当前位置:文档之家› 提高电网功率因数

提高电网功率因数

提高电网功率因数
提高电网功率因数

提高电网功率因数

摘要:对广大厂矿企业来说,功率因数的高低是关系到电能质量和电网安全、经济运行的一个重要问题,应予以充分重视。本文集中讨论了影响电力系统功率因数的几个重要因素,提出了相应的解决措施,并结合我厂的实际情况,对利用并联移相电容提高电网的功率因数进行了探讨。

关键词:电网功率因数并联电容

功率因数是供用电系统的一项重要技术经济指标,用电设备在消耗有功功率的同时,还需大量的无功功率由电源送往负荷,功率因数反映的是用电设备在消耗一定的有功功率的同时所需的无功功率。通过合理配置无功功率补偿设备,以提高系统的功率因数,从而达到节约电能,降低损耗的目的。

典型案例分析:

沙隆达股份有限公司是一家以氯碱化工为基础,农药化工为主体,精细化工为特色的大型化工企业。主要生产能力为:农药3万吨,烧碱6万吨,化工原料及中间体30万吨,自采盐矿20万吨。下属能源动力厂主要负责水、电、汽、冷等能源的管理和运行。我厂电力系统总装机容量为47500KVA,设有一个110KV 变电站、4个10KV区间变电所和4套电解整流装置,共有电力变压器22台,整流变压器4台,年用电量2亿多千瓦时,其中整流装置用电量要占总用电量的三分之二。整流装置平均功率因数比较高,可以达到0.95,但由于整流装置的存在,谐波分量也比较重。其它动力负荷主要是异步电动机,平均功率因数很低,我厂主要针对低压配电网络进行补偿,补偿前整个电力系统的功率因数只有0.87,补偿后整个电力系统功率因数可以达到0.95以上。

影响功率因数的主要原因:

一、异步电动机对功率因数的影响

我厂绝大部分动力负荷都是异步电动机, 异步电动机转子与定子间的气隙是决定异步电动机需要较多无功的主要因素,而异步电动机所耗用的无功功率是由其空载时的无功功率和一定负载下无功功率增加值两部分所组成。所以要改善异步电动机的功率因数就要防止电动机的空载运行并尽可能提高负载率。因此,在选择异步电动机时,既要注意它们的机械性能,又要考虑它们的电器指标,合理选择异步电动机的型号、规格和容量,使其处于经济运行状态,若电动机长期处于低负载下运行,既增大功率损耗,又使功率因数和效率都显著恶化。故从节约电能和提高功率因数的观点出发,必须正确的合理的选择电动机的容量。其次,要提高异步电动机的检修质量,因为异步电动机定子绕组匝数变动和电动机定、转子间的气隙变动时对异步电动机无功功率的大小有很大的影响。

二、电力变压器对功率因数的影响

电力变压器的无功功率消耗,是由于变压器的变压过程是由电磁感应来完成的,是由无功功率建立和维持磁场进行能量转换的。没有无功功率,变压器就无法变压和输送电能。变压器消耗无功的主要成分是它的空载无功功率,提高变压器的功率因数就必须降低变压器的无功损耗,避免变压器空载运行或长期处于低负载运行状态。

三、整流装置对功率因数的影响

单就整流系统而言,其功率因数可达到0.95,但是由于整流系统网侧电流不是正弦波,整流变压器除向电网吸取基波电流外,还向电网送出谐波电流,严重影响并联电容的运行。尽可能减少谐波分量的产生是消除整流装置对功率因数补偿设备影响的根本办法。整流机组的网侧谐波分量与等效相数有密切关系,提高等效相数是抑制谐波产生的有效措施。我公司整流系统共有四台整流变压器,为提高等效相数,我们分别将整流变压器接成△/△▽和Y/△▽,从而组成12相整流系统,这时单套6脉波整流的工作原理不变,只是一台整流变压器通过Y/△移相使5,7,17,19……次谐波相互抵消,注入系统的只有12K±1次特征谐波,在不增加设备的前提下,达到了最大限度抑制谐波分量,减少了谐波分量对电容运行的影响的目的。

提高功率因数的措施:

一、提高自然功率因数

提高自然功率因数主要是靠提高变压器、电动机负载率、调整负荷结构,使功率因数达到最佳。

二、并联移相电容提高功率因数

由于我公司实际生产工艺中没有使用同步电机,所以我们采用并联移相电容器的方式进行功率因数补偿。

(一)、补偿方式的选择:

根据移相电容器在工厂供电系统中的装设位置,有高压集中补偿、低压成组补偿和低压分散补偿三种方式。

高压集中补偿是将高压移相电容器集中装设在变配电所的10KV母线上,这种补偿方式只能补偿10KV母线前(电源方向)所有线路上的无功功率,而此母线后的厂内线路没有得到无功补偿,所以这种补偿方式的经济效果较后两种补偿方式差。同时因我厂存在整流装置,虽然我们对其进行了调整,但仍然不能完全避免谐波分量的产生。如采用高压集中补偿,会对高压电容器的安全运行造成严重影响。

低压分散补偿,又称个别补偿,是将移相电容器分散地装设在各个车间或用电设备的附近。这种补偿方式能够补偿安装部位前的所有高低压线路和变电所主变压器的无功功率,因此它的补偿范围最大,效果也较好。但是这种补偿方式总的设备投资较大,且电容器在用电设备停止工作时,它也一并被切除,所以利用率不高。

低压成组补偿是将移相电容器装设在车间变电所的低压母线上,这种补偿方式能补偿车间变电所低压母线前的车间变电所主变压器和厂内高压配电线及前面电力系统的无功功率,其补偿范围较大。由于这种补偿能使变压器的视在功率减小从而使变压器容量选得小一些,比较经济,而且它安装在变电所低压配电室内,运行维护方便。同时由于我厂存在谐波源,车间变压器的存在,也起到了隔离和衰减谐波的作用。有利于低压移相电容器的安全稳定运行。

综合以上三种补偿方式的优缺点,根据我厂的实际情况,我们选择了低压成组补偿方式。

(二)、补偿容量的确定

对于车间变(配)电所,安装的容性无功量应等于装置所在母线上的负载按提高功率因数所需补偿的容性无功量与变压器所需补偿的容性无功量之和。

1)负载所需补偿的装置容量Kvar(千乏)按下式考虑:

QC1=P(tgφ1-tgφ2)

Qc1——负荷所需补偿的容性无功量(Kvar)

P——母线上的平均有功负荷功率

φ1——补偿前的功率因数角

φ2——补偿后的功率因数角

2)变压器所需补偿的装置容量Kvar(千乏)按下式考虑:

QC2= (UK%/100+IO%/100 ) Se

Qc2——变压器所需补偿的容性无功量(Kvar)

Uk%——变压器阻抗电压的百分数

I0%——变压器空载电流的百分数

Se——变压器额定容量(KVA)

(三)、低压成组补偿设备的选择:

选择补偿设备,应在充分考虑安全性的同时,根据各厂实际情况,从实用性、可靠性入手,将费效比最大化。

1、投切方式的选择:

电容投切有两种方式:人工投切和自动投切。人工投切对运行人员是件繁重的工作,且难以实现及时准确地操作,影响供电电压质量。我们采用自动投切方式。可实现电容器的自动投切,我们采用了JKG系列无功功率自动补偿控制器,这种控制器能随意设定投入门限、投入延时、切除延时、过压门限、过压延时、欠流切除等参数,能自动跟踪功率因数变化合理选择电容组数,还能在功率因数超前时快速切除已投电容。在我厂的应用中,这种控制方式能满足我厂的实际要求。

2、移相电容器的选择

我厂选用的电容器为BSMJ0.415-18-3型自愈式移相电容器。该电容器的额定工作电压415V,容量18Kvar,三相三角形接法,具有自放电功能,最高过电压110%额定电压,最高过电流130%额定电流。

电容容量的确定要考虑到开关、接触器的容量,补偿梯度大小对电气设备的影响及维修成本,还有各厂实际使用习惯。我厂广泛采用18 Kvar三相移相电容器,我们认为其补偿梯度合理,设备费效比高。

额定电压的确定要考虑到变压器低压母线电压的波动和补偿后母线电压升高的因素,并联补偿移相电容器的额定电压应大于并联补偿移相电容器的实际工作电压。

3、断路器的选择

QF1—QFn为单台电容器提供主保护,我厂选用GV3—M40施耐德空气开关。该开关具有过流和速断保护功能,我们一般将空开过流整定值整定在30A左右,可有效保护电容过电流。该开关分断能力强,分断电流可达35KA,可靠性也比较高,单台电容器故障时能可靠切除,不影响其它电容器的运行。QF我们选用施耐德NS型塑壳断路器,该断路器具有电子式过流和速断保护功能,动作准确可靠,分断能力极强,并具有稳定可靠的限流能力,可作为整套电容器组的后备保护。采用上述两种开关后,我们完全可以将电容故障限制在电容柜内,而不对配电系统产生影响。

补偿效果:

通过对全厂供配电系统安装并联移相电容器组,向电网提供可阶梯调节的容性无功,补偿多余的感性无功,一般可以使实际功率因数提高到0.95以上,补偿效果明显。

?减少供电损耗,节约电费

以线损为例,我厂年用电量约为2亿千瓦时,补偿前线损率约为5%,补偿后功率因数从0.87提高到0.95,则每年可减低线损约为200万千瓦时,按每度电0.4元计算,可节约电费开支80万元,加上电力系统功率因数奖60万元,每年共计节约电费开支140万元。

?提高设备利用率

功率因数从0.85提高到0.95,设备利用率提高11.8% 。减少设备投资,充分发挥设备潜能。

改善供电质量

减少电压损失,降低电压波动,有效改善供电质量。

结束语

文中根据化工企业的特点,从应用实际出发,介绍了影响功率因数的主要因素,并提出了相应的解决办法,重点介绍了利用并联移相电容器提高功率因数的经验。

提高功率因数的意义和方法

提高功率因数的意义和方法

提高功率因数的意义和方法 1.功率因数 在交流电路中,电压与电流之间的相位差(Φ)的余弦叫做功率因数,用符号cosΦ表示,在数值上,功率因数是有功功率和视在功率的比值,即cosΦ=P/S 功率因数的大小与电路的负荷性质有关,如白炽灯泡、电阻炉等电阻负荷的功率因数为1,一般具有电感负载的电路功率因数都小于1。功率因数是电力系统的一个重要的技术数据,功率因数是衡量电气设备效率高低的一个系数, 功率因数低,说明电路用于交变磁场转换的无功功率大,从而降低了设备的利用率,增加了线路供电损失。 电能占企业成本的5%~30%,有些企业占得更高。因此如何提高电能的利用率和使用效率,保证电能质量,是企业节能提效的重要手段。绝大多数企业是用电动机作为机械的原动机,而电动机是感性负载,功率因数并不高,因此企业的能源消耗中无功能源消耗占了很大成份。尽可能的减少无功能量的消耗,是企业节能的头等大事。对于企业而言,供电损耗主要是电动机损耗、低压线路损耗、高压线路损耗和变压器损耗。安装无功补偿装置后功率因数提高,线路电流会下降,这样线路损耗降低,变压器的有功损失也会降低。电动机损耗(即效率)是电动机本身固有的,目前Y系列的电动机的效率一般都在85%~95%。但电动机的功率因数将影响整个电网的效率。用电系统装设无功补偿设备,提高功率因数,对于企业的降损节电、用电系统的安全可靠运行具有极为重要的意义 2.影响功率因数的主要因素 异步电动机和电力变压器。异步电动机所耗用的无功功率是由其空载时的无 功功率和一定负载下无功功率增加值两部分所组成,改善异步电动机的功率因 数就要防止电动机的空载运行并尽可能提高负载率。变压器消耗无功的主要成 份是它的空载无功功率,它和负载率的大小无关。因而,为了改善电力系统和企 业的功率因数,变压器不应空载运行或长其处于低负载运行状态。 供电电压。当供电电压高于额定值的10%时,由于磁路饱和的影响,无功功率将 增长得很快,据有关资料统计,当供电电压为额定值的110%时,一般工厂的无功 将增加35%左右,当供电电压低于额定值时,无功功率也相应减少而使它们的功 率因数有所提高。但供电电压降低会影响电气设备的正常工作。 3.提高功率因数的意义 ⑴提高功率因数可以提高设备的利用率 由于有功功率:P=UI COSφ,当U和I为定值时,P∞COSφ,这就是说在电源 提供同样的视在功率UI情况下,有功功率P与功率因数COSφ的大小成正比。 我们知道,电源设备的容量都是根据额定电压UN和额定电流IN确定的,因 此其额定视在功率为SN=UN IN。它表示该设备允许输出的最大有功功率,换句话 说,假如负载COSφ=1,P=UN IN COSφ=UN IN=SN,此时电源的容量全部转换成有

功率因数的详细讲解

功率因数的详细讲解 例如:设备功率为100个单位,也就是说,有100个单位的功率输送到设备中。然而,因大部分电器系统存在固有的无功损耗,只能使用70个单位的功率。很不幸,虽然仅仅使用70个单位,却要付100个单位的费用。在这个例子中,功率因数是0.7 (如果大部分设备的功率因数小于0.9时,将被罚款),这种无功损耗主要存在于电机设备中(如鼓风机、抽水机、压缩机等),又叫感性负载。功率因数是马达效能的计量标准。 ( 2) 基本回答:每种电机系统均消耗两大功率,分别是真正的有用功(叫千瓦)及电抗性的无用功。功率因数是有用功与总功率间的比率。功率因数越高,有用功与总功率间的比率便越高,系统运行则更有效率。 (3) 高级回答:在感性负载电路中,电流波形峰值在电压波形峰值之后发生。两种波形峰值的分隔可用功率因数表示。功率因数越低,两个波形峰值则分隔越大。保尔金能使两个峰值重新接近在一起,从而提高系统运行效率。 功率因数是交流电路的重要技术数据之一。功率因数的高低,对于电气设备的利用率和分析、研究电能消耗等问题都有十分重要的意义。 所谓功率因数,是指任意二端网络(与外界有二个接点的电路)两端电压U与其中电流I 之间的位相差的余弦。在二端网络中消耗的功率是指平均功率,也称为有功功率,它等于: P=UIcosΦ 由此可以看出,电路中消耗的功率P,不仅取决于电压V与电流I的大小,还与功率因数有关。而功率因数的大小,取决于电路中负载的性质。对于电阻性负载,其电压与电流的位相差为0,因此,电路的功率因数最大();而纯电感电路,电压与电流的位相差为π/2,并且是电压超前电流;在纯电容电路中,电压与电流的位相差则为-(π/2),即电流超前电压。在后两种电路中,功率因数都为0。对于一般性负载的电路,功率因数就介于0与1之间。 一般来说,在二端网络中,提高用电器的功率因数有两方面的意义,一是可以减小输电线路上的功率损失;二是可以充分发挥电力设备(如发电机、变压器等)的潜力。因为用电器总是在一定电压U和一定有功功率P的条件下工作,由公式 I=P/UcosΦ 可知,功率因数过低,就要用较大的电流来保障用电器正常工作,与此同时输电线路上输电电流增大,从而导致线路上焦耳热损耗增大。另,在输电线路的电阻上及电源的内组上的电压降,都与用电器中的电流成正比,增大电流必然增大在输电线路和电源内部的电压损失。因此,提高用电器的功率因数,可以减小输电电流,进而减小了输电线路上的功率损失。提高功率因数,可以充分发挥电力设备的潜力,这也不难理解。因为任何电力设备,工作时总是在一定的额定电压和额定电流限度内。工作电压超过额定值,会威胁设备的绝缘性能;工作电流超过额定值,会使设备内部温度升得过高,从而降低了设备的使用寿命。对于电力设备,电压与电流额定值的乘积,称为这台设备的额定视在功率S额即 S额=U额I额 也称它为设备的容量,对于发电机来说,这个容量就是发电机可能输出的最大功率,它标志着发电机的发电潜力,至于发电机实际输出多大功率,就跟用电器的功率因数有关,用电器消耗的功率为 P=S额cosΦ 功率因数高,表示有功功率占额定视在功率的比例大,发电机输出的电能被充分地利用了。例如,发电机的容量若为15000千伏安,当电力系统的功率因数由0.6提高到0.8时,就可以使发电机实际发电能力提高3000千瓦,这不正是发挥了发电机的潜力吗?设备

功率因数提高措施

功率因数控制措施 水厂铁矿担负水厂总降站整体功率因数的指标完成任务,为保证水厂总降113开关功率因数在0.95以上,目前水厂铁矿无功补偿装置总装机容量为34035kvar,全部投入运行。为了在保证供电系统安全运行的前提下,最大能力的提高功率因数,特制定如下功率因数控制措施: 1、水厂总降站为北区供电中心,在6kVⅠ、Ⅱ、Ⅲ段共安装了15000kVar 补偿电容器,其中每段静态补偿4000 kVar电容器,动态补偿1000 kVar电容器。为了保证113进口功率因数达到0.95左右,日常运行中601、60 2、603功率因数按照0.97-0.99控制,当系统停机负荷降低时,系统电压过高造成6KV电容器跳闸,为了保证总降电容器无功补偿最大投入,将动态补偿电容器切除,只投入静态补偿电容器,待系统转车负荷升高时再投入动态补偿电容器,确保总降6KV 功率因数不低于0.97。 2、为了确保水厂铁矿整体功率因数达标,减少无功补偿电容器投入,统计新建主厂14台和老厂23台同步机励磁电流,将励磁装置电流调整到最佳状态;值班人员每2小时检查和调整一次同步机励磁电流和功率因数,确保上限为超前0.98,下限为滞后0.98。 3、为防止系统出现过补,导致系统谐振引发故障,或者频繁的过压冲击影响电容器和系统内其他设备的寿命,要求西排变电站值班员按照生产作业日计划安排,提前20分钟将6KV电容器手动退出运行,在西排转车时,负荷稳定后投入运行。 4、尾矿35KV电容器在选系统生产时投入运行,在选系统停机检修时退出运行。 5、通过增加电容器,提高总降功率因数,保证分支线路电容器投入合理,从而降低线路损失,通过技改工程的实施不断优化无功补偿系统,减少无功负荷在系统中的传输,结合新建环水、尾矿6KV配电室的改造,分别增加200和600KV AR的无功补偿。结合输送、磁选低压柜的改造对8变压器进行就地补偿,增加无功补偿1600kVar。 6、强化就地补偿电容器的管理,监控各线路功率因数,在确保在装就地补偿电容器全部投入的情况下,大力推广就地补偿装置,尤其在供电线路较长的末端站所优先考虑,在就地补偿容量增加后,陆续减少集中补偿电容器的装机容量,使得系统并联电容器分布趋向合理。

功率因数调整电费办法课件.doc

功率因数调整电费办法 《电力系统和无功电力管理条例》中的『电力用户的功率因数及无功补偿设备的管理』 第十二条规定:《用户在当地供电局规定的电网高峰负荷时的功率因数,应达到下列规定: 高压供电的工业用户和高压供电装有带负荷调整电压装置的电力用户功率因数为0.9 及以上;其他100kVA 及以上电力用户和大、中型电力排灌站功率因数为0.85 及以上;销售和 农业用户功率因数为0.80 及以上。凡功率因数未达到上述规定的新用户,供电局可拒绝供 电。第十四条规定:《为调动用户改善电压,管好无功设备的积极性,对电力负荷不满足第 十二条规定的电力用户,按国家批准的《功率因数调整电费办法》的有关规定进行功率因数 考核和电费调整。以0.9 为标准值的功率因数调整电费表如下: 功率因数0.89 0.88 0.87 0.86 0.85 0.84 0.83 0.82 0.81 0.80 0.79 0.78 0.77 0.76 电费增加 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 (% ) 增收电 费功率因数0.75 0.74 0.73 0.72 0.71 0.70 0.69 0.68 0.67 0.66 0.65 功率因数自0.64 以下电费增加每降低0.01 电费增加 7.5 8.0 8.5 9.0 9.5 10.0 11.0 12.0 13.0 14.0 15.0 (% ) 2% 功率因数0.9 0.91 0.92 0.93 0.94 0.95--1.00 减收电 费 电费减少 (% ) 0.0 0.15 0.30 0.45 0.60 0.75 以0.85 为标准值的功率因数调整电费表如下: 功率因 0.84 0.83 0.82 0.81 0.80 0.79 0.78 0.77 0.76 0.75 0.74 数 电费增 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 加(%) 功率因 0.73 0.72 0.71 0.70 0.69 0.68 0.67 0.66 0.65 0.64 0.63 增收数 电费电费增 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 11.0 12.0 加(%) 功率因 0.62 0.61 0.60 功率因数自0.59 及以下,每降低0.01 电费增加2% 数 电费增 13.0 14.0 15.0 加(%) 功率因 0.85 0.86 0.87 0.88 0.89 0.90 0.91 0.92 0.93 0.94 ~1.00 减收数 电费电费减 0.0 0.1 0.2 0.3 0.4 0.5 0.65 0.80 0.95 1.10 少(%)

关于功率因数的详细解析

关于功率因数的详细解析 功率因数(Power Factor)是衡量电气设备效率高低的一个系数。它的大小与电路的负荷性质有关,如白炽灯泡、电阻炉等电阻负荷的功率因数为1,一般具有电感性负载的电路功率因数都小于1。功率因数低,说明无功功率大,从而降低了设备的利用率,增加了线路供电损失。 关于功率因数的讨论网上也有不少文章,但很多人仍然对一些概念存有误解,这将为系统的设计带来诸多危害,有必要在此再加以澄清。 一、功率因数的由来和含义 在电气领域的负载有三个基本品种:电阻、电容和电感。电阻是消耗功率的器件,电容和电感是储存功率的器件。日常所用的交流电在纯电阻负载上的电压和电流是同相位的,即相位差q = 0°,如图1(a)所示;交流电在纯电容负载上的电压和电流关系是电流超前电压90°(q =90°),如图1(b)所示;交流电在纯电感负载上的电压和电流关系是电流滞后电压90°(q = -90°),如图1(c)所示。 图1 不同性质负载上的电流电压关系 功率因数的定义是: (1) 在电阻负载上的有功功率就是视在功率,即二者相等,所以功率因数F=1。而在纯电容和纯电感负载上的电流和电压相位差90°,所以所以功率因数F=cosq = cos90°=0,即在纯电容和纯电感负载上的有功功率为零。 从这里可以看出一个问题,同样是一个电源,对于不同性质的负载其输出的功率的大小和性质也不同,因此可以说负载的性质决定着电源的输出。换言之,电源的输出不取决于电源的本身,就像一座水塔的供水水流取决于水龙头的开启程度。 从上面的讨论可以看出,功率因数是表征负载性质和大小的一个参数。而且一般说一个负载只有一种性质,就像一个人只有一个身份证号码一样。这种性质的确定是从负载的输入端看进去,称为负载的输入功率因数。一个负载电路完成了,它的输入功率因数也就定了。

功率因数计算公式及提高功率因数的方法

功率因数计算公式功率因数统计计算公式 视在功率S 有功功率P 无功功率Q 功率因数cos@(符号打不出来用@代替一下) 视在功率S=(有功功率P的平方+无功功率Q 的平方)再开平方而功率因数cos@=有功功率P/视在功率S 功率因数统计计算公式 可分为提高自然功率因数和采用人工补尝两种方法: 提高自然因数的方法: 1). 恰当选择电动机容量,减少电动机无功消耗,防止“大马拉小车”。 2). 对平均负荷小于其额定容量40%左右的轻载电动机,可将线圈改为三角形接法(或自动转换)。 3). 避免电机或设备空载运行。 4). 合理配置变压器,恰当地选择其容量。

5). 调整生产班次,均衡用电负荷,提高用电负荷率。 6). 改善配电线路布局,避免曲折迂回等。 人工补偿法: 实际中可使用电路电容器或调相机,一般多采用电力电容器补尝无功,即:在感性负载上并联电容器。一下为理论解释: 在感性负载上并联电容器的方法可用电容器的无功功率来补偿感性负载的无功功率,从而减少甚至消除感性负载于电源之间原有的能量交换。 在交流电路中,纯电阻电路,负载中的电流与电压同相位,纯电感负载中的电流滞后于电压90o,而纯电容的电流则超前于电压90o,电容中的电流与电感中的电流相差180o,能相互抵消。 电力系统中的负载大部分是感性的,因此总电流将滞后电压一个角度,如图1所示,将并联电容器与负载并联,则电容器的电流将抵消一部分电感电流,从而使总电流减小,功率因数将提高。 并联电容器的补偿方法又可分为: 1.个别补偿。即在用电设备附近按其本身无功功率的需要量装设电容器组,与用电设备同时投入运行和断开,也就是再实际中将电容器直接接在用电设备附近。 适合用于低压网络,优点是补尝效果好,缺点是电容器利用率低。 2.分组补偿。即将电容器组分组安装在车间配电室或变电所各分路出线上,它可与工厂部分负荷的变动同时投入或切除,也就是再实际中将电容器分别安装在各车间配电盘的母线上。 优点是电容器利用率较高且补尝效果也较理想(比较折中)。 3.集中补偿。即把电容器组集中安装在变电所的一次或二次侧的母

电能表及功率因数基础知识

视在功率与功率因数 在功率三角形中,有功功率P与视在功率S的比值,称为功率因数cosφ,其计算公式为:Q=U×Isinφ,其中的φ指的是电压和电流的相位差。 在电力网的运行中,功率因数反映了电源输出的视在功率被有效利用的程度,我们希望的是功率因数越大越好。这样电路中的无功功率可以降到最小,视在功率将大部分用来供给有功功率,从而提高电能输送的功率。 视在功率≠有功+无功 视在功率apparent power S=UI 有功功率active power P=UI * cosφ 无功功率reactive power Q=UI *sinφ 无功功率分电感性无功和电容性无功,这两种是互补的。 在实际的电路中,由于以感性负载为主,无功功率通常都是电感性无功,为了减少这类无功,提高功率因数就得用电容性无功去补偿电感性无功,提高整个电路的功率因数 功率三角形 三者在数值上的关系三角形。 是表示视在功率S、有功功率P和无功功率Q 其中φ是u(t)(瞬时电压)与i(t)(瞬时电流)的相位差, 也称功率因数角,cosφ表示功率因素。

电能测量四象限的定义: 测量平面的横轴表示电压向量U (固定在横轴),瞬时的电流向量用来表示当前电能的输送,并相对于电压相量U 具有相位角Φ。逆时针方向Φ角为正。四象限的示意图如图1所示: A —有功电能;R —无功电能;R L —感性无功电能;R C —容性无功电能 1、当系统向用户输送有功和无功时,电能表工作在第Ⅰ象限,电能表显示有功是正值,无功也是正值;这最常见的一种方式,大部分用户也都是这种方式; 2、当系统向用户输送无功,用户向系统反送有功时,电能表工作在第Ⅱ象限,电能表显示有功是负值,无功是正值;有些自发电的用户在有功电能发的多的情况下,可能有有功电能向网上送的情况; 3、当用户向系统反送有功和无功时,电能表工作在第Ⅲ象限,电能表显示有功是负值,无功也是负值;有些自发电的用户在内部没有负荷时,出现和专业电厂一样,有功和无功全部向网上输送; 4、当系统向用户输送有功,用户向系统反送无功时,电能表工作在第Ⅳ象限,电能表显示有功是正值,无功是负值;说明该用户在从网上取有功,但内部电容器等投多了,向网上输送无功; 电力系统中的正向功率和反向功率是什么东西?为什么要分正向功率和反向功率 答:正向功率就是吸收系统的有用功,反向功率就是向系统输送有用功。国家电网都是联起来的,最简单的就象一个口字形的电网,不是我们一般用户看到的用电末端都是向一端输送电能的。 分正反功率一个可以计量,还有一个就是保护。当出现短路时决定短开环形电网的哪几个断路器,把故障段分离出来。 输入有功(+A ) 输出有功(-A )

怎样提高功率因数

关于提高功率因数的研究 1、什么叫功率因数? 有功功率和视在功率的比叫功率因数。 2、提高功率因数的意义。 提高功率因数非常重要:①可减少有功损失;②减少电力线路的电压损失,改善电压质量;③可提高设备利用率;④可减少输送同容量有功的电流,因而可使线路及变电设备的容量降低。 3、提高功率因数的方法? 提高功率因数的方法有:①提高自然功率因数,包括合理选择电器设备.避免变压器轻载运行,合理安排工艺流程,改善机电设备的运行状况;②通过人工补偿提高功率因数、最常用的是并联电容器补偿。并不是经补偿后的功率因数越高越好,因为补偿装置消耗有功发出无功,随着补偿容量的增加,其有功损耗也增加,初投资增大。就经济运行角度而言,补偿后的功率因数过高或过低均会使总功率损耗增加;若补偿功率因数恰当,能使总有功损耗最小,此时的补偿容量及功率因数称为按经济运行原则确定的补偿容量及功率因数。 并联移相电容提高功率因数 由于我公司实际生产工艺中没有使用同步电机,所以我们采用并联移相电容器的方式进行功率因数补偿。 (一)、补偿方式的选择: 根据移相电容器在工厂供电系统中的装设位置,①、有高压集中补偿、②、低压成组补偿和③、低压分散补偿三种方式。 高压集中补偿是将高压移相电容器集中装设在变配电所的10KV母线上,这种补偿方式只能补偿10KV 母线前(电源方向)所有线路上的无功功率。 低压分散补偿,又称个别补偿,是将移相电容器分散地装设在各个车间或用电设备的附近。这种补偿方式能够补偿安装部位前的所有高低压线路和变电所主变压器的无功功率,因此它的补偿范围最大,效果也较好。但是这种补偿方式总的设备投资较大,且电容器在用电设备停止工作时,它也一并被切除,所以利用率不高。现有我厂没有采用。 低压成组补偿是将移相电容器装设在车间变电所的低压母线上,这种补偿方式能补偿车间变电所低压母线前的车间变电所主变压器和厂内高压配电线及前面电力系统的无功功率,其补偿范围较大。由于这种补偿能使变压器的视在功率减小从而使变压器容量选得小一些,比较经济,而且它安装在变电所低压配电室内,运行维护方便。同时由于我厂存在谐波源,车间变压器的存在,也起到了隔离和衰减谐波的作用。有利于低压移相电容器的安全稳定运行。 4、影响我厂功率因数的主要原因及对策: 一、异步电动机对功率因数的影响 我厂绝大部分动力负荷都是异步电动机, 异步电动机转子与定子间的气隙是决定异步电动机需要较多无功的主要因素,而异步电动机所耗用的无功功率是由其空载时的无功功率和一定负载下无功功率增加值两部分所组成。所以要改善异步电动机的功率因数就要防止电动

提高电网功率因数的主要原因及对策

提高电网功率因数的主要原因及对策 摘要:对广大厂矿企业来说,功率因数的高低是关系到电能质量和电网安全、经济运行的一个重要问题,应予以充分重视。本文集中讨论了影响电力系统功率因数的几个重要因素,提出了相应的解决措施,并结合我厂的实际情况,对利用并联移相电容提高电网的功率因数进行了探讨。 关键词:电网功率因数并联移相电容 沙隆达股份有限公司是一家以氯碱化工为基础,农药化工为主体,精细化工为特色的大型化工企业。主要生产能力为:农药3万吨,烧碱6万吨,化工原料及中间体30万吨,自采盐矿2 0万吨。下属能源动力厂主要负责水、电、汽、冷等能源的管理和运行。我厂电力系统总装机容量为47500KVA,设有一个110KV变电站、4个10KV区间变电所和4套电解整流装置,共有电力变压器22台,整流变压器4台,年用电量2亿多千瓦时,其中整流装置用电量要占总用电量的三分之二。整流装置平均功率因数比较高,可以达到0.95,但由于整流装置的存在,谐波分量也比较重。其它动力负荷主要是异步电动机,平均功率因数很低,我厂主要针对低压配电网络进行补偿,补偿前整个电力系统的功率因数只有0.87,补偿后整个电力系统功率因数可以达到0.95以上。 影响我厂功率因数的主要原因及对策: 一、异步电动机对功率因数的影响 我厂绝大部分动力负荷都是异步电动机,异步电动机转子与定子间的气隙是决定异步电动机需要较多无功的主要因素,而异步电动机所耗用的无功功率是由其空载时的无功功率和一定负载下无功功率增加值两部分所组成。所以要改善异步电动机的功率因数就要防止电动机的空载运行并尽可能提高负载率。因此,在选择异步电动机时,既要注意它们的机械性能,又要考虑它们的电器指标,合理选择异步电动机的型号、规格和容量,使其处于经济运行状态,若电动机长期处于低负载下运行,既增大功率损耗,又使功率因数和效率都显著恶化。故从节约电能和提高功率因数的观点出发,必须正确的合理的选择电动机的容量。其次,要提高异步电动机的检修质量,因为异步电动机定子绕组匝数变动和电动机定、转子间的气隙变动时对异步电动机无功功率的大小有很大的影响。 二、电力变压器对功率因数的影响 电力变压器的无功功率消耗,是由于变压器的变压过程是由电磁感应来完成的,是由无功功率建立和维持磁场进行能量转换的。没有无功功率,变压器就无法变压和输送电能。变压器消耗无功的主要成分是它的空载无功功率,提高变压器的功率因数就必须降低变压器的无功损耗,避免变压器空载运行或长期处于低负载运行状态。 三、整流装置对功率因数的影响 单就整流系统而言,其功率因数可达到0.95,但是由于整流系统网侧电流不是正弦波,整流变压器除向电网吸取基波电流外,还向电网送出谐波电流,严重影响并联电容的运行。尽可能减少谐波分量的产生是消除整流装置对功率因数补偿设备影响的根本办法。整流机组的网侧谐波分量与等效相数有密切关系,提高等效相数是抑制谐波产生的有效措施。我公司整流系统共有四台整流变压器,为提高等效相数,我们分别将整流变压器接成△/△▽和Y/△▽,从而组成12相整流系统,这时单套6脉波整流的工作原理不变,只是一台整流变压器通过Y/△移相使5,7,17,19……次谐波相互抵消,注入系统的只有12K±1次特征谐波,在不增加设备的前提下,达到了最大限度抑制谐波分量,减少了谐波分量对电容运行的影响的目的。 我厂对提高功率因数采取的措施 提高自然功率因数 提高自然功率因数主要是靠提高变压器、电动机负载率、调整负荷结构,使功率因数达到最佳。 二、并联移相电容提高功率因数 由于我公司实际生产工艺中没有使用同步电机,所以我们采用并联移相电容器的方式进行功率因数补偿。 (一)、补偿方式的选择: 根据移相电容器在工厂供电系统中的装设位置,有高压集中补偿、低压成组补偿和低压分散补偿三种方式。 高压集中补偿是将高压移相电容器集中装设在变配电所的10KV母线上,这种补偿方式只能补偿10KV母线前(电源方向)所有线路上的无功功率,而此母线后的厂内线路没有得到无功补偿,所以这种补偿方式的经济效果较后两种补偿方式差。同时因我厂存在整流装置,虽然我们对其进行了调整,但仍然不能完全避免谐波分量的产生。如采用高压集中补偿,会对高压电容器的安全运行造成严重影响。 低压分散补偿,又称个别补偿,是将移相电容器分散地装设在各个车间或用电设备的附近。这种补偿方式能够补偿安装部位前的所有高低压线路和变电所主变压器的无功功率,因此它的补偿范围最大,效果也较好。但是这种补偿方式总的设备投资较大,且电容器在用电设备停止工作时,它也一并被切除,所以利用率不高。 低压成组补偿是将移相电容器装设在车间变电所的低压母线上,这种补偿方式能补偿车间变电所低压母线前的车间变电所主变压器和厂内高压配电线及前面电力系统的无功功率,其补偿范围较大。由于这种补偿能使变压器的视在功率减小从而使变压器容量选得小一些,比较经济,而且它安装在变电所低压配电室内,运行维护方便。同时由于我厂存在谐波源,车间变压器的存在,也起到了隔离和衰减谐波的作用。有利于低压移相电容器的安全稳定运行。 综合以上三种补偿方式的优缺点,根据我厂的实际情况,我们选择了低压成组补偿方式。 (二)、补偿容量的确定 对于车间变(配)电所,安装的容性无功量应等于装置所在母线上的负载按提高功率因数所需补偿的容性无功量与变压器所需补偿的容性无功量之和。 负载所需补偿的装置容量Kvar(千乏)按下式考虑

LED灯具的功率因数

【特约】茅于海:L E D灯具的功率因数 功率因数从来不是什么问题,过去国家有规定,要功率超过75瓦才有功率因数的要求(到现在为止,对于笔记本电脑还是规定75W以下无功率因数要求)。所以从来没有对灯具提出过什么功率因数的要求。就像日光灯吧,功率因数都是很差的,从来也没有人提出过意见,国家也没有提出什么要求。后来有了节能灯,国家虽然提出了一个要求,但是非常宽松,对15瓦以上才有要求,而节能灯大多数是小于15瓦的。所以等于没有提出要求。唯独出现LED 灯具以后反而严格要求起来了,只有在5瓦以下才不要求,5W以上必须要求功率因数>0.7。而LED灯具除了很小的MR16射灯是3瓦以外,绝大多数都是在5瓦以上。所以这个规定正好卡住了LED的脖子。那么,让我们仔细来了解一下有关功率因数的问题吧! 一.什么是功率因数 我们知道所有发电机都是旋转机械,产生的电压就是正弦波,这就是我们所谓的交流电。交流电有一个好处就是通过电磁感应可以用变压器来改变其电压,而且可以升高到几十万伏

进行远距离传输以减小传输中的损耗,到目的地以后再降下来变成我们常用的市电。我们现在的市电就是220V,50Hz的交流电。而在电工学里交流电是可以用矢量来表示的。矢量可以表示电压也可以表示电流。对于纯电阻的负载,电压和电流是同相的,而对于纯电容负载或纯电感负载,电流和电压就不同相,而是有一个90度的相角,或者称为相位差。在纯电感负载时,其上的电压是领先电流90度,而纯电容负载时,其上的电压落后于电流90度。 如果我们用波形表示时,通常把电压表现为余弦波,如果电流落后于电压,就是电感性负载,领先于电压就是电容性负载。 图1.电感性负载的交流电压和交流电流之间的关系 因为实际上纯电感和纯电容都不存在的,实际的负载只能称为电感性负载或者是电容性负载。这时候其交流电压和交流电流之间就有一个夹角φ,对于电感性负载我们把这个夹角称为φL,而对于电容性负载的夹角就称为φC。(见图2) 图2.电感性负载和电容性负载电压和电流的矢量表示法 功率等于电压和电流的乘积,但是只有在纯阻负载的时候(电压和电流同相)是这样,而在电感性或电容性负载的时候就要把电流的矢量投影到电压矢量(水平轴)上去,也就是要乘以cosφL或者cosφC。我们通常就把这个cosφL或者cosφC称为功率因数。 但是由于这个夹角可以是正的,也可以是负的,所以功率因数也是可能为正数(感性负载)也可能为负数(容性负载)。 但是当我们用矢量来代表电压和电流时,前提是它们的频率必须是完全相同的。而且是在一个线性系统里。

提高功率因数的意义和方法分析

提高功率因数的意义和方法 1.功率因数 在交流电路中,电压与电流之间的相位差(Φ)的余弦叫做功率因数,用符号cosΦ表示,在数值上,功率因数是有功功率和视在功率的比值,即cosΦ=P/S 功率因数的大小与电路的负荷性质有关,如白炽灯泡、电阻炉等电阻负荷的功率因数为1,一般具有电感负载的电路功率因数都小于1。功率因数是电力系统的一个重要的技术数据,功率因数是衡量电气设备效率高低的一个系数, 功率因数低,说明电路用于交变磁场转换的无功功率大,从而降低了设备的利用率,增加了线路供电损失。 电能占企业成本的5%~30%,有些企业占得更高。因此如何提高电能的利用率和使用效率,保证电能质量,是企业节能提效的重要手段。绝大多数企业是用电动机作为机械的原动机,而电动机是感性负载,功率因数并不高,因此企业的能源消耗中无功能源消耗占了很大成份。尽可能的减少无功能量的消耗,是企业节能的头等大事。对于企业而言,供电损耗主要是电动机损耗、低压线路损耗、高压线路损耗和变压器损耗。安装无功补偿装置后功率因数提高,线路电流会下降,这样线路损耗降低,变压器的有功损失也会降低。电动机损耗(即效率)是电动机本身固有的,目前Y系列的电动机的效率一般都在85%~95%。但电动机的功率因数将影响整个电网的效率。用电系统装设无功补偿设备,提高功率因数,对于企业的降损节电、用电系统的安全可靠运行具有极为重要的意义 2.影响功率因数的主要因素 异步电动机和电力变压器。异步电动机所耗用的无功功率是由其空载时的无功 功率和一定负载下无功功率增加值两部分所组成,改善异步电动机的功率因数就 要防止电动机的空载运行并尽可能提高负载率。变压器消耗无功的主要成份是它 的空载无功功率,它和负载率的大小无关。因而,为了改善电力系统和企业的功率 因数,变压器不应空载运行或长其处于低负载运行状态。 供电电压。当供电电压高于额定值的10%时,由于磁路饱和的影响,无功功率将 增长得很快,据有关资料统计,当供电电压为额定值的110%时,一般工厂的无功 将增加35%左右,当供电电压低于额定值时,无功功率也相应减少而使它们的功 率因数有所提高。但供电电压降低会影响电气设备的正常工作。 3.提高功率因数的意义 ⑴提高功率因数可以提高设备的利用率 由于有功功率:P=UI COSφ,当U和I为定值时,P∞COSφ,这就是说在电源 提供同样的视在功率UI情况下,有功功率P与功率因数COSφ的大小成正比。 我们知道,电源设备的容量都是根据额定电压UN和额定电流IN确定的,因此 其额定视在功率为SN=UN IN。它表示该设备允许输出的最大有功功率,换句话说, 假如负载COSφ=1,P=UN IN COSφ=UN IN=SN,此时电源的容量全部转换成有功功 率,因而电源设备得到充分利用。如果COSφ< 1则电源能提供的功率为P=UN IN

供电公司功率因数运行管理办法

**供电公司功率因数运行管理办法 1 总则 1.1 范围 为进一步提高**电网功率因数合格率及安全稳定、经济运行水平,根据上级有关管理规定,特制定本办法。 本办法规定了**电网功率因数在运行、调整、检查考核等方面的管理办法。 本办法适用于**地调管辖的各发、供、用电单位以及公司内相关单位和部门。 1.2 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 集团调运…2008?8号 **电网220kV主变高压侧功率因数管理办法(试行) 能源电…1988?18号电力系统电压和无功电力管理条例 水电财字…1983?215 国家物价局功率因数调整电费办法 国家电网生…2004?203号国家电网公司电力系统电压质量和无功电力管理规定 生产营销…2004?116号 **电力集团公司电力负荷管理系统功能规范及 电力负荷管理系统建设与运行管理办法 1.3 术语和定义 1.3.1功率因数 在交流电路中,电压与电流之间的相位差(Φ)的余弦叫做功率因数(也称“力率”),用符号cosΦ表示,在数值上,功率因数是有功功率和视在功率的比值,即cosΦ=P/S 1.3.2 系统额定电压 电力系统各级电压网络的标称电压值。目前**电网典型系统额定电压值有:500kV、220kV、110kV、35kV、10kV、380V、220V等。 其中:220V为单相交流值,其余均为三相交流值。 1.3.3 无功电能 在交流系统内,与电力系统和其所接设备的运行有关的不同电场和磁场之间连续交换的固定电能。 1.3.4 无功补偿 电网中存在大量非纯电阻负荷,如电动机、变压器等,在运行中需要向这些

提高功率因数的几种方法

提高功率因数的几种方法 提高功率因数的几种方法可分为提高自然功率因数和采用人工补尝两种方法: 一、提高自然功率因数的方法: 1). 恰当选择电动机容量,减少电动机无功消耗,防止“大马拉小车”。 2). 对平均负荷小于其额定容量40%左右的轻载电动机,可将线圈改 为三角形接法(或自动转换)。 3). 避免电机或设备空载运行。 4). 合理配置变压器,恰当地选择其容量。 5). 调整生产班次,均衡用电负荷,提高用电负荷率。 6). 改善配电线路布局,避免曲折迂回现象等。 二、人工补偿法: 实际中可使用电路电容器或调相机,一般多采用电力电容器补尝无功,即:在感性负载上并联电容器。在感性负载上并联电容器的方法可用电容器的无功功率来补偿感性负载的无功功率,从而减少甚至消除感性负载与电源之间原有的能量交换。在交流电路中,纯电阻电路,负载中的电流与电压同相位,纯电感负载中的电流滞后于电压90o,而纯电容的电流则超前于电压90o,电容中的电流与电感中的电流相差 180o,能相互抵消。 电力系统中的负载大部分是感性的,因此总电流将滞后电压一个角度,将并联电容器与负载并联,则电容器的电流将抵消一部分电感电流,从而使总电流减小,功率因数将提高。

并联电容器的补偿方法又可分为: 1.个别补偿。即在用电设备附近按其本身无功功率的需要量装设电容器组,与用电设备同时投入运行和断开,也就是再实际中将电容器直接接在用电设备附近。 适合用于低压网络,优点是补尝效果好,缺点是电容器利用率低。2.分组补偿。即将电容器组分组安装在车间配电室或变电所各分路出线上,它可与工厂部分负荷的变动同时投入或切除,也就是再实际中将电容器分别安装在各车间配电盘的母线上。优点是电容器利用率较高且补尝效果也较理想(比较集中)。 3.集中补偿。即把电容器组集中安装在变电所的一次或二次侧的母线上。在实际中会将电容器接在变电所的高压或低压母线上,电容器组的容量按配电所的总无功负荷来选择。 优点:是电容器利用率高,能减少电网和用户变压器及供电线路的无功负荷。缺点:不能减少用户内部配电网络的无功负荷。实际中上述方法可同时使用。对较大容量机组进行就地无功补尝。

浅谈功率因数对供电企业的影响

浅谈功率因数对供电企业的影响 发表时间:2019-11-08T10:44:22.050Z 来源:《电力设备》2019年第13期作者:陈婷婷[导读] 摘要:供电企业在不断进步与发展过程中,用户功率因数的高低情况直接影响整个电网的损耗,与整个线路的电压损失、波动情况等也存在较大关系。 (国网江西省电力有限公司芦溪县供电分公司 337200) 摘要:供电企业在不断进步与发展过程中,用户功率因数的高低情况直接影响整个电网的损耗,与整个线路的电压损失、波动情况等也存在较大关系。可使安装在系统中的供电、用电设备得到更加充分的利用,进而达到降低供电企业线损,为企业创造更大经济效益的目的,针对电力系统运行中的功率因数问题,本文从影响低压配电网功率易因数的因素的入手,着重探讨了降低供电企业线损的方法,并就低压配电网功 率因数对供电企业线损的影响作了详细论述,得出结论以供同行参考借鉴。 关键词:低压配电网;功率因数;企业线损;影响;研究前言:用户功率因数对电力系统的发电设备、供电设备等都会产生影响,提高用户的功率因数,不仅能提高供电设备的生产能力,减少线路受到的损失,还能促进用电质量,设备运行效率的提升,实现良好的电能节约工作。对于国内当前的供电企业来说,如何提高其电网功率因数,尤其是提高其改造之后的低压配电网的功率因数,减少电网运行中电能的损耗,为用电客户提供更优质、更可靠的供电服务已成为企业思考的主要问题。 一、影响用户功率因数的主要因素 1.1电感性设备与电力变压器 消耗无功功率的主要设备为电感性设备与电力变压器,尤其是大量的电感性设备,其中的消耗设备为交流电焊机、感应电炉等。根据相关的调查与分析,在工矿企业中,将会消耗到全部的无功功率中,其中,异步电动机产生的无功消耗在60%以上。异步电动机空载期间产生的消耗也会在65%左右。针对该情况,需要对异步电动机的功率因数进行改变,防止电动机的空载运行现象,促进负载率的提升。一般情况下,电力变压器消耗的无功功率维持在左右,空载无功功率为满载的三分之一。所以说,要改善电力系统化与企业的功率因数,变压器不应该实现空载运行或者长期处于低负载运行。 1.2供电电压超出范围 当供电电压超出一定范围,也会影响到功率因数。在供电电压超出额定数值的10%,受磁路饱和的影响,无功功率将实现较快增长。根据相关资料的统计与分析,在供电电压的额定数值在110%时,无功将增加到35%。当供电电压低于额定电压数值时,降低无功功率,促进功率因数的提升。但是,随着供电电压数值的不断降低,将影响电气设备的正常运行。所以,需要利用相关措施进行分析,保证能够维护电力系统供电电压的稳定性。 1.3电网频率的波动与变压器的磁化无功功率 电网产生的频率以及波动对异步电动机、变压器的磁化无功功率也会产生一定影响。针对该要素,需要为其提出有效的解决对策,提高低压电力网的功率因数,保证低压网的无功更均衡,从而实现降低损耗与节能效果。 二、低压网无功补偿方法分析 一般来说,对于低压无功补偿而言,当前应用比较广泛的主要有三种方法,即随机补偿与随器补偿,另外还包括跟踪补偿。下面主要介绍不同补偿方式的适用范围,同时对于不同补偿方式分析其存在的优缺点。 2.1随机补偿 对于随机补偿方式而言,其就是在供电过程中使低压电容器组与电动机之前成为并联关系,在实际运行过程中,可以实现对装置及电机进行控制保护,从而能够使现同时投切得以有效实现。对于该补偿方式而言,比较适用于对电动机无功消耗进行补偿,其主要就是励磁无功补偿,该方式能够对农网无功峰荷进行较好限制。在实际应用过程中,随机补偿方式表现出十分明显的优势,具体而言其主要包括以下方面:首先,将无功补偿投入用电设备之后,在用电设备停止工作状态下,其补偿设备也能够退出,同时利用该方式能够不需频繁调补偿容量;其次,该补偿方式投资比较少,安装也相对比较容易,占位也相对较小;第三,该补偿方式具有十分灵活方面的配置,其日常维护也相对较简单,在实际应用过程中发生事故可能性比较小。 2.2随器补偿 对于随器补偿方式而言,其就是在配电电压器二次侧,选择低压电容器以低压保险方式进行连接,当配电变压器处于空载状态时,能够对其无功进行补偿。在配电变压器实际使用过程中,当其处于轻载状态或者处于空载时状态情况下,其无功负荷以励磁无功为主,对于配电変圧器在空载状态下出现无功而言,其在农网中为主要部分,若配变为轻负载,则对于该部分无功而而言,其在供电量中所占比例就会很大,这样一来,会在一定程度上导致电费单价有所增加,这样情况的出现对实现电费同网同价会产生十分不利影响。 具体而言,随器补偿在实际应用过程中主要表现出以下几个方面优点:首先,该补偿方式具有比较简单的接线,并且在维护管理方面也相对较方便,可有效补偿配变空载无功,还可在一定程度上有效限制农网无功基荷;其次,该方式能够使该部分无功的就地平衡得以实现,可明显提高配变利用率,降低无功网损,具有较高经济性。 2.3跟踪补偿 对于跟踪补偿方式而言,其在供电设备中所选择的控制保护装置为无功补偿投切装置,对于大用户0.4kV母线,可以通过低压电容器组补偿。对于该方式而言,其比较适用于100kV A之上专用配变用户,通过该方式可替代上述两种方式,其补偿效果比较理想。 三、人工补偿功率因数 在电器设备使用状况以及利用程度方面,功率因数属于十分重要的指标,具有很强代表性,同时在电网安全以及经济运行的保证方面也属于主要的一项指标。对于当前供电企业而言,工厂自身应当配备有关补偿装置,从而可通过人工方法使功率因数补偿得以实现。从当前情况来看,对于人工补偿方式,主要包括以下几种常见方式:

功率因素是什么意思

功率因素是什么意思 功率因素是什么意思?功率因数是交流电路的重要技术数据之一。功率因数的高低,对于电气设备的利用率和分析、研究电能消耗等问题都有十分重要的意义。 所谓功率因数,是指任意二端网络(与外界有二个接点的电路)两端电压U与其中电流I之间的位相差的余弦。在二端网络中消耗的功率是指平均功率,也称为有功功率,它等于 由此可以看出,电路中消耗的功率P,不仅取决于电压V与电流I的大小,还与功率因数有关。而功率因数的大小,取决于电路中负载的性质。对于电阻性负载,其电压与电流的位相差为0,因此,电路的功率因数最大();而纯电感电路,电压与电流的位相差为π/2,并且是电压超前电流;在纯电容电路中,电压与电流的位相差则为-(π/2),即电流超前电压。在后两种电路中,功率因数都为0。对于一般性负载的电路,功率因数就介于0与1之间。 一般来说,在二端网络中,提高用电器的功率因数有两方面的意义,一是可以减小输电线路上的功率损失;二是可以充分发挥电力设备(如发电机、变压器等)的潜力。因为用电器总是在一定电压U和一定有功功率P的条件下工作,由公式:可知,功率因数过低,就要用较大的电流来保障用电器正常工作,与此同时输电线路上输电电流增大,从而导致线路上焦耳热损耗增大。另外,在输电线路的电阻上及电源的内组上的电压降,都与用电器中的电流成正比,增大电流必然增大在输电线路和电源内部的电压损失。因此,提高用电器的功率因数,可以减小输电电流,进而减小了输电线路上的功率损失。 提高功率因数,可以充分发挥电力设备的潜力,这也不难理解。因为任何电力设备,工作时总是在一定的额定电压和额定电流限度内。工作电压超过额定值,会威胁设备的绝缘性能;工作电流超过额定值,会使设备内部温度升得过高,从而降低了设备的使用寿命。对于电力设备,电压与电流额定值的乘积,称为这台设备的额定视在功率S额即 S额=U额I额 也称它为设备的容量,对于发电机来说,这个容量就是发电机可能输出的最大功率,它标志着发电机的发电潜力,至于发电机实际输出多大功率,就跟用电器的功率因数有关,用电器消耗的功率为 功率因数高,表示有功功率占额定视在功率的比例大,发电机输出的电能被充分地利用了。例如,发电机的容量若为15000千伏安,当电力系统的功率因数由0.6提高到0.8时,就可以使发电机实际发电能力提高3000千瓦,这不正是发挥了发电机的潜力吗?设备的利用也更合理。从这个角度来讲,功率因数可以表示为有功功率与机在功率的比值,即如何提高功率因数,是电力工业中需要认真考虑的一个重要而又实际的问题。在平常遇到的电感性负载的电路中,例如日光灯电路,一般采用并联合适的电容器来提高整个电路的功率因数,如图7-9所示。

相关主题
文本预览
相关文档 最新文档