当前位置:文档之家› 《菱形》典型例题

《菱形》典型例题

《菱形》典型例题
《菱形》典型例题

菱形

例1如图,在菱形ABCD中,E是AB的中点,且a

AB

AB

DE=

⊥,,求:

(1)ABC

∠的度数;(2)对角线AC的长;(3)菱形ABCD的面

例2已知:如图,在菱形ABCD中,AB

CE⊥于AD

CF

E⊥

,于F.求证:AE=AF

例4 如图,ABCD中,AB

AD2

=,E、F在直线CD上,且CF

CD

DE=

=.求证:AF

BE⊥.

例5如图,在Rt△ABC中,

90

=

∠ACB,E为AB的中点,四边形BCDE是平行四

边形.求证:AC与DE互相垂直平分

例6、如图,在是△ABC中,∠ACB=90°,BC的垂直平分线DE交BC于D,交AB于E,

点F在直线DE上,AF=CE.

(1)说明,四边形ACEF是平行四边形;(5分)

(2)当∠B的大小满足什么条件时,四边形ACEF是菱形?说明理由.(4分)

例7、如图,△ABC中,点O是AC边上一动点,过点O作直线MN∥BC,设MN交∠BCA

的平分线于E,交∠BCA的外角平分线于点F.

(1)说明:EO=OF

(2)当点O运动到时,四边形BEFC可能是菱形吗?并说明理由.

C

D

E

A

B

F

(3)当点O 运动到何处时,四边形AECF 是矩形?并说明理由.

(4)在(3)的条件下,当△ABC 满足什么条件时,四边形AECF 是正方形?并说明理由.

巩固练习

1、梯形ABCD 中,AD ∥BC,BD 平分∠ABC,∠C=60°,当AB=CD=4时,梯形ABCD 的周长

2、在等腰梯形ABCD 中,AB ∥CD , 对角线AC 平分∠BAD ,∠B =60o,CD =2cm ,则梯形ABCD 的面积为

3.如图,梯形ABCD 中,AD ∥BC ,AC 为对角线,AE ⊥BC 于E ,AB ⊥AC ,若 ∠ACB =30°,BE =2.则EC =___________.

5.在梯形ABCD 中,AD ∥BC ,AB =AC ,若∠D =110°,∠ACD =30°,则∠BAC 等于 7.直角梯形一腰长16 cm,该腰和一个底所成的角为30°,那么另一腰长________ cm.

9、如图,等腰梯形ABCD 中,AD ∥BC ,AB =DC ,AC ⊥BD ,过D 点作DE ∥AC 交BC 的延长线于E 点.

⑴求证:四边形ACED 是平行四边形; ⑵若AD =3,BC =7,求梯形ABCD 的面积.

菱形的测试题

一. 填空题

1. 若平行四边形ABCD 是菱形,则与AD 相等的线段有___。

2. 如图,菱形ABCD 中,对角线AC,BD 相交于点O ,如果∠A=60o,对角线BD=7cm ,则

菱形的周长=___cm

3. 若菱形的两条对角线长分别为6cm 和8cm ,则菱形的面积是___,周长是___。

4. 若菱形的高为3cm ,较小的内角是30o,则菱形的边长为___,面积为___。

5. 已知菱形的周长为20cm ,两条对角线的比为3 :4,则菱形的面积为___cm 2

。 二. 选择题

1. 菱形具有其它平行四边形不一定具有的性质( )

A .对边平行 B.对角相等 C.对角线互相平分 D.对角线互相垂直

2. 在菱形ABCD 中,AE ⊥BC 于E,AF ⊥CD 于F ,且E,F 分别是BC,CD 的中点,那么 ∠EAF 等于( )

A .75o B.55o C.45o D.60o

O F E C

D B N M A A D

B E 60?D C

B A B A C

D

D

C

F

3.菱形ABCD 的周长20cm ,∠A:∠B=2:1,则顶点A 到对角线BD 的距离是( ) A.5cm B.4cm C.3cm D.2.5cm

4.菱形的一边和等腰直角三角形的一直角边等长,若菱形的一个角是30o,则菱形和三角形的面积比为( )

A .1:2 B. 1:1.5 C. 1:1 D.2:3

5.菱形的周长为52,较短的一条对角线长为10,那么菱形的面积是( ) A.30 B.60 C. 120 D.240

6.能够判定一个四边形是菱形的条件是( )

A.对角线相等且互相平分

B.对角线互相垂直

C.对角线相等且两组对角相等

D.两组对角相等且一组对角线平分一组对角 三. 解答题

1,菱形ABCD 的对角线相交于点O,AC=8cm ,BD=6cm ,求菱形的高

4.如图,平行四边形ABCD 的对角线AC 的垂直平分线与AD,BC,AC 分别交于点E,F,O, 求证:四边形AFCE 是菱形

A E D

8、如右上图,两张等宽的纸条交叉重叠在一起,重叠的部分ABCD 是菱形吗?为什么?

9、如左下图,四边形ABCD 中,对角线AC 和BD 相交于点O ,且AC ⊥BD ,点M 、N 分别在BD 、AC 上,且AO =ON =NC ,BM =MO =OD. 求证:BC =2 DN

11、 【提高题】 如图所示,△ABC 中,∠ACB=90°,∠ABC 的平分线BD?交AC 于点

D ,CH⊥AB 于H ,且交BD 于点F ,DE⊥AB 于

E ,四边形CDE

F 是菱形吗?请说明理由.

O

D

C

B

A O

E

菱形的判定证明题练习

1如图,梯形ABCD 中,AB ∥CD ,AC 平分∠BAD ,CE ∥AD 交AB 于点E .求证:四边形AECD 是菱形.

2、如图,在四边形ABCD 中,点E ,F 分别是AD BC ,的中点,G H ,分别是BD AC ,的中点,AB CD ,满足什么条件时,四边形EGFH 是菱形?请证明你的结论.

3、 如图,在平行四边形ABCD 中,BE 平分ABC ∠交AD 于点

E ,D

F 平分∠ADC 交BC 于点F .求证:

(1)ABE CDF △≌; (2)若BD EF ⊥,则判断四边形EBFD 是什么特殊四边形,请证明你的结论.

4. 如图,O 为矩形ABCD 对角线的交点,DE ∥AC ,CE ∥BD .

(1)试判断四边形OCED 的形状,并说明理由; (2)若AB =6,BC =8,求四边形OCED 的面积.

6. 已知:如图,在梯形ABCD 中,AB CD ∥,BC CD =,AD BD ⊥,E 为AB 中点. 求证:四边形BCDE 是菱形.

7. 如图,在△ABC 中,∠ACB =90°,BC 的垂直平分线DE 交BC 于D ,交AB 于E ,F 在DE 上,且AF =CE =AE .

A

B C D E

A B C D

E

G H F

D

E C

A

B

(1)说明四边形ACEF是平行四边形;

(2)当∠B满足什么条件时,四边形ACEF是菱形,并说明理由.

数值分析典型习题

特别声明:考试时需带计 算器作辅助计算 1.2015x *=是经四舍五入得到的近似值,则其相对误差* r e ≤-31 104 ?. 2. 01(),(), ,()n l x l x l x 是以01,, ,n x x x 为节点的拉格朗日插值基函数,则 3.设(0)1(1)3(2)4(3)2f =,f =,f =,f =,[0123]f =,,,1 3 - . 4. 利用Simpson 公式求?2 1 2dx x = 7.3 5. 设求积公式1 0()d (),(1)n k k k f x x A f x n ≈≥∑?=是Gauss 型求积公式,则3 n k k k A x == ∑1 .4 6. 数值微分公式(2)(2) ()i i i f x h f x h f x h +≈ --'的截断误差为 2().O h 7. 设1101A ?? = ??? ,则A 的谱半径()A ρ= 1 ,A 的条件数1cond ()A = 4. 8. 用牛顿下山法求解方程3 03 x x -=根的迭代公式是 2 13 3(1),3n n n n x x x x x λ+-=-- 下山条件是 1()().n n f x f x +< 9.对任意初始向量(0)x 及任意向量f ,线性方程组的迭代公式(1)()(0,1,2,)k k k +=+=x Bx f ,迭代序列()k x 收敛于方程组的精确解x *的充分必要条件是()1.ρ

数值分析试题及答案汇总

数值分析试题 一、 填空题(2 0×2′) 1. ?? ????-=? ?????-=32,1223X A 设x =是精确值x *=的近似值,则x 有 2 位 有效数字。 2. 若f (x )=x 7-x 3+1,则f [20,21,22,23,24,25,26,27]= 1 , f [20,21,22,23,24,25,26,27,28]= 0 。 3. 设,‖A ‖∞=___5 ____,‖X ‖∞=__ 3_____, ‖AX ‖∞≤_15_ __。 4. 非线性方程f (x )=0的迭代函数x =?(x )在有解区间满足 |?’(x )| <1 ,则使用该迭代 函数的迭代解法一定是局部收敛的。 5. 区间[a ,b ]上的三次样条插值函数S (x )在[a ,b ]上具有直到 2 阶的连续导数。 6. 当插值节点为等距分布时,若所求节点靠近首节点,应该选用等距节点下牛顿差商 公式的 前插公式 ,若所求节点靠近尾节点,应该选用等距节点下牛顿差商公式的 后插公式 ;如果要估计结果的舍入误差,应该选用插值公式中的 拉格朗日插值公式 。 7. 拉格朗日插值公式中f (x i )的系数a i (x )的特点是:=∑=n i i x a 0)( 1 ;所以当 系数a i (x )满足 a i (x )>1 ,计算时不会放大f (x i )的误差。 8. 要使 20的近似值的相对误差小于%,至少要取 4 位有效数字。 9. 对任意初始向量X (0)及任意向量g ,线性方程组的迭代公式x (k +1)=Bx (k )+g (k =0,1,…)收 敛于方程组的精确解x *的充分必要条件是 ?(B)<1 。 10. 由下列数据所确定的插值多项式的次数最高是 5 。 11. 牛顿下山法的下山条件为 |f(xn+1)|<|f(xn)| 。 12. 线性方程组的松弛迭代法是通过逐渐减少残差r i (i =0,1,…,n )来实现的,其中的残差 r i = (b i -a i1x 1-a i2x 2-…-a in x n )/a ii ,(i =0,1,…,n )。 13. 在非线性方程f (x )=0使用各种切线法迭代求解时,若在迭代区间存在唯一解,且f (x )

矩形、菱形经典题型总结

课 题 矩形、菱形 授课日期及时段 教学目的 1、掌握矩形的性质及其判定; 2、掌握菱形的性质及其判定。 教学内容 【知识梳理】 1.矩形的性质:①矩形的四个角都是直角.②矩形的对角线相等.③矩形具有平行四边形的所有性质. 2.矩形的判定:①有一个角是直角的平行四边形是矩形.②对角线相等的平行四边形是矩形. ③有三个角是直角的四边形是矩形. 【典例讲解】 例1、如图,已知矩形ABCD 的纸片沿对角线BD 折叠,使C 落在C ’处,BC ’边交AD 于E ,AD=4,CD=2 (1)求AE 的长 (2)△BED 的面积 巩固练习: 1.如图,矩形ABCD 中,AD=9,AB=3,将其折叠,使其点D 与点B 重合,折痕为EF 求DE 和EF 的长。 2.如图,已知将矩形ABCD 沿EF 所在直线翻折,使点A 与C 重合,AB=6,AD=8求折痕EF 的长 C ’ D A B C E F D A B C E C ’ E F A B C D

例2:如图,矩形ABCD中,E是BC上一点,且AE=AD,又DF⊥AE,F为垂足。求证:EC=EF 巩固练习 1.矩形的相邻两边的长分别是12㎝和5㎝,则矩形的对角线的长是。 2.若矩形的面积是36 3 cm2,两条对角线相交成60o锐角,则此矩形的两邻边长分别是㎝和㎝。3.将两个同样的长为3厘米,宽为2厘米的长方形重新拼一个长方形,则此长方形的对角线长为______厘米。 4. 如图,矩形ABCD中,AD=2AB,点E在AD上, AE=AB。求∠CEB的度数。 5.如图,矩形ABCD的对角线AC、BD交于点O,AE⊥BD,BE⊥AC且AE、BE交于点E。求证:AE=BE E D C OOOOO A B 例3.已知:在矩形ABCD中,AE BD于E,∠DAE=3∠BAE ,求:∠EAC的度数。

《菱形的性质与判定》典型例题

《菱形的性质与判定》典型例题 例1 如图,在菱形ABCD 中,E 是AB 的中点,且a AB AB DE =⊥,,求: (1)ABC ∠的度数;(2)对角线AC 的长;(3)菱形ABCD 的面积. 例2 已知:如图,在菱形ABCD 中,AB CE ⊥于AD CF E ⊥,于 F . 求证:.AF AE = 例 3 已知:如图,菱形ABCD 中,E ,F 分别是BC ,CD 上的一点,?=∠=∠60EAF D ,?=∠18BAE ,求CEF ∠的度数. 例4 如图,已知四边形ABCD 和四边形BEDF 都是长方形,且DF AD =. 求证:GH 垂直平分CF .

例 5 如图,ABCD中,AB =,E、F在直线CD上,且 AD2 =. DE= CF CD 求证:AF BE⊥. 例6 如图,在Rt△ABC中, ∠ACB,E为AB的中点,四边形BCDE = 90 是平行四边形. 求证:AC与DE互相垂直平分

参考答案 例1 分析 (1)由E 为AB 的中点,AB DE ⊥,可知DE 是AB 的垂直平分线,从而DB AD =,且AB AD =,则ABD ?是等边三角形,从而菱形中各角都可以求出.(2)而OC AO BD AC =⊥,,利用勾股定理可以求出AC .(3)由菱形的对角线互相垂直,可知.2 1BD AC S ?= 解 (1)连结BD ,∵四边形ABCD 是菱形,∴.AB AD = E 是AB 的中点,且AB DE ⊥,∴.DB AD = ∴ABD ?是等边三角形,∴DBC ?也是等边三角形. ∴.120260?=??=∠ABC (2)∵四边形ABCD 是菱形,∴AC 与BD 互相垂直平分, ∴.2 12121a AB BD OB === ∴a a a OB AB OA 2 3)21(2222=-=-=,∴.32a AO AC == (3)菱形ABCD 的面积.2 3321212a a a BD AC S =??=?= 说明:本题中的菱形有一个内角是60°的特殊的菱形,这个菱形有许多特点,通过解题应该逐步认识这些特点. 例2 分析 要证明AF AE =,可以先证明DF BE =,而根据菱形的有关性质不难证明DCF BCE ???,从而可以证得本题的结论. 证明 ∵四边形ABCD 是菱形,∴D B CD BC ∠=∠=,,且?=∠=∠90DFC BEC ,∴DCF BCE ???,∴DF BE =, AD AB = ,

数值分析典型例题

第一章典型例题 例3 ln2=0.…,精确到10-3的近似值是多少 解 精确到10-3=,即绝对误差限是=, 故至少要保留小数点后三位才可以。ln2 第二章典型例题 例1 用顺序消去法解线性方程组 ??? ??1 -=4+2+4=+2+31 -=4++2321 321321x x x x x x x x x 解 顺序消元 ?? ?? ??????---???→???????????---????→???????????--=-?+-?+-?+1717005.555.00141 25.025.105.555.001412142141231412]b A [)3()2/1()2/3(231312r r r r r r M 于是有同解方程组 ?? ? ??-==--=++17175.555.0142332321x x x x x x 回代得解 x 3=-1, x 2=1,x 1=1,原线性方程组的解为X =(1,1,-1)T 例2 取初始向量X (0)=(0,0,0)T ,用雅可比迭代法求解线性方程组 ??? ??5 =+2+23=++1=2-2+321 321321x x x x x x x x x 解 建立迭代格式 ???????+--=+--=++-=+++5223122) (2)(1)1(3 ) (3)(1)1(2 ) (3)(2)1(1k k k k k k k k k x x x x x x x x x (k =1,2,3,…)

第1次迭代,k =0 X (0)=0,得到X (1)=(1,3,5)T 第2次迭代,k =1 ???????-=+?-?-=-=+--==+?+?-=3 532123 351515232)2(3) 2(2)2(1x x x X (2)=(5,-3,-3)T 第3次迭代,k =2 ???????=+-?-?-==+---==+-?+-?-=1 5)3(2521 3)3(511)3(2)3(2)2(3) 3(2)3(1x x x X (3)=(1,1,1)T 第4次迭代,k =3 ???????=+?-?-==+--==+?+?-=1 512121 311111212)2(3) 2(2)2(1x x x X (4)=(1,1,1)T 例4 证明例2的线性方程组,雅可比迭代法收敛,而高斯-赛德尔迭代法发散。 证明 例2中线性方程组的系数矩阵为 A =?? ?? ? ?????-122111221 于是 D =?? ?? ??????100010001 D -1=D ??????????=022001000L ~ ????? ?????-=000100220U ~ 雅可比迭代矩阵为

平行四边形 经典例题

平行四边形 一、 基础知识平行四边形 二、1、三角形中位线定理:三角形的中位线平行于三角形的第三边,且等于第三遍的一半。 2、由矩形的性质得到直角三角形的一个性质:直角三角形斜边上的中线等于斜边的一半。 三、例题 例1、如图1,平行四边形ABCD 中,AE ⊥BD ,CF ⊥BD ,垂足分别为E 、F. 求证:∠BAE =∠DCF. 例2、如图2,矩形ABCD 中,AC 与BD 交于O 点,BE ⊥AC 于E ,CF ⊥BD 于F. 求证:BE = CF. 例3、已知:如图3,在梯形ABCD 中,AD ∥BC ,AB = DC ,点E 、F 分别在AB 、CD 上,且BE = 2EA , CF = 2FD. 求证:∠BEC =∠CFB. (图1) B O A B C D E F (图2)

例4、如图6,E 、F 分别是 ABCD 的AD 、BC 边上的点,且AE = CF. (1 △ ABE ≌△CDF ; (2)若 、N 分别是BE 、DF 的中点,连结MF 、EN ,试判断四边形MFNE 是怎样的四 边形,并证明你的结论. 例5、如图7 的对角线AC 的垂直平分线与边AD ,BC 分别相交于点E ,F.,求证:四边形AFCE 是菱形. 例6、如图8,四边形ABCD 是平行四边形,O 是它的中心,E 、F 是对角线AC 上的点. (1)如果 ,则△DEC ≌△BFA (请你填上一个能使结论成立的一个条件); (2)证明你的结论. 例7、如图9,已知在梯形ABCD 中,AD ∥BC ,AB = DC ,对角线AC 和BD 相交于点O ,E 是BC 边上一个动点(点E 不与B 、C 两点重合),EF ∥BD 交AC 于点F ,EG ∥AC 交BD 于点C. (1)求证:四边形EFOG 的周长等于2OB ; (2)请你将上述题目的条件“梯形ABCD 中,AD ∥BC ,AB = DC”改为另一种四边形,其他条件不变,使得结论,“四边形EFOG 的周长等于2OB”仍成立,并将改编后的题目画出图形,写出已知、求证、不必证明. 例8、有一块梯形形状的土地,现要平均分给两个农户种植(即将梯形的面积两等分),试设计两种方案(平分方案画在备用图13(1)、(2)上),并给予合理的解释. A D B C E F (图6) M N 备用图(1) 备用图(2) B C B

第1讲 菱形(培优课程讲义例题练习含答案)

菱形(提高) 【学习目标】 1. 理解菱形的概念. 2. 掌握菱形的性质定理及判定定理. 【要点梳理】 要点一、菱形的定义 有一组邻边相等的平行四边形叫做菱形. 要点诠释:菱形的定义的两个要素:①是平行四边形.②有一组邻边相等.即菱形是一个平行四边形,然后增加一对邻边相等这个特殊条件. 要点二、菱形的性质 菱形除了具有平行四边形的一切性质外,还有一些特殊性质: 1.菱形的四条边都相等; 2.菱形的两条对角线互相垂直,并且每一条对角线平分一组对角. 3.菱形也是轴对称图形,有两条对称轴(对角线所在的直线),对称轴的交点就是对称 中心. 要点诠释:(1)菱形是特殊的平行四边形,是中心对称图形,过中心的任意直线可将菱形分成完全全等的两部分. (2)菱形的面积由两种计算方法:一种是平行四边形的面积公式:底×高; 另一种是两条对角线乘积的一半(即四个小直角三角形面积之和). 实际上,任何一个对角线互相垂直的四边形的面积都是两条对角线乘 积的一半. (3)菱形可以用来证明线段相等,角相等,直线平行,垂直及有关计算问题. 要点三、菱形的判定 菱形的判定方法有三种: 1.定义:有一组邻边相等的平行四边形是菱形. 2.对角线互相垂直的平行四边形是菱形. 3.四条边相等的四边形是菱形. 要点诠释:前两种方法都是在平行四边形的基础上外加一个条件来判定菱形,后一种方法是在四边形的基础上加上四条边相等. 【典型例题】 类型一、菱形的性质 1、如图所示,菱形ABCD中,E、F分别是BC、CD上的点,∠B=∠EAF=60°,∠BAE =18°.求∠CEF的度数. 【思路点拨】由已知∠B=60°,∠BAE=18°,则∠AEC=78°.欲求∠CEF的度数,只要求出∠AEF的度数即可,由∠EAF=60°,结合已知条件易证△AEF为等边三角形,从而∠AEF=60°.

数值分析典型习题资料

数值分析典型习题

特别声明:考试时需带计 算器作辅助计算 1.2015x *=是经四舍五入得到的近似值,则其相对误差* r e ≤ -31 104 ?. 2. 01(),(),,()n l x l x l x L 是以01,,,n x x x L 为节点的拉格朗日插值基函数,则 3.设(0)1(1)3(2)4(3)2f =,f =,f =,f =,[0123]f =,,,1 3 - . 4. 利用Simpson 公式求?2 1 2dx x = 7.3 5. 设求积公式1 0()d (),(1)n k k k f x x A f x n ≈≥∑?=是Gauss 型求积公式,则3 n k k k A x == ∑1 .4 6. 数值微分公式(2)(2) ()i i i f x h f x h f x h +≈ --'的截断误差为 2().O h 7. 设1101A ?? = ??? ,则A 的谱半径()A ρ= 1 ,A 的条件数1cond ()A = 4. 8. 用牛顿下山法求解方程3 03 x x -=根的迭代公式是 2 13 3(1),3n n n n x x x x x λ+-=-- 下山条件是 1()().n n f x f x +< 9.对任意初始向量(0)x 及任意向量f ,线性方程组的迭代公式(1)()(0,1,2,)k k k +=+=L x Bx f ,迭代序列()k x 收敛于方程组的精确解x *的充分必要条件是()1.ρ

华南理工大学数值分析试题-14年下-C

华南理工大学研究生课程考试 《数值分析》试卷C (2015年1月9日) 1. 考前请将密封线内各项信息填写清楚; 所有答案请按要求填写在本试卷上; 课程代码:S0003004; 4. 考试形式:闭卷; 5. 考生类别:硕士研究生; 本试卷共八大题,满分100分,考试时间为150分钟。 一、(12分)解答下列问题: 1)设近似值0x >,x 的相对误差为δ,试证明ln x 的绝对误差近似为δ。 2)利用秦九韶算法求多项式 542()681p x x x x x =-+-+ 在3x =时的值(须写出计算形式),并统计乘法次数。 (12分)解答下列问题: 1)设()235f x x =+,求[]0,1,2f 和[]0,1,2,3f 。 2)利用插值方法推导出恒等式: 33220,0[]j j i i x j i x i j =≠=-=-∑∏ 。

(1)设{}∞ =0)(k k x q 是区间[]1,0上带权1=ρ而最高次项系数为1的正交多项式族,其中1)(0=x q ,求1()q x 和2()q x 。 (2)求形如2y a bx =+的经验公式,使它与下列数据拟合: 四、(14分)对积分()10I f x dx = ?,试 (1)构造一个以012113,,424 x x x ===为节点的插值型求积公式; (2)指出所构造公式的代数精度; (3)用所得数值求积公式计算积分1 203x dx ?的精确值; (4)指出所得公式与一般的Newton-Cotes 型公式在形式上的重要区别。

(1)设?? ????=4321A ,计算1A 、()Cond A ∞和()A ρ。 (2)用列主元Gauss 消去法解方程组: 12312315410030.112x x x ????????????=????????????-?????? 六、(13分)对2阶线性方程组 11112212112222 a x a x b a x a x b +=??+=? (11220a a ≠ ) (1)证明求解此方程组的Jacobi 迭代与Gauss-Seidel 迭代同时收敛或同时发散; (2)当同时收敛时,试比较它们的收敛速度。

最新菱形讲义(经典)

第一章特殊的平行四边形 一、菱形: 【知识梳理】 1.菱形的定义:有一组邻边相等的平行四边形叫做菱形. 2.菱形的性质 菱形是特殊的平行四边形,它具有平行四边形的所有性质,?还具有自己独特的性质: ①边的性质:对边平行且四边相等. ②角的性质:邻角互补,对角相等. ③对角线性质:对角线互相垂直平分且每条对角线平分一组对角. ④对称性:菱形是中心对称图形,也是轴对称图形. 菱形的面积等于底乘以高,等于对角线乘积的一半. 点评:其实只要四边形的对角线互相垂直,其面积就等于对角线乘积的一半. 3.菱形的判定 判定①:一组邻边相等的平行四边形是菱形. 判定②:对角线互相垂直的平行四边形是菱形. 判定③:四边相等的四边形是菱形. 【例题精讲】板块一、菱形的性质 例1.如图,菱形ABCD的对角线交于点O,AC=16cm,BD=12cm. (1)求菱形ABCD的边长; (2)求菱形ABCD的高DM. 例2.如图,在菱形ABCD中,AB=BD,点E,F分别在AB,AD上,且AE=DF.连接BF与DE 相交于点G,连接CG与BD相交于点H. 求证:(1)求∠BGD的度数。(2)求证:DG+BG=CG

例3.将两张宽度相等的长方形纸片叠放在一起得到如图29所示的四边形ABCD. (1)求证:四边形ABCD是菱形. (2)如果两张长方形纸片的长都是8,宽都是2,那么菱形ABCD的周长是否存在最大值或最小值?如果存在,请求出来;如果不存在,请简要说明理由. 例4. 已知,菱形 ABCD 中,E、F分别是BC、CD上的点,若AE AF EF AB ===,求C ∠的度数. F E D C B A 跟踪练习: 1.如图,在菱形ABCD中,AB=5,对角线AC=6.若过点A作AE⊥BC,垂足为E,则AE的长为() A.4 B.2.4 C.4.8 D.5 2.如图,在菱形ABCD中,∠B=60°,AB=2,E、F分别是BC和CD的中点,连接AE、EF、AF,则△AEF的周长为() A.23 B.33 C.43 D.3. 3.如图所示,把一个长方形的纸片对折两次,然后剪下一个角,为了得到一个钝角为120°的菱形,剪口 与第二次折痕所成角的度数应为() A.15°或30° B.30°或45°

数值分析典型例题

第一章典型例题 例3…,精确到10-3的近似值是多少? 解 精确到10-3=,即绝对误差限是?=, 故至少要保留小数点后三位才 可以。ln2? 第二章典型例题 例1 用顺序消去法解线性方程组 解 顺序消元 于是有同解方程组 回代得解 x 3=-1, x 2=1,x 1=1,原线性方程组的解为X =(1,1,-1)T 例2 取初始向量X (0)=(0,0,0)T ,用雅可比迭代法求解线性方程组 解 建立迭代格式 ??? ????+--=+--=++-=+++5223122)(2)(1)1(3) (3)(1)1(2 )(3)(2)1(1k k k k k k k k k x x x x x x x x x (k =1,2,3,…) 第1次迭代,k =0 X (0)=0,得到X (1)=(1,3,5)T 第2次迭代,k =1 X (2)=(5,-3,-3)T 第3次迭代,k =2 X (3)=(1,1,1)T 第4次迭代,k =3

X (4)=(1,1,1)T 例4 证明例2的线性方程组,雅可比迭代法收敛,而高斯-赛德尔迭 代法发散。 证明 例2中线性方程组的系数矩阵为 A =?? ?? ? ?????-122111221 于是 D =?? ?? ??????100010001 D -1 =D ?? ?? ? ?????=022001000L ~ ?? ?? ? ?????-=000100220U ~ 雅可比迭代矩阵为 B 0=?? ?? ? ?????--=??????????-??????????-=+--022101220022101220100010001)U ~L ~(D 1 得到矩阵B 0的特征根03,2,1=λ,根据迭代基本定理4,雅可比迭代法收敛。 高斯-赛德尔迭代矩阵为 G =-U ~ )L ~D (1-+ =-?? ?? ??????----=??????????-??????????---=??????????-??????????-2003202200001002201200110010001002201220110011 解得特征根为?1=0,?2,3=2。由迭代基本定理4知,高斯-赛德尔迭代发散。 例5 填空选择题: 1. 用高斯列主元消去法解线性方程组 作第1次消元后的第2,3个方程分别为 。

菱形练习题(含答案)

特殊的平行四边形——菱形 一.菱形的定义:有一组邻边相等的平行四边形叫做菱形. 二.菱形的性质:菱形具有平行四边形一切性质,此外,它还具有如下特殊性质: 1.菱形的四条边相等。 2.菱形的两条对角线互相垂直,且每一条对角线平分一组对角。 3.菱形是轴对称图形也是中心对称图形,两条对角线所在的直线是它的两条对称轴。 三.菱形的判定办法:1.用菱形的定义:有一组邻边相等的平行四边形是菱形; 2.四条边都相等的四边形是菱形; 3.对角线垂直的平行四边形是菱形; 4.对角线互相垂直平分的四边形是菱形。 四.菱形的面积:等于两条对角线乘积的一半.(有关菱形问题可转化为直角三角形或 等腰三角形的问题来解决.),周长=边长的4倍 复习: 1.如图,在ABC △中,E 是AD 的中点,过点A 作BC 的平行线交BE 的延长线于F ,且AF DC =,连接CF . (1)求证:D 是BC 的中点;(2)若AB AC =,试猜测四边形ADCF 的形状,并证明. 解答:(1)证明:AF BC ∥,AFE DBE ∴∠=∠.∵E 是AD 的中点,AE DE ∴=. 又AEF DEB ∠=∠,AEF DEB ∴△≌△.AF DB ∴=.∵AF DC =,DB DC ∴=. (2)解:四边形ADCF 是矩形,证明:∵AF DC ∥,AF DC =,∴四边形ADCF 是平 行四边形.∵AB AC =,D 是BC 的中点,AD BC ∴⊥.即90ADC ∠=.∴四边形ADCF 是矩形. 菱形例题讲解: 1.已知点D 在△ABC 的BC 边上,DE ∥AC 交AB 于E ,DF ∥AB 交AC 于F .若AD 平分∠BAC , 试判断四边形AEDF 的形状,并说明理由. 解答:四边形AEDF 是菱形,∵DE ∥AC ,∠ADE=∠DAF ,同理∠DAE=∠FDA ,∵AD=DA , ∴△ADE ≌△DAF ,∴AE=DF ; ∵DE ∥AC ,DF ∥AB ,∴四边形AEDF 是平行四边形,∴∠DAF=∠FDA .∴AF=DF .∴平行四边形AEDF 为菱形. 2.已知:如图,在梯形ABCD 中,AB ∥CD ,BC=CD ,AD ⊥BD ,E 为AB 中点,求证:四边形BCDE 是菱形. 证明:∵AD ⊥BD ,∴△ABD 是Rt △∵E 是AB 的中点,∴BE=DE ,∴∠EDB=∠EBD , ∵CB=CD ,∴∠CDB=∠CBD ,∵AB ∥CD ,∴∠EBD=∠CDB , ∴∠EDB=∠EBD=∠CDB=∠CBD ,∵BD=BD ,∴△EBD ≌△CBD (ASA ),∴BE=BC , ∴CB=CD=BE=DE ,∴菱形BCDE .(四边相等的四边形是菱形) 3.如图,△ABC 与△CDE 都是等边三角形,点E 、F 分别在AC 、BC 上,且EF ∥AB , (1)求证:四边形EFCD 是菱形;(2)设CD=4,求D 、F 两点间的距离. 解答:(1)证明:∵△ABC 与△CDE 都是等边三角形,∴ED=CD=CE .∵EF ∥AB ∴∠EFC=∠ACB=∠FEC=60°, ∴EF=FC=EC ∴四边形EFCD 是菱形. (2)解:连接DF ,与CE 相交于点G ,由CD=4,可知CG=2, ∴ ∴. 4.如图,平行四边形ABCD 的对角线AC 的垂直平分线与边AD 、BC 分别相交于点E 、F .求证:四边形AFCE 是菱形. 证明:∵AE ∥FC .∴∠EAC=∠FCA .又∵∠AOE=∠COF ,AO=CO ,∴△AOE ≌△COF . ∴EO=FO .又EF ⊥AC ,∴AC 是EF 的垂直平分线. ∵EF 是AC 的垂直平分线.∴四边形AFCE 为菱形 5.在 ABCD 中,E F ,分别为边AB CD ,的中点,连接DE BF BD ,,. (1)求证:ADE CBF △≌△. (2)若AD BD ⊥,则四边形BFDE 是什么特殊四边形?请证明你的结论. 解:(1)在平行四边形ABCD 中,∠A =∠C ,AD =CB ,AB =CD .∵E ,F 分别为AB ,CD 的中点∴AE =CF , (S A S )A E D C F B ∴△≌△. (2)若AD ⊥BD ,则四边形BFDE 是菱形. 证明:AD BD ⊥,ABD ∴△是Rt △, 且AB 是斜边(或90ADB ∠=),E 是AB 的中点,12 DE AB BE ∴==.由题意可EB DF ∥且EB DF =, ∴四边形BFDE 是平行四边形,∴四边形BFDE 是菱形. O D C B A

数值分析典型例题

数值分析典型例题 例1 对下列各数写出具有5位有效数字的近似值。236.478, 0.00234711, 9.000024, 9.0000343 10?. 解:按照定义,以上各数具有5位有效数字的近似值分别为:236.478, 0.0023471, 9.0000, 9.0000310?。 注意: *x =9.000024的5位有效数字是9.0000而不是9,因为9 是1位有效数字。 例2 指出下列各数具有几位有效数字。2.0004, -0.00200, -9000, 9310?, 23 10-?。 解:按照定义,以上各数的有效数字位数分别为5, 3, 4,1,1 例3 已测得某物体行程* s 的近似值s=800m ,所需时间* s 的近似值为t=35s ,若已知m s s s t t 5.0||,05.0||**≤-≤-,试求平均速度v 的绝对误差和相对误差限。 解:因为t s v /=,所以)()(1)()()(2t e t s s e t t e t v s e s v v e -=??+??≈ 从 而 05.00469.035 800 5.0351|)(||||)(|1|)(|22≤≈+?≤+≤t e t s s e t v e 同样v v e v e r )()(≈)()()()(t e s e t e v t t v s e v s s v r r r -=??+??= 所以00205.035 05 .08005.0|)(||)(||)(|≈+≤+≤t e s e v e r r r 因此绝对误差限和相对误差限分别为0.05和0.00205。 例4试建立积分20,,1,05 =+=n dx x x I n n 的递推关系,并研究它的误差 传递。 解:151 --= n n I n I ……………………………………………..…...(1) 5ln 6ln 0-=I ,计算出0I 后可通过(1)依次递推计算出1I ,…,20I 。 但是计算0I 时有误差0e ,由此计算出的1I ,…,20I 也有误差,由(1)可 知近似值之间的递推关系为 151 --= n n I n I ……………………………………………….…..(2) (1)-(2)可得 01)5(5e e e n n n -=-=-,由0I 计算n I 时误差被放大了n 5倍。所以(1)不稳 定。 (1) 可以改写为 n I I n n 51 511+ -=- ……………………………………… (3) 如果能先求出20I ,则依次可以求出19I ,…,0I ,计算20I 时有误差,这样根据(3)计算19I ,…,0I 就有误差,误差传播为 n n n e e ?? ? ??-=-511 ,误差依次减少。 例5 用二分法求解方程012)(23=+--=x x x x f 在区间[0,1]内的1个实根,要求有3为有效数字。 解:因为0)1()0(