cpri协议中文版本
- 格式:pdf
- 大小:1009.66 KB
- 文档页数:69
NTP协议格式1.NTP时间戳格式SNTP使用在RFC 1305 及其以前的版本所描述标准NTP时间戳的格式。
与因特网标准标准一致, NTP 数据被指定为整数或定点小数,位以big-endian风格从左边0位或者高位计数。
除非不这样指定,全部数量都将设成unsigned的类型,并且可能用一个在bit0前的隐含0填充全部字段宽度。
因为SNTP时间戳是重要的数据和用来描述协议主要产品的,一个专门的时间戳格式已经建立。
NTP用时间戳表示为一64 bits unsigned 定点数,以秒的形式从1900 年1月1 日的0:0:0算起。
整数部分在前32位里,后32bits(seconds Fraction)用以表示秒以下的部分。
在Seconds Fraction 部分,无意义的低位应该设置为0。
这种格式把方便的多精度算法和变换用于UDP/TIME 的表示(单位:秒),但使得转化为ICMP的时间戳消息表示法(单位:毫秒)的过程变得复杂了。
它代表的精度是大约是200 picoseconds,这应该足以满足最高的要求了。
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+| Seconds |+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+| Seconds Fraction (0-padded) |+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+2.NTP 报文格式NTP 和SNTP 是用户数据报协议( UDP) 的客户端 [POS80 ],而UDP自己是网际协议( IP) [DAR81 ] 的客户端. IP 和UDP 报头的结构在被引用的指定资料里描述,这里就不更进一步描述了。
中国金融集成电路(IC)卡与应用无关的非接触式规范中国金融集成电路(IC)卡标准修订工作组二零零四年九月目次1 范围 (1)2 参考资料 (2)3 定义 (3)3.1 集成电路Integrated circuit(s)(IC) (3)3.2 无触点的Contactless (3)3.3 无触点集成电路卡Contactless integrated circuit(s) card (3)3.4 接近式卡Proximity card(PICC) (3)3.5 接近式耦合设备Proximity coupling device(PCD) (3)3.6 位持续时间Bit duration (3)3.7 二进制移相键控Binary phase shift keying (3)3.8 调制指数Modulation index (3)3.9 不归零电平NRZ-L (3)3.10 副载波Subcarrier (3)3.11 防冲突环anticollision loop (3)3.12 比特冲突检测协议bit collision detection protocol (3)3.13 字节byte (3)3.14 冲突collision (3)3.15 基本时间单元(etu)elementary time unit(etu) (3)3.16 帧frame (3)3.17 高层higher layer (4)3.18 时间槽协议time slot protocol (4)3.19 唯一识别符Unique identifier(UID) (4)3.20 块block (4)3.21 无效块invalid block (4)4 缩略语和符号表示 (5)5 物理特性 (8)5.1 一般特性 (8)5.2 尺寸 (8)5.3 附加特性 (8)5.3.1 紫外线 (8)5.3.2 X-射线 (8)5.3.3 动态弯曲应力 (8)5.3.4 动态扭曲应力 (8)5.3.5 交变磁场 (8)5.3.6 交变电场 (8)5.3.7 静电 (8)5.3.8 静态磁场 (8)5.3.9 工作温度 (9)6 射频功率和信号接口 (9)6.1 PICC的初始对话 (9)6.2 功率传送 (9)6.2.1 频率 (9)6.2.2 工作场 (9)6.3 信号接口 (9)6.4 A类通信信号接口 (10)6.4.1 从PCD到PICC的通信 (10)6.4.2 从PICC到PCD的通信 (12)6.5 B类通信信号接口 (13)6.5.1 PCD到PICC的通信 (13)6.5.2 PICC到PCD的通信 (13)6.6 PICC最小耦合区 (14)7 初始化和防冲突 (15)7.1 轮询 (15)7.2 类型A-初始化和防冲突 (15)7.2.1 字节、帧、命令格式和定时 (15)7.2.2 PICC状态 (19)7.2.3 命令集 (20)7.2.4 选择序列 (21)7.3 类型B 初始化和防冲突 (26)7.3.1 比特、字节和帧的定时 (26)7.3.2 CRC_B (28)7.3.3 防冲突序列 (28)7.3.4 PICC状态描述 (29)7.3.5 命令集合 (31)7.3.6 ATQB和Slot-MARKER响应概率规则 (31)7.3.7 REQB命令 (31)7.3.8 Slot-MARKER命令 (33)7.3.9 ATQB(请求应答-类型B)响应 (33)7.3.10 ATTRIB命令 (34)7.3.11 对A TTRIB命令的应答 (36)7.3.12 HALT命令及应答 (36)8 传输协议 (38)8.1 类型A PICC的协议激活 (38)8.1.1 选择应答请求 (40)8.1.2 选择应答 (40)8.1.3 协议和参数选择请求 (43)8.1.4 协议和参数选择响应 (45)8.1.5 激活帧等待时间 (45)8.1.6 差错检测和恢复 (45)8.2 类型B PICC的协议激活 (46)8.3 半双工块传输协议 (46)8.3.1 块格式 (46)8.3.2 帧等待时间(FWT) (49)8.3.3 帧等待时间扩展 (49)8.3.4 功率水平指示 (50)8.3.5 协议操作 (50)8.4 类型A和类型B PICC的协议停活 (52)8.4.1 停活帧等待时间 (53)8.4.2 差错检测和恢复 (53)9 数据元和命令 (54)9.1 关闭非接触通道命令 (54)9.1.1 定义和范围 (54)9.1.2 命令报文 (54)9.1.3 命令报文数据域 (54)9.1.4 响应报文数据域 (54)9.1.5 响应报文状态码 (54)9.2 激活非接触通道命令 (55)9.2.1 定义和范围 (55)9.2.2 命令报文 (55)9.2.3 命令报文数据域 (55)9.2.4 响应报文数据域 (55)9.2.5 响应报文状态码 (55)附录 A:标准兼容性和表面质量 (56)A.1. 标准兼容性 (56)A.2. 印刷的表面质量 (56)附录 B: ISO/IEC其他卡标准参考目录 (57)附录 C:类型A的通信举例 (58)附录 D: CRC_A和CRC_B的编码 (60)D.1. CRC_A编码 (60)D.1.1. 通过标准帧发送的比特模式举例 (60)D.2. CRC_B编码 (60)D.2.1. 通过标准帧传送的比特模式实例 (60)D.2.2. 用C语言写的CRC计算的代码例子 (61)附录 E:类型A_时间槽-初始化和防冲突 (64)E.1. 术语和缩略语 (64)E.2. 比特、字节和帧格式 (64)E.2.1. 定时定义 (64)E.2.2. 帧格式 (64)E.3. PICC状态 (64)E.3.1. POWER-OFF状态 (64)E.3.2. IDLE状态 (65)E.3.3. READY状态 (65)E.3.4. ACTIVE状态 (65)E.3.5. HALT状态 (65)E.4. 命令/响应集合 (65)E.5. 时间槽防冲突序列 (65)附录 F:详细的类型A PICC状态图 (67)附录 G:使用多激活的举例 (69)附录 H:协议说明书 (70)H.1. 记法 (70)H.2. 无差错操作 (70)H.2.1. 块的交换 (70)H.2.2. 等待时间扩展请求 (70)H.2.3. DESELECT (70)H.2.4. 链接 (71)H.3. 差错处理 (71)H.3.1. 块的交换 (71)H.3.2. 等待时间扩展请求 (72)H.3.3. DESELECT (74)H.3.4. 链接 (74)附录 I:块和帧编码概览 (77)1 范围本规范包括以下主要内容:-物理特性:规定了接近式卡(PICC)的物理特性。
CPRI原理及测试解决方案(一)
马志刚
【期刊名称】《电信网技术》
【年(卷),期】2010(000)005
【摘要】分布式基站的基本结构与传统一体化基站有很大的不同,它将基站的基带部分(BBU/REC)和射频部分(RRU/RE/RRH)分离,分别作为单独的部分.这种分布式结构具有配置灵活、工程建设方便、环境适应性强等优点,应用越来越广泛.为了规范BBU和RRU之间的接口标准,CPRI(Common Public Radio Interface)协议应运而生.目前,CPRI接口的测试已经成为业界关注的焦点.R&S公司基于其强大的技术实力,于业界首先推出了基于CPRI接口的RRU和BBU测试解决方案,进一步完善了基站领域的测试需求,可以更好地为运营商、基站设备商、直放站厂商和检测机构提供相应的测试服务.
【总页数】3页(P68-70)
【作者】马志刚
【作者单位】罗德与施瓦茨中国有限公司
【正文语种】中文
【相关文献】
1.CPRI原理及测试解决方案(二) [J], 马志刚
2.车联网C-V2X技术原理及测试解决方案 [J], 甘秉鸿;
3.车联网C-V2X技术原理及测试解决方案 [J], 甘秉鸿
4.车联网C-V2X技术原理及测试解决方案 [J], 甘秉鸿
5.车联网C-V2X技术原理及测试解决方案 [J], 姚勤文;刘玥;张玉稳;裴静
因版权原因,仅展示原文概要,查看原文内容请购买。
中国金融集成电路(IC)卡与应用无关的非接触式规范中国金融集成电路(IC)卡标准修订工作组二零零四年九月目次1 范围 (1)2 参考资料 (2)3 定义 (3)3.1 集成电路Integrated circuit(s)(IC) (3)3.2 无触点的Contactless (3)3.3 无触点集成电路卡Contactless integrated circuit(s) card (3)3.4 接近式卡Proximity card(PICC) (3)3.5 接近式耦合设备Proximity coupling device(PCD) (3)3.6 位持续时间Bit duration (3)3.7 二进制移相键控Binary phase shift keying (3)3.8 调制指数Modulation index (3)3.9 不归零电平NRZ-L (3)3.10 副载波Subcarrier (3)3.11 防冲突环anticollision loop (3)3.12 比特冲突检测协议bit collision detection protocol (3)3.13 字节byte (3)3.14 冲突collision (3)3.15 基本时间单元(etu)elementary time unit(etu) (3)3.16 帧frame (3)3.17 高层higher layer (4)3.18 时间槽协议time slot protocol (4)3.19 唯一识别符Unique identifier(UID) (4)3.20 块block (4)3.21 无效块invalid block (4)4 缩略语和符号表示 (5)5 物理特性 (8)5.1 一般特性 (8)5.2 尺寸 (8)5.3 附加特性 (8)5.3.1 紫外线 (8)5.3.2 X-射线 (8)5.3.3 动态弯曲应力 (8)5.3.4 动态扭曲应力 (8)5.3.5 交变磁场 (8)5.3.6 交变电场 (8)5.3.7 静电 (8)5.3.8 静态磁场 (8)5.3.9 工作温度 (9)6 射频功率和信号接口 (9)6.1 PICC的初始对话 (9)6.2 功率传送 (9)6.2.1 频率 (9)6.2.2 工作场 (9)6.3 信号接口 (9)6.4 A类通信信号接口 (10)6.4.1 从PCD到PICC的通信 (10)6.4.2 从PICC到PCD的通信 (12)6.5 B类通信信号接口 (13)6.5.1 PCD到PICC的通信 (13)6.5.2 PICC到PCD的通信 (13)6.6 PICC最小耦合区 (14)7 初始化和防冲突 (15)7.1 轮询 (15)7.2 类型A-初始化和防冲突 (15)7.2.1 字节、帧、命令格式和定时 (15)7.2.2 PICC状态 (19)7.2.3 命令集 (20)7.2.4 选择序列 (21)7.3 类型B 初始化和防冲突 (26)7.3.1 比特、字节和帧的定时 (26)7.3.2 CRC_B (28)7.3.3 防冲突序列 (28)7.3.4 PICC状态描述 (29)7.3.5 命令集合 (31)7.3.6 ATQB和Slot-MARKER响应概率规则 (31)7.3.7 REQB命令 (31)7.3.8 Slot-MARKER命令 (33)7.3.9 ATQB(请求应答-类型B)响应 (33)7.3.10 ATTRIB命令 (34)7.3.11 对A TTRIB命令的应答 (36)7.3.12 HALT命令及应答 (36)8 传输协议 (38)8.1 类型A PICC的协议激活 (38)8.1.1 选择应答请求 (40)8.1.2 选择应答 (40)8.1.3 协议和参数选择请求 (43)8.1.4 协议和参数选择响应 (45)8.1.5 激活帧等待时间 (45)8.1.6 差错检测和恢复 (45)8.2 类型B PICC的协议激活 (46)8.3 半双工块传输协议 (46)8.3.1 块格式 (46)8.3.2 帧等待时间(FWT) (49)8.3.3 帧等待时间扩展 (49)8.3.4 功率水平指示 (50)8.3.5 协议操作 (50)8.4 类型A和类型B PICC的协议停活 (52)8.4.1 停活帧等待时间 (53)8.4.2 差错检测和恢复 (53)9 数据元和命令 (54)9.1 关闭非接触通道命令 (54)9.1.1 定义和范围 (54)9.1.2 命令报文 (54)9.1.3 命令报文数据域 (54)9.1.4 响应报文数据域 (54)9.1.5 响应报文状态码 (54)9.2 激活非接触通道命令 (55)9.2.1 定义和范围 (55)9.2.2 命令报文 (55)9.2.3 命令报文数据域 (55)9.2.4 响应报文数据域 (55)9.2.5 响应报文状态码 (55)附录 A:标准兼容性和表面质量 (56)A.1. 标准兼容性 (56)A.2. 印刷的表面质量 (56)附录 B: ISO/IEC其他卡标准参考目录 (57)附录 C:类型A的通信举例 (58)附录 D: CRC_A和CRC_B的编码 (60)D.1. CRC_A编码 (60)D.1.1. 通过标准帧发送的比特模式举例 (60)D.2. CRC_B编码 (60)D.2.1. 通过标准帧传送的比特模式实例 (60)D.2.2. 用C语言写的CRC计算的代码例子 (61)附录 E:类型A_时间槽-初始化和防冲突 (64)E.1. 术语和缩略语 (64)E.2. 比特、字节和帧格式 (64)E.2.1. 定时定义 (64)E.2.2. 帧格式 (64)E.3. PICC状态 (64)E.3.1. POWER-OFF状态 (64)E.3.2. IDLE状态 (65)E.3.3. READY状态 (65)E.3.4. ACTIVE状态 (65)E.3.5. HALT状态 (65)E.4. 命令/响应集合 (65)E.5. 时间槽防冲突序列 (65)附录 F:详细的类型A PICC状态图 (67)附录 G:使用多激活的举例 (69)附录 H:协议说明书 (70)H.1. 记法 (70)H.2. 无差错操作 (70)H.2.1. 块的交换 (70)H.2.2. 等待时间扩展请求 (70)H.2.3. DESELECT (70)H.2.4. 链接 (71)H.3. 差错处理 (71)H.3.1. 块的交换 (71)H.3.2. 等待时间扩展请求 (72)H.3.3. DESELECT (74)H.3.4. 链接 (74)附录 I:块和帧编码概览 (77)1 范围本规范包括以下主要内容:-物理特性:规定了接近式卡(PICC)的物理特性。
CPRI通用公共射频数字接口的SFP+/SFP28光模块应用介绍
通用公共射频数字接口(CPRI)是一种标准化协议,定义了无线基础设施基站的射频设备控制(REC)和射频设备(RE)之间的数字接口。
这实现了不同供应商设备的互操作性,保护了无线服务提供商的软件投入。
CPRI还在不断发展,线路速率也在不断提高,目前最新标准V7.0最高工作速率(Line Bit Rate)已经高达24.3Gbps,应对的是25Gbps SFP28光模块可以满足其工作速率需求。
CPRI支持使用分布式体系结构,含有REC的基站通过承载CPRI数据的光纤链路连接至远程射频前端(RRH或者RE)。
由于只需要将远程射频前端安装在环境较差的地点,因此,这一体系结构降低了服务供应商的成本。
基站可以位于环境比较好的中心地带,信号覆盖、气候以及供电都比较理想的地区。
在一个典型的网络中,几个远程射频前端会通过图1所示的一种拓扑连接至同一个基站,图中蓝线表示CPRI链路。
BBU称为基带处理单元,RRU是射频拉远单元,他们之间用数字光模块连接,RRU会把数字基带信号进行处理后,变频,射频滤波,射频放大后通过天线发射出去。
Adopt optical fiber
connection
针对CPRI通用公共射频数字接口,易飞扬开发了完整的满足CPRI工作速率的SFP+/SFP28光模块产品线,特别是开发了能够满足工业级工作温度的CPRI光模块,光纤接口类型有双纤和单纤可选,工作距离可达60/80公里,充分满足的客户需求。
易飞扬的CPRI产品线:
易飞扬通信()︱全球光互连技术革新者。
□TELECOMMUNICATIONS NETWORK TECHNOLOGYNo.51引言基站是由多个功能部分组成的,其中最主要的两个部分是基带部分和射频部分。
但在实用传统基站部署的网络中,基站的扩容却是运营商头疼的大问题。
这是由于传统基站的各个模块通常是集成在一起的,例如基带单元和射频单元通常是无法完全分离的,如果在基带单元资源紧张的情况下,需要进行扩容,增加基带单元的同时就必须增加射频单元,这将无法避免地导致射频部分的浪费。
而如果基站可以实现基站内的单元模块化,各模块之间各自独立,在上述情况下,就可以根据实际需要,实现只增加基带资源不增加射频资源的灵活配置,从而节省大量的设备成本。
目前,新的3G/4G 基站采用了开放架构,主要就是指基站的基带部分和射频部分之间采用了开放式的接口和标准协议,可分开放置;模块化则是开放架CPRI 原理及测试解决方案(一马志刚罗德与施瓦茨中国有限公司编者按:分布式基站的基本结构与传统一体化基站有很大的不同,它将基站的基带部分和射频部分分离,分别作为单独的部分。
这种分布式结构具有配置灵活、工程建设方便、环境适应性强等优点,应用越来越广泛。
为了规范BBU 和RRU 之间的接口标准,CPRI 协议应运而生。
目前,CPRI 接口的测试已经成为业界关注的焦点。
罗德与施瓦茨中国有限公司马志刚所撰《CPRI 原理及测试解决方案(一》一文首先介绍了CPRI 的基本原理,然后详细介绍了R&S 公司的CPRI 测试解决方案以及CPRI 测试实例。
罗德与施瓦茨中国有限公司基于其强大的技术实力,于业界首先推出了基于CPRI 接口的RRU 和BBU 测试解决方案,进一步完善了基站领域的测试需求,可以更好地为运营商、基站设备商、直放站厂商及检测机构提供相应的测试服务。
□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□摘要分布式基站的基本结构与传统一体化基站有很大的不同,它将基站的基带部分(BBU/REC和射频部分(RRU/RE/RRH分离,分别作为单独的部分。
基于Xilinx器件的CPRI协议实现方法
邢立佳;李一兵
【期刊名称】《今日电子》
【年(卷),期】2009(000)001
【摘要】随着通信技术的发展.标准化的基带射频接口越来越受到各厂家的关注。
在近几年内相继出现TCPRI.OBSAI接口标准。
由于其实现上的经济简便性.设
备供应商相继推出了基于CPRI协议标准的分布式基站产品。
本文介绍了在CDMA系统中CPRI协议的实现方法,并给出了逻辑设计框图和仿真波形。
【总页数】3页(P87-88,91)
【作者】邢立佳;李一兵
【作者单位】哈尔滨工程大学信息与通信工程学院;哈尔滨工程大学信息与通信工
程学院
【正文语种】中文
【相关文献】
1.基于CPRI协议的光纤通讯设计与实现 [J], 胡泽文
2.基于CPRI协议的FPGA高速数据传输模块设计与实现 [J], 王艳秋;李旭;高锦春;唐碧华;张洪光
3.分布式基站中CPRI协议的设计与实现 [J], 罗国相;白忠臣;秦水介
4.基于CPRI协议的5G基带数据传输技术的研究与实现 [J], 袁行猛;陈亮;徐兰天
5.基于CPRI协议的5G通信基带数据传输方法 [J], 崔娴
因版权原因,仅展示原文概要,查看原文内容请购买。
5G系统中BBU与RRU之间前传接口(CPRI)带宽计算发布时间:2017-08-22 10:22:57来源:5G通信技术标签:5G资源复用1 5G系统中前传(Fronthaul)的含义及考虑因素 (R3-160754)在RAN3 #91bis会议的R3-160754:Fronthauling: Motivations and Constraints中,Mitsubishi Electric分析了Fronthauling的基本概念,对其动因和局限进行了简单分析。
5G系统中采用C-RAN架构,它可以通过网络功能虚拟化实现硬件资源的共用和扩展。
C-RAN下,小区间的移动性多在CU内部完成,而不再需要通过外部接口。
如果传输网提供路由和复用特性,则BBU和RRU之间不再是1对1 的关系了,它们之间可以动态影射,实现资源的动态复用。
C-RAN下,通过CU/DU功能切分,实现BBU资源的集中化,可以降低OPEX和CAPEX。
具体体现在以下几个方面:降低站址需求降低安全风险共享机房资源(空调/电源)Mitsubishi认为Fronthualing包括CU与DU之间的接口,以及支撑该接口的底层网络。
“Fronthauling is a mean enabling to split RAN functions and locate them partly in a Central Office and partly distribute them. It includes the interfaces between central and distributed functions, and the underlying network t hat transports the interfaces.”需要说明的是,早期规范讨论过程中,CU/DU切分考虑高层和底层等多种选项。
目前高层(1~3层)确定选用选项2,底层仍需进一步讨论,但是物理层BBU与RRU之间的带宽资源需求最大,因此Fronthaul多集中在分析BBU与RRU之间的传统的CPRI接口。
中国金融集成电路(IC)卡与应用无关的非接触式规范中国金融集成电路(IC)卡标准修订工作组二零零四年九月目次1 范围 (1)2 参考资料 (2)3 定义 (3)3.1 集成电路Integrated circuit(s)(IC) (3)3.2 无触点的Contactless (3)3.3 无触点集成电路卡Contactless integrated circuit(s) card (3)3.4 接近式卡Proximity card(PICC) (3)3.5 接近式耦合设备Proximity coupling device(PCD) (3)3.6 位持续时间Bit duration (3)3.7 二进制移相键控Binary phase shift keying (3)3.8 调制指数Modulation index (3)3.9 不归零电平NRZ-L (3)3.10 副载波Subcarrier (3)3.11 防冲突环anticollision loop (3)3.12 比特冲突检测协议bit collision detection protocol (3)3.13 字节byte (3)3.14 冲突collision (3)3.15 基本时间单元(etu)elementary time unit(etu) (3)3.16 帧frame (3)3.17 高层higher layer (4)3.18 时间槽协议time slot protocol (4)3.19 唯一识别符Unique identifier(UID) (4)3.20 块block (4)3.21 无效块invalid block (4)4 缩略语和符号表示 (5)5 物理特性 (8)5.1 一般特性 (8)5.2 尺寸 (8)5.3 附加特性 (8)5.3.1 紫外线 (8)5.3.2 X-射线 (8)5.3.3 动态弯曲应力 (8)5.3.4 动态扭曲应力 (8)5.3.5 交变磁场 (8)5.3.6 交变电场 (8)5.3.7 静电 (8)5.3.8 静态磁场 (8)5.3.9 工作温度 (9)6 射频功率和信号接口 (9)6.1 PICC的初始对话 (9)6.2 功率传送 (9)6.2.1 频率 (9)6.2.2 工作场 (9)6.3 信号接口 (9)6.4 A类通信信号接口 (10)6.4.1 从PCD到PICC的通信 (10)6.4.2 从PICC到PCD的通信 (12)6.5 B类通信信号接口 (13)6.5.1 PCD到PICC的通信 (13)6.5.2 PICC到PCD的通信 (13)6.6 PICC最小耦合区 (14)7 初始化和防冲突 (15)7.1 轮询 (15)7.2 类型A-初始化和防冲突 (15)7.2.1 字节、帧、命令格式和定时 (15)7.2.2 PICC状态 (19)7.2.3 命令集 (20)7.2.4 选择序列 (21)7.3 类型B 初始化和防冲突 (26)7.3.1 比特、字节和帧的定时 (26)7.3.2 CRC_B (28)7.3.3 防冲突序列 (28)7.3.4 PICC状态描述 (29)7.3.5 命令集合 (31)7.3.6 ATQB和Slot-MARKER响应概率规则 (31)7.3.7 REQB命令 (31)7.3.8 Slot-MARKER命令 (33)7.3.9 ATQB(请求应答-类型B)响应 (33)7.3.10 ATTRIB命令 (34)7.3.11 对A TTRIB命令的应答 (36)7.3.12 HALT命令及应答 (36)8 传输协议 (38)8.1 类型A PICC的协议激活 (38)8.1.1 选择应答请求 (40)8.1.2 选择应答 (40)8.1.3 协议和参数选择请求 (43)8.1.4 协议和参数选择响应 (45)8.1.5 激活帧等待时间 (45)8.1.6 差错检测和恢复 (45)8.2 类型B PICC的协议激活 (46)8.3 半双工块传输协议 (46)8.3.1 块格式 (46)8.3.2 帧等待时间(FWT) (49)8.3.3 帧等待时间扩展 (49)8.3.4 功率水平指示 (50)8.3.5 协议操作 (50)8.4 类型A和类型B PICC的协议停活 (52)8.4.1 停活帧等待时间 (53)8.4.2 差错检测和恢复 (53)9 数据元和命令 (54)9.1 关闭非接触通道命令 (54)9.1.1 定义和范围 (54)9.1.2 命令报文 (54)9.1.3 命令报文数据域 (54)9.1.4 响应报文数据域 (54)9.1.5 响应报文状态码 (54)9.2 激活非接触通道命令 (55)9.2.1 定义和范围 (55)9.2.2 命令报文 (55)9.2.3 命令报文数据域 (55)9.2.4 响应报文数据域 (55)9.2.5 响应报文状态码 (55)附录 A:标准兼容性和表面质量 (56)A.1. 标准兼容性 (56)A.2. 印刷的表面质量 (56)附录 B: ISO/IEC其他卡标准参考目录 (57)附录 C:类型A的通信举例 (58)附录 D: CRC_A和CRC_B的编码 (60)D.1. CRC_A编码 (60)D.1.1. 通过标准帧发送的比特模式举例 (60)D.2. CRC_B编码 (60)D.2.1. 通过标准帧传送的比特模式实例 (60)D.2.2. 用C语言写的CRC计算的代码例子 (61)附录 E:类型A_时间槽-初始化和防冲突 (64)E.1. 术语和缩略语 (64)E.2. 比特、字节和帧格式 (64)E.2.1. 定时定义 (64)E.2.2. 帧格式 (64)E.3. PICC状态 (64)E.3.1. POWER-OFF状态 (64)E.3.2. IDLE状态 (65)E.3.3. READY状态 (65)E.3.4. ACTIVE状态 (65)E.3.5. HALT状态 (65)E.4. 命令/响应集合 (65)E.5. 时间槽防冲突序列 (65)附录 F:详细的类型A PICC状态图 (67)附录 G:使用多激活的举例 (69)附录 H:协议说明书 (70)H.1. 记法 (70)H.2. 无差错操作 (70)H.2.1. 块的交换 (70)H.2.2. 等待时间扩展请求 (70)H.2.3. DESELECT (70)H.2.4. 链接 (71)H.3. 差错处理 (71)H.3.1. 块的交换 (71)H.3.2. 等待时间扩展请求 (72)H.3.3. DESELECT (74)H.3.4. 链接 (74)附录 I:块和帧编码概览 (77)1 范围本规范包括以下主要内容:-物理特性:规定了接近式卡(PICC)的物理特性。