当前位置:文档之家› 双跨柔性转子_轴承系统动力学理论与实验研究

双跨柔性转子_轴承系统动力学理论与实验研究

双跨柔性转子_轴承系统动力学理论与实验研究
双跨柔性转子_轴承系统动力学理论与实验研究

机械系统动力学

机械系统动力学报告 题目:电梯机械系统的动态特性分析 姓名: 专业: 学号:

电梯机械系统的动态特性分析 一、课题背景介绍 随着社会的快速发展,城市人口密度越来越大,高层建筑不断涌现,因此,现在对电梯的提出了更高的要求,随着科技的进步,在满足客观需求的基础上,电梯向着舒适性,高速,高效的方向发展。在电梯的发展过程中,安全性和功能性一直是电梯公司首要考虑的因素,其中舒适性也要包含在电梯的设计中,避免出现速度或者加速度出现突变,或者电梯运行过程中的振动引起人们的不适。因此,在电梯的设计过程中,对电梯进行动态特性分析是十分必要的。 二、在MATLAB中编程、绘图。 通过同组小伙伴的努力,已经得到了该系统的简化模型与运动方程。因此进行编程: 该系统的微分方程:[][][]{}[]Q x k x c x M= + ? ? ? ? ? ? + ? ? ? ? ? ?? ? ? ,其中矩阵[M]、 [C]、[K]、[Q]都已知。 该系统的微分方程是一个二阶一元微分方程,在MATLAB中,提供有求解常微分方程数值解的函数,其中在MATLAB中常用的求微分方程数值解的有7个:ode45,ode23,ode113,ode15s,ode23s,ode23t,ode23tb 。 ode是MATLAB专门用于解微分方程的功能函数。该求解器有变步长(variable-step)和定步长(fixed-step)两种类型。不同类型有着不同的求解器,其中ode45求解器属于变步长的一种,采用Runge-Kutta

算法;和他采用相同算法的变步长求解器还有ode23。 ode45表示采用四阶,五阶Runge-Kutta单步算法,截断误差为(Δx)^3。解决的是Nonstiff(非刚性)常微分方程。 ode45是解决数值解问题的首选方法,若长时间没结果,应该就是刚性的,可换用ode23试试。 Ode45函数调用形式如下:[T,Y]=ode45(odefun,tspan,y0) 相关参数介绍如下: 通过以上的了解,并对该微分方程进行变换与降阶,得出程序。MATLAB程序: (1)建立M函数文件来定义方程组如下: function dy=func(t,y) dy=zeros(10,1); dy(1)=y(2); dy(2)=1/1660*(-0.006*y(2)+0.003*y(4)-0.0006*y(10)-1.27*10^7*y(1)+1.27*10^7*y (3)+2.54*10^6*y(9)); dy(3)=y(4); dy(4)=1/1600*(+0.03*y(2)-0.007*y(4)+0.003*y(6)+1.27*10^7*y(1)-7.274*10^8*y(3 )+1.27*10^7*y(5)); dy(5)=y(6);

基于系统动力学的物流系统研究

基于系统动力学的物流系统研究 摘要:本文将系统动力学方法应用于物流运输这个复杂的系统当中,建立模型,对现实情况进行模拟,以期为物流企业提供定量的可持续发展预测分析,达到辅助企业科学决策的目的,引导物流企业沿着正确的方向发展壮大,提高物流企业生存竞争的能力,并进一步促进物流企业管理的科学化与现代化。 关键词:系统动力学;物流系统;管理科学 中图分类号:F252 文献标识码:A 文章编号:1006-4311(2010)08-0018-02 0 引言 系统动力学(system dynamics),简称SD,是一种以反馈控制理论为基础,以数字计算机仿真技术为手段的研究复杂社会经济系统的定量方法。[1]由美国麻省理工学院史隆管理学院JAY W.FORRESTER教授于创立,是一种研究大系统的计算机仿真方法。系统动力学模型的一大特点是能作长期的、动态的、战略性的定量分析研究。[2]通过计算机实验的方法来研究战略与策略,因此被誉为“战略与策略实验室”。系统动力学创造至今,在人口、经济、环境、能源、教育等领域都得到了广泛应用。[3]近些年来物流业在中国得到了前所未有的发展,物流活动的一个显著特征就是系统性,通过将系统动力学应用于物流系统领域,可以较为深入地从定性和定量的角度分析物流活动的动态发展运行机制,进而对制定物流决策提供辅助和参考。有学者甚至提出了“物流系统动力学”的边缘学科概念,以阐释将系统动力学引入物流系统分析领域的可能性和必要性。 本文就是将系统动力学应用于物流系统中,尝试建立物流系统的系统动力学模型,并进行仿真,进而为物流决策提供辅助和参考。 1 模型的建立 整个供应链包括生产商、物流公司和顾客,而我们研究的是物流系统,因此将其从供应链中分离出来。站在一个物流企业的角度分析整个物流系统。一个企业取得收益是最重要的目标,而利益是收入与成本之差,对于一个物流企业的收入就是将物资配送至目的地从而取得利益;而物流企业的成本包括配送费用和仓储费用,配送费用即物流公司用汽车、飞机等交通工具将客户的货物送至目的地的费用,仓储费用即物流公司用仓库存放货物而产生的费用。 在系统分析的过程中发现,仓库数是整个物流系统中很重要的一个指标,它直接关系到物流公司的收益。随着仓库数的增多,可以缩短客户响应时间,提高客户服务水平,因此会使物流企业的周转率提高从而提高收入,对整个企业的收益起正面作用;但是从另一个方面考虑,随着仓库数量的增加使得配送费用和仓储费用都提高了,从而使成本提高,对整个企业的收益起负面作用。因此仓库数是一个重要的指标。 根据系统分析的结果我们建立起因果关系。如因果关系所示,收益与收入成正向增长,与成本成负向增长,收入与仓库数为正因果关系;配送费用和仓储费用均与成本为正因果关系,配送量与配送费用同向增长,而仓库数与配送费用和仓储费用同向增长。 增加仓库数量可缩短客户响应时间,提高客户服务水平,从而提高周转率,增加一个仓库到底能缩短多少客户响应时间,使周转率能提高多少,很难一概而论,但是在物流行业有仓库销售率这一指标,它的含义是每增加一个仓库每个月能够带来的收入有多少。而成本方面有配送成本和仓储成本,配送成本受运输费

系统动力学复习过程

系统动力学

青少年上网成瘾的原因及对策的基模分析 摘要:随着互联网的快速发展,青少年上网成症成为一个严重的社会问题。从生理和社会心理两方面来分析上网成瘾症的成因,并有针对性地提出切实可行的措施和对策,是网络现象研究的重要课题。 关键词:系统动力学青少年上网成瘾基模 一引言 随着科技的发展,电脑的普及,网络离我们的生活越来越近,每个人都可以通过很多途径上网。网络在给人们带来丰富信息资源的同时,也对一些上网者、尤其是青少年产生了不可忽视的负面影响,出现了不同种类、不同程度的网络迷恋(网瘾)。如:网络游戏迷恋、网络恋情迷恋、网络制作迷恋、网络交际迷恋、网络色情迷恋等。所谓上网成瘾就是指伴随着现代信息技术高度发展而产生的一种对网络过分依赖的行为。据中国互联网信息中心的统计,目前我国网民总数已逾7950万,居世界第二,其中56%的互联网用户年龄在24岁以下。由此可见,青少年是网络重要使用群体。正如赌博、酗酒、吸毒一样,上网成瘾已逐渐成为一种社会问题,严重危害着人们的身心健康,尤其是毒害着青少年的身心健康。 二青少年上网成瘾的原因及对策流率基本入树模型 2.1建立流位流率系 流位:家庭学校教育程度L1(t);流率:家庭学校教育程度改变量R1(t)。 流位:上网玩游戏时间L2(t);流率:上网玩游戏时间改变量R2(t)。 流位:学习成绩L3(t);流率:学习成绩改变量R3(t)。

流位:户外活动时间L4(t);流率:户外活动时间改变量R4(t)。 流位:生活压抑程度L5(t);流率:生活压抑程度改变量R5(t)。 主导结构流位流率系:{(L1(t),R1(t)),(L2(t),R2(t)),(L3(t),R3(t)),(L4(t),R4(t)),(L5(t),R5(t))} 2.2确定流位控制流率的定性分析二部图 1.L1(t)不仅受到国家政策和社会因素影响,同时受到L4(t)及L2(t)和L3(t)的影 响。上网时间越长,那么学生在虚拟世界中的获得的愉悦和成就感就越多,学生在现实中产生的负面情绪就越多,而L3(t)提高和L4(t)的增多以及L2(t)所支配的时间,能够有效通过人际关系和学习成就感影响R1(t)的变化。2.L2(t)增多必然能够在虚拟世界中得到更多的愉悦感和现实中不能得到的 成就感使生活压抑程度降低,并间接的影响学习时间和L3(t)及L4(t)的安排以及L5,L1(t)的教育能够提高学生对人生价值认识,促进学生间的交流,因此R2(t)受到L1(t)、L3(t)、L4(t)、L5的共同影响 3.L1(t)能够提高学生对知识和人生的认知和感悟,促进学生对知识的渴求,主 动增加学习时间提高学习成绩,并通过出上网之外的L2(t)来加强人际关系,并从中得到认可得到尊重,因此R3(t)受到L1(t)、L2(t)、L4(t)、L5(t)的共同影响。

系统动力学课程论文

基于系统动力学对企业效率与员工之间关系的研究 摘要;企业效率不高的原因主要有:员工报酬不合理、工作量的多少、考核制度不规范、员工工作上的应付心理、企业成员之间间目标的不一致等。提高企业工作效率,要分清工作的轻重缓急;鼓励工作效果,兼顾工作过程;让员工了解工作的全部;进行企业薪酬体系设计,实现福利和薪酬;提高员工的精神激励,使工作效率在员工价值实现的过程中得以提高 关键词:系统动力学;企业效率;薪资变化;企业与员工;工作意识 1.研究背景。 提高企业工作效率就是要以最少的人力物力资源实现既定目标,在激烈的市场竞争中,提升企业市场竞争力。调查表明,我国企业员工实际的工作效率不足他们能达到的 50%,只是干满他们的工作时间,而没有尽力发挥他们的智慧去高效工作企业员工身上有很大的潜能可挖,员工能够比他们现在做得更好。如何提高员工的工作效率,使高效率地工作成为员工的工作习惯,已成为每一个企业管理实践中经常遇到的问题,这些的理论基础和经济背景各不相同,但有一个共同的核心思想或基本假设:员工的劳动效率与工资水平呈正向关系,生产率高的员工会得到高工资。工资依赖于员工的生产率,员工的生产率也依赖于工资,工资的高低可以影响企业员工的人数、辞职率、工作士气和对企业的忠诚等,追求利润最大化的企业存在很强的愿望去按生产率来选择效率员工。怎样把员工薪资与企业员工的绩效管理有机结合,相互促进,提出新思路和新建议,为提高企业效率,提升员工绩效管理水平提供思路和建议。 2.建立企业员工工作效率的流率基本入树模型 2.1确定流位流率系 在研究整个系统的的基础上,更具系统动力学级控制原理,按企业与员工之间的关系将主要影响因素将系统分为人口变化量、员工薪资、产工作量、企业效率、企业福利。并设计五个流位流率如下(其中,Li(t)(i=1、2…5)表示流位变量,Rj(t)(j=1、2…..5)表示留联系变量)。 人口数子系统:L1(t)、R1(t)人口数及其改变量 员工薪资子系统:L2(t)、R2(t)员工薪资及其改变量 工作量子系统:L3(t)、R3(t)工作量及其改变量 企业效率子系统:L4(t)、R14(t)企业效率及其改变量 企业福利子系统:L5(t)、R5(t)企业福利及其改变量 从而得到整个系统的流位流率系: { [L1(t),R1(t)],[L2(t),R2(t)],[L3(t),R3(t)],[L4(t),R4(t)],[L5(t),R5(t)。 2.2 建立二部分图及建立流率基本入树模型 在对系统中所有流位和流率变量之间的内在关系进行定性分析的基础上,根据系统动力学流位变量控制流率变量的建模思想,得到流位控制流率的定性分析二部分图

基于ANSYS的磁悬浮轴承转子系统的动力学特性研究

产品设计与应用 基于ANS YS的磁悬浮轴承转子系统的动力学特性研究 万金贵1,汪希平2,高琪1,张飞1 (1.上海第二工业大学实验实训中心,上海201209;2.上海大学机电工程与自动化学院,上海200072) 摘要:针对一个实际应用的磁悬浮支承柔性转子系统,进行多组参数条件下的有限元模态分析,分别得到系统的前8阶临界转速与模态振型。将有限元计算结果与试验结果进行对比分析,验证了有限元分析的正确性。 通过对该磁悬浮转子系统的有限元分析表明:/轴承主导型0的低阶临界转速及振动模态是由轴承控制器各控制通道决定的;而/转子主导型0的高阶临界转速及振动模态符合传统的轴承转子系统动力学特性普遍规律。 关键词:转子系统;磁悬浮轴承;ANSYS;动力学特性;临界转速;模态振型 中图分类号:T H133.3;O241.82文献标志码:A文章编号:1000-3762(2010)06-0001-05 R esearch on Dyna m ic Character istics of R otor Syste m Suppor ted by AM B B ased on ANS YS M oda l Ana lysis WAN Ji n-gui1,WANG X i-p i n g2,G AO Q i1,Z HANG Fe i1 (1.P racti ca l Center,Shangha i Second P olytechn i c University,Shanghai201209,China; 2.School ofM echatron i cs Engi neer i ng and Auto m atio n,Shangha iUn i versity,Shangha i200072,Ch i na) Abstr ac t:The fi n ite e l em ent m o da l analysis of the practical flex i ble rotor system supported by A MB is ca rried out ac2 cordi ng to diff e rent gro ups of para m eters.The first8-order cr iti ca l speeds and m ode shapes are sol ved respecti ve ly. The correctness of t he calculati on resu lts is tested and ver ifi ed by t he exper i m ents.The calculati on resu lts are d iscussed and t he dyna m ic characteristi cs of t he rotor syste m supported byA M B are su mmed up.That i s,the"bear i ng-do m i na2 ted"lo w-order critical speeds and vi brati on m odes are dec i ded by the A MB control channe,l and the"rot or-do m i na2 ted"hi gh-order cr iti ca l speeds and vibratio n m odes a re i n li ne with t he universa l la w of dy na m ics character i sti cs of t he conventi ona l beari ng rotor syste m. K ey word s:rotor syste m;ac ti ve m agne ti c beari ng;ANS YS;dy na m ic character i stics;critica l speed;m o de shape 主动磁悬浮轴承(acti v e magnetic bearing, A MB)是利用电磁铁产生可控电磁力将转子悬浮支承的一种新型轴承,由于具有一系列独特的优点而引起人们的广泛关注[1]。近年来,A MB技术在国外得到了迅速的发展,已在军工、航天等国防工业部门中得到了广泛应用,并向民用工业如航空、机床、化工、能源等领域推广[2-4]。 收稿日期:2009-10-16;修回日期:2010-02-21 基金项目:国家自然科学基金资助项目(50475181);上海高校选拔培养优秀青年教师科研专项基金资助项目(Y Q306006) 作者简介:万金贵(1972-),女,讲师,主要研究方向为转子动力学、机械设计及数控加工技术。 E-ma i:l WQQ0922@163.co m。 主动磁悬浮轴承经常工作在每分钟数万至数十万转范围内,此时的转子动力学行为往往表现为柔性转子的特性[5]。为保证磁悬浮转子系统的安全稳定运行,设计者需要对系统的动力特性进行分析和计算,并可对磁力轴承动力学行为进行调整和控制[6-7]。由于磁力轴承的结构涉及到由电子电路组成的控制器,因此其动力学特征与传统轴承有着本质区别。目前,人们对于磁悬浮轴承转子系统的动力特性普遍规律还没有形成成熟的理论。因此,分析磁悬浮转子系统动力特性,探索研究其动力学特点具有重要意义。 对转子系统进行动力特性研究经常采用传递矩阵法或有限元法。因有限元法能对较复杂的转子系统进行完整而精确的几何建模,容易保证计 ISSN1000-3762 CN41-1148/T H 轴承2010年6期 Bear i ng2010,No.6 1-5

Ansys转子动力学

基于ANSYS的转子动力学分析 1、题目描述 如图1-1所示,利用有限原原理计算转子临界转速以及不平衡响应。 图 1-1 转子示意图及尺寸 2、题目分析 采用商业软件ANSYS进行分析,转子建模时用beam188三维梁单元,该单元基于Timoshenko梁理论,考虑转动惯量与剪切变形的影响。每个节点有6个(三个平动,三个转动)或7各自由度(第七个自由度为翘曲,可选)。 轴承用combine214单元模拟。该单元可以模拟交叉刚度和阻尼。只能模拟拉压刚度,不能模拟弯曲或扭转刚度。该单元如图2-1所示,其有两个节点组成,一个节点在转子上,另一个节点在基础上。

图 2-1 combine214单元 对于质量圆盘,可以用mass21单元模拟,该单元有6个自由度,可以模拟X,Y,Z 三个方向的平动质量以及转动惯性。 3、计算与结果分析 3.1 转子有限元模型 建模时,采用钢的参数,密度取37800/kg m ,弹性模量取112.1110pa ,泊松比取0.3。轴承刚度与阻尼如表1所示,不考虑交叉刚度与阻尼,且为各项同性。 Kxx Kyy Cxx Cyy 4e7N/m 4e7N/m 4e5N.s/m 4e5N.s/m 将转子划分为93个节点共92个单元。有限元模型如图3-1所示。

图 3-1 转子有限元模型 施加约束时,由于不考虑纵向振动与扭转振动,故约束每一节点的纵向与扭转自由度,同时约束轴承的基础节点。施加约束后的模型如3-2所示。 图 3-2 施加约束后的有限元模型 3.1 转子临界转速计算 在ANSYS中可以很方便的考虑陀螺力矩的影响。考虑陀螺力矩时,由于陀螺矩阵是反对称矩阵,所以求取特征值时要用特殊的方法。本文考虑陀螺力矩的影响,分析了在陀螺力矩的影响下,转子涡动频率随工作转速的变化趋势,其Campell图如图3-3所示。同时给出了转子的前四阶正进动涡动频率与反进动涡动频率以及固有频率。如表3-2所示。

基于系统动力学的工程项目管理应用

项目管理,现在被广泛地应用在社会经济活动的各个领域和总分。但是由于项目管理者的经验和内外界因素复杂的变化,而导致的项目成本超支、时间拖延的现象比比皆是。在项目执行的过程中,经常有反直觉的案例产生,如软件项目开发中的布鲁克斯法则,即在一个已经延迟的项目中增加新的员工将导致项目的完成时间更晚。项目通常都是进行得很顺利,但是经常存在到项目后期甚至近乎结束时才发现一些应该在早期就解决的错误,而这就导致了项目的返工、加班和延误,影响项目成本及周期。 1系统动力学与项目管理的结合应用 系统动力学(SystemDynamics)是一门研究分析信息反馈系统的学科,其作为一种系统的建模理论,能够定性与定量地分析研究系统,从系统的微观结构处人手来构建系统的基本结构,进而模拟与分析系统的动态行为。现在国内外的学者,将系统动力学广泛的应用在各个领域,如用于分析价格和产品战略,在资本品行业的实用性;新药品的市场动态和困难,选择一个合适的市场进入战略研究;学习曲线理论创新实施检验时,组织政策等,其中,项目管理也是系统动力学的一个主要应用领域。 为什么要使用建模的方式来研究项目管理?一些专业人员包括项目管理者,都不擅长处理一个复杂系统内的动态反馈关系,毕竟对项目的关注度、了解程度及信息的充分性都有一定的约束,所以,人们面对这样复杂系统做出的解读和判断经常会产生错误。电脑建模的方式,能够很好地克服这些制约,因为模型可以由多人参与建立,模型能够同时处理多个内外部存在联系的因素,可以在一定的假设下运行,以帮助分析人员或管理人员更好的模拟不同真实情景下的系统。不过即使模型有这么多好处,也不是说其结果一定比项目管理人员的判断准确。任何一种作为工具的方法都有可能被错误的使用,总会有一些成功的案例和失败的案例。但是如果正确的使用系统图动力学建模的方法,其可以作为一个帮助项目管理者做决策的工具。 2系统动力学应用于工程项目管理的优势 2.1工程项目非常复杂,包含多个相互影响的关系 在系统中,一个因素的变化可能引起其他意想不到的影响。这一点和普遍的认识不同,无论是从时间的角度还是空间的角度,因果关系在一个复杂的系统内并不是密切相关。例如,改变工程图设计图纸里的一个管道

研究生《机械系统动力学》试卷及答案

太原理工大学研究生试题 姓名: 学号: 专业班级: 机械工程2014级 课程名称: 《机械系统动力学》 考试时间: 120分钟 考试日期: 题号 一 二 三 四 五 六 七 八 总分 分数 1 圆柱型仪表悬浮在液体中,如图1所示。仪表质量为m ,液体的比重为ρ,液体的粘性阻尼系数为r ,试导出仪表在液体中竖直方向自由振动方程式,并求固有频率。(10分) 2 系统如图2所示,试计算系统微幅摆动的固有频率,假定OA 是均质刚性杆,质量为m 。(10分) 3 图3所示的悬臂梁,单位长度质量为ρ,试用雷利法计算横向振动的周期。假定梁的 变形曲线为?? ? ?? -=x L y y M 2cos 1π(y M 为自由端的挠度)。(10分) 4 如图4所示的系统,试推导质量m 微幅振动的方程式并求解θ(t)。(10分) 5 一简支梁如图5所示,在跨中央有重量W 为4900N 电机,在W 的作用下,梁的静挠度δst=,粘性阻尼使自由振动10周后振幅减小为初始值的一半,电机n=600rpm 时,转子不平衡质量产生的离心惯性力Q=1960N ,梁的分布质量略去不计,试求系统稳态受迫振动的振幅。(15分) 6 如图6所示的扭转摆,弹簧杆的刚度系数为K ,圆盘的转动惯量为J ,试求系统的固有频率。(15分) 7如图7一提升机,通过刚度系数m N K /1057823?=的钢丝绳和天轮(定滑轮)提升货载。货载重量N W 147000=,以s m v /025.0=的速度等速下降。求提升机突然制动时的钢丝绳最大张力。(15分) 8某振动系统如图8所示,试用拉个朗日法写出动能、势能和能量散失函数。(15分) 太原理工大学研究生试题纸

基于系统动力学的人口预测

3.2基于系统动力学的人口预测 21世纪是人类面临三大问题:第一是人口膨胀,第二是就业困难,第三是环境污染,这三大问题的焦点在于人口。因此,如何对未来的人口进行预测和控制,一直是人们关心的重要领域。 本课题是在宋健人口模型的基础上,考虑到上海作为一个开放城市,改良建立了双线性开放/动态人口模型。采用上述基于人口结构模型,预测上海2010—2050年的人口年龄、性别结构。为了更准确地研究人口系统,我们将人口按0-4岁、5-9岁、10-14岁、…、95-99岁、100岁及以上分群,分为21个群,并假设女性的生育时间以不同的概率分布在15-49岁之间。然后以政策系数和生育时间的分布概率为政策参数进行仿真分析和政策试验。 3.2.1系统模拟的一些基本假设 ●人口分年龄数据 2000年人口普查的数据上海常住人口总数为1640万,而根据上海统计年鉴2000年上海常住人口总数为1608万。因为后续计算都是采用上海统计年鉴上的数据,所以按上海统计年鉴的常住人口总数1608万对2000年人口普查的数据 《上海市2000年人口普查资料》、 《2005进行了同比例调整。通过《上海统计年鉴》、 年上海市1%人口抽样调查资料》等文献的搜索,得2000年上海市分年龄段的男、女人数数据见表1。 ●妇女生育时间 根据人口生育的一般规律可知,对出生有贡献的只有15-49岁的女性人口。出生率受人口政策的影响,如果严格实行“一对夫妇一个孩”的人口政策,那么

任何一个女性在一生中只能生育一次。我们假设生育时间是在15-49岁之间均匀分布,于是有出生率=1/35≈2.9%。通过对统计资料和参考文献的整理和分析,可得妇女生育时间到俄分布规律如表所示。 ●性别比 性别比是一个统计数据,是指新生婴儿中男性人口与女性人口的比例。新出生的人口可能是男性,也可能是女性。在自然出生的情况下,男性和女性的概率都是50%。但是根据前面的分析,新生婴儿中,男性与女性的平均性别比为105:100。 ●政策系数 政策系数是一个政策参数,表明计划生育政策执行的严格程度。如果严格执行“一对夫妇一个孩”的人口政策,政策系数=1,随着执行程度的放松,其值增加。例如,如果实施“一对夫妇两个孩”的人口政策,政策系数=2。 ●男、女性出生速率 根据政策系数,有 男性出生速率=“女性15-49”*出生率*(性别比)/(100+性别比)*政策系数;女性出生速率=“女性15-49”*出生率*100/(100+性别比)*政策系数。 ●死亡率 但不同年龄组死亡率存在差异。0-10岁组是少年儿童阶段,死亡率呈下降趋势,10-14岁组死亡率水平为最低,以后随着年龄的增长,死亡率逐步上升。由于上海市2008年男性预期寿命为79.06岁,女性预期寿命为83.50岁,人均寿命已经达到较高的水平,接近许多世界发达国家的水平,上升的空间已经不是很大,故在未来若干年中死亡率减低的速度必然逐步减弱。以2000年男性、女性死亡率为基期我们假设截止2050年上海人均死亡率每十年分别较上一个十年下降10%。 表3 上海市分年龄死亡率对比分析 1990年(?)1995年(?)2000年(?)2005年(?)0-4岁 2.88 0.939 1.1 0.98 5-9岁0.32 0.298 0.24 0.07 10-14岁0.33 0.375 0.21 0.23

机械动力学的发展简史及其对机械设计的影响

机械动力学的发展简史及其对机械设计的影响 摘要:机械动力学是研究机械在运转过程中的受力、机械中各构件的质量与机械运动之间的相互关系,是现代机械设计的理论基础,同时也研究机械运转过程中能量的平衡和分配关系。本文主要简单介绍了机械动力学的发展史,并在其基础上探讨了机械动力学的研究内容及其对机械设计的影响,以更好地指导我们以后的机械设计工作。 关键词:机械动力学,机械设计 ABSTRACT:Mechanical dynamics is the study of machinery in the running process of stress, mechanical components in quality and the relationship between mechanical movement,it is the modern mechanical design theory foundation, at the same time also study the mechanical operation process of energy balance and distribution relationship. This paper briefly introduces the history of mechanical dynamics, and on the basis of the mechanical dynamics discussed the research contents and the influence of mechanical design, in order to better guide our future mechanical design work. Kewwords: Mechanical dynamics Mechanical design

系统动力学模型案例分析

系统动力学模型介绍 1.系统动力学的思想、方法 系统动力学对实际系统的构模和模拟是从系统的结构和功能两方面同时进行的。系统的结构是指系统所包含的各单元以及各单元之间的相互作用与相互关系。而系统的功能是指系统中各单元本身及各单元之间相互作用的秩序、结构和功能,分别表征了系统的组织和系统的行为,它们是相对独立的,又可以在—定条件下互相转化。所以在系统模拟时既要考虑到系统结构方面的要素又要考虑到系统功能方面的因素,才能比较准确地反映出实际系统的基本规律。系统动力学方法从构造系统最基本的微观结构入手构造系统模型。其中不仅要从功能方面考察模型的行为特性与实际系统中测量到的系统变量的各数据、图表的吻合程度,而且还要从结构方面考察模型中各单元相互联系和相互作用关系与实际系统结构的一致程度。模拟过程中所需的系统功能方面的信息,可以通过收集,分析系统的历史数据资料来获得,是属定量方面的信息,而所需的系统结构方面的信息则依赖于模型构造者对实际系统运动机制的认识和理解程度,其中也包含着大量的实际工作经验,是属定性方面的信息。因此,系统动力学对系统的结构和功能同时模拟的方法,实质上就是充分利用了实际系统定性和定量两方面的信息,并将它们有机地融合在一起,合理有效地构造出能较好地反映实际系统的模型。 2.建模原理与步骤

(1)建模原理 用系统动力学方法进行建模最根本的指导思想就是系统动力学的系统观和方法论。系统动力学认为系统具有整体性、相关性、等级性和相似性。系统内部的反馈结构和机制决定了系统的行为特性,任何复杂的大系统都可以由多个系统最基本的信息反馈回路按某种方式联结而成。系统动力学模型的系统目标就是针对实际应用情况,从变化和发展的角度去解决系统问题。系统动力学构模和模拟的一个最主要的特点,就是实现结构和功能的双模拟,因此系统分解与系统综合原则的正确贯彻必须贯穿于系统构模、模拟与测试的整个过程中。与其它模型一样,系统动力学模型也只是实际系统某些本质特征的简化和代表,而不是原原本本地翻译或复制。因此,在构造系统动力学模型的过程中,必须注意把握大局,抓主要矛盾,合理地定义系统变量和确定系统边界。系统动力学模型的一致性和有效性的检验,有一整套定性、定量的方法,如结构和参数的灵敏度分析,极端条件下的模拟试验和统计方法检验等等,但评价一个模型优劣程度的最终标准是客观实践,而实践的检验是长期的,不是一二次就可以完成的。因此,一个即使是精心构造出来的模型也必须在以后的应用中不断修改、不断完善,以适应实际系统新的变化和新的目标。 (2)建模步骤 系统动力学构模过程是一个认识问题和解决问题的过程,根据人们对客观事物认识的规律,这是一个波浪式前进、螺旋式上升的过程,因此它必须是一个由粗到细,由表及里,多次循环,不断深化的过程。系统动力学将整个构模过程归纳为系统分析、结构分析、模型建立、模型试验和模型使用五大步骤这五大步骤有一定的先后次序,但按照构模过程中的具体情况,它们又都是交叉、反复进行的。 第一步系统分析的主要任务是明确系统问题,广泛收集解决系统问题的有关数据、资料和信息,然后大致划定系统的边界。 第二步结构分析的注意力集中在系统的结构分解、确定系统变量和信息反馈机制。 第三步模型建立是系统结构的量化过程(建立模型方程进行量化)。 第四步模型试验是借助于计算机对模型进行模拟试验和调试,经过对模型各种性能指标的评估不断修改、完善模型。 第五步模型使用是在已经建立起来的模型上对系统问题进行定量的分析研究和做各种政策实验。 3.建模工具 系统动力学软件VENSIM PLE软件 4.建模方法 因果关系图法 在因果关系图中,各变量彼此之间的因果关系是用因果链来连接的。因果链是一个带箭头的实线(直线或弧线),箭头方向表示因果关系的作用方向,箭头旁标有“+”或“-”号,分别表示两种极性的因果链。

机械系统动力学试题

机械系统动力学试题 一、 简答题: 1.机械振动系统的固有频率与哪些因素有关?关系如何? 2.简述机械振动系统的实际阻尼、临界阻尼、阻尼比的联系与区别。 3.简述无阻尼单自由度系统共振的能量集聚过程。 4. 简述线性多自由度系统动力响应分析方法。 5. 如何设计参数,使减振器效果最佳? 二、 计算题: 1、 单自由度系统质量Kg m 10=, m s N c /20?=, m N k /4000=, m x 01.00=, 00=? x ,根据下列条件求系统的总响应。 (a ) 作用在系统的外激励为t F t F ωcos )(0=,其中N F 1000=, s rad /10=ω。 (b ) 0)(=t F 时的自由振动。 2、 质量为m 的发电转子,它的转动惯量J 0的确定采用试验方法:在转子径向R 1的地方附加一小质量m 1。试验装置如图2所示,记录其振动周期。 a )求发电机转子J 0。 b )并证明R 的微小变化在R 1=(m/m 1+1)·R 时有最小影响。 3、 如图3所示扭转振动系统,忽略阻尼的影响 J J J J ===321,K K K ==21 (1)写出其刚度矩阵; (2)写出系统自由振动运动微分方程; (2)求出系统的固有频率; (3)在图示运动平面上,绘出与固有频率对应的振型图。 1 θ(图2)

(图3) 4、求汽车俯仰振动(角运动)和跳振(上下垂直振动)的频率以及振 动中心(节点)的位置(如图4)。参数如下:质量m=1000kg,回转半径r=0.9m,前轴距重心的距离l1=0.1m,后轴距重心的距离l2=1.5m,前弹簧刚度k1=18kN/m,后弹簧刚度k2=22kN/m (图4) 5、如5图所示锻锤作用在工件上的冲击力可以近似为矩形脉冲。已知 工件,铁锤与框架的质量为m1=200 Mg,基础质量为m2=250Mg,弹簧垫的刚度为k1=150MN/m,土壤的刚度为k2=75MN/m.假定各质量的初始位移与速度均为零,求系统的振动规律。

基于系统动力学的博弈建模仿真及案例实践

《基于系统动力学的博弈建模仿真及案例实践》教学大纲 一、课程信息 课程编号: 课程中文名称:基于系统动力学的博弈建模仿真及案例实践 课程英文名称:Modeling and Simulation of Game based on System Dynamics and Case Study 适用专业:计算机软件与理论、计算机应用技术 开课时间:2015.3 总学时: 60(其中理论学时:16,实践学时:44) 总学分: 二、课程内容简介 课程主要介绍了系统科学与复杂理论在经济学博弈论的应用,以及基于系统动力学的社会科学计算机模型。简单介绍系统科学与复杂理论、博弈论方法,及其学科前沿的应用,重点介绍系统动力学基本理论及其应用,针对目前动态博弈的建模仿真问题进行案例讨论。 三、教学目标 该门课程主要培养学员的数学建模思想与计算机仿真手段的综合应用能力,提高学员在各个领域的计算机应用能力,能综合利用计算机仿真手段,分析现实社会中的某些复杂的现象,从而为分析解决现实中的这些问题提供决策支持。该门课程对于计算机网络、数据挖掘、公共安全甚至是社会信息经济等领域等的理论建模方面具有重要的作用。 通过本课程的学习,学员能够学习到以下几点: 1、了解系统科学与复杂理论的基本知识及其应用 2、熟悉博弈论基本理论和经典案例,系统动力学的应用

3、了解基于系统动力学的动态博弈建模仿真的技术实现路线 四、教学方法 课程的讲解从生活中的博弈论引入,以分析解决某个博弈案例为前提,在过程组织上,先介绍案例背景,再阐述分析方法与过程,最后完成博弈案例的建模和仿真的顺序进行,在介绍建模过程的同时穿插系统科学与复杂理论基本知识,简单的动手操作训练,加深理解和掌握。 五、及教学重难点 本课程的重点是系统科学的视角下,利用系统动力学分析动态博弈演化过程,难点是针对具体应用的分析建模、技术实现路线。 六、教学内容及学时安排

机械动力学简史

机械动力学简史 一.动力学简介 机械动力学作为机械原理的重要组成部分,主要研究机械在运转过程中的受力,机械中各部分构件的质量和构件之间机械运动的相互关系,是现代机械设计的重要理论基础。 一般来说,机械动力学的研究内容包括六个方面:(1)在已知外力作用下求机械系统的真实运动规律;(2)分析机械运动过程中各构件之间的相互作用力;(3)研究回转构件和机构平衡的理论和方法;(4)研究机械运转过程中能量的平衡和分配关系;(5)机械振动的分析研究;(6)机构分析和机构综合。其主要研究方向是机械在力的作用下的运动和机械在运动过程中产生的力,并且从力和相互作用的角度对机械进行设计和改进的学科。 二.动力学的前期发展 人类的发展过程中,很重要的一个进步特征就是工具的使用和制造。从石器时代的各种石制工具开始,机械的形式开始发展起来。从简单的工具形式,到包含各类零件、部件的较为先进的机械,这中间的发展过程经历了不断的改进与反复,也经历了在国家内部与国家之间的传播过程。 机械的发展过程也经历了从人自身的体力,到利用畜力、风力和水力等,材料的类型也从自然中自有的,过渡到简单的人造材料。整个发展过程最终形成了包含动力、传动和工作等部分的完整机械。 人类从石器时代进入青铜时代、铁器时代,用以吹旺炉火的鼓风器的发展起了重要作用。有足够强大的鼓风器,才能使冶金炉获得足够高的炉温,才能从矿石中炼得金属。中国在公元前1000~前900年就已有了冶铸用的鼓风器,并渐从人力鼓风发展到畜力和水力鼓风。早在公元前,中国已在指南车上应用复杂的齿轮系统。古希腊已有圆柱齿轮、圆锥齿轮和蜗杆传动的记载。但是,关于齿轮传动瞬时速比与齿形的关系和齿形曲线的选择,直到17世纪之后方有理论阐述。手摇把和踏板机构是曲柄连杆机构的先驱,在各文明古国都有悠久历史,但是曲柄连杆机构的形式、运动和动力的确切分析和综合,则是近代机构学的成就。 近代的机械动力学,在动力以及机械结构本身来说,具有各方面的重大突破。动力在整个生产过程中占据关键地位。随着机械的改进,对于金属和矿石的需求量增加,人类开始在原有的人力和畜力的基础上,利用水力和风力对机械进行驱动,但是这也造成了很多工厂的选址的限制,并不具有很大的推广性。而后来稍晚出现的纽科门大气式蒸汽机,虽然也可以驱使一些机械,但是其燃料的利用率很低,对于燃料的需求量太大,这也使得这种蒸汽机只能应用于煤矿附近。 瓦特发明的具有分开的凝汽器的蒸汽机以及具有回转力的蒸汽机,不仅降低了燃料的消耗量,也很大程度上扩大了蒸汽机的应用范围。蒸汽机的发明和发展,使矿业和工业生产、铁路和航运都得以机械动力化。蒸汽机几乎是19世纪唯一的动力源。但蒸汽机及其锅炉、凝汽器、冷却水系统等体积庞大、笨重,应用很不方便。 19世纪末,电力供应系统和电动机开始发展和推广。20世纪初,电动机已在工业生产中取代了蒸汽机,成为驱动各种工作机械的基本动力。生产的机械化已离不开电气化,而电气化则通过机械化才对生产发挥作用。 发电站初期应用蒸汽机为原动机。20世纪初期,出现了高效率、高转速、大功率的汽轮机,也出现了适应各种水力资源的大、小功率的水轮机,促进了电力供应系统的蓬勃发展。19世纪后期发明的内燃机经过逐年改进,成为轻而小、效率高、易于操纵、并可随时启动的原动机。它先被fuqu用以驱动没有电力供应的陆上工作机械,以后又用于汽车、移动机

基于系统动力学的大学生就业分析

基于系统动力学的大学生就业影响因素分析 摘要:随着高等教育规模的扩大,我国高校毕业生的数量进入了一个急剧增加的阶段,大学生就业环境发生了根本性的变化。高校毕业生逐年增加但就业形势却不容乐观加上近几年金融危机的影响大学毕业生就业问题日益突出。近几年来我国大学生就业率呈下滑态势大学生就业难的呼声日渐高涨,,本文以“大学生就业”为研究的切入点对江西大学毕业生进行调查找出大学生就业影响因素并谈究其原因,进而提出相应的对策。 关键字:大学生,就业,就业影响因素,对策 一、背景及研究目的 随着我国高校毕业生就业体制改革的不断深化和毕业生就业市场体制的逐步形成,大学生就业已基本实现了由传统的计划分配到市场调节方式的转变,“双向选择,自主择业”已成为大学生就业的主要形式。随着大学毕业生规模日益扩大,以及比较严峻的就业市场,大学生就业问题日益突出,就业难度日趋增大。大学生就业难的表现从1999 年到现在,我国大学生招生规模,平均每年以30%的增幅扩招,大学毕业生规模也同步增加。国家教委明确提出要把大学生的就业率控制在70%,而实际上就业率无法达到这个标准。据有关部门统计,2003 年我国大学生初次就业率只有60.5%,2004 年65%,2005年67%左右,2006 年有的统计在60%以下,而且这里面的统计数据一般都是偏高的,每个学校大都存在弄虚作假的现象。而另一方面,我国高校毕业生规模每年都在增加,2001 才103.6 万,2002 年到到145 万,2003 年达到212 万,2004 年达到280 万,2005 年为338 万,2006年为413 万,比较低的初次就业率,造成我国每年规模庞大的大学生待业群体。因此通过调查分析找出影响大学生的就业影响因素并探寻相应的策略对于缓解大学生的就业问题,保持高等教育的可持续发展和社会稳定都有非常重要的意义。 二、建立流位流率系 1、流位 L1(t)就业人数(人) L2(t)就业期望值(分)L3(t)个人能力(分) L4(t)招聘企业(个) L5(t)招生人数(人) 2、流率 (1)L1(t)的流率 R1(t)就业人数变化量(人/年) (2)L2(t)的流率 R2(t)就业期望变化量(分/学期) (3)L3(t)的流率 R3(t)个人能力变化量(分/年) (4)L4(t)的流率 R4(t)招聘企业变化量(个/年) (5)L5(t)的流率

工程机械动力学发展方向

机械动力学发展方向 随着高速、轻质机器人、航天器、车辆等复杂机械系统的高性能、高精度设计要求,对机械系统的精确、实时、有效的运动预测和控制已成为目前机械系统动力学领域的研究热点和难点。在兵器、机器人、航空、航天、机械等国防和国民经济建设中,诸如发射系统、飞行器、机械手、民用机械等大量的机械系统均可归结为以各种方式相连接的多个刚体和弹性体组成的多体系统。多体系统动力学是研究上述复杂机械系统动态特性最行之有效的方法,已成为现代力学的重要发展支流。近代机械发展的一个显著特点是,自动调节和控制装置日益成为机械不可缺少的组成部分。机械动力学的研究对象已扩展到包括不同特性的动力机和控制调节装置在内的整个机械系统,控制理论已渗入到机械动力学的研究领域。 1. 基于多体系统动力学理论开发的热点: (1)柔性多体系统动力学建模 近40 年来,国内外专家学者不断创造性地提出和改进各种多体系统动力学方法。依据不同的动力学原理(方法),柔性多体系统动力学建模主要基于两类基本方法:矢量力学方法和分析力学方法。 Newton/Euler(N/E)方法是典型的矢量力学方法,其特点是对每个物体做隔离分析,物理意义明确,刻划了系统完整的受力关系,是目前动力学实时分析控制的主要手段。 分析力学方法主要包括由d'Alembert原理(或Jourdain原理)出发导出的Lagrange 方法及由Gauss 极小值原理出发导出的LiLov方法等,主要以Lagrange 方法为代表,其特点是将系统作为整体考虑,在建模过程中不出现约束反力,列写运动微分方程方法规格化,方程数目最少,所得方程为常微分方程,处理的是标量,但推导过程繁冗,所得方程很长。 (2)三维可视化仿真。 机械系统动力学三维可视化仿真是机械系统动力学研究的另一热点问题。上世纪80 年代以来,基于多体系统动力学理论,开发出了许多著名的多体系统商业可视化软件包,比较知名的有ADAMS,DADS,MADYMO 等,为工程技术领域提供强有力的计算机辅助分析的工具[7, 8]。随着多体系统理论和仿真算法的不断发展,这些软件的分析功能在不断增强,版本也在不断升级,也逐渐可以同有限元技术在大型结构分析中的应用相媲美。国内一些大学的力学系和机械系于十多年前就开始跟踪国际前沿的研究,在基础理论和方法上取得了许多重要的进展和成果。但较之国外,在应用和软件的产业化方面还存在很大的差距,而这正是我国当前所急需的 2. 机械动力学的未来趋势 未来机械系统动力学发展的重点将会在以下方面[3]:柔性多体系统的力学响应与其他类型的物理场(如:电、热、磁和流体向量场)耦合求解、柔性多体系统控制与逆动力学设计、柔性多体系统动力学数值求解策略改进。

相关主题
文本预览
相关文档 最新文档