一组检测右弯曲线的过滤器。还有其它检测左弯曲线或直线边缘的过滤器。过滤器越多,激活映射的深度越大,我们对输入内容的了解也就越多。

声明:我在本小节中描绘的过滤器(filter)只是为了描述卷积中的数学过程。在下图中你可以看到训练后的网络中第一个卷积层的过滤器的实际可视化。尽管如此,主要观点仍旧不变。当在输入内容中寻找特定特征时,第一层上的过滤器在输入图像上进行卷积运算和「激活」(即计算高数值)。

上图来自于斯坦福大学由Andrej Karpathy 和Justin Johnson 授课的CS 231N课程,推荐给渴望更深层理解CNN 的人们。

网络中的更深处

在传统卷积神经网络架构中,卷积层之间还有其它类型的层。我强烈建议有兴趣的人阅读和它们有关的材料,并理解相应的功能和作用;但总的来说,它们提供的非线性和维度保留有助于提高网络的稳健性(robustness)并控制过拟合。一个典型的CNN 结构看起来是这样的:

输入→卷积→ReLU→卷积→ReLU→池化→ReLU→卷积→ReLU→池化→全连接

我们稍后再来讨论关键的最后一层,先回顾一下学到了哪些。我们讨论了过滤器是如何在第一个卷积层检测特征的。它们检测边缘和曲线一类的低级特征。正如想象的那样,为了预测出图片内容的分类,网络需要识别更高级的特征,例如手、爪子与耳朵的区别。第一个卷积层的输出将会是一个28 x 28 x 3 的数组(假设我们采用三个 5 x 5 x 3 的过滤器)。当我们进入另一卷积层时,第一个卷积层的输出便是第二个卷积层的输入。解释这一点有些困难。第一层的输入是原始图像,而第二卷积层的输入正是第一层输出的激活映射。也就是说,这一层的输入大体描绘了低级特征在原始图片中的位置。在此基础上再采用一组过滤器(让它通过第 2 个卷积层),输出将是表示了更高级的特征的激活映射。这类特征可以是半圆(曲线和直线的组合)或四边形(几条直线的组合)。随着进入网络越深和经过更多卷积层后,你将得到更为复杂特征的激活映射。在网络的最后,可能会有一些过滤器会在看到手写笔迹或粉红物体等时激活。如果你想知道更多关于可视化卷积网络中过滤器的内容,可以查看Matt Zeiler 和Rob Fergus 的一篇讨论该问题的颇为杰出的研究论文。在YouTube 上,Jason Yosinski 有一段视频十分视觉化地呈现了这一过程(如下)。有趣的是,越深入网络,过滤器的感受野越大,意味着它们能够处理更大范围的原始输入内容(或者说它们可以对更大区域的像素空间产生反应)。

完全连接层

检测高级特征之后,网络最后的完全连接层就更是锦上添花了。简单地说,这一层处理输入内容(该输入可能是卷积层、ReLU 层或是池化层的输出)后会输出一个N 维向量,N 是该程序必须选择的分类数量。例如,如果你想得到一个数字分类程序,如果有10 个数字,N 就等于10。这个N 维向量中的每一数字都代表某一特定类别的概率。例如,如果某一数字分类程序的结果矢量是[0 .1 .1 .75 0 0 0 0 0 .05],则代表该图片有10% 的概率是1、10% 的概率是2、75% 的概率是3、还有5% 的概率是9(注:还有其他表现输出的方式,这里只展示了softmax 的方法)。完全连接层观察上一层的输出(其表示了更高级特征的激活映射)并确定这些特征与哪一分类最为吻合。例如,如果该程序预测某一图像的内容为狗,那么激活映射中的高数值便会代表一些爪子或四条腿之类的高级特征。同样地,如果程序测定某一图片的内容为鸟,激活映射中的高数值便会代表诸如翅膀或鸟喙之类的高级特征。大体上来说,完全连接层观察高级特征和哪一分类最为吻合和拥有怎样的特定权重,因此当计算出权重与先前层之间的点积后,你将得到不同分类的正确概率。

一种全卷积神经网络(LeNet),从左至右依次为卷积→子采样→卷积→子采样→全连接→全连接→高斯连接

训练(也就是:什么能让其有效)

下面是神经网络中的一个我尚未提及但却最为重要的部分。阅读过程中你可能会提出许多问题。第一卷积层中的滤波器是如何知道寻找边缘与曲线的?完全连接层怎么知道观察哪些激活图?每一层级的滤波器如何知道需要哪些值?计算机通过一个名为反向传播的训练过程来调整过滤器值(或权重)。

在探讨反向传播之前,我们首先必须回顾一下神经网络工作起来需要什么。在我们刚出生的时候,大脑一无所知。我们不晓得猫啊狗啊鸟啊都是些什么东西。与之类似的是CNN 刚开始的时候,权重或过滤器值都是随机的。滤波器不知道要去寻找边缘和曲线。更高层的过滤器值也不知道要去寻找爪子和鸟喙。不过随着年岁的增长,父母和老师向我们介绍各式各样的图片并且一一作出标记。CNN 经历的便是一个介绍图片与分类标记的训练过程。在深入探讨之前,先设定一个训练集,在这里有上千张狗、猫、鸟的图片,每一张都依照内容被标记。下面回到反向传播的问题上来。

反向传播可分为四部分,分别是前向传导、损失函数、后向传导,以及权重更新。在前向传导中,选择一张32×32×3 的数组训练图像并让它通过整个网络。在第一个训练样例上,由于所有的权重或者过滤器值都是随机初始化的,输出可能会是[.1 .1 .1 .1 .1 .1 .1 .1 .1 .1],即一个不偏向任何数字的输出。一个有着这样权重的网络无法寻找低级特征,或者说是不能做出任何合理的分类。接下来是反向传播的损失函数部分。切记我们现在使用的是既有图像又有标记的训练数据。假设输入的第一张训练图片为3,标签将会是[0 0 0 1 0 0 0 0 0 0]。损失函数有许多种定义方法,常见的一种是MSE (均方误差)。

假设变量L 等同该数值。正如所料,前两张训练图片的损失将会极高。现在,我们直观地想一下。我们想要预测标记(卷积网络的输出)与训练标记相同(意味着网络预测正确)。为了做到这一点,我们想要将损失数量最小化。将其视为微积分优化问题的话,也就是说我们想要找出是哪部分输入(例子中的权重)直接导致了网络的损失(或错误)。

这是一个dL/dW 的数学等式,W 是特定层级的权重。我们接下来要做的是在网络中进行后向传导,测定出是哪部分权重导致了最大的损失,寻找调整方法并减少损失。一旦计算出该导数,将进行最后一步也就是权重更新。所有的过滤器的权重将会更新,以便它们顺着梯度方向改变。

学习速率是一个由程序员决定的参数。高学习速率意味着权重更新的动作更大,因此可能该模式将花费更少的时间收敛到最优权重。然而,学习速率过高会导致跳动过大,不够准确以致于达不到最优点。

总的来说,前向传导、损失函数、后向传导、以及参数更新被称为一个学习周期。对每一训练图片,程序将重复固定数目的周期过程。一旦完成了最后训练样本上的参数更新,网络有望得到足够好的训练,以便层级中的权重得到正确调整。

测试

最后,为了检验CNN 能否工作,我们准备不同的另一组图片与标记集(不能在训练和测试中使用相同的!)并让它们通过这个CNN。我们将输出与实际情况(ground truth )相比较,看看网络是否有效!

企业如何使用CNN

数据、数据、数据。数据越多的企业在竞争中越发彰显优势。你提供给网络的训练数据越多,你能进行的训练迭代也越多,紧接着权重更新也多,那么当用于产品时调整出的网络自然就好。Facebook (和Instagram)可以使用它如今拥有的十几亿用户的图片,Pinterest 可以使用它站点上500 亿花瓣的信息,谷歌可以使用搜索数据,亚马逊可以使用每天销售的数以百万计的商品数据。而你现在也知道它们使用数据背后的神奇之处了。

Part 2:卷积神经网络中的部分问题

引言

在这篇文章中,我们将更深入地介绍有关卷积神经网络(ConvNet)的详细情况。声明:我确实知道本文中一部分内容相当复杂,可以用一整篇文章进行介绍。但为了在保持全面性的同时保证简洁,我会在文章中相关位置提供一些更详细解释该相关主题的论文链接。

步幅和填充

好了,现在来看一下我们的卷积神经网络。还记得过滤器、感受野和卷积吗?很好。现在,要改变每一层的行为,有两个主要参数是我们可以调整的。选择了过滤器的尺寸以后,我们还需要选择步幅(stride)和填充(padding)。

步幅控制着过滤器围绕输入内容进行卷积计算的方式。在第一部分我们举的例子中,过滤器通过每次移动一个单元的方式对输入内容进行卷积。过滤器移动的距离就是步幅。在那个例子中,步幅被默认设置为1。步幅的设置通常要确保输出内容是一个整数而非分数。让我们看一个例子。想象一个7 x 7 的输入图像,一个 3 x 3 过滤器(简单起见不考虑第三个维度),步幅为1。这是一种惯常的情况。

还是老一套,对吧?看你能不能试着猜出如果步幅增加到2,输出内容会怎么样。

所以,正如你能想到的,感受野移动了两个单元,输出内容同样也会减小。注意,如果试图把我们的步幅设置成3,那我们就会难以调节间距并确保感受野与输入图像匹配。正常情况下,程序员如果想让接受域重叠得更少并且想要更小的空间维度(spatial dimensions)时,他们会增加步幅。

现在让我们看一下填充(padding)。在此之前,想象一个场景:当你把 5 x 5 x 3 的过滤器用在32 x 32 x 3 的输入上时,会发生什么?输出的大小会是28 x 28 x 3。注意,这里空间维度减小了。如果我们继续用卷积层,尺寸减小的速度就会超过我们的期望。在网络的早期层中,我们想要尽可能多地保留原始输入内容

的信息,这样我们就能提取出那些低层的特征。比如说我们想要应用同样的卷积层,但又想让输出量维持为32 x 32 x 3 。为做到这点,我们可以对这个层应用大小为 2 的零填充(zero padding)。零填充在输入内容的边界周围补充零。如果我们用两个零填充,就会得到一个36 x 36 x 3 的输入卷。

如果我们在输入内容的周围应用两次零填充,那么输入量就为32×32×3。然后,当我们应用带有 3 个5×5×3 的过滤器,以 1 的步幅进行处理时,我们也可以得到一个32×32×3 的输出

如果你的步幅为1,而且把零填充设置为

K 是过滤器尺寸,那么输入和输出内容就总能保持一致的空间维度。

计算任意给定卷积层的输出的大小的公式是

其中O 是输出尺寸,K 是过滤器尺寸,P 是填充,S 是步幅。

选择超参数

我们怎么知道要用多少层、多少卷积层、过滤器尺寸是多少、以及步幅和填充值多大呢?这些问题很重要,但又没有一个所有研究人员都在使用的固定标准。这是因为神经网络很大程度上取决于你的数据类型。图像的大小、复杂度、图像处理任务的类型以及其他更多特征的不同都会造成数据的不同。对于你的数据集,想出如何选择超参数的一个方法是找到能创造出图像在合适尺度上抽象的正确组合。

ReLU(修正线性单元)层

在每个卷积层之后,通常会立即应用一个非线性层(或激活层)。其目的是给一个在卷积层中刚经过线性计算操作(只是数组元素依次(element wise)相乘与求和)的系统引入非线性特征。过去,人们用的是像双曲正切和S 型函数这样的非线性方程,但研究者发现ReLU 层效果好得多,因为神经网络能够在准确度不发生明显改变的情况下把训练速度提高很多(由于计算效率增加)。它同样能帮助减轻梯度消失的问题——由于梯度以指数方式在层中消失,导致网络较底层的训练速度非常慢。(这也许超出了本文的范围,但这里和这里有更好的解释.)ReLU 层对输入内容的所有值都应用了函数f(x) = max(0, x)。用基本术语来说,

这一层把所有的负激活(negative activation)都变为零。这一层会增加模型乃至整个神经网络的非线性特征,而且不会影响卷积层的感受野。

参见Geoffrey Hinton(即深度学习之父)的论文:Rectified Linear Units Improve Restricted Boltzmann Machines

池化层

在几个ReLU 层之后,程序员也许会选择用一个池化层(pooling layer)。它同时也被叫做下采样(downsampling)层。在这个类别中,也有几种可供选择的层,最受欢迎的就是最大池化(max-pooling)。它基本上采用了一个过滤器(通常是2x2 的)和一个同样长度的步幅。然后把它应用到输入内容上,输出过滤器卷积计算的每个子区域中的最大数字。

带有2×2 和过滤器的且步幅为 2 的最大池化的例子

池化层还有其他选择,比如平均池化(average pooling)和L2-norm 池化。这一层背后的直观推理是:一旦我们知道了原始输入(这里会有一个高激活值)中一个特定的特征,它与其它特征的相对位置就比它的绝对位置更重要。可想而知,这一层大幅减小了输入卷的空间维度(长度和宽度改变了,但深度没变)。这到达了两个主要目的。第一个是权重参数的数目减少到了75%,因此降低了计算成本。第二是它可以控制过拟合(overfitting)。这个术语是指一个模型与训练样本太过匹配了,以至于用于验证和检测组时无法产生出好的结果。出现过拟合的表现是一个模型在训练集能达到100% 或99% 的准确度,而在测试数据上却只有50%。

Dropout 层

如今,Dropout 层在神经网络有了非常明确的功能。上一节,我们讨论了经过训练后的过拟合问题:训练之后,神经网络的权重与训练样本太过匹配以至于在处理新样本的时候表现平平。Dropout 的概念在本质上非常简单。Dropout 层将「丢弃(drop out)」该层中一个随机的激活参数集,即在前向通过(forward pass)中将这些激活参数集设置为0。简单如斯。既然如此,这些简单而且似乎不必要且有些反常的过程的好处是什么?在某种程度上,这种机制强制网络变得更加冗余。这里的意思是:该网络将能够为特定的样本提供合适的分类或输出,即使一些激活参数被丢弃。此机制将保证神经网络不会对训练样本「过于匹配」,这将帮助缓解过拟合问题。另外,Dropout 层只能在训练中使用,而不能用于测试过程,这是很重要的一点。

参考Geoffrey Hinton 的论文:Dropout: A Simple Way to Prevent Neural Networks from Overfitting

网络层中的网络

网络层中的网络指的是一个使用了 1 x 1 尺寸的过滤器的卷积层。现在,匆匆一瞥,你或许会好奇为何这种感受野大于它们所映射空间的网络层竟然会有帮助。然而,我们必须谨记1x1 的卷积层跨越了特定深度,所以我们可以设想一个1 x 1 x N 的卷积层,此处N 代表该层应用的过滤器数量。该层有效地使用N 维数组元素依次相乘的乘法,此时N 代表的是该层的输入的深度。

参阅Min Lin 的论文:Network In Network

分类、定位、检测、分割

本系列第一部分使用的案例中,我们观察了图像分类任务。这个过程是:获取输入图片,输出一套分类的类数(class number)。然而当我们执行类似目标定位的任务时,我们要做的不只是生成一个类标签,而是生成一个描述图片中物体suo所在位置的边界框。

我们也有目标检测的任务,这需要图片上所有目标的定位任务都已完成。

因此,你将获得多个边界框和多个类标签。

最终,我们将执行目标分割的任务:我们需要输出类标签的同时输出图片中每个目标的轮廓。

关于目标检测、定位、分割的论文有很多,这里就不一一列出了。可以参考的有:

迁移学习

如今,深度学习领域一个常见的误解在于没有谷歌那样的巨量数据,你将没有希望创建一个有效的深度学习模型。尽管数据是创建网络中至关重要的部分,迁移学习的思路将帮助我们降低数据需求。迁移学习指的是利用预训练模型(神经网络的权重和参数都已经被其他人利用更大规模的数据集训练好了)并用自己的数据集将模型「微调」的过程。这种思路中预训练模型扮演着特征提取器的角色。你将移除网络的最后一层并用你自有的分类器置换(取决于你的问题空间)。然后冻结其他所有层的权重并正常训练该网络(冻结这些层意味着在梯度下降/最优化过程中保持权值不变)。

让我们探讨一下为什么做这项工作。比如说我们正在讨论的这个预训练模型是在ImageNet (一个包含一千多个分类,一千四百万张图像的数据集)上训练的。当我们思考神经网络的较低层时,我们知道它们将检测类似曲线和边缘这样的特征。现在,除非你有一个极为独特的问题空间和数据集,你的神经网络也会检测曲线和边缘这些特征。相比通过随机初始化权重训练整个网络,我们可以利用预训练模型的权重(并冻结)聚焦于更重要的层(更高层)进行训练。如果你的数据集不同于ImageNet 这样的数据集,你必须训练更多的层级而只冻结一些低层的网络。

Yoshua Bengio (另外一个深度学习先驱)论文:How transferable are features in deep neural networks?

Ali Sharif Razavian 论文:CNN Features off-the-shelf: an Astounding Baseline for Recognition

Jeff Donahue 论文:DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition

数据增强技术

现在我们对卷积网络中数据的重要性可能已经感到有些麻木了,所以我们来谈下如何利用一些简单的转换方法将你现有的数据集变得更大。正如我们之前所提及的,当计算机将图片当作输入时,它将用一个包含一列像素值的数组描述(这幅图)。若是图片左移一个像素。对你和我来说,这种变化是微不可察的。然而对计算机而已,这种变化非常显著:这幅图的类别和标签保持不变,数组却变化了。这种改变训练数据的数组表征而保持标签不变的方法被称作数据增强技术。这是一种人工扩展数据集的方法。人们经常使用的增强方法包括灰度变化、水平翻转、垂直翻转、随机编组、色值跳变、翻译、旋转等其他多种方法。通过利用这些训练数据的转换方法,你将获得两倍甚至三倍于原数据的训练样本。

神经网络最新发展综述

神经网络最新发展综述 学校:上海海事大学 专业:物流工程 姓名:周巧珍 学号:201530210155

神经网络最新发展综述 摘要:作为联接主义智能实现的典范,神经网络采用广泛互联的结构与有效的学习机制来模拟人脑信息处理的过程,是人工智能发展中的重要方法,也是当前类脑智能研究中的有效工具。目前,模拟人脑复杂的层次化认知特点的深度学习成为类脑智能中的一个重要研究方向。通过增加网络层数所构造的“深层神经网络”使机器能够获得“抽象概念”能力,在诸多领域都取得了巨大的成功,又掀起了神经网络研究的一个新高潮。本文分8个方面综述了其当前研究进展以及存在的问题,展望了未来神经网络的发展方向。 关键词: 类脑智能;神经网络;深度学习;大数据 Abstract: As a typical realization of connectionism intelligence, neural network, which tries to mimic the information processing patterns in the human brain by adopting broadly interconnected structures and effective learning mechanisms, is an important branch of artificial intelligence and also a useful tool in the research on brain-like intelligence at present. Currently, as a way to imitate the complex hierarchical cognition characteristic of human brain, deep learning brings an important trend for brain-like intelligence. With the increasing number of layers, deep neural network entitles machines the capability to capture “abstract concepts” and it has achieved great success in various fields, leading a new and advanced trend in neural network research. This paper summarizes the latest progress in eight applications and existing problems considering neural network and points out its possible future directions. Key words : artificial intelligence; neural network; deep learning; big data 1 引言 实现人工智能是人类长期以来一直追求的梦想。虽然计算机技术在过去几十年里取得了长足的发展,但是实现真正意义上的机器智能至今仍然困难重重。伴随着神经解剖学的发展,观测大脑微观结构的技术手段日益丰富,人类对大脑组织的形态、结构与活动的认识越来越深入,人脑信息处理的奥秘也正在被逐步揭示。如何借助神经科学、脑科学与认知科学的研究成果,研究大脑信息表征、转换机理和学习规则,建立模拟大脑信息处理过程的智能计算模型,最终使机器掌握人类的认知规律,是“类脑智能”的研究目标。 类脑智能是涉及计算科学、认知科学、神经科学与脑科学的交叉前沿方向。类脑智能的

基于卷积神经网络的文本分类研究综述

第34卷第3期2019年5月 内蒙古民族大学学报(自然科学版) Journal of Inner Mongolia University for Nationalities Vol.34No.3 May2019 基于卷积神经网络的文本分类研究综述 裴志利1,阿茹娜2,姜明洋2,卢奕南3 (1.内蒙古民族大学计算机科学与技术学院,内蒙古通辽028043;2.内蒙古民族大学数学学院,内蒙古通辽028000;3.吉林大学计算机科学与技术学院,吉林长春130012) [摘要]随着互联网及其相关技术的高速发展,网络数据呈现出井喷式的增长,其中主要以文本的形式大量 存在,数据在这种增长趋势下,文本分类已经成为越来越重要的研究课题.如今,采用深度学习技术对文本进 行表示受到研究者的极大关注.如采用卷积神经网络对文档进行表示和分类等自然语言处理.本文主要对基 于卷积神经网络的文本分类方法进行了研究,介绍了几个具有代表性的卷积神经网络模型结构.最后提出了 对基于该方法文本分类的展望. [关键词]卷积神经网络;文本分类;深度学习 [中图分类号]TP393[文献标识码]A[文章编号]1671-0815(2019)03-0206-05 Survey of Text Classification Research Based on Convolutional Neural Networks PEI Zhi-li1,Aruna2,JIANG Ming-yang2,LU Yi-nan3 (1.College of Computer Science and Technology,Inner Mongolia University for Nationalities,Tongliao028043,China; 2.College of Mathematics,Inner Mongolia University for Nationalities,Tongliao028000,China; 3.College of Computer Science and Technology,Jilin University,Changchun130012,China) Abstract:With the rapid development of the Internet and related technologies,network data has shown a spurt growth trend,which mainly exists in the form of text.Under this growth trend,text classification has become an increasingly important research topic.The use of deep learning technology to express the text has received great attention.For example, natural language processing such as convolutional neural network is used to represent and classify documents.The text classification method based on convolutional neural network is investigated.Several representative convolutional neural network model structures are introduced.Finally,the prospect of text classification based on this method is proposed. Key wrrds:Convolutional neural network;Text classification;Deep learning 0引言 随着网络媒体的出现,用户生成的内容以飞快的速度填充数据资源,这些数据的自动处理引起了研究者的巨大关注.文本分类是自然语言处理领域的重要任务,包括情感分析、对话分析、文献综述、机器翻译等[1].文本分类具有多种方法,传统的机器学习分类算法有支持向量机算法(Support Vector Machine,SVM)[2]、朴素贝叶斯算法(Naive Bayesian Classifier,NBC)[3]、决策树算法(Decision Tree,DT)[4]、K-最近邻算法(K-Nearest Neighbor,KNN)[5]等,采用传统算法文本分类时需要人工进行特征提取,耗费时间和精 基金项目:国家自然科学基金项目(61672301);内蒙古自治区“草原英才”工程产业创新人才团队(2017);内蒙古自治区科技创新引导奖励资金项目(2016);内蒙古民族大学特色交叉学科群建设项目(MDXK004);2019年度内蒙古自治区高等学校“青年科技英才支持计划”(NJYT-19-B18) 作者简介:裴志利,内蒙古民族大学计算机科学与技术学院教授,博士. DOI:10.14045/https://www.doczj.com/doc/f217359440.html,ki.15-1220.2019.03.005

卷积神经网络CNN原理、改进及应用

一、简介 卷积神经网络(Convolutional Neural Networks,简称CNN)是近年发展起来,并引起广泛重视的一种高效的识别方法。 1962年,Hubel和Wiesel在研究猫脑皮层中用于局部敏感和方向选择的神经元时发现其独特的局部互连网络结构可以有效地降低反馈神经网络的复杂性,继而提出了卷积神经网络[1](Convolutional Neural Networks-简称CNN)7863。现在,CNN已经成为众多科学领域的研究热点之一,特别是在模式分类领域,由于该网络避免了对图像的复杂前期预处理,可以直接输入原始图像,因而得到了更为广泛的应用。 Fukushima在1980年基于神经元间的局部连通性和图像的层次组织转换,为解决模式识别问题,提出的新识别机(Neocognitron)是卷积神经网络的第一个实现网络[2]。他指出,当在不同位置应用具有相同参数的神经元作为前一层的patches时,能够实现平移不变性1296。随着1986年BP算法以及T-C问题[3](即权值共享和池化)9508的提出,LeCun和其合作者遵循这一想法,使用误差梯度(the error gradient)设计和训练卷积神经网络,在一些模式识别任务中获得了最先进的性能[4][5]。在1998年,他们建立了一个多层人工神经网络,被称为LeNet-5[5],用于手写数字分类,这是第一个正式的卷积神经网络模型3579。类似于一般的神经网络,LeNet-5有多层,利用BP算法来训练参数。它可以获得原始图像的有效表示,使得直接从原始像素(几乎不经过预处理)中识别视觉模式成为可能。然而,由于当时大型训练数据和计算能力的缺乏,使得LeNet-5在面对更复杂的问题时,如大规模图像和视频分类,不能表现出良好的性能。 因此,在接下来近十年的时间里,卷积神经网络的相关研究趋于停滞,原因有两个:一是研究人员意识到多层神经网络在进行BP训练时的计算量极其之大,当时的硬件计算能力完全不可能实现;二是包括SVM在内的浅层机器学习算法也渐渐开始暂露头脚。直到2006年,Hinton终于一鸣惊人,在《科学》上发表文章,使得CNN再度觉醒,并取得长足发展。随后,更多的科研工作者对该网络进行了改进。其中,值得注意的是Krizhevsky等人提出的一个经典的CNN架构,相对于图像分类任务之前的方法,在性能方面表现出了显著的改善2674。他们方法的整体架构,即AlexNet[9](也叫ImageNet),与LeNet-5相似,但具有更深的结构。它包括8个学习层(5个卷积与池化层和3个全连接层),前边的几层划分到2个GPU上,(和ImageNet是同一个)并且它在卷积层使用ReLU作为非线性激活函数,在全连接层使用Dropout减少过拟合。该深度网络在ImageNet 大赛上夺冠,进一步掀起了CNN学习热潮。 一般地,CNN包括两种基本的计算,其一为特征提取,每个神经元的输入与前一层的局部接受域相连,并提取该局部的特征。一旦该局部特征被提取后,它与其它特征间的位置关系也随之确定下来;其二是特征映射,网络的每个计算层由多个特征映射组成,每个特征映射是一个平面,平面上所有神经元的权值相等。特征映射结构采用影响函数核小的sigmoid函数作为卷积网络的激活函数,使得特征映射具有位移不变性。此外,由于一个映射面上的神经元共享权值,因而减少了网络自由参数的个数。这两种操作形成了CNN的卷积层。此外,卷积神经网络中的每一个卷积层都紧跟着一个用来求局部平均与二次提取的计算层,即池化层,这种特有的两次特征提取结构减小了特征分辨率。

综述卷积神经网络:从基础技术到

1 引言 1.1 动机 过去几年来,计算机视觉研究主要集中在卷积神经网络(常简称为ConvNet 或CNN)上。这些工作已经在广泛的分类和回归任务上实现了新的当前最佳表现。相对而言,尽管这些方法的历史可以追溯到多年前,但对这些系统得到出色结果的方式的理论理解还很滞后。事实上,当前计算机视觉领域的很多成果都是将CNN 当作黑箱使用,这种做法是有效的,但其有效的原因却非常模糊不清,这严重满足不了科学研究的要求。尤其是这两个可以互补的问题:(1)在被学习的方面(比如卷积核),究竟被学习的是什么?(2)在架构设计方面(比如层的数量、核的数量、池化策略、非线性的选择),为什么某些选择优于另一些选择?这些问题的答案不仅有利于提升我们对 CNN 的科学理解,而且还能提升它们的实用性。 此外,目前实现CNN 的方法需要大量训练数据,而且设计决策对结果表现有很大的影响。更深度的理论理解应该能减轻对数据驱动的设计的依赖。尽管已有实证研究调查了所实现的网络的运行方式,但到目前为止,这些结果很大程度上还局限在内部处理过程的可视化上,目的是为了理解 CNN 中不同层中发生的情况。 1.2 目标 针对上述情况,本报告将概述研究者提出的最突出的使用多层卷积架构的方法。要重点指出的是,本报告将通过概述不同的方法来讨论典型卷积网络的各种组件,并将介绍它们的设计决策所基于的生物学发现和/或合理的理论基础。此外,本报告还将概述通过可视化和实证研究来理解 CNN 的不同尝试。本报告的最终目标是阐释 CNN 架构中涉及的每一个处理层的作用,汇集我们当前对CNN 的理解以及说明仍待解决的问题。

1.3 报告提纲 本报告的结构如下:本章给出了回顾我们对卷积网络的理解的动机。第2 章将描述各种多层网络并给出计算机视觉应用中使用的最成功的架构。第3 章将更具体地关注典型卷积网络的每种构造模块,并将从生物学和理论两个角度讨论不同组件的设计。最后,第4 章将会讨论CNN 设计的当前趋势以及理解CNN 的工作,并且还将重点说明仍然存在的一些关键短板。 2 多层网络 总的来说,本章将简要概述计算机视觉领域中所用的最突出的多层架构。需要指出,尽管本章涵盖了文献中最重要的贡献,但却不会对这些架构进行全面概述,因为其它地方已经存在这样的概述了(比如 [17, 56, 90])。相反,本章的目的是为本报告的剩余部分设定讨论基础,以便我们详细展示和讨论当前对用于视觉信息处理的卷积网络的理解。 2.1 多层架构 在近来基于深度学习的网络取得成功之前,最先进的用于识别的计算机视觉系统依赖于两个分离但又互补步骤。第一步是通过一组人工设计的操作(比如与基本集的卷积、局部或全局编码方法)将输入数据变换成合适的形式。对输入的变换通常需要找到输入数据的一种紧凑和/或抽象的表征,同时还要根据当前任务注入一些不变量。这种变换的目标是以一种更容易被分类器分离的方式改变数据。其次,被变换的数据通常用于训练某些类型的分类器(比如支持向量机)来识别输入信号的内容。通常而言,任何分类器的表现都会受到所使用的变换方法的严重影响。 多层学习架构为这一问题带来了不同的前景,这种架构提出不仅要学习分类器,而且要从数据中直接学习所需的变换操作。这种形式的学习通常被称为「表征学习」,当应用在深度多层架构中时即被称为「深度学习」。

一文读懂卷积神经网络

一文读懂卷积神经网络 自今年七月份以来,一直在实验室负责卷积神经网络(Convolutional Neural Network,CNN),期间配置和使用过theano和cuda-convnet、 cuda-convnet2。为了增进CNN的理解和使用,特写此博文,以其与人交流,互有增益。正文之前,先说几点自己对于CNN的感触。先明确一点就是,Deep Learning是全部深度学习算法的总称,CNN是深度学习算法在图像处理领域的一个应用。 第一点,在学习Deep learning和CNN之前,总以为它们是很了不得的知识,总以为它们能解决很多问题,学习了之后,才知道它们不过与其他机器学习算法如svm等相似,仍然可以把它当做一个分类器,仍然可以像使用一个黑盒子那样使用它。 第二点,Deep Learning强大的地方就是可以利用网络中间某一层的输出当做是数据的另一种表达,从而可以将其认为是经过网络学习到的特征。基于该特征,可以进行进一步的相似度比较等。 第三点,Deep Learning算法能够有效的关键其实是大规模的数据,这一点原因在于每个DL都有众多的参数,少量数据无法将参数训练充分。 接下来话不多说,直接奔入主题开始CNN之旅。 卷积神经网络简介(Convolutional Neural Networks,简称CNN) 卷积神经网络是近年发展起来,并引起广泛重视的一种高效识别方法。20世纪60年代,Hubel和Wiesel在研究猫脑皮层中用于局部敏感和方向选择的神经元时发现其独特的网络结构可以有效地降低反馈神经网络的复杂性,继而提出了卷积神经网络(Convolutional Neural Networks-简称CNN)。现在,CNN已经成为众多科学领域的研究热点之一,特别是在模式分类领域,由于该网络避免了对图像的复杂前期预处理,可以直接输入原始图像,因而得到了更为广泛的应用。K.Fukushima在1980年提出的新识别机是卷积神经网络的第一个实现网络。随后,更多的科研工作者对该网络进行了改进。其中,具有代表性的研究成果是Alexander和Taylor提出的“改进认知机”,该方法综合了各种改进方法的优点并避免了耗时的误差反向传播。 一般地,CNN的基本结构包括两层,其一为特征提取层,每个神经元的输入与前一层的局部接受域相连,并提取该局部的特征。一旦该局部特征被提取后,它与其它特征间的位置关系也随之确定下来;其二是特征映射层,网络的每个计算层由多个特征映射组成,每个特征映射是一个平面,平面上所有神经元的权值相等。特征映射结构采用影响函数核小的sigmoid函数作为卷积网络的激活函数,使得特征映射具有位移不变性。此外,由于一个映射面上的神经元共享权值,因而减少了网络自由参数的个数。卷积神经网络中的每一个卷积层都紧跟着一个

一文读懂卷积神经网络CNN

一文读懂卷积神经网络CNN ★据说阿尔法狗战胜李世乭靠的是卷积神经网络算法,所以小编找到了一篇介绍该算法的文章,大家可以看一看。★ 自去年七月份以来,一直在实验室负责卷积神经网络(Convolutional Neural Network,CNN),期间配置和使用过theano和cuda-convnet、cuda-convnet2。为了增进CNN的理解和使用,特写此博文,以其与人交流,互有增益。正文之前,先说几点自己对于CNN的感触。先明确一点就是,Deep Learning是全部深度学习算法的总称,CNN是深度学习算法在图像处理领域的一个应用。第一点,在学习Deep learning 和CNN之前,总以为它们是很了不得的知识,总以为它们能解决很多问题,学习了之后,才知道它们不过与其他机器学习算法如svm等相似,仍然可以把它当做一个分类器,仍然可以像使用一个黑盒子那样使用它。第二点,Deep Learning强大的地方就是可以利用网络中间某一层的输出当做是数据的另一种表达,从而可以将其认为是经过网络学习到的特征。基于该特征,可以进行进一步的相似度比较等。第三点,Deep Learning算法能够有效的关键其实是大规模的数据,这一点原因在于每个DL都有众多的参数,少量数据无法将参数训练充分。接下来话不多说,直接奔入主题开始

CNN之旅。卷积神经网络简介(Convolutional Neural Networks,简称CNN)卷积神经网络是近年发展起来,并引起广泛重视的一种高效识别方法。20世纪60年代,Hubel 和Wiesel在研究猫脑皮层中用于局部敏感和方向选择的神经元时发现其独特的网络结构可以有效地降低反馈神经网 络的复杂性,继而提出了卷积神经网络(Convolutional Neural Networks-简称CNN)。现在,CNN已经成为众多科学领域的研究热点之一,特别是在模式分类领域,由于该网络避免了对图像的复杂前期预处理,可以直接输入原始图像,因而得到了更为广泛的应用。K.Fukushima在1980年提出的新识别机是卷积神经网络的第一个实现网络。随后,更多的科研工作者对该网络进行了改进。其中,具有代表性的研究成果是Alexander和Taylor提出的“改进认知机”,该方法综合了各种改进方法的优点并避免了耗时的误差反向传播。一般地,CNN的基本结构包括两层,其一为特征提取层,每个神经元的输入与前一层的局部接受域相连,并提取该局部的特征。一旦该局部特征被提取后,它与其它特征间的位置关系也随之确定下来;其二是特征映射层,网络的每个计算层由多个特征映射组成,每个特征映射是一个平面,平面上所有神经元的权值相等。特征映射结构采用影响函数核小的sigmoid 函数作为卷积网络的激活函数,使得特征映射具有位移不变性。此外,由于一个映射面上的神经元共享权值,因而减少

卷积神经网络n代码解析

deepLearnToolbox-master是一个深度学习matlab包,里面含有很多机器学习算法,如卷积神经网络CNN,深度信念网络DBN,自动编码AutoEncoder(堆栈SAE,卷积CAE)的作者是Rasmus Berg Palm)代码下载:rasmusbergpalm/DeepLearnToolbox 这里我们介绍deepLearnToolbox-master中的CNN部分。 DeepLearnToolbox-master中CNN内的函数: 调用关系为: 该模型使用了mnist的数字作为训练样本,作为cnn的一个使用样例, 每个样本特征为一个28*28=的向量。 网络结构为: 让我们来看看各个函数: 一、Test_example_CNN: (1) 三、 (2) 四、 (2) 五、 (2) 五、 (2) 六、 (3) 一、Test_example_CNN: Test_example_CNN: 1设置CNN的基本参数规格,如卷积、降采样层的数量,卷积核的大小、降采样的降幅 2cnnsetup函数初始化卷积核、偏置等

3cnntrain函数训练cnn,把训练数据分成batch,然后调用 cnnff完成训练的前向过程, cnnbp计算并传递神经网络的error,并计算梯度(权重的修改量) cnnapplygrads把计算出来的梯度加到原始模型上去 4cnntest函数,测试当前模型的准确率 该模型采用的数据为, 含有70000个手写数字样本其中60000作为训练样本,10000作为测试样本。 把数据转成相应的格式,并归一化。 设置网络结构及训练参数 初始化网络,对数据进行批训练,验证模型准确率 绘制均方误差曲线 二、 该函数你用于初始化CNN的参数。 设置各层的mapsize大小, 初始化卷积层的卷积核、bias 尾部单层感知机的参数设置 * bias统一设置为0 权重设置为:-1~1之间的随机数/sqrt(6/(输入神经元数量+输出神经元数量))

深度神经网络全面概述

深度神经网络全面概述从基本概念到实际模型和硬件基础 深度神经网络(DNN)所代表的人工智能技术被认为是这一次技术变革的基石(之一)。近日,由 IEEE Fellow Joel Emer 领导的一个团队发布了一篇题为《深度神经网络的有效处理:教程和调研(Efficient Processing of Deep Neural Networks: A Tutorial and Survey)》的综述论文,从算法、模型、硬件和架构等多个角度对深度神经网络进行了较为全面的梳理和总结。鉴于该论文的篇幅较长,机器之心在此文中提炼了原论文的主干和部分重要内容。 目前,包括计算机视觉、语音识别和机器人在内的诸多人工智能应用已广泛使用了深度神经网络(deep neural networks,DNN)。DNN 在很多人工智能任务之中表现出了当前最佳的准确度,但同时也存在着计算复杂度高的问题。因此,那些能帮助 DNN 高效处理并提升效率和吞吐量,同时又无损于表现准确度或不会增加硬件成本的技术是在人工智能系统之中广泛部署 DNN 的关键。 论文地址: 本文旨在提供一个关于实现 DNN 的有效处理(efficient processing)的目标的最新进展的全面性教程和调查。特别地,本文还给出了一个 DNN 综述——讨论了支持 DNN 的多种平台和架构,并强调了最新的有效处理的技术的关键趋势,这些技术或者只是通过改善硬件设计或者同时改善硬件设计和网络算法以降低 DNN 计算成本。本文也会对帮助研究者和从业者快速上手 DNN 设计的开发资源做一个总结,并凸显重要的基准指标和设计考量以评估数量快速增长的 DNN 硬件设计,还包括学界和产业界共同推荐的算法联合设计。 读者将从本文中了解到以下概念:理解 DNN 的关键设计考量;通过基准和对比指标评估不同的 DNN 硬件实现;理解不同架构和平台之间的权衡;评估不同 DNN 有效处理技术的设计有效性;理解最新的实现趋势和机遇。 一、导语 深度神经网络(DNN)目前是许多人工智能应用的基础 [1]。由于 DNN 在语音识别 [2] 和图像识别 [3] 上的突破性应用,使用DNN 的应用量有了爆炸性的增长。这些 DNN 被部署到了从自动驾驶汽车 [4]、癌症检测 [5] 到复杂游戏 [6] 等各种应用中。在这许多领域中,DNN 能够超越人类的准确率。而 DNN 的出众表现源于它能使用统计学习方法从原始感官数据中提取高层特征,在大量的数据中获得输入空间的有效表征。这与之前使用手动提取特征或专家设计规则的方法不同。 然而 DNN 获得出众准确率的代价是高计算复杂性成本。虽然通用计算引擎(尤其是 GPU),已经成为许多 DNN 处理的砥柱,但提供对 DNN 计算更专门化的加速方法也越来越热门。本文的目标是提供对 DNN、理解 DNN 行为的各种工具、有效加速计算的各项技术的概述。 该论文的结构如下: Section II 给出了 DNN 为什么很重要的背景、历史和应用。 Section III 给出了 DNN 基础组件的概述,还有目前流行使用的 DNN 模型。 Section IV 描述了 DNN 研发所能用到的各种资源。 Section V 描述了处理 DNN 用到的各种硬件平台,以及在不影响准确率的情况下改进吞吐量(thoughtput)和能量的各种优化方法(即产生 bit-wise identical 结果)。 Section VI 讨论了混合信号回路和新的存储技术如何被用于近数据处理(near-data processing),从而解决 DNN 中数据流通时面临的吞吐量和能量消耗难题。 Section VII 描述了各种用来改进 DNN 吞吐量和能耗的联合算法和硬件优化,同时最小化对准确率的影响。 Section VIII 描述了对比 DNN 设计时应该考虑的关键标准。

卷积神经网络全面解析之代码注释

卷积神经网络全面解析之代码注释 自己平时看了一些论文,但老感觉看完过后就会慢慢的淡忘,某一天重新拾起来的时候又好像没有看过一样。所以想习惯地把一些感觉有用的论文中的知识点总结整理一下,一方面在整理过程中,自己的理解也会更深,另一方面也方便未来自己的勘察。更好的还可以放到博客上面与大家交流。因为基础有限,所以对论文的一些理解可能不太正确,还望大家不吝指正交流. 下面是自己对代码的注释: cnnexamples.m [plain]view plain copy 1.clear all; close all; clc; 2.addpath('../data'); 3.addpath('../util'); 4.load mnist_uint8; 5. 6.train_x = double(reshape(train_x',28,28,60000))/255; 7.test_x = double(reshape(test_x',28,28,10000))/255; 8.train_y = double(train_y'); 9.test_y = double(test_y'); 10. 11.%% ex1 12.%will run 1 epoch in about 200 second and get around 11% error. 13.%With 100 epochs you'll get around 1.2% error 14. 15.c https://www.doczj.com/doc/f217359440.html,yers = { 16. struct('type', 'i') %input layer 17. struct('type', 'c', 'outputmaps', 6, 'kernelsize', 5) %convol ution layer 18. struct('type', 's', 'scale', 2) %sub sampling layer

卷积神经网络全面解析之算法实现

卷积神经网络全面解析之算法实现 前言 从理解卷积神经到实现它,前后花了一个月时间,现在也还有一些地方没有理解透彻,CNN还是有一定难度的,不是看哪个的博客和一两篇论文就明白了,主要还是靠自己去专研,阅读推荐列表在末尾的参考文献。目前实现的CNN在MINIT数据集上效果还不错,但是还有一些bug,因为最近比较忙,先把之前做的总结一下,以后再继续优化。 卷积神经网络CNN是Deep Learning的一个重要算法,在很多应用上表现出卓越的效果,[1]中对比多重算法在文档字符识别的效果,结论是CNN优于其他所有的算法。CNN 在手写体识别取得最好的效果,[2]将CNN应用在基于人脸的性别识别,效果也非常不错。前段时间我用BP神经网络对手机拍照图片的数字进行识别,效果还算不错,接近98%,但在汉字识别上表现不佳,于是想试试卷积神经网络。 1、CNN的整体网络结构 卷积神经网络是在BP神经网络的改进,与BP类似,都采用了前向传播计算输出值,反向传播调整权重和偏置;CNN与标准的BP最大的不同是:CNN中相邻层之间的神经单元并不是全连接,而是部分连接,也就是某个神经单元的感知区域来自于上层的部分神经单元,而不是像BP那样与所有的神经单元相连接。CNN的有三个重要的思想架构: ?局部区域感知 ?权重共享 ?空间或时间上的采样 局部区域感知能够发现数据的一些局部特征,比如图片上的一个角,一段弧,这些基本特征是构成动物视觉的基础[3];而BP中,所有的像素点是一堆混乱的点,相互之间的关系没有被挖掘。 CNN中每一层的由多个map组成,每个map由多个神经单元组成,同一个map的所有神经单元共用一个卷积核(即权重),卷积核往往代表一个特征,比如某个卷积和代表一段弧,那么把这个卷积核在整个图片上滚一下,卷积值较大的区域就很有可能是一段弧。注意卷积核其实就是权重,我们并不需要单独去计算一个卷积,而是一个固定大小的权重矩阵去图像上匹配时,这个操作与卷积类似,因此我们称为卷积神经网络,实际上,BP也可以看做一种特殊的卷积神经网络,只是这个卷积核就是某层的所有权重,即感知区域是整个图像。权重共享策略减少了需要训练的参数,使得训练出来的模型的泛华能力更强。 采样的目的主要是混淆特征的具体位置,因为某个特征找出来后,它的具体位置已经不重要了,我们只需要这个特征与其他的相对位置,比如一个“8”,当我们得到了上面一个"o"时,我们不需要知道它在图像的具体位置,只需要知道它下面又是一个“o”我们就可以知道是一个'8'了,因为图片中"8"在图片中偏左或者偏右都不影响我们认识它,这种混淆具体位置的策略能对变形和扭曲的图片进行识别。 CNN的这三个特点是其对输入数据在空间(主要针对图像数据)上和时间(主要针对时间序列数据,参考TDNN)上的扭曲有很强的鲁棒性。CNN一般采用卷积层与采样层交

卷积神经网络全面解析之代码详细讲解

卷积神经网络全面解析之代码详解 本文介绍多层感知机算法,特别是详细解读其代码实现,基于python theano,代码来自:Convolutional Neural Networks (LeNet)。 一、CNN卷积神经网络原理简介 要讲明白卷积神经网络,估计得长篇大论,网上有很多博文已经写得很好了,所以本文就不重复了,如果你了解CNN,那可以往下看,本文主要是详细地解读CNN的实现代码。 CNN的最大特点就是稀疏连接(局部感受)和权值共享,如下面两图所示,左为稀疏连接,右为权值共享。稀疏连接和权值共享可以减少所要训练的参数,减少计算复杂度。 至于CNN的结构,以经典的LeNet5来说明:

这个图真是无处不在,一谈CNN,必说LeNet5,这图来自于这篇论文:Gradient-Based Learning Applied to Document Recognition,论文很长,第7页那里开始讲LeNet5这个结构,建议看看那部分。 我这里简单说一下,LeNet5这张图从左到右,先是input,这是输入层,即输入的图片。input-layer到C1这部分就是一个卷积层(convolution 运算),C1到S2是一个子采样层(pooling运算),关于卷积和子采样的具体过程可以参考下图: 然后,S2到C3又是卷积,C3到S4又是子采样,可以发现,卷积和子采样都是成对出现的,卷积后面一般跟着子采样。S4到C5之间是全连接的,这就相当于一个MLP的隐含层了(如果你不清楚MLP,参考《DeepLearning tutorial(3)MLP多层感知机原理简介+代码详解》)。C5到F6同样是全连接,也是相当于一个MLP的隐含层。最后从F6到输出output,其实就是一个分类器,这一层就叫分类层。 ok,CNN的基本结构大概就是这样,由输入、卷积层、子采样层、全连接层、分类层、输出这些基本“构件”组成,一般根据具体的应用或者

卷积神经网络总结

1 卷积神经网络 卷积神经网络是深度学习的一种,已成为当前图像理解领域的研究热点它的权值共享网络结构使之更类似于生物神经网络,降低了网络模型的复杂度,减少了权值的数量。这个优点在网络的输入是多维图像时表现得更为明显, 图像可以直接作为网络的输入,避免了传统识别算法中复杂的特征提取和数据重建过程. 卷积网络是为识别二维形状而特殊设计的一个多层感知器,这种网络结构对平移、比例缩放以及其他形式的变形具有一定不变性. 在典型的CNN 中,开始几层通常是卷积层和下采样层的交替, 在靠近输出层的最后几层网络通常是全连接网络。卷积神经网络的训练过程主要是学习卷积层的卷积核参数和层间连接权重等网络参数, 预测过程主要是基于输入图像和网络参数计算类别标签。卷积神经网络的关键是:网络结构(含卷积层、下采样层、全连接层等) 和反向传播算法等。在本节中, 我们先介绍典型CNN 的网络结构和反向传播算法, 然后概述常用的其他CNN 网络结构和方法。神经网络参数的中文名称主要参考文献 [18] 卷积神经网络的结构和反向传播算法主要参考文献[17] 。 网络结构 卷积层 在卷积层, 上一层的特征图(Feature map) 被一个可学习的卷积核进行卷积, 然后通过一个激活函数(Activation function), 就可以得到输出特征图. 每个输出特征图可以组 合卷积多个特征图的值[17] : ()l l j j x f u = 1j l l l l j j ij j i M u x k b -∈= *+∑ 其中, l j u 称为卷积层l 的第j 个通道的净激活(Netactivation), 它通过对前一层输出 特征图1l j x -进行卷积求和与偏置后得到的, l j x 是卷积层l 的第j 个通道的输出。()f 称为激活函数, 通常可使用sigmoid 和tanh 等函数。j M 表示用于计算l j u 的输入特征图子集, l ij k 是卷积核矩阵, l j b 是对卷积后特征图的偏置。对于一个输出特征图l j x ,每个输入特征图1l j x -对应的卷积核l ij k 可能不同,“*”是卷积符号。 ; 下采样层 下采样层将每个输入特征图通过下面的公式下采样输出特征图[17]: ()l l j j x f u = 1()l l l l j j j j u down x b β-=+ 其中, l j u 称为下采样层l 的第j 通道的净激活, 它由前一层输出特征图1 l j x -进行下采样

卷积神经网络全面解析(2)

卷积神经网络全面解析(2) 一、介绍 这个文档讨论的是CNNs的推导和实现。CNN架构的连接比权值要多很多,这实际上就隐含着实现了某种形式的规则化。这种特别的网络假定了我们希望通过数据驱动的方式学习到一些滤波器,作为提取输入的特征的一种方法。 本文中,我们先对训练全连接网络的经典BP算法做一个描述,然后推导2D CNN网络的卷积层和子采样层的BP权值更新方法。在推导过程中,我们更强调实现的效率,所以会给出一些Matlab代码。最后,我们转向讨论如何自动地学习组合前一层的特征maps,特别地,我们还学习特征maps的稀疏组合。 二、全连接的反向传播算法 典型的CNN中,开始几层都是卷积和下采样的交替,然后在最后一些层(靠近输出层的),都是全连接的一维网络。这时候我们已经将所有两维2D的特征maps转化为全连接的一维网络的输入。这样,当你准备好将最终的2D特征maps输入到1D网络中时,一个非常方便的方法就是把所有输出的特征maps连接成一个长的输入向量。然后我们

回到BP算法的讨论。(更详细的基础推导可以参考UFLDL中“反向传导算法”)。 2.1、Feedforward Pass前向传播 在下面的推导中,我们采用平方误差代价函数。我们讨论的是多类问题,共c类,共N个训练样本。 这里表示第n个样本对应的标签的第k维。表示第n个样本对应的网络输出的第k个输出。对于多类问题,输出一般组织为“one-of-c”的形式,也就是只有该输入对应的类的输出节点输出为正,其他类的位或者节点为0或者负数,这个取决于你输出层的激活函数。sigmoid就是0,tanh就是-1. 因为在全部训练集上的误差只是每个训练样本的误差的总和,所以这里我们先考虑对于一个样本的BP。对于第n个样本的误差,表示为: 传统的全连接神经网络中,我们需要根据BP规则计算代价函数E 关于网络每一个权值的偏导数。我们用l来表示当前层,那么当前层的输出可以表示为:

卷积神经网络CNN代码解析-matlab

卷积神经网络CNN代码解析 deepLearnToolbox-master是一个深度学习matlab包,里面含有很多机器学习算法,如卷积神经网络CNN,深度信念网络DBN,自动编码AutoEncoder(堆栈SAE,卷积CAE)的作者是Rasmus Berg Palm (rasmusbergpalm@https://www.doczj.com/doc/f217359440.html,) 代码下载:https://https://www.doczj.com/doc/f217359440.html,/rasmusbergpalm/DeepLearnToolbox 这里我们介绍deepLearnToolbox-master中的CNN部分。 DeepLearnToolbox-master中CNN内的函数: 调用关系为: 该模型使用了mnist的数字mnist_uint8.mat作为训练样本,作为cnn的一个使用样例, 每个样本特征为一个28*28=的向量。

网络结构为: 让我们来看看各个函数: 一、Test_example_CNN: (2) 三、cnntrain.m (5) 四、cnnff.m (6) 五、cnnbp.m (7) 五、cnnapplygrads.m (10) 六、cnntest.m (11) 一、Test_example_CNN: Test_example_CNN: 1设置CNN的基本参数规格,如卷积、降采样层的数量,卷积核的大小、降采样的降幅 2 cnnsetup函数初始化卷积核、偏置等 3 cnntrain函数训练cnn,把训练数据分成batch,然后调用 3.1 cnnff 完成训练的前向过程,

3.2 cnnbp计算并传递神经网络的error,并计算梯度(权重的修改量) 3.3 cnnapplygrads 把计算出来的梯度加到原始模型上去 4 cnntest 函数,测试当前模型的准确率 该模型采用的数据为mnist_uint8.mat, 含有70000个手写数字样本其中60000作为训练样本,10000作为测试样本。把数据转成相应的格式,并归一化。 设置网络结构及训练参数 初始化网络,对数据进行批训练,验证模型准确率 绘制均方误差曲线 二、Cnnsetup.m 该函数你用于初始化CNN的参数。 设置各层的mapsize大小, 初始化卷积层的卷积核、bias 尾部单层感知机的参数设置 * bias统一设置为0

卷积神经网络全面解析之问题总结

深度学习(卷积神经网络)一些问题总结 涉及问题: 1.每个图如何卷积: (1)一个图如何变成几个? (2)卷积核如何选择? 2.节点之间如何连接? 3.S2-C3如何进行分配? 4.16-120全连接如何连接? 5.最后output输出什么形式? ①各个层解释: 我们先要明确一点:每个层有多个Feature Map,每个Feature Map通过一种卷积滤波器提取输入的一种特征,然后每个Feature Map有多个神经元。 C1层是一个卷积层(为什么是卷积?卷积运算一个重要的特点就是,通过卷积运算,可以使原信号特征增强,并且降低噪音),由6个特征图Feature Map构成。特征图中每个神经元与输入中5*5的邻域相连。特征图的大小为28*28,这样能防止输入的连接掉到边界

之外(是为了BP反馈时的计算,不致梯度损失,个人见解)。C1有156个可训练参数(每个滤波器5*5=25个unit参数和一个bias参数,一共6个滤波器,共(5*5+1)*6=156个参数),共156*(28*28)=122,304个连接。 S2层是一个下采样层(为什么是下采样?利用图像局部相关性的原理,对图像进行子抽样,可以减少数据处理量同时保留有用信息),有6个14*14的特征图。特征图中的每个单元与C1中相对应特征图的2*2邻域相连接。S2层每个单元的4个输入相加,乘以一个可训练参数,再加上一个可训练偏置。结果通过sigmoid函数计算。可训练系数和偏置控制着sigmoid函数的非线性程度。如果系数比较小,那么运算近似于线性运算,亚采样相当于模糊图像。如果系数比较大,根据偏置的大小亚采样可以被看成是有噪声的“或”运算或者有噪声的“与”运算。每个单元的2*2感受野并不重叠,因此S2中每个特征图的大小是C1中特征图大小的1/4(行和列各1/2)。S2层有12个可训练参数和5880个连接。 图:卷积和子采样过程:卷积过程包括:用一个可训练的滤波器f x去卷积一个输入的图像(第一阶段是输入的图像,后面的阶段就是卷积特征map了),然后加一个偏置b x,得到卷积层C x。子采样过程包括:每邻域四个像素求和变为一个像素,然后通过标量W x+1加权,再增加偏置b x+1,然后通过一个sigmoid激活函数,产生一个大概缩小四倍的特征映射图 S x+1。 所以从一个平面到下一个平面的映射可以看作是作卷积运算,S-层可看作是模糊滤波器,起到二次特征提取的作用。隐层与隐层之间空间分辨率递减,而每层所含的平面数递增,这样可用于检测更多的特征信息。 C3层也是一个卷积层,它同样通过5x5的卷积核去卷积层S2,然后得到的特征map 就只有10x10个神经元,但是它有16种不同的卷积核,所以就存在16个特征map了。这里需要注意的一点是:C3中的每个特征map是连接到S2中的所有6个或者几个特征map的,表示本层的特征map是上一层提取到的特征map的不同组合(这个做法也并不是唯一的)。(看到没有,这里是组合,就像之前聊到的人的视觉系统一样,底层的结构构成上层更抽象的结构,例如边缘构成形状或者目标的部分)。

相关主题
文本预览
相关文档 最新文档