当前位置:文档之家› 变流器的作用和原理2.14

变流器的作用和原理2.14

变流器的作用和原理2.14
变流器的作用和原理2.14

变流器的作用和原理是什么?

一、变流器一般是电力电子元件实现的,作用是实现功率的传递,按照两端电压类型不同大概可分为以下几种:

a) DC/DC变流器,两端都是直流,可以等效为直流变压器;

b) AC/DC变流器,或者称为可控整流装置,实现交流到直流的功率

传输;

c) DC/AC变流器,或者称为逆变器,实现直流到交流的功率传输;

d) AC/AC变流器,就是变频器了,实现交流频率的变换

e) AC-DC-AC变流器,也是变频器,作用如上

原理一两句就很难说清了,需要很多专业知识。

二、变流器

变流器是使电源系统的电压、频率、相数和其他电量或特性发生变化的电器设备。

1.含义

包括整流器(交流变直流)、逆变器(直流变交流)、交流变流器(交流变频器)和直流变流器(直流斩波器)。

2.构成原理

变流器除主电路(分别为整流电路、逆变电路、交流变换电路和直流变换电路)外,还需有控制功率开关元件通断的触发电路(或称驱动电路)和实现对电能调节、控制的控制电路。变流器的触发电路包括脉冲发生器和脉冲输出器两部分。前者根据控制信号的要求产生一定频率、一定宽度

或一定相位的脉冲;后者将此脉冲的电平放大为适合变流器中功率开关元件需要的驱动信号。

触发电路按控制的功能可分为相控触发电路(用于可控整流器、交流调压器、直接降频器和有源逆变器)、斩控触发电路和频控触发电路。采用正弦波的频控电路不仅能控制逆变器的输出电压,还能改善输出电压的质量。

变流器的控制电路按控制方式分开环控制电路和闭环控制电路。前者主要用在要求不高的一些专用设备;后者具有自动控制和调节的作用,广泛应用在各种工作机械上。

按控制信号性质分模拟控制电路和数字控制电路。模拟信号最常采用的是直流电压和电流,便于用电的方法加以处理和变换;数字信号是一组信息参量具有离散值的不连续变化的信号。数字控制具有高精度,但电路较为复杂,价格昂贵。因此,实际上广泛应用的是数字模拟混合式控制电路。此外,采用微型计算机的控制电路也具有很多优点。

3.分类

一般用途变流器converter,general purpose

由一个或多个电子开关器件和相关的元器件,与变压器、滤波器、换相辅助器件、控制器、保护和辅

助部件(若有)组成的,用于改变一个或多个电气特性的电力变换用的工作单元。

整流rectifying-rectification

起交流变换成直流作用的变流器称为整流器,可以是不可控的或可控的。

逆变inverting,inversion

逆变器起直流变换成交流的作用。

交流变流器converter,a. c.

将给定电压、频率和相数的交流电变换成不同电压、频率和/或相数的交流电的变流器。

变频器converter,adjustable frequency

用于改变频率的变流器。

间接交流变流器(有直流环节变流器) converter,in

directa .c .( converterd .c .l inked)

带中间直流环节的变流器。

直接交流变流器converter,di recta .c .

无中间直流环节的变流器。

外部换相变流器converter,externally commutated

换相电压由交流电源、交流负载或变流器之外的其他交流源提供的变流器。

电网换相变流器converter,li ne-sidec ommutated

换相电压由交流输入提供的变流器。

自换相变流器converter,se lf-commutated

由变流器内部元件完成换相的变流器。

负载换相变流器converter,lo ad-sidec ommutated

换相电压由交流负载提供的变流器。

电压源型交流/交流变流器converter,a. c. /a .c.voltage source

提供基本上不受负载值影响且输出电压可调的变流器。

电流源型交流/交流变流器converter,a. c. / a.c. c urrents ource

提供基本上不受负载值影响且输出电流可调的变流器。

4.电力变流器的分类

由晶闸管组成的电力变流器按所用换流方式的不同,可分为:

1) 电源换流式变流器;

2) 负载换流式变流器;

3) 自换流式变流器;

5.电力变流器的常见种类

常见的电力变流器有:

1)整流器,用于交流到直流的变流;

2)逆变器,用于直流到交流的变流;

3)交流变流器,用于交流变流;

4)直流变流器,用于直流变流。

6. 谐波危害

整流器、逆变器、变频器等等变流器,运行过程中一方面产生谐波电流污染电网,另一方面输出电压含高次谐波向空间辐射高频电磁波,污染电磁环境。因此,使用变流器,尤其是大功率变流器时,应采取必要的谐波抑制及谐波治理。

从广义上讲,由于交流电网有效分量为工频单一频率,因此任何与工频频率不同的成分都可以称之为谐波,这时“谐波”这个词的意义已经变得与原意有些不符。正是因为广义的谐波概念,才有了“分数谐波”、“间谐波”、“次谐波”等等说法。

谐波产生的原因主要有:由于正弦电压加压于非线性负载,基波电流发生畸变产生谐波。主要非线性负载有UPS、开关电源、整流器、变频器、逆变器等。

谐波(harmonic wave),从严格的意义来讲,谐波是指电流中所含有的频率为基波的整数倍的电量,一般是指对周期性的非正弦电量进行傅里叶级数分解,其余大于基波频率的电流产生的电量。

Switch变流器控制原理图

Switch变流器控制原理图 金风公司 作者: 2007年6月16日

目录 一.介绍 (3) 二.系统主拓扑 (3) 三.控制框图 (4) 四.网侧控制原理框图 (4) 五.发电机侧控制原理框图 (6) 六.总结 (7)

一.介绍 Switch 变流器采用了主动整流的方式来控制发电机以及和电网并网。其控制方式为分布式控制,这种方式和它的主电路拓扑结构相对应。即网侧和发电机侧各有独立的控制器,以一个控制器为主要控制器,通过控制器之间的联系进行相互信息交换和控制。 二.系统主拓扑 图一Switch变流器系统主拓扑结构 图中可以看到,网侧功率模块为1U1,而发电机侧有两个功率模块:2U1 和3U1。这是和发电机两套绕组相的结构相对应的。图中的4U1 和5U1 为用于制动的功率模块。采用两个功率模块的原因是单个模块的电流容量有限。在最新的系统中,这两个模块已经被一个大容量模块所代替。 这里,网侧变流器的作用是将发电机发出的能量转换为电网能够接受的形式并传送到电网上。而发电机侧功率模块则是将发电机发出的电能转换为直流有功传送到直流母线上。制动功率模块则是在当某种原因使得直流母线上的能量无法正常向电网传递时将多余的能量在电阻上通过发热消耗掉,以避免直流母线电压过高造成器件的损坏。

三.控制框图 图二控制框图 Switch变流柜中采用的功率模块都是V ACON公司生产的通用变频器。这里所说的控制器也是V ACON公司为变频器所配的控制器。这些控制器和功率模块一一对应,相互之间通过光纤/CAN总线互连。从硬件上看,这些控制器的基本配置一致,从控制角度看,1U1 的控制器是变流器主要的控制核心,通过它变流器完成和WTC之间的信息和命令交互,同时完成对其他控制器的操作。可以看到,1U1 和2U1 及3U1之间通过光纤和CAN总线连接,而4U1/5U1 之间及与其他控制器的连接通过CAN 总线实现,这是因为1U1/2U1/3U1之间需要高速通讯以满足系统正常运行所需,而制动功率模块的相应时间可以慢一些。 四.网侧控制原理框图 网侧功率单元的作用是将直流母线上的直流有功功率转换为50Hz交流有功功率传送到电网上。其控制对象为直流母线电压。其控制原理框图为:

一种全功率风力发电变流器关键技术研究

一种全功率风力发电变流器关键技术研究 发布时间:2008-11-29 10:12:00 摘要:风力发电机类型很多,本文选择了几种风力发电系统的结构进行了对比,给出了一种不控整流器加BOOST升压加PWM逆变的全功率风力发电变流器的原理、设计中采用的关键技术及试验结果。 主题词:直驱,风力发电,全功率,变流器 Key Technology research on a full power wind generator converter Zhou Weilai, Sun Jinghua, Zhang Zhe, Pei Jingbin (Harbin Jiuzhou Electric Co.,LTD,150081) Abstract:The paper compares kinds of wind turbine generaters,and introduces a kind of full power converter with inactive rectifier,BOOST circuit and PWM inverter for wind turbin generater,illustrates its principle,key technologies and testing result. Key words: direct drive;full power;wind turbine generation;converter 注:本项目受国家十一五科技支撑计划项目资助,项目编号2006BAA01A21 1.引言 我国风力发电起步较晚,目前国内40多家风力发电设备整机制造厂家中,多数只能制造1MW以下的风力发电机组。2006年开始制造1.2MW、1.5MW直驱永磁风力发电机组,开始技术主要靠引进。随着国家的引导,大功率风电机组开始升温,随之而来的就是电控部件国产化问题。到目前为止,兆瓦级以上全功率风力发电变流器主要依靠进口,所以研发自主知识产权大功率风电变流器成为当务之急。 2.几种风力发电系统结构对比 由发电机和电力电子器件或变流器构成的广泛应用的6种风力发电系统结构如图2-1所示。下面对图中的风力发电系统结构加以简单比较说明。 图a是二十世纪八十年代到九十年代被很多风机制造商应用的比较传统的结构,如使用鼠笼型转子的异步发电机的上风式、失速调节、三桨叶风力机就是这种结构。在八十年代这种结构被扩展,为补偿无功功率使用了电容器组,为平滑并网使用了电机软起动器。 图b是用全程范围或“低风速区域”大小的变频器代替了图a中的电容器组和电机软起动器。“低风速区域”大小的变流器的功率仅为发电机额定功率的20-30%,而全程范围的变流器功率大约为发电机额定功率的120%,但它能使风力发电机在所有风速下变速运行。 图c这种结构是二十世纪九十年代中期,Vestas风力机厂生产的名为“Optislip”风力机所采用的结构。这种结构的基本思想是利用电力电子变换器改变外部的转子电阻,来改变总的转子电阻,从而使转差率有10%的变化范围。

SWITCH全功率变流器在风机中的应用

近年来,兆瓦级风机市场在以极快的速度增长着。金风公司在国内率先引导的直驱型风机,是其中很有前途的一种机型,其中主要使用的变流器是SWITCH公司的产品。在过去的两年里,SWITCH公司制造的全功率变流器和金风公司直驱型风机一同进步,逐渐成熟。 1. 简介 近年来,兆瓦级风机市场在以极快的速度增长着。金风公司在国内率先引导的直驱型风机,是其中很有前途的一种机型,其中主要使用的变流器是SWITCH公司的产品。在过去的两年里,SWITCH公司制造的全功率变流器和金风公司直驱型风机一同进步,逐渐成熟。 2. 金风直驱型风机的原理及特点 2.1. 直驱型风机之原理 兆瓦级风机市场上的主流是变浆变速风机,根据结构的不同又可以分为两种:双馈型和直驱型。双馈型采用双馈发电机,在转子绕组上串入可以四象限运行的变频器,控制定子绕组和电网之间的功率流动。这种结构对变频器的功率要求只有系统总功率的1/3左右。 图1:双馈型变流装置示意图 金风公司的直驱型风力发电机组采用永磁式发电机的形式,将电机定子绕组输出直接连接到全功率的变流器上,由变流器将电机输出变化的电压/电流转换为和接入电网电压和频率相匹配的形式。

图2:直驱型风力发电系统示意图 为了降低电机成本,希望变流器具有能够调节电机内磁场的功能,因此全功率四象限变流器就成为了直驱型风机变流器的首选。 2.2. 直驱型风机之优点及和双馈机型的异同 和双馈型风力发电机组相比,直驱型机组有如下特点: 优点包括: 省略了齿轮箱,机械系统大为简化,机械可靠性显著提高。 在发电机和电网之间采用了完全可控的全功率变流器进行功率转换,在电网侧能够自由的实现各种功能,如低电压穿越、动态无功补偿,甚至有限的谐波补偿能力。在接入网性能方面,直驱型机组具有无以伦比的优势。 由于少了齿轮箱等传动机构,且没有附加的励磁损耗,风机整体效率较双馈机组高,理论值为3%,在吉林、内蒙多个风况相同现场的实际差异则远高于此数值。 由于没有齿轮箱、碳刷等机构,机组需要定期维护的器件数量大大降低,长期维护成本较低。 由于直驱发电机的特点,使得直驱风机在低速时切入速度小于双馈机组,从而使整机的发电量和发电效率提高。

逆变器的工作原理

逆变器(inverter)是把直流电能(电池、蓄电瓶)转变成交流电(一般为220v50HZ正弦或方波)。应急电源,一般是把直流电瓶逆变成220V交流的。 通俗的讲,逆变器是一种将直流电(DC)转化为交流电(AC)的装置。它由逆变桥、控制逻辑和滤波电路组成. 利用TL494组成的400W大功率稳压逆变器电路。它激式变换部分采用TL494,VT1、VT2、VD3、VD4构成灌电流驱动电路,驱动两路各两只60V/30A的MOS FET开关管。如需提高输出功率,每路可采用3~4 只开关管并联应用,电路不变。TL494在该逆变器中的应用方法如下:第1、2脚构成稳压取样、误差放大系统,正相输入端1脚输入逆变器次级取样绕组整流输出的15V直流电压,经R1、R2分压,使第1脚在逆变器正常工作时有近4.7~5.6V取样电压。反相输入端2脚输入5V基准电压(由14脚输出)。当输出电压降低时,1脚电压降低,误差放大器输出低电平,通过PWM电路使输出电压升高。正常时1脚电压值为5.4V,2脚电压值为5V,3脚电压值为0.06V。此时输出AC电压为235V(方波电压)。第4脚外接R6、R4、C2设定死区时间。正常电压值为0.01V。第5、6脚外接CT、RT设定振荡器三角波频率为100Hz。正常时5脚电压值为1.75V,6脚电压值为3.73V。第7脚为共地。第8、11脚为内部驱动输出三极管集电极,第12脚为TL494前级供电端,此三端通过开关S控制TL494的启动/停止,作为逆变器的控制开关。当S1关断时,TL494无输出脉冲,因此开关管VT4~VT6无任何电流。S1接通时,此三脚电压值为蓄电池的正极电压。第9、10脚为内部驱动级三极管发射极,输出两路时序不同的正脉冲。正常时电压值为1.8V。第13、14、

自制逆变器电路及工作原理

自制逆变器电路及工作原理 作者:本站来源:本站整理发布时间:2009-11-20 11:54:11 [收藏] [评论] 自制逆变器电路及工作原理 今天我们来介绍一款逆变器(见图1)主要由MOS场效应管,普通电源变压器构成。其输出功率取决于M OS场效应管和电源变压器的功率,免除了烦琐的变压器绕制,适合电子爱好者业余制作中采用。下面介绍 该变压器的工作原理及制作过程。 电路图(1) 工作原理: 这里我们将详细介绍这个逆变器的工作原理。 一、方波的产生 这里采用CD4069构成方波信号发生器。电路中R1是补偿电阻,用于改善由于电源电压的变化而引起的震荡频率不稳。电路的震荡是通过电容C1充放电完成的。其振荡频率为f=1/2.2RC。图示电路的最大频率为:fmax=1/2.2x103x2.2x10—6=62.6Hz,最小频率为fmin=1/2.2x4.3x103x2.2x10—6=48.0Hz。由于元件的误差,实际值会略有差异。其它多余的发相器,输入端接地避免影响其它电路。

图2 二、场效应管驱动电路。 由于方波信号发生器输出的振荡信号电压最大振幅为0~5V,为充分驱动电源开关电路,这里用TR1、TR2 将振荡信号电压放大至0~12V。如图3所示。 图3 三、场效应管电源开关电路。 场效应管是该装置的核心,在介绍该部分工作原理之前,先简单解释一下MOS场效应管的工作原理。MOS场效应管也被称为MOS FET,即Metal Oxide Semiconductor Field Effect Transistor(金属氧化物半导体场效应管)的缩写。它一般有耗尽型和增强型两种。本文使用的是增强型MOS场效应管,其内部结构见图4。它可分为NPN型和PNP型。NPN型通常称为N沟道型,PNP型通常称P沟道型。由图可看出,对于N沟道型的场效应管其源极和漏极接在N型半导体上,同样对于P沟道的场效应管其源极和漏极则接在P型半导体上。我们知道一般三极管是由输入的电流控制输出的电流。但对于场效应管,其输出电流是由输入的电压(或称场电压)控制,可以认为输入电流极小或没有输入电流,这使得该器件有很高的输入 阻抗,同时这也是我们称之为场效应管的原因。

全功率变流器出厂试验方法内容

全功率变流器 出厂试验项目和方法 1. 试验项目及方法与内容 1. 2. 1绝缘耐压试验 1. 2. 1. 1绝缘电阻测定试验 用兆欧表或绝缘电阻测试仪以1000 V试验电压分别测量变流器的输人电路对地、输出电路对地的绝缘电阻值。测量绝缘电阻合格后,才能进行绝缘强度试验。 1. 2. 1. 2绝缘强度测定试验 用耐压测试仪分别对变流器的输人电路对地、输出电路对地输出电路对地的绝缘电阻应不小于1 MΩ。绝缘电阻只作为绝缘强度试验参考。 绝缘强度方法将变流器的输人电路对地、输出电路对地应承受50 H:的正弦交流电压1 min,试验电压的均方根值(见表1),不击穿,不飞弧,漏电流<20 mA。试验电压应从零开始,以每级为规定值的5%的有级调整方式上升至规定值后,持续1 min。 2. 2. 1功能试验 功能试验的目的是为了验证电气线路的所有部分以及冷却系统的连接是否正确,能否与主电路一起正常运行,设备的静态特性是否能满足规定要求。 功能试验方法:出厂试验时,变流器仅在额定输人电压下运行;型式试验时,应在额定输人电压的最大值和最小值下检验。 设备的功能。试验期间,应检查控制、辅助、保护装置等的性能,应能与主电路协调工作。 功能试验内容主要包括:启动、运行、停机、通讯等。 测试方法: 通过操作界对变流器进行启动、运行、停机、通讯测试;对各电源回路、控制回路、信号检查回路功能进行测试。 测试项目: 1、380V AC电源回路 A、通电后,水泵工作是否正常; B、台外部空水冷风机工作是否正常; C、水冷系统加热器工作是否正常; 在环境温度通电2分钟水箱温升大于3K。(不启动内 循环泵)。 2、220V AC电源回路 A、电源插座供电是否正常; B、UPS供电正常; C、柜内加热膜工作是否正常; 在环境温度下通电2钟加热膜温升大于3K; D、柜内空水冷风扇工作是否正常; F、220VAC继电器接触器工作是否正常; J、网侧断路器、机侧负荷开关工作是否正常; H、功率单元供电工作是否正常; 3、24VDC电源回路 A、变流器主控板工作是否正常; B、24VDC继电器工作是否正常; 4、检测回路 A、网侧、机侧、母线电压检测回路工作是否正常; 精度为2%。

牵引变流器变流器工作原理

牵引变流器变流器工作原理 1,概述 交流异步电动机的同步转速与电源频率的关系: ⑴ 变频调速就是利用电动机的同步转速随电机电源频率变化的特性,通过改变电动机的供电频率进行调速的方法。利用半导体功率开关器件如IGBT等变频装置构成变频电源对异步电动机进行调速。 同步转速随电源频率线性地变化,改变频率时的机械特性是一组平行的曲线,类似于直流电机电枢调压调速特性。因此,从性能上来讲,变频调速是交流电机最理想的调速方法。 与磁通Φ的关系: 异步电机电压U 1 ⑵ 有⑵式知,若不变,与成反比,如果下降,则增加,使磁路过饱和,励磁电流迅速上升,导致铁损增加,电机发热及效率下降,功率因数降低。如果上升,则减小,电磁转矩也就跟着减小,电机负载能力下降。由此可见,在调节的同时,还要协调地控制,即给电机提供变压变频电源,才可以获得较好的调速性能。 由变压变频装置给笼型异步电机供电所组成的调速系统叫做变压变频调 速系统,它可以分为转速开环恒压频比控制、转速闭环转差频率控制系统,可以满足一般要求的交流调速系统。若调速系统对调速系统静、动态性能要求不高的场合,比如风机、水泵等节能调速系统,可以采用转速开环恒压频比带低频电压补偿的控制方案,其控制系统结构简单,成本也比较低。若要提高静、动态性能,可以采用转速反馈的闭环控制系统。若调速系统对静、动态性能的要求很高,则需要采用模拟直流电机控制的矢量控制系统。矢量控制系统是高动态性能的交流调速控制系统,但是需要进行大量复杂的坐标变换运算,而且控制对象参数的变化将直接影响控制精度。直接转矩控制系统是近十几年来继矢量控制系统之后发展起来的另一种高动态性能的交流调速系统。它避开了矢量控制的旋转坐标变换,而是直接进行转矩“砰—砰”控制。 地铁列车和电动车组的调速系统,对静、动态性能的要求很高,采用矢量控制系统或直接转矩控制系统。地铁列车的牵引系统为直-交变频器,电动车组的牵引系统为交-直-交变频器。 随着电力半导体器件的发展,变频器的发展也经历了几个阶段。电力电子器件的可控性、模块化、控制手段的全数字化,利用了微机的强大信息处理能力,使软件功能不断强化,变频器的灵活性和适用性不断增强。随着网络时代的到来,变频器的网络功能和通信不断增强,它不仅可以与设备网的现场总线直接相连,还可以与信息交换实时数据。 2,牵引变流器工作原理

变流器基本原理

1、双馈型风力发电系统的运行原理 双馈型风力发电系统结构图如图1所示,由风轮机、齿轮箱、变桨结构、偏航机构、双馈电机、变流器、变压器、电网等构成。其工作过程为:当风吹动风轮机转动时,风轮机将其捕获的风能转化为机械能再通过齿轮箱传递到双馈电机,双馈电机将机械能转化为电能,再经变流器及变压器将其并入电网。通过系统控制器及变流器对桨叶、双馈电机进行合理的控制使整个系统实现风能最大捕获,同时,通过对变桨机构、变流器及Crowbar 保护电路的控制来应对电力系统的各种故障。 双馈异步发电机的定子与转子两侧都可以馈送能量,由于转子侧是通过变频器接入的低频电流起到了励磁作用, 因此又名交流励磁发电机。双馈异步发电机主机结构特点是:定子与一般三相交流发电机定子一样,具有分布式绕组;转子不是采用同步发电机的直流集中绕组,而是采用三相分布式交流绕组,与三相绕线式异步机的转子结构相似。正常工作时,定子绕组并入工频电网,转子绕组由一个频率、幅值、相位都可以调节的三相变频电源供电,转子励磁系统通常采用交-直-交变频电源供电。 图1、双馈风力发电系统结构图 双馈异步发电机在稳态运行时,定子旋转磁场和转子旋转磁场在空间上保持相对静止,此时有如下数学关系表达式: 12 r n n n =±2160 f n n f r p ±=

12 11 r n n n s n n ?==±式中,1n 、r n 、2n 分别为定子电流产生磁场的旋转速度、转子旋转速度和转子电流产生磁场相对于转子的旋转速度,1f 、2f 分别为定、转子电流频率,p n 为发电机极对数,s s n n n s ?=为发电机的转差率。由上式可知,当发电机转子转速r n 发生变化时,若调节转子电流频率2f 相应变化,可使1f 保持恒定不变,实现双馈异步发电机的变速恒频控制。当r n <1n 时,电机处于亚同步速运行状态,转子旋转磁场相对于转子的旋转方向与转子旋转方向相同,变频器向转子提供交流励磁,定子向电网馈出电能;当r n >1n 时,电机处于超同步速运行状态,转子旋转磁场相对于转子的旋转方向与转子旋转方向相反,此时定、转子均向电网馈出电能;当r n =1n 时,2f =0,变频器向转子提供直流励磁,此时电机作为普通隐极式同步发电机运行。 双馈电机转子侧接变流器,其调速的基本思想就是要在转子回路上串入附加电势,通过调节附加电势的大小、相位和相序来实现双馈调速。与传统的直流励磁同步发电机相比,双馈异步发电机励磁系统的调节量由一个变为三个,即励磁电流的幅值、频率和相位。所以,调节励磁不仅可以调节发电机的无功功率,还可以调节发电机的有功功率和转子转速。因此,该电机在提高电力系统稳定性、变速运行能力方面有着优良的特性。 2.变速恒频双馈风力发电机运行工况 2.1双馈电机在不同工作状态下的功率分布流程 从上面对双馈电机的分析,我们可以建立双馈电机在不同情况下的运行状态,并且同时分析在该种情况下的功率流程。主要讨论的是定子侧功率1P (向电网输出电能时为正,吸收电网电能时为负),转差功率s P (向电网馈送电能时为正,吸收电网电能时为负)和机械功率mec P (电机吸收机械功率为正,电机输出机械功率时为负)。 1)双馈电机运行于超同步发电机情况下: 整个风机的机械效率 同步转速

全功率变流器风电机组的工作原理及控制策略

第五章全功率变流器风电机组的工作原理及控制策略 5.1 全功率变流器风电机组的工作原理 (2) 5.1.1全功率变流器风电机组传动链形式 (2) 5.1.2同步发电机 (2) 5.1.3永磁同步风力发电机结构及特点 (5) 5.1.4电励磁同步风力发电机结构及特点 (18) 5.2 全功率变流器风电机组变流器 (19) 5.2.1 电机侧变流器控制策略 (20) 5.2.1 电网侧变流器控制策略 (21)

5.1 全功率变流器风电机组的工作原理 5.1.1全功率变流器风电机组传动链形式 随着现代风电机组的额定功率呈现上升趋势,风轮桨叶长度逐渐增加而转速降低。例如:额定功率为5MW的风电机组桨叶长度超过60米,转子额定转速为10rpm左右。当发电机为两对极时,为了使5MW风力发电机通过交流方式直接与额定频率为50Hz的电网相连,机械齿轮箱变速比应为150。齿轮箱变速比的增加,给兆瓦级风电机组变速箱的设计和制造提出了挑战。风电机组功率及变速箱变速比增大时,其尺寸、重量及摩擦磨损也在增加。作为另外一种选择,风力发电机可以采用全功率变流器以AC/DC/AC的方式与电网相连。 全功率变流器是一种由直流环节连接两组电力电子变换器组成的背靠背变频系统。这两个变频器分别为电网侧变换器和发电机侧变换器。发电机侧变换器接受感应发电机产生的有功功率,并将功率通过直流环节送往电网侧变换器。发电机侧变换器也用来通过感应发电机的定子端对感应发电机励磁。电网侧变换器接受通过直流环节输送来的有功功率,并将其送到电网,即它平衡了直流环节两侧的电压。根据所选的控制策略,电网侧变换器也用来控制功率因数或支持电网电压。 5.1.2同步发电机 发电系统使用的同步发电机绝大部分是三相同步发电机。同步发电机主要包括定子和转子两部分。定子是同步发电机产生感应电动势的部件,由定子铁芯、三相电枢绕组和起支撑及固定作用的机座组成。转子的作用是产生一个强磁场,并且可以由励磁绕组进行调节,主要包括转子铁心、励磁绕组、滑环等。同步发电机的励磁系统一般分为两类,一类是用直流发电机作为励磁电源的直流励磁系统,另一类是用整流装置将交流变成直流后供给励磁的整流励磁系统。发电机容量大时,一般采用整流励磁系统。同步发电机是一种转子转速与电枢电动势频率之间保持严格不变关系的交流电机。 同步发电机的转子基木上是一个大的电磁铁。磁极有凸极和隐极两种结构。凸极转子结

光伏逆变器的原理和例子

逆变器的的功能是将直流电转换为交流电,为“逆向”的整流过程,因此称为“逆变”。光伏阵列所发的电能为直流电能,然而许多负载需要交流电能,如变压器和电机等。直流供电系统有很大的局限性,不便于变换电压,负载应用范围也有限。除特殊用电负荷外,均需要使用逆变器将直流电变换为交流电。逆变器除r能将直流电能变换为交流电能外,还具有自动稳压的功能,可以改善风光互补发电系统的供电质量,在联网型光伏发电系统也需要使用具有并网功能的交流逆变器。逆变器种类很多,根据逆变器线路逆变原理的不同,有自激振荡型逆变器、阶梯波叠加逆变器和脉宽调制(PWM)逆变器等。根据逆变器主回路拓扑结构不同,可分为半桥结构、全桥结构、推挽结构等。 逆变器的控制可以使用逻辑电路或专用的控制芯片,也可以使用通用单片机或DSP芯片等,控制功率开关管的门极驱动电路。逆变韶输出可以带有一定的稳压能力,以桥式逆变器为例,如果设计逆变器输出的交流母线额定电压峰值比其直流母线额定电压低10%~20%(目的是储备一定的稳压能力),则逆变器经PWM 凋制输出其幅值叮以有向高10%~20%调节的裕量,向低调节则不受限制,只需降低PWM的开通占空比即可。因此逆变器输人直流电压波动范围向下可以到-15%~20% ,向上只要器件耐压允许则不受限制,只需调小输出脉宽即可(相当于斩波)口当蓄电池或光伏电池输出电压较低时,逆变器内部需配置升压电路,升压可以使用开关电源方式升压也司以使用直流充电泵原理升压。逆变器使用输出变压器形式升压,即逆变器电压与蓄电池或光伏电池阵列电压相匹配,逆变器输出较低的交流电压,再经工频变压器升压送人输电线路。需要说明的是,不论是变压器还是电子电路升压,都要损失一部分能量。最佳逆变器工作模式是直流输人电压与输电线路所需要的电压相匹配,直流电力只经过一层逆变环一节,以降低变换环..-的损耗口一般来说逆变器的效率在90%以上。逆变环节损耗的能量转换为功率管、变压器的热形式能量,该热量对逆变器的运行是不利的,威胁装置的安全,要使用散热器、风扇等将此热量排出装置以外。逆变损耗通常包括二部分:导通损耗和开关损耗,MOSFET管开关频率较高,导通阻抗较大,由其构成的逆变器多工作在儿十到上百千赫兹频率下;而IGBT则导通压降相对较小,开关损耗较大,开关频率在几千到几十千赫兹之间一般选择十千赫兹以下。开关并非理想开关,当其开通过程中电流有一上升过程,管子端电压有一下降过程,电压与电流交又过程的损耗就是开通损耗,关断损耗为电压电流相反变化方向的交叉损耗。降低逆变器损耗主要是要降低开关损耗,新型的谐振型开关逆变器,在电压或电流过零点处实施开通或关断,从而可以降低开关损耗。 一般来说,逆变器的技术指标包括:使用环境为海拔不超过3000m, 温度0~+40C (也有特殊用途的逆变器要求低温为- 10C或更低的),相对湿度90以下,直流输人额定电压士15%,输出电压波动范围不超过-5%,频率波动范围不超过-1%,谐波畸变率不超过10%,允许负载功率因数变化范围0. 5~1, 0。三相输出电压不对称度小于5%,噪声小于80dB,具有过载200%额定输出电流1分钟的能力,逆变器在额定负载下应能够可靠地启动。逆变器保护功能应具有:输出短路保护、输出过电流保护、输出过电压保护、输出欠电压保护、输出缺相保护、功率电路超温保护等。例如,当传感器检测到输出有短路时,控制电路立即关闭功率管的驱动从而关断功率管的输出,实现对逆变器的保护。 1.方波逆变器 此逆变器输出的电压波形为方波,逆变器线路简单,价格便宜,实现较为容易。缺点是方波电压中含有大量的高次谐波成分,在负载中会产生附加的损耗,并对通信等设备产生较大的干扰,需要外加额外的滤波器。此类逆变器多见于早期,设计功率不超过几百瓦的小容量逆变器。 2.阶梯波逆变器 阶梯波逆变器输出的电压波形为阶梯波形,阶梯波逆变器的优点是输出波形接近正弦波,比方波有明显的改善,高次谐波含量减少。当阶梯波的阶梯达到16个以上付,输出的波形为准正弦波,整机效率较高。但此逆变器往往需要多组直流电源供电,需要的功率开关管也较多,给光伏阵列分组和蓄电池分组带来不便。 3.正弦波PWM逆变器

逆变器原理图_框图

车载逆变器的整个电路大体上可分为两大部分,每部分各采用一只TL494或KA7500芯片组成控制电路,其中第一部分电路的作用是将汽车电瓶等提供的12V直流电,通过高频PWM (脉宽调制)开关电源技术转换成30kHz-50kHz、220V左右的交流电;第二部分电路的作用则是利用桥式整流、滤波、脉宽调制及开关功率输出等技术,将30kHz~50kHz、220V左右的交流电转换成50Hz、220V的交流电。 图1电路中,由芯片IC1及其外围电路、三极管VT1、VT3、MOS功率管VT2、VT4以及变压器T1组成12V直流变换为220V/50kHz交流的逆变电路。由芯片IC2及其外围电路、三极管VT5、VT8、MOS功率管VT6、VT7、VT9、VT10以及220V/50kHz整流、滤波电路VD5-VD8、C12等共同组成220V/50kHz高频交流电变换为220V/50Hz工频交流电的转换电路,最后通过XAC插座输出220V/50Hz交流电供各种便携式电器使用。 图1中IC1、IC2采用了TL494CN(或KA7500C)芯片,构成车载逆变器的核心控制电路。TL494CN是专用的双端式开关电源控制芯片,其尾缀字母CN表示芯片的封装外形为双列直插式塑封结构,工作温度范围为0℃-70℃,极 限工作电源电压为7V~40V,最高工作频率为300kHz。 TL494芯片内置有5V基准源,稳压精度为5 V±5%,负载能力为10mA,并通过其14脚进行输出供外部电路使用。TL494芯片还内置2只NPN

图二

本逆变器输入端为汽车蓄电池(+12V,4.5Ah),输出端为工频方波电压(50Hz,220V)。其系统主电路和控制电路框图如图1所示,采用了典型的二级变换,即DC/DC变换和DC/AC逆变。12V直流电压通过推挽式变换逆变为高频方波,经高频升压变压器升压,再整流滤波得到一个稳定的约320V直流电压;然后再由桥式变换以方波逆变的方式,将稳定的直流电压逆变成有效值稍大于220V的方波电压,以驱动负载。为保证系统的可靠运行,分别采集了DC高压侧电压信号、电流信号及蓄电池电压信号,送入SG3525A,通过调整驱动脉冲的占空比或关断脉冲来 实现电压调节、过流保护及欠压保护等功能。

讨论双馈变流器与全功率变流器

讨论一下双馈变流器与全功率变流器的技术难度那个更大一些? 看了最近的广发证券海得控制的调研报告。里面有一段是这样描述的。于是产生这样的疑问,希望行内人士多发表自己的看法。 “对于双馈变流器来说,风速比较大的时候,30%能量由电机流向电网。当风速比较小的时候,30%的能量由电网流向电机,所以从控制的角度来看,由于双馈变流器需要一端控制电网,另外一端控制电机,所以双馈变流器比全功率变流器设计更加复杂,控制更难。。。。。。 所以说,一家公司如果已经拥有双馈变流器技术,那么他再开发全功率变流器就非常容易,反之则不是。” 另外,据我个人了解,目前国内进行风电变流器开发的单位也以全功率型居多,特别是新进入的企业,如荣信、江苏大全、上海科祺、江苏南自通华等。阳光电源好像也是全功率型的销售情况比较好。是不是从这方面可以推断双馈型变流器控制难度是不是要比全功率型的要大?为什么新进入的好多企业以全功率型作为突破口呢?是不是因为大家都看好直驱是未来风电机组的发展趋势?海得控制和深圳禾望做双馈型变流器比较成功,但其核心技术好像都是来自艾默生。国内有单独研究双馈变流器且应用比较成功的厂家吗? 不论是双馈变流器还是全功率变流器,所用功率器件几乎都是进口。 难点之一就是结构布局。 最大的难点在于软件设计和控制算法。 结构布局相对容易抄袭,而软件设计和控制算法抄袭难度很大。 全功率,基本上也就是用功率模块堆起来的,也可以说是用双馈的模块堆积起来的,你说哪个难度大? 模块并联当然有一定的难度,但这方面的难度让功率器件厂商给解决了一部分,因为功率器件厂商可以提供模组。国内的厂家也容易学习参考,因为这东西看得见,摸得着。 控制算法基本要靠猜测+验证了。我觉得国内开发变流器的难点还是在控制算法这块。这块花费的时间要长双馈和全功率变流器有许多相同的地方,也有许多不同的地方,情况如下: 1、都采用了PWM背靠背方案,两者拓扑、主要器件及配置方案基本相同,可以理解将双馈变流器的的接线由转子改到定子即可 2、控制策略方面,网侧和电机侧的策略基本相同,网侧控制电压恒定和1功率因素,机侧控制发电机力矩 3、不太相同的是并网策略和低电压穿越策略。很明显,由于电机与电网隔开,所以低电压穿越直驱要比双馈容易控制。 风力发电机全功率和双馈的区别在于发电机与变频器: 全功率变频风力发电机在发电机定子与电网间连接了一个与发电机功率相同的变频器,将发电机发出的电压、频率不同的电力,经过整流、逆变后变成与电网电压、频率相同的电力,输入电网。 双馈风力发电机是在发电机转子与电网间连接了一个变频器,通过改变转子中的励磁电流的频率,使得在定子上发出与电网电压、频率相同的电力,输入电网。两种风力发电机都可使风机实现变速运行以提高风力发电机捕捉风力的效率,双馈的优点是变频器的功率可以只的风机功率的三分之一,这样可以降低成本,但这也使使风机对电网的波动比较敏感,在电网电压波动时,比较容易跳闸脱网。全功率风力发电机一般采用永磁发电机(也可以是其它类型的,但目前多用的是永磁同步发电机),成本高一些,但这时发电机与电网全隔离,发电机受的冲击小,寿命长,故障率低,特别是对电网波动的敏感度小,可不增加任何设备实现低电压穿越功能,在电网故障时,可以发出无功,以维持电网电压,可以说是电网友好型风机,随着可控硅部件的成本降低,今后的风机发展应该是这个方向。

变流器功能原理

风电变流器原理和功能 风能作为一种清洁的可再生能源,越来越受到世界各国的重视,我国风能资源丰富,近几年来国家政策也大力扶持风电产业。 风电变流器系统功能 变流器通过对双馈异步风力发电机的转子进行励磁,使得双馈发电机的定子侧输出电压的幅值、频率和相位与电网相同,并且可根据需要进行有功和无功的独立解耦控制。 变流器控制双馈异步风力发电机实现软并网,减小并网冲击电流对电机和电网造成的不利影响。 变流器提供多种通信接口,如Profibus(现场总线), CANopen(硬件协议)等(可根据用户要求扩展),用户可通过这些接口方便的实现变流器与系统控制器及风场远程监控系统的集成控制。 变流器配电系统提供雷击、过流、过压、过温等保护功能。 变流器提供实时监控功能,用户可以实时监控风机变流器运行状态。 变流器可根据海拔进行特殊设计,可以按客户定制实现低温、高温、防尘、防盐雾等运行要求。 风电变流器基本原理 变流器采用三相电压型交-直-交双向变流器技术,核心控制采用具有快速浮点运算能力的“双DSP的全数字化控制器”;在发电机的转子侧变流器实现定子磁场定向矢量控制策略,电网侧变流器实现电网电压定向矢量控制策略;系统具有输入输出功率因数可调、自动软并网和最大功率点跟踪控制功能。功率模块采用高开关频率的IGBT功率器件,保证良好的输出波形。这种整流逆变装置具有结构简单、谐波含量少等优点,可以明显地改善双馈异步发电机的运行状态和输出电能质量。这种电压型交-直-交变流器的双馈异步发电机励磁控制系统,实现了基于风机最大功率点跟踪的发电机有功和无功的解耦控制,是目前双馈异步风力发电机组的一个代表方向。 变流器工作原理框图如所示: 风电变流器系统构成

逆变器工作原理

逆变器电路原理分析 1、逆变器的定义 逆变器是通过半导体功率开关的开通和关断作用,把直流电能转变成交流电能的一 种变换装置,是整流变换的逆过程。 车载逆变器的整个电路大体上可分为两大部分,每部分各采用一只TL494或 KA7500芯片组成控制电路,其中第一部分电路的作用是将等提供的12V直流电,通过高频PWM (脉宽调制)开关电源技术转换成30kHz-50kHz、220V左右的交流电;第二部分电路的作用则是利用桥式、滤波、脉宽调制及开关功率输出等技术,将30kHz~50kHz、220V左右的交流电转换成50Hz、220V的交流电。 高频升压逆变控制电路: (1)脚第一组放大器的同相输入端,检测输出电流,与3个电阻分压,当电流过大时,分压电阻上的电压超过(2)脚基准电压,(3)脚放大器输出端输出高电平,(3)脚为高电平时,电路进入保护状态。(2)脚为比较器的反相输入端,接(14)脚基准,作比较器的参考电压,外部输入端的控制信号可输入至脚(4)的截止时间控制端(也叫死区时间控制),与脚(1)、(2)、(15)、(16)误差放大器的输入端,其输入端点的抵补电压为120mV,其可限制输出截止时间至最小值,大约为最初锯齿波周期时间的4%。当13脚的输出模控制端接地时,可获得96%最大工作周期,而当(13)脚接制参考电压时,可获得48%最大工作周期。如果我们在第4脚截止时间控制输入端设定一个固定电压,其范围由0V至之间,则附加的截止时间一定出现在输出上。(5)、(6)脚是一个固定频率的脉冲宽度调制电路,内置了线性锯齿波振荡器,振荡频率可通过外部的一个电阻和一个电容进行调节,其振荡频率如下: 输出脉冲的宽度是通过电容CT上的正极性锯齿波电压与另外两个控制信号进行比较来实现。功率输出管Q1和Q2受控于或非门。当双稳触发器的时钟信号为低电平时才会被选通,即只有在锯齿波电压大于控制信号期间才会被选通。当控制信号增大,输出脉冲的宽度将减小。(7)脚接地端,(8)、(11)脚是Q1和Q2内部开关管的集电极,在此电路中接电源,(9)、(10)脚为Q1、Q2的发射极,作开关管驱动输出端,接下图中 Q1与Q2外部放大电路。以驱动后极推挽电路。(12)脚电源端,(13)脚为输出控制端,接(14)脚基准电压时两路输出脉冲相差180方位,每路输出量大约200MA的驱动推挽或半桥式电路。(15)、脚第二组放大器的反相输入端,接基准电压,(16)脚同相输入端,检测电源电压。当电压过高超过(15)脚参考电压时,(3)脚输出高电平,电路进入保护状态。 高频升压逆变电路及整流: 这是一个推挽式拓扑逆变电路,当E1驱动脉冲驱动时,Q1导通,使VT3、VT6导通,VT7、VT8截止,此时电路进行正半周波形放大,变压器升压到次级,通过高频整流管

车载电源逆变器电路原理图

车载电源逆变器电路原理图 一市场上常见款式车载逆变器产品的主要指标 输入电压:DC 10V~14.5V;输出电压:AC 200V~220V±10%;输出频率:50Hz±5%;输出功率:70W ~150W;转换效率:大于85%;逆 变工作频率:30kHz~50kHz。 二常见车载逆变器产品的电路图及工作原理 目前市场上销售量最大、最常见的车载逆变器的输出功率为70W-150W,逆变器电路中主要采用TL494或KA7500芯片为主的脉宽调制电路。 一款最常见的车载逆变器电路原理图见图1。 车载逆变器的整个电路大体上可分为两大部分,每部分各采用一只TL494或KA7500芯片组成控制电路,其中第一部分电路的作用是将汽车电瓶等提供的12V直流电,通过高频PWM (脉宽调制)开关电源技术转换成30kHz-50kHz、220V左右的交流电;第二部分电路的作用则是利用桥式整流、滤波、脉宽调制及开关功率输出等技术,将30kHz~50kHz、220V左右的交流电转换成50Hz、220V的交流电。 图1电路中,由芯片IC1及其外围电路、三极管VT1、VT3、MOS功率管VT2、VT4以及变压器T1组成12V直流变换为220V/50kHz交流的逆变电路。由芯片IC2及其外围电路、三极管VT5、VT8、MOS功率管VT6、VT7、VT9、VT10以及220V/50kHz整流、滤波电路VD5-VD8、C12等共同组成220V/50kHz高频交流电变换为220V/50Hz工频交流电的转换电路,最后通过XAC插座输出220V/50Hz交流电供各种便携式电器使用。 图1中IC1、IC2采用了TL494CN(或KA7500C)芯片,构成车载逆变器的核心控制电路。TL494CN是专用的双端式开关电源控制芯片,其尾缀字母CN表示芯片的封装外形为双列直插式塑封结构,工作温度范围为0℃-70℃,极限工作电源电压为7V~40V,最高工作频率为300kHz。

一文看懂光伏逆变器工作原理!

一文看懂光伏逆变器工作原理! 工作原理及特点 工作原理: 逆变装置的核心,是逆变开关电路,简称为逆变电路。该电路通过电力电子开关的导通与关断,来完成逆变的功能。 特点: (1)要求具有较高的效率。 由于目前太阳能电池的价格偏高,为了最大限度的利用太阳能电池,提高系统效率,必须设法提高逆变器的效率。 (2)要求具有较高的可靠性。 目前光伏电站系统主要用于边远地区,许多电站无人值守和维护,这就要求逆变器有合理的电路结构,严格的元器件筛选,并要求逆变器具备各种保护功能,如:输入直流极性接反保护、交流输出短路保护、过热、过载保护等。 (3)要求输入电压有较宽的适应范围。 由于太阳能电池的端电压随负载和日照强度变化而变化。特别是当蓄电池老化时其端电压的变化范围很大,如12V的蓄电池,其端电压可能在 10V~16V之间变化,这就要求逆变器在较大的直流输入电压范围内保证正常工作。 光伏逆变器分类 有关逆变器分类的方法很多,例如:根据逆变器输出交流电压的相数,可分为单相逆变器和三相逆变器;根据逆变器使用的半导体器件类型不同,又可分为晶体管逆变器、晶闸管逆变器及可关断晶闸管逆变器等。根据逆变器线路原

理的不同,还可分为自激振荡型逆变器、阶梯波叠加型逆变器和脉宽调制型逆变器等。根据应用在并网系统还是离网系统中又可以分为并网逆变器和离网逆变器。为了便于光电用户选用逆变器,这里仅以逆变器适用场合的不同进行分类。 1、集中型逆变器 集中逆变技术是若干个并行的光伏组串被连到同一台集中逆变器的直流输入端,一般功率大的使用三相的IGBT功率模块,功率较小的使用场效应晶体管,同时使用DSP转换控制器来改善所产出电能的质量,使它非常接近于正弦波电流,一般用于大型光伏发电站(>10kW)的系统中。最大特点是系统的功率高,成本低,但由于不同光伏组串的输出电压、电流往往不完全匹配(特别是光伏组串因多云、树荫、污渍等原因被部分遮挡时),采用集中逆变的方式会导致逆变过程的效率降低和电户能的下降。同时整个光伏系统的发电可靠性受某一光伏单元组工作状态不良的影响。最新的研究方向是运用空间矢量的调制控制以及开发新的逆变器的拓扑连接,以获得部分负载情况下的高效率。 2、组串型逆变器 组串逆变器是基于模块化概念基础上的,每个光伏组串(1-5kw)通过一个逆变器,在直流端具有最大功率峰值跟踪,在交流端并联并网,已成为现在国际市场上最流行的逆变器。 许多大型光伏电厂使用组串逆变器。优点是不受组串间模块差异和遮影的影响,同时减少了光伏组件最佳工作点与逆变器不匹配的情况,从而增加了发电量。技术上的这些优势不仅降低了系统成本,也增加了系统的可靠性。同时,在组串间引人"主-从"的概念,使得系统在单串电能不能使单个逆变器工作的情况下,将几组光伏组串联系在一起,让其中一个或几个工作,从而产出更多的电能。 最新的概念为几个逆变器相互组成一个"团队"来代替"主-从"的概念,使得系统的可靠性又进了一步。目前,无变压器式组串逆变器已占了主导地位。

变流器原理简介

变频器原理介绍 变频器是利用电力半导体器件的通断作用将工频电源变换为另一频率的电能控制装置。我们现在使用的变频器主要采用交—直—交方式(VVVF变频或矢量控制变频),先把工频交流电源通过整流器转换成直流电源,然后再把直流电源转换成频率、电压均可控制的交流电源以供给电动机。变频器的电路一般由整流、中间直流环节、逆变和控制4个部分组成。整流部分为三相桥式不可控整流器,逆变部分为IGBT三相桥式逆变器,且输出为PWM 波形,中间直流环节为滤波、直流储能和缓冲无功功率。 变频器选型: 变频器选型时要确定以下几点: 1) 采用变频的目的;恒压控制或恒流控制等。 2) 变频器的负载类型;如叶片泵或容积泵等,特别注意负载的性能曲线,性能曲线决定了应用时的方式方法。 3) 变频器与负载的匹配问题; I.电压匹配;变频器的额定电压与负载的额定电压相符。 II. 电流匹配;普通的离心泵,变频器的额定电流与电机的额定电流相符。对于特殊的负载如深水泵等则需要参考电机性能参数,以最大电流确定变频器电流和过载能力。 III.转矩匹配;这种情况在恒转矩负载或有减速装置时有可能发生。 4) 在使用变频器驱动高速电机时,由于高速电机的电抗小,

高次谐波增加导致输出电流值增大。因此用于高速电机的变频器的选型,其容量要稍大于普通电机的选型。 5) 变频器如果要长电缆运行时,此时要采取措施抑制长电缆对地耦合电容的影响,避免变频器出力不足,所以在这样情况下,变频器容量要放大一档或者在变频器的输出端安装输出电抗器。 6) 对于一些特殊的应用场合,如高温,高海拔,此时会引起变频器的降容,变频器容量要放大一挡。 变频器控制原理图设计: 1) 首先确认变频器的安装环境; I.工作温度。变频器内部是大功率的电子元件,极易受到工作温度的影响,产品一般要求为0~55℃,但为了保证工作安全、可靠,使用时应考虑留有余地,最好控制在40℃以下。在控制箱中,变频器一般应安装在箱体上部,并严格遵守产品说明书中的安装要求,绝对不允许把发热元件或易发热的元件紧靠变频器的底部安装。 II. 环境温度。温度太高且温度变化较大时,变频器内部易出现结露现象,其绝缘性能就会大大降低,甚至可能引发短路事故。必要时,必须在箱中增加干燥剂和加热器。在水处理间,一般水汽都比较重,如果温度变化大的话,这个问题会比较突出。 III. 腐蚀性气体。使用环境如果腐蚀性气体浓度大,不仅会腐蚀元器件的引线、印刷电路板等,而且还会加速塑料器件的老

相关主题
文本预览
相关文档 最新文档