当前位置:文档之家› BOOST电路两种工作模式的比较.pdf

BOOST电路两种工作模式的比较.pdf

BOOST电路两种工作模式的比较.pdf
BOOST电路两种工作模式的比较.pdf

BOOST 电路两种工作模式的比较

整理者:王伟旭

一、BOOST 电路两种工作模式效率的比较

设BOOST 电路工作于临界状态时算出此时的电感值,当选用电感大于这个值时电路工作于CCM ,当选用电感小于这个值时电路工作于DCM 。实际应用中,多让BOOST 电路工作于CCM ,主要是因为其效率高于DCM 。

对于BOOST 电路电路来说,其电路主要的损耗在于开关管切换过程中,闭合时流过的电流产生的能量。比较CCM 与DCM 的效率就是看哪种模式下开关管消耗的能量多少,这个能量的比较进一步来讲就是比较其流过的电流有效值的大小。

通过计算电路两种模式下的开关管电流有效值大小,进行比较来决定这两种模式的效率高低。

开关管在开关开启的过程中才有电流流过,其值等于电感电流,这个电流在开启到关断这一时刻达到最大值,两种模式下的开关管电流波形分别如图1所示。

图1 开关管电流波形图

首先计算DCM 下流过开关管电流的有效值:

∫=ON

T ON

rms DCM dt t T I T I 020)()(1

(1.1) 对式1.1化简可得:

0)(3

I D I rms DCM =,其中T T D ON = (1.2) 然后计算CCM 下流过开关管电流的有效值:

21222102221)(3

)(1I I I I D dt I t T I I T I ON T ON rms CCM ++?=+?=∫ (1.3) 对于同样的外部参数的两种模式BOOST 电路(输入、输出电压,功率相同),其输入与输出电流平均值是相等的。通过这个关系我们可以得出I 0与I 1和I 2的关系,如式1.4所示。

210210)()(2

2I I I I I D I D U P I in avg in +=?→?+=== (1.4) 将式1.4关系带入式1.2可得:

212221)(23

I I I I D I rms DCM ++?= (1.5) 即可得到:

)()(rms CCM rms DCM I I > (1.6)

二、BOOST 电路两种模式电感感值的比较

对于一个BOOST 电路,通过改变其电感的大小可以使其从DCM 过渡到CCM ,我们依据DCM 和CCM 两种模式下电感传递的能量是相等的这个概念来推证CCM 电感的感值大于DCM 电感的感值。

对于两种模式的电感电流波形如图2所示。

图2 两种模式下电感电流波形示意图

DCM 模式下电感传递能量,换种说法就是开关管导通时电感上增加的能量为:

2002

10I L Idi L dt I dt di L dt UI W DCM I DCM DCM DCM ==??=?=∫∫∫ (2.1) CCM 模式下电感传递能量为:

)(2

1222112I I L Idi L dt I dt di L dt UI W CCM I I CCM CCM CCM ?==??=?=∫∫∫ (2.2) 由(2.1)=( 2.2)可得:

22

212

I I I L L DCM CCM

?=

(2.3) 根据已推导过的等式:210I I I +=带入式2.3可得:

12

12

122212

0>?+=?=I I I I I I I L L DCM CCM

(2.4) 即CCM 下电感感值大于DCM 下电感感值。

电力电子课程设计Boost变换器

电力电子技术课程设计 班级 学号

目录 一.课程设计题目 (2) 二.课程设计容 (2) 三.所设计电路的工作原理(包括电路原理图、理论波形) 2四.电路的设计过程 (3) 五.各参数的计算 (3) 六.仿真模型的建立,仿真参数的设置 (3) 七.进行仿真实验,列举仿真结果 (4) 八.对仿真结果的分析 (6) 九.结论 (7) 十.课程设计参考书 (7)

一.课程设计题目 Boost 变换器研究 二.课程设计容 1. 主电路方案确定 2. 绘制电路原理图、分析理论波形 3. 器件额定参数的计算 4. 建立仿真模型并进行仿真实验 6. 电路性能分析 输出波形、器件上波形、参数的变化、谐波分析、故障分析等 三.所设计电路的工作原理(包括电路原理图、理论波形) 分析升压斩波电路的工作原理时,首先假设电路中电感L 值很大,电容C 值也很大。当可控开关V 处于通态时,电源E 向电感L 充电,充电电流基本恒定为I1,同时电容C 上的电压向负载R 供电。因C 值很大,基本保持输出电压u ?为恒值,记为U O 。设V 处于通态的时间为on t ,此阶段电感L 上积累的能量为on t EI 1。当V 处于断态时E 和L 共同向电容C 充电并向负载R 提供能量。设V 处于断态的时间为off t , 则在此期间电感L 释放的能量为 ()off t I E U 10-。当电路工作于稳态时, 一个周期T 中电感L 积蓄的能量与释放的能量相等,即 ()off on t I E U t EI 101-= 化简得 E t T t t t U off off off on = +=

电力电子课程设计Boost电路的建模与仿真

? 课程设计说明书 课程名称:电力电子课程设计 设计题目: Boost电路的建模与仿真{ 专业:电气工程及其自动化 班级: 学号: 姓名: 指导教师: 【

二○一五年一月

目录 引言课程设计任务书 (3) 第一章电路原理分析 (4) 第二章电路状态方程 (5) 当V处于通态时 (5) 当V处于断态时 (5) 第三章电路参数的选择 (6) 占空比 的选择 (6) 电感L的选择 (6) 电容C的选择 (7) 负载电阻R的选择 (7) 第四章电路控制策略的选择 (8) 电压闭环控制策略 (8) 直接改占空比控制输出电压 (8) 第五章 MATLAB编程 (9) 定义状态函数 (9) 主程序的编写 (9) 运行结果 (12) 第六章 Simulink仿真 (16) 电路模型的搭建 (16) 仿真结果 (16) 第七章结果分析 (18) 参考文献 (19)

引言课程设计任务书 题目 Boost电路建模、仿真 任务 建立Boost电路的方程,编写算法程序,进行仿真,对仿真结果进行分析,合理选取电路中的各元件参数。 要求 课程设计说明书采用A4纸打印,装订成本;内容包括建立方程、编写程序、仿真结果分析、生成曲线、电路参数分析、选定。 V1=20V±10% V2=40V I0=0 ~ 1A F=50kHZ

第一章 电路原理分析 Boost 电路,即升压斩波电路(Boost Chopper ),其电路图如图1-1所示。电路中V 为一个全控型器件,且假设电路中电感L 值很大,电容C 值也很大。当V 处于通态时,电源E (电压大小为1V )向电感L 充电,电流L i 流过电感线圈L ,电流近似线性增加,电能以感性的形式储存在电感线圈L 中。此时二极管承受反压,处于截断状态。同时电容C 放电,C 上的电压向负载R 供电,R 上流过电流0I R 两端为输出电压0U (负载R 两端电压为2V ),极性为上正下负,且由于C 值很大,故负载两端电压基本保持为恒值。当V 处于断态时,由于线圈L 中的磁场将改变线圈L 两端的电压极性,以保持L i 不变,这样E 和L 串联,以高于0U 电压向电容C 充电、向负载R 供电。下图1-2为V 触发电流和输出负载电流的波形,图1-3为电感充放电电流的波形。 图2-1

Boost升压斩波电路要点

总目录 引言 (2) 1 升压斩波工作原理 (2) 1.1 主电路工作原理 (2) 2 升压斩波电路的典型应用 (4) 3 设计内容及要求 (6) 3.1输出值的计算 (7) 4硬件电路 (7) 4.1控制电路 (7) 4.2 触发电路和主电路 (9) 4.3.元器件的选取及计算 (10) 5.仿真 (11) 6.结果分析 (14) 7.小结 (14) 8.参考文献 (14)

引言 随着电力电子技术的迅速发展,高压开关稳压电源已广泛用于计算机、通信、工业加工和航空航天等领域。所有的电力设备都需要良好稳定的供电,而外部提供的能源大多为交流,电源设备担负着把交流电源转换为电子设备所需的各种类别直流任务。但有时所供的直流电压不符合设备需要,仍需变换,称为DC/DC 变换。直流斩波电路作为直流电变成另一种固定电压的DC-DC变换器,在直流传动系统.、充电蓄电电路、开关电源、电力电子变换装置及各种用电设备中得到普通的应用。随之出现了诸如降压斩波电路、升压斩波电路、升降压斩波电路、复合斩波电路等多种方式的变换电路。直流斩波技术已被广泛运用开关电源及直流电动机驱动中,使其控制获得加速平稳、快速响应、节约电能的效果。全控型电力电子器件IGBT在牵引电传动电能传输与变换、有源滤波能领域得到了广泛的应用。但以IGBT为功率器件的直流斩波电路在实际应用中需要注意以下问题:(1)系统损耗的问;(2)栅极电阻;(3)驱动电路实现过流过压保护的问题。 直流斩波电路实际上采用的就是PWM技术,这种电路把直流电压斩成一系列脉冲,改变脉冲的占空比来获得所需要的输出电压。PWM控制方式是目前才用最广泛的一种控制方式,它具有良好的调整特性。随电子技术的发展,近年来已发展各种集成式控制芯片,这种芯片只需外接少量元器件就可以工作,这不但简化设计,还大幅度的减少元器件数量、连线和焊点 1 升压斩波工作原理 1.1 主电路工作原理 1)工作原理 假设L和C值很大。V处于通态时,电源E向电感L充电,电流恒定I1,电容C向负载R供电,输出电压Uo恒定。 V处于断态时,电源E和电感L同时向电容C充电,并向负载提供能量。

BUCK_BOOST_BUCK-BOOST电路的原理

BUCK BOOST BUCK/BOOST电路的原理 Buck变换器:也称降压式变换器,是一种输出电压小于输入电压的单管不隔离直流变换器。 图中,Q为开关管,其驱动电压一般为PWM(Pulse width modulation脉宽调制)信号,信号周期为Ts,则信号频率为f=1/Ts,导通时间为Ton,关断时间为Toff,则周期Ts=Ton+Toff,占空比Dy= Ton/Ts。 、Boost变换器:也称升压式变换器,是一种输出电压高于输入电压的单管不隔离直流变换器。 开关管Q也为PWM控制方式,但最大占空比Dy必须限制,不允许在Dy=1的状态下工作。电感Lf在输入侧,称为升压电感。Boost变换器也有CCM和DCM两种工作方式 、Buck/Boost变换器:也称升降压式变换器,是一种输出电压既可低于也可高于输入电压的单管不隔离直流变换器,但其输出电压的极性与输入电压相反。Buck/Boost变换器可看做是Buck变换器和Boost变换器串联而成,合并了开关管。 Buck/Boost变换器也有CCM和DCM两种工作方式,开关管Q也为PWM控制方式。

LDO的特点: ①非常低的输入输出电压差 ②非常小的内部损耗 ③很小的温度漂移 ④很高的输出电压稳定度 ⑤很好的负载和线性调整率 ⑥很宽的工作温度范围 ⑦较宽的输入电压范围 ⑧外围电路非常简单,使用起来极为方便 DC/DC变换是将固定的直流电压变换成可变的直流电压,也称为直流斩波。斩波器的工作方式有两种,一是脉宽调制方式Ts不变,改变ton(通用),二是频率调制方式,ton不变,改变Ts(易产生干扰)。其具体的电路由以下几类:】 (1)Buck电路——降压斩波器,其输出平均电压U0小于输入电压Ui,极性相同。 (2)Boost电路——升压斩波器,其输出平均电压U0大于输入电压Ui,极性相同。 (3)Buck-Boost电路——降压或升压斩波器,其输出平均电压U0大于或小于输入电压Ui,极性相反,电感传输。 (4)Cuk电路——降压或升压斩波器,其输出平均电压U0大于或小于输入电压Ui,极性相反,电容传输。 DC-DC分为BUCK、BUOOST、BUCK-BOOST三类DC-DC。 其中BUCK型DC-DC只能降压,降压公式:Vo=Vi*D BOOST型DC-DC只能升压,升压公式:Vo= Vi/(1-D) BUCK-BOOST型DC-DC,即可升压也可降压,公式:Vo=(-Vi)* D/(1-D) D为充电占空比,既MOSFET导通时间。0

电力电子课程设计--Boost电路的建模与仿真

课程设计说明书 课程名称:电力电子课程设计 设计题目: Boost电路的建模与仿真 专业:电气工程及其自动化 班级: 学号: 姓名: 指导教师: 二○一五年一月

目录 引言课程设计任务书 (3) 第一章电路原理分析 (4) 第二章电路状态方程 (5) 2.1 当V处于通态时 (5) 2.2 当V处于断态时 (5) 第三章电路参数的选择 (6) 3.1 占空比 的选择 (6) 3.2 电感L的选择 (6) 3.3 电容C的选择 (7) 3.4 负载电阻R的选择 (7) 第四章电路控制策略的选择 (8) 4.1电压闭环控制策略 (8) 4.2 直接改占空比控制输出电压 (8) 第五章 MATLAB编程 (9) 5.1 定义状态函数 (9) 5.2 主程序的编写 (9) 5.3 运行结果 (12) 第六章 Simulink仿真 (16) 6.1 电路模型的搭建 (16) 6.2 仿真结果 (16) 第七章结果分析 (18) 参考文献 (19)

引言课程设计任务书 题目 Boost电路建模、仿真 任务 建立Boost电路的方程,编写算法程序,进行仿真,对仿真结果进行分析,合理选取电路中的各元件参数。 要求 课程设计说明书采用A4纸打印,装订成本;内容包括建立方程、编写程序、仿真结果分析、生成曲线、电路参数分析、选定。 V1=20V±10% V2=40V I0=0 ~ 1A F=50kHZ

第一章 电路原理分析 Boost 电路,即升压斩波电路(Boost Chopper ),其电路图如图1-1所示。电路中V 为一个全控型器件,且假设电路中电感L 值很大,电容C 值也很大。当V 处于通态时,电源E (电压大小为1V )向电感L 充电,电流L i 流过电感线圈L ,电流近似线性增加,电能以感性的形式储存在电感线圈L 中。此时二极管承受反压,处于截断状态。同时电容C 放电,C 上的电压向负载R 供电,R 上流过电流0I R 两端为输出电压0U (负载R 两端电压为2V ),极性为上正下负,且由于C 值很大,故负载两端电压基本保持为恒值。当V 处于断态时,由于线圈L 中的磁场将改变线圈L 两端的电压极性,以保持L i 不变,这样E 和L 串联,以高于0U 电压向电容C 充电、向负载R 供电。下图1-2为V 触发电流和输出负载电流的波形,图1-3为电感充放电电流的波形。 图2-1

boost升压电路

开关直流升压电路(即所谓的boost或者step-up电路)原理 2007-09-29 13:28 the boost converter,或者叫step-up converter,是一种开关直流升压电路,它可以是输出电压比输入电压高。 基本电路图见图一。 假定那个开关(三极管或者mos管)已经断开了很长时间,所有的元件都处于理想状态,电容电压等于输入电压。 下面要分充电和放电两个部分来说明这个电路 充电过程 在充电过程中,开关闭合(三极管导通),等效电路如图二,开关(三极管)处用导线代替。这时,输入电压流过电感。二极管防止电容对地放电。由于输入是直流电,所以电感上的电流以一定的比率线性增加,这个比率跟电感大小有关。随着电感电流增加,电感里储存了一些能量。

放电过程 如图,这是当开关断开(三极管截止)时的等效电路。当开关断开(三极管截止)时,由于电感的电流保持特性,流经电感的电流不会马上变为0,而是缓慢的由充电完毕时的值变为0。而原来的电路已断开,于是电感只能通过新电路放电,即电感开始给电容充电,电容两端电压升高,此时电压已经高于输入电压了。升压完毕。 说起来升压过程就是一个电感的能量传递过程。充电时,电感吸收能量,放电时电感放出能量。 如果电容量足够大,那么在输出端就可以在放电过程中保持一个持续的电流。如果这个通断的过程不断重复,就可以在电容两端得到高于输入电压的电压。 一些补充 1 AA电压低,反激升压电路制约功率和效率的瓶颈在开关管,整流管,及其他损耗

(含电感上). 1.电感不能用磁体太小的(无法存应有的能量),线径太细的(脉冲电流大,会有线损大). 2 整流管大都用肖特基,大家一样,无特色,在输出3.3V时,整流损耗约百分之 十. 3 开关管,关键在这儿了,放大量要足够进饱和,导通压降一定要小,是成功的关键.总共才一伏,管子上耗多了就没电出来了,因些管压降应选最大电流时不超过0.2--0.3V,单只做不到就多只并联....... 4 最大电流有多大呢?我们简单点就算1A吧,其实是不止的.由于效率低会超过1.5A,这是平均值,半周供电时为3A,实际电流波形为0至6A.所以咱建议要用两只号称5A实际3A的管子并起来才能勉强对付. 5 现成的芯片都没有集成上述那么大电流的管子,所以咱建议用土电路就够对付洋电路了. 以上是书本上没有直说的知识,但与书本知识可对照印证. 开关管导通时,电源经由电感-开关管形成回路,电流在电感中转化为磁能贮存;开关管关断时,电感中的磁能转化为电能在电感端左负右正,此电压叠加在电源正端,经由二极管-负载形成回路,完成升压功能。既然如此,提高转换效率就要从三个方面着手:1.尽可能降低开关管导通时回路的阻抗,使电能尽可能多的转化为磁能;2.尽可能降低负载回路的阻抗,使磁能尽可能多的转化为电能,同时回路的损耗最低;3.尽可能降低控制电路的消耗,因为对于转换来说,控制电路的消耗某种意义上是浪费掉的,不能转化为负载上的能量。

boost斩波电路_升压斩波电路_电力电子技术课程设计报告书

电力电子技术课程设计 任务书 课程名称:直流斩波电路的性能研究 学院:电气学院 专业班级:自动化10班 姓名:吴学号:31100800 31100800 冯 31100800

2013年1月 目录 摘要 .................................................................... - 1 - 1 BOOST斩波电路工作原理................................................ - 2 - 1.1 主电路工作原理................................................. - 2 - 1.2 控制电路选择................................................... - 2 - 2 硬件调试 .............................................................. - 4 - 2.1 电源电路设计................................................... - 4 - 2.2 升压(boost)斩波电路主电路设计................................ - 5 - 2.3 控制电路设计................................................... - 6 - 2.4 驱动电路设计.................................................. - 10 - 2.5 保护电路设计.................................................. - 11 - 2.5.1 过压保护电路............................................ - 11 - 2.5.2 过流保护电路............................................ - 13 - 2.6 直流升压斩波电路总电路........................................ - 13 - 3总结.................................................................. - 15 - 4参考文献.............................................................. - 16 -

升压斩波电路课程设计报告Word版

《电力电子技术课程设计》报告 设计题目:升压斩波电路的设计 英文题目:The Design of Boost Chopper 院系:电气工程与自动化 年级专业: 2011级电气工程及其自动化 姓名:) ) ) 2014年6月30日 目录 目录 (2) 1. 设计的题目 (3)

1.1引言 (3) 1.2升压斩波电路的应用 (4) 2.设计的任务: (4) 2.1 课程设计要求 (4) 2.2Boost电路技术参数及要求 (4) 3.设计的依据: (5) 3.1总体构思依据 (5) 3.2理论计算依据 (5) 4.设计的内容: (6) 4.1主电路的选择与计算过程 (6) 4.1.1直流斩波电路由直流电源、MOSFET、电感、电容、续流二极管以及负载组 成。具体原理电路图如下: (6) 4.1.2主电路的理论计算: (6) 4.1.3主电路的仿真 (7) 4.1.4主电路的仿真输出波形 (8) 4.2控制电路的选型与计算过程 (8) 4.2.1NE555的引脚图及引脚 (8) 4.2.2 NE555工作原理 (9) 4.2.3控制电路原理图 (9) 4.2.4控制电路理论计算过程 (10) 4.2.5控制电路的仿真与波形输出 (10) 4.3带tlp250光耦合器的驱动电路的选型 (11) 4.3.1 tlp250引脚图及引脚 (11) 4.3.2采用tlp250的原理 (11) 4.4绘制原理图和PCB (12) 4.4.1主电路原理图 (12) 4.4.2主电路PCB图 (13) 4.4.3 555电路图 (13) 4.4.4 光耦tlp250原理图 (13)

boost电路分析

图一 boost升压电路,开关直流升压电路(即所谓的boost或者step-up电路)原理2007-09-29 13:28the boost converter,或者叫step-up converter,是一种开关直流升压电路,它可以是输出电压比输入电压高。基本电路图见图一。 假定那个开关(三极管或者mos管)已经断开了很长时间,所有的元件都处于理想状态,电容电压等于输入电压。下面要分充电和放电两个部分来说明这个电路 充电过程 在充电过程中,开关闭合(三极管导通),等效电路如图二,开关(三极管)处用导线代替。这时,输入电压流过电感。二极管防止电容对地放电。由于输入是直流电,所以电感上的电流以一定的比率

线性增加,这个比率跟电感大小有关。随着电感电流增加,电感里储存了一些能量。 放电过程 图三 如图三,这是当开关断开(三极管截止)时的等效电路。当开关断开(三极管截止)时,由于电感的电流保持特性,流经电感的电流不会马上变为0,而是缓慢的由充电完毕时的值变为0。而原来的电路已断开,于是电感只能通过新电路放电,即电感开始给电容充电,电容两端电压升高,此时电压已经高于输入电压了。升压完毕。 说起来升压过程就是一个电感的能量传递过程。充电时,电感吸收能量,放电时电感放出能量。如果电容量足够大,那么在输出端就可以在放电过程中保持一个持续的电流。 如果这个通断的过程不断重复,就可以在电容两端得到高于输入电压的电压。 一些补充:AA电压低,反激升压电路制约功率和效率的瓶颈在开关管,整流管,及其他损耗(含电感上). 1 电感不能用磁体太小的(无法存应有的能量),线径太细的(脉冲电流大,会有线损大). 2 整流管大都用肖特基,大家一样,无特色,在输出3.3V时,整流损耗约百分之十.

电气工程boost斩波电路升压斩波电路电力电子技术课程设计报告书

目录 摘要 ........................................................ 错误!未定义书签。 1 BOOST斩波电路工作原理................................................ - 1 - 1.1 主电路工作原理................................................. - 1 - 1.2 控制电路选择................................................... - 1 - 2 硬件调试 .............................................................. - 3 - 2.1 电源电路设计................................................... - 3 - 2.2 升压(boost)斩波电路主电路设计................................ - 4 - 2.3 控制电路设计................................................... - 5 - 2.4 驱动电路设计................................................... - 8 - 2.5 保护电路设计................................................... - 9 - 2.5.1 过压保护电路............................................. - 9 - 2.5.2 过流保护电路............................................ - 10 - 2.6 直流升压斩波电路总电路........................................ - 11 - 3总结.................................................................. - 12 - 4参考文献.............................................................. - 12 - 直流斩波电路的功能是将直流电变为另一种固定的或可调的直流电,也称为直流-直流变换器(DC/DC Converter),直流斩波电路一般是指直接将直流变成直流的情况,不包括直流-交流-直流的情况;直流斩波电路的种类很多:降压斩波电路,升压斩波电路,这两种是最基本电路。另外还有升降压斩波电路,Cuk斩波电路,Sepic斩波电路,Zeta斩波电路。斩波器的工作方式有:脉宽调制方式(Ts 不变,改变ton)和频率调制方式(ton不变,改变Ts)。本设计是基于SG3525芯片为核心控制的脉宽调制方式的升压斩波电路和降压斩波电路,设计分为Multisim仿真和Protel两大部分构成。Multisim主要是仿真分析,借助其强大的仿真功能可以很直观的看到PWM控制输出电压的曲线图,通过设置参数分析输出与电路参数和控制量的关系,利用软件自带的电表和示波器能直观的分析各种输出结果。第二部分是硬件电路设计,它通过软件设计完成。 关键字:直流斩波;PWM;SG3525

开关直流升压电源(BOOST)设计

电气与电子信息工程学院 《电力电子装置设计与制作》 课程设计报告 名称:开关直流升压电源(BOOST)设计专业名称:电气工程及其自动化 班级: 13级电气工程及其自动化(专升本)班学号: 姓名: 指导教师:南光群张智泉 设计时间:2014年11月24日——12月5日 设计地点:K2-306及K2-414实验室

开关电源装置设计与制作报告成绩评定表 指导教师签字:

《电力电子装置设计与制作》课程设计任务书 2014~2015学年第一学期 学生姓名:专业班级:13级电气工程及其自动化(专升本)班指导教师:张智泉南光群工作部门:电气与电子信息工程学院 一、课程设计题目:电力电子装置设计与制作 二、课程设计内容 根据题目选择合适的输入输出电压进行电路设计,在Protel或OrCAD软件上进行原理图绘制;满足设计要求后,再进行硬件制作和调试。如实验结果不满足要求,则修改设计,直到满足要求为止。 设计题目选: 题目二:开关直流升压电源(BOOST)设计 主要技术指标: 1)输入交流电压220V(可省略此环节)。 2)输入直流电压在8-18V之间。 3)输出直流电压10-25V,输出电压相对变化量小于2%。 4)输出电流1A。 5)采用脉宽调制PWM电路控制。

三、进度安排 四、基本要求 1、独立设计原理图各部分电路的设计; 2、制作硬件实物,演示设计与调试的结果。 3、写出课程设计报告。内容包括电路图、工作原理、实际测量波形、调试分析、测量精度、结论和体会。 4、写出设计报告:不少于3000字,统一复印封面并用A4纸写出报告。 ○1封面、课程设计任务书 ○2摘要,关键词(中英文) ○3方案选择,方案论证 ○4系统功能及原理。(系统组成框图、电路原理图) ○5各模块的功能,原理,器件选择 ○6实验结果以及分析 ○7设计小结 ○8附录---参考文献

DC-DC升压(BOOST)电路原理

DC-DC升压(BOOST)电路原理 BOOST升压电路中: 电感的作用:是将电能和磁场能相互转换的能量转换器件,当MOS开关管闭合后,电感将电能转换为磁场能储存起来,当MOS断开后电感将储存的磁场能转换为电场能,且这个能量在和输入电源电压叠加后通过二极管和电容的滤波后得到平滑的直流电压提供给负载,由于这个电压是输入电源电压和电感的磁砀能转换为电能的叠加后形成的,所以输出电压高于输入电压,既升压过程的完成; 肖特基二极管主要起隔离作用,即在MOS开关管闭合时,肖特基二极管的正极电压比负极电压低,此时二极管反偏截止,使此电感的储能过程不影响输出端电容对负载的正常供电;因在MOS管断开时,两种叠加后的能量通过二极向负载供电,此时二极管正向导通,要求其正向压降越小越好,尽量使更多的能量供给到负载端!!

在图2所示的实际电路中,带集成功率MOSFET的IC代替了机械开关,MOSFET的开、关由脉宽调制(PWM)电路控制。输出电压始终由PWM占空比决定,占空比为50%时,输出电压为输入电压的两倍。将电压提高一倍会使输入电流大小达到输出电流的两倍,对实际的有损耗电路,输入电流还要稍高。 电感值如何影响电感型升压转换器的性能? 因为电感值影响输入和输出纹波电压和电流,所以电感的选择是感性电压转换器设计的关键。等效串联电阻值低的电感,其功率转换效率最佳。要对电感饱和电流额定值进行选择,使其大于电路的稳态电感电流峰值。 电感型升压转换器IC电路输出二极管选择的原则是什么? 升压转换器要选快速肖特基整流二极管。与普通二极管相比,肖特基二极管正向压降小,使其功耗低并且效率高。肖特基二极管平均电流额定值应大于电路最大输出电压. 怎样选择电感型升压转换器IC电路的输入电容? 升压调节器的输入为三角形电压波形,因此要求输入电容必须减小输入纹波和噪声。纹波的幅度与输入电容值的大小成反比,也就是说,电容容量越大,纹波越小。如果转换器负载变化很小,并且输出电流小,使用小容量输入电容也很安全。如果转换器输入与源输出相差很小,也可选小体积电容。如果要求电路对输入电压源纹波干扰很小,就可能需要大容量电容,并(或)减小等效串联电阻(ESR)。

一种非常实用的Boost升压电路原理详解

一种实用的BOOST电路 0 引言 在实际应用中经常会涉及到升压电路的设计,对于较大的功率输出,如70W以上的DC /DC升压电路,由于专用升压芯片内部开关管的限制,难于做到大功率升压变换,而且芯片的价格昂贵,在实际应用时受到很大限制。考虑到Boost升压结构外接开关管选择余地很大,选择合适的控制芯片,便可设计出大功率输出的DC/DC升压电路。 UC3S42是一种电流型脉宽调制电源芯片,价格低廉,广泛应用于电子信息设备的电源电路设计,常用作隔离回扫式开关电源的控制电路,根据UC3842的功能特点,结合Boos t拓扑结构,完全可设计成电流型控制的升压DC/DC电路,且外接元器件少,控制灵活,成本低,输出功率容易做到100W以上,具有其他专用芯片难以实现的功能。 1 UC3842芯片的特点 UC3842工作电压为16~30V,工作电流约15mA。芯片内有一个频率可设置的振荡器;一个能够源出和吸入大电流的图腾式输出结构,特别适用于MoSFET的驱动;一个固定温度补偿的基准电压和高增益误差放大器、电流传感器;具有锁存功能的逻辑电路和能提供逐个脉冲限流控制的PWM比较器,最大占空比可达100%。另外,具有内部保护功能,如滞后式欠压锁定、可控制的输出死区时间等。 由UC3842设计的DC/DC升压电路属于电流型控制,电路中直接用误差信号控制电感峰值电流,然后间接地控制PWM脉冲宽度。这种电流型控制电路的主要特点是: 1)输入电压的变化引起电感电流斜坡的变化,电感电流自动调整而不需要误差放大器输出变化,改善了瞬态电压调整率; 2)电流型控制检测电感电流和开关电流,并在逐个脉冲的基础上同误差放大器的输出比较,控制PWM脉宽,由于电感电流随误差信号的变化而变化,从而更容易设置控制环路,改善了线性调整率; 3)简化了限流电路,在保证电源工作可靠性的同时,电流限制使电感和开关管更有效地工作; 4)电流型控制电路中需要对电感电流的斜坡进行补偿,因为,平均电感电流大小是决定输出大小的因素,在占空比不同的情况下,峰值电感电流的变化不能与平均电感电流变化相对应,特别是占空比,50%的不稳定性,存在难以校正的峰值电流与平均电流的误差,即使占空比<50%,也可能发生高频次谐波振荡,因而需要斜坡补偿,使峰值电感电流与平均电感电流变化相一致,但是,同步不失真的斜坡补偿技术实现上有一定的难度。

电气工程boost斩波电路升压斩波电路电力电子技术课程设计

电气工程boost斩波电路升压斩 波电路电力电子技术课程设计 目录 摘要.................... 错误!未定义书签。 1 BOOST斩波电路工作原理............... - 2 - 1.1主电路工作原理 -2 - 1.2控制电路选择 -2 - 2硬件调试................................ -4 - 2.1电源电路设计 -4 - 2.2升压(boost)斩波电路主电路设计

-5 - 2.3:控制电路设计 -6 - 2.4驱动电路设计-10 - 2.5保___ 护 ____ 电 ____ 路 ___ 设_____ 计-11 - 2.5.1过压保护电路 -11 - 2.5.2寸_ 流___ 保___ 护___ 电___ 路

-12 - 2.6直流升压斩波电路总电路 -12 - 3总结 ................................. -14 - 4参考文献 ............................. -14 - 直流斩波电路的功能是将直流电变为另一种固定的或可调的直流电,也称为直流-直流变换器 (DC/DC Converter),直流斩波电路一般是指直接将直流变成直流的情况,不包括直流-交流-直流的情况;直流斩波电路的种类很多:降压斩波电路,升压斩波电路,这两种是最基本电路。另外还有升降压斩波电路,Cuk 斩波电路,Sepic斩波电路,Zeta斩波电路。斩波器的工作方式有:脉宽调制方式(Ts不变,改变ton )和频率调制方式(ton不变,改变Ts)。本设计是基于SG3525芯片为核心控制的脉宽调制方式的升压斩波电路和降压斩波电路,设计分为Multisim 仿真和Protel两大部分构成。Multisim 主要是仿真分析,借助其强大的仿真功能可以很直观的看到PWh控制输出电压的曲线图,通过设置 参数分析输出与电路参数和控制量的关系,利用软件自带的电表和示波器能直观的分析各种输出结果。第二部分是硬件电路设计,它通过软件设计完成。 关键字:直流斩波;PWM ;SG3525

boost升压电路

boost升压电路2007-12-27 10:07开关直流升压电路(即所谓的boost或者step-up 电路)原理2007-09-29 13:28the boost converter,或者叫step-up converter,是一种开关直流升压电路,它可以是输出电压比输入电压高。 基本电路图见图一。 假定那个开关(三极管或者mos管)已经断开了很长时间,所有的元件都处于理想状态,电容电压等于输入电压。

下面要分充电和放电两个部分来说明这个电路 充电过程 在充电过程中,开关闭合(三极管导通),等效电路如图二,开关(三极管)处用导线代替。这时,输入电压流过电感。二极管防止电容对地放电。由于输入是直流电,所以电感上的电流以一定的比率线性增加,这个比率跟电感大小有关。随着电感电流增加,电感里储存了一些能量。 放电过程 如图,这是当开关断开(三极管截止)时的等效电路。当开关断开(三极管截止)时,由于电感的电流保持特性,流经电感的电流不会马上变为0,而是缓慢的由充电完毕时的值变为0。而原来的电路已断开,于是电感只能通过新电路放电,即电感开始给电容充电,电容两端电压升高,此时电压已经高于输入电压了。升压完毕。

说起来升压过程就是一个电感的能量传递过程。充电时,电感吸收能量,放电时电感放出能量。 如果电容量足够大,那么在输出端就可以在放电过程中保持一个持续的电流。 如果这个通断的过程不断重复,就可以在电容两端得到高于输入电压的电压。 一些补充1 AA电压低,反激升压电路制约功率和效率的瓶颈在开关管,整流管,及其他损耗(含电感上). 1.电感不能用磁体太小的(无法存应有的能量),线径太细的(脉冲电流大,会有线损大).

DC-DC升压(BOOST)电路原理

BOOST升压电路中: 电感的作用:是将电能和磁场能相互转换的能量转换器件,当MOS 开关管闭合后,电感将电能转换为磁场能储存起来,当MOS断开后电感将储存的磁场能转换为电场能,且这个能量在和输入电源电压叠加后通过二极管和电容的滤波后得到平滑的直流电压提供给负载,由于这个电压是输入电源电压和电感的磁砀能转换为电能的叠加后形成的,所以输出电压高于输入电压,既升压过程的完成; 肖特基二极管主要起隔离作用,即在MOS开关管闭合时,肖特基二极管的正极电压比负极电压低,此时二极管反偏截止,使此电感的储能过程不影响输出端电容对负载的正常供电;因在MOS管断开时,两种叠加后的能量通过二极向负载供电,此时二极管正向导通,要求其正向压降越小越好,尽量使更多的能量供给到负载端!! 电感升压原理: 什么是电感型升压DC/DC转换器? 如图1所示为简化的电感型DC-DC转换器电路,闭合开关会引起通过电感的电流增加。打开开关会促使电流通过二极管流向输出电容。因储存来自电感的电流,多个开关周期以后输出电容的电压升高,结果输出电压高于输入电压。 电感型升压转换器应用在哪些场合? 电感型升压转换器的一个主要应用领域是为白光LED供电,该白光LED能为电池供电系统的液晶显示(LCD)面板提供背光。在需要提升电压的通用直流-直流电压稳压器中也可使用。 决定电感型升压的DC-DC转换器输出电压的因素是什么? 在图2所示的实际电路中,带集成功率MOSFET的IC代替了机械开关,MOSFET的开、关由脉宽调制(PWM)电路控制。输出电压始终由PWM占空比决定,占空比为50%时,输出电压为输入电压的两倍。将电压提高一倍会使输入电流大小达到输出电流的两倍,对实际的有损耗电路,输入电流还要稍高。 电感值如何影响电感型升压转换器的性能? 因为电感值影响输入和输出纹波电压和电流,所以电感的选择是感性电压转换器设计的关键。等效串联电阻值低的电感,其功率转换效率最佳。要对电感饱和电流额定值进行选择,使其大于电路的稳态电感电流峰值。 电感型升压转换器IC电路输出二极管选择的原则是什么? 升压转换器要选快速肖特基整流二极管。与普通二极管相比,肖特基二极管正向压降小,使其功耗低并且效率高。肖特基二极管平均电流额定值应大于电路最大输出电压.

电力电子课程设计 boost cuk电路

电力电子课程设计 学院:电气信息工程学院 专业:电气1001 学号:3100501001 姓名:游雪

一设计要求 根据给定指标,设计BOOST电路参数 根据给定指标,设计CUK电路参数 利用Simulink软件,对上述电路进行验证 在实验平台上,进行实验,观察重要参数 撰写课程设计报告 二电路原理 BOOST电路图 Boost基本工作原理: Boost电路可称为升压斩波电路,假设电路中电感L值很大,电容C 值也很大。当V处于通态时,电源E向电感L充电,充电电流基本恒定为I1,同时C上的电压向负载R供电,因为C也很大,基本保持输出电压为恒值U0.设V通态时间为t on ,此阶段L积蓄能量为 E I1t on 。当V处于断态时E和L共同向C充电,并向负载R提供能量。设V 处于断态时间为t off,则这期间电感L释放能量为(U0-E)I1t off.一周

期T中,电感L积蓄的能量和释放的能量相等,即 E I1t on=(U0-E)I1t off 化简得: U0=T/ t off E 输出电压高于电源电压。CUK电路图 Cuk基本工作原理: 当可控开关V处于通态时,E-L1-V回路和R-L2-C-V回路分别流过电流。当V处于断态时,E-L1-C-VD回路和R-L2-VD回路分别流过电流。输出电压的极性与电源电压极性相反。该电路的等效电路相当于开关S在A、B两点之间交替切换。 在该电路中,稳态是电容C的电流在一周期内的平均值应为零,也就是其对时间的积分为零。 其中:I2 t on = I1 t off 所以: I2/ I1= t off/ t on=(1-α)/ α 可以得到输出电压与电源电压的关系为: U0= t on/ t off E=α/(1-α) E

Boost电力电子课程设计

一个Boost变换器的设计 课程名称: ______ 电力电子课程设计_________________ 设计题目: ______ 一个Boost 变换器的设计____________ 专业: _________ 自动化____________________________ 班级:自动化1 ______________________ 学号: ____________________________________________ 姓名: ____________________________________________ 指导教师: _________________________________________

1?题目 一个Boost变换器的设计 2 ?任务 设计一个Boost变换器,已知V1= 24V ± 10%, V2=36V , I o=0?1A。要求如下: 1)选取电路中的各元件参数,包括Q1、D1、L1和C1,写出参数选取原则和计算公式; 2)编写仿真文件,给出仿真结果:(1 )电路各节点电压、支路流图仿真结果;(2)V2 与I O的相图(即V2为X坐标;I O为Y坐标);(3)对V2与I O进行纹波分析;(4)改变R1,观察V2与I O的相图变化。 3)课程设计说明书用A4纸打印,同时上交电子版(含仿真文件); 4)课程设计需独立完成,报告内容及仿真参数不得相同。 R1V2 3 ?说明 仿真软件采用PSIM,免费试用程序及其说明书见附件。

Boost电路的分析 1、工作原理 升压斩波电路的原理图如图1所示。由可控开关Q1、储能电感L1、二极管D1、滤波 电容C1、负载电阻R1等组成。 当开关管Q1受控制电路的脉冲信号触发而导通时,输入直流电压V i全部加于储能电 感L1的两端,感应电势的极性为上正下负,二极管D1反向偏置截止,储能电感L1将电能 变换成磁能储存起来。电流从电源的正端经Q1及L1流回电源的负端。经过t on时间以后,开关管Q1受控而截止时,储能电感L1自感电势的极性变为上负下正,二极管D1正向偏置而导通,储能电感L1所存储的磁能通过D1向负载R1释放,并同时向滤波电容C1充电。经过时间T off后,控制脉冲又使Q1导通,D1截止,L1储能,已充电的C1向负载R1放电, 从而保证了向负载的供电。 图2 Boost变换器电路工作过程 2、电路参数的选择 已知:V仁24V ± 10%, V2=36V , I o=0 ?1A。 图1 Boost电路原理图

BOOST升压电路原理简单介绍

1.BOOST升压电路介绍 boost 升压电路,开关直流升压电路(即所谓的boost 或者step-up 电路)the boost converter,或者叫step-up converter,是一种开关直流升压电路,它可以是输出电压比输入电压高,基本电路如下: 1.1 B OOST升压电路工作原理 假定那个开关(三极管或者mos 管)已经断开了很长时间,所有的元件都处于理想状态,电容电压等于输入电压。下面要分充电和放电两个部分来说明这个电路。 充电过程: 在充电过程中,开关闭合(三极管导通),等效电路如图二,开关(三极管)处 用导线代替。这时,输入电压流过电感。二极管防止电容对地放电。由于输入是 直流电,所以电感上的电流以一定的比率线性增加,这个比率跟电感大小有关。 随着电感电流增加,电感里储存了一些能量。

放电过程: 如图,这是当开关断开(三极管截止)时的等效电路。当开关断开(三极管截止) 时,由于电感的电流保持特性,流经电感的电流不会马上变为0,而是缓慢的由充电完毕时的值变为0。而原来的电路已断开,于是电感只能通过新电路放电,即电感开始给电容充电,电容两端电压升高,此时电压已经高于输入电压了。升压完毕。 如果这个通断的过程不断重复,就可以在电容两端得到高于输入电压的电压。 2.提高转换效率 ①尽可能降低开关管导通时回路的阻抗,使电能尽可能多的转化为磁能; ②尽可能降低负载回路的阻抗,使磁能尽可能多的转化为电能,同时回路的损耗最低;

③尽可能降低控制电路的消耗,因为对于转换来说,控制电路的消耗某种意义上是浪费掉的,不能转化为负载上的能量;

相关主题
文本预览
相关文档 最新文档