当前位置:文档之家› 中心极限定理-第四章练习题

中心极限定理-第四章练习题

中心极限定理-第四章练习题
中心极限定理-第四章练习题

1、一仪器同时受到108个噪声信号X i ,设它们是相互独立的且都服从[0,4]上的均匀分布.

求噪声信号总量1081i i X X ==

>∑ 228的概率. 解:1081216i i EX EX

===∑,1081

144i i DX DX ===∑. 由中心极限定理 228216{228}11(1)0.1612P X -??>≈-Φ=-Φ= ???. 2、已知红黄两种番茄杂交的第二代结红果的植株与结黄果的植株的比率为1:4.现种植杂

交种10000株,试求结黄果植株介于1960到2040之间的概率.(用)(x Φ表示)

解: 设结黄果植株为X ,16005

45110000,20005110000=??==?=DX EX 2040200019602000(19602040)2(1)14040P X --????<<≈Φ-Φ=Φ- ? ?????

3、 某镇年满18岁的居民中20%受过高等教育。今从中有放回地抽取1600人的随机样本,求样本中受过高等教育的人在19%和21%之间的概率。((1)0.8413Φ=)

解: 设X 表示抽取的1600人中受过高等教育的人数,

则~(1600,0.2)X B ,2320,DX=16EX = 则:{0.1916000.211600}P X ?≤≤? 304320320336320{}161612X P ---=≤<320{11}(1)(1)16

X P -=-≤<≈Φ-Φ-2(1)1=Φ- 20.841310.6826=?-=。

4、某商店负责供应某地区10000人所需商品,其中一商品在一段时间每人需要一件的概率

为0.8,假定在这一段时间内各人购买与否彼此无关,问商店应预备多少件这种商品,才能以97.5%的概率保证不会脱销?((1.96)0.975Φ=.假定该商品在某一段时间内每人最多可以买一件)。

解: 设应预备n 件,并设X 表示某地区10000人需要件数,

则X~B (10000,0.8),由中心极限定理得8000{}0.97540n P X n -??≤≈Φ≥

??? 由8000 1.96,8078.440

n n -≥≥,即应预备8079件。 5、某商店出售某种贵重商品。根据经验,该商品每周销售量服从参数为1=λ的泊松分布。假定各周的销售量是相互独立的。用中心极限定理计算该商店一年内(52周)售出该商品件数在50件到70件之间的概率。(用)(x Φ表示)

解:设 i X 为第i 周的销售量, 52,,2,1 =i i X )1(~P ,

则一年的销售量为∑==521i i X

Y , 52)(=Y E , 52)(=Y D

由独立同分布的中心极限定理,所求概率为

(5070)

P Y P ?<<=<<≈Φ-Φ ?

1

=Φ+Φ-

第5章大数定律及中心极限定理习题及答案

第 5 章 大数定律与中心极限定理 一、 填空题: 1.设随机变量μξ=)(E ,方差2 σξ=)(D ,则由切比雪夫不等式有≤≥-}|{|σμξ3P 9 1 . 2.设n ξξξ,,, 21是 n 个相互独立同分布的随机变量, ),,,(,)(,)(n i D E i i 218===ξμξ对于∑== n i i n 1 ξξ,写出所满足的切彼雪夫不等式 228εεξεμξn D P =≤ ≥-)(}|{| ,并估计≥<-}|{|4μξP n 21 1- . 3. 设随机变量129,, ,X X X 相互独立且同分布, 而且有1i EX =, 1(1,2, ,9)i DX i ==, 令9 1 i i X X ==∑, 则对任意给定的0ε>, 由切比雪夫不等式 直接可得{} ≥<-ε9X P 2 9 1ε- . 解:切比雪夫不等式指出:如果随机变量X 满足:()E X μ=与2 ()D X σ=都存在, 则对任意给定的0ε>, 有 22{||}P X σμεε-≥≤, 或者2 2{||}1.P X σμεε -<≥- 由于随机变量129,, ,X X X 相互独立且同分布, 而且有 1,1(1,2,9),i i EX DX i === 所以 99 9111()()19,i i i i i E X E X E X μ===??===== ???∑∑∑ 99 9 2 111()()19.i i i i i D X D X D X σ===??===== ???∑∑∑ 4. 设随机变量X 满足:2 (),()E X D X μσ==, 则由切比雪夫不等式, 有{||4}P X μσ-≥ 1 16 ≤ . 解:切比雪夫不等式为:设随机变量X 满足2 (),()E X D X μσ==, 则对任意 的0ε>, 有2 2{||}.P X σμεε -≥≤由此得 221{||4}.(4)16P X σμσσ-≥≤ =

第六章 大定律与中心极限定理习题

第六章 大数定律与中心极限定理习题 一、 填空题 1.设n ξ是n 次独立试验中事件A 出现的次数,P 为A 在每次试验中出现的概率,则对任意的0>ε,有=≥-)(εξp n P n 。 2.设随机变量ξ,E ξ=μ,D ξ=2σ,则≥<-)2(σμξP 。 3.设随机变量ξ的方差为2,则根据切比雪夫不等式有估计≤≥-)2(ξξE P 。 4.在概率论里,把研究在什么条件下,大量独立随机变量和的分布以 为极限这一类定理称为中心极限定理。 5.将一枚硬币连掷100次,则出现正面的次数大于60的概率约为 。 6.在天平上重复称量一重为a 的物体,假设各次称重结果相互独立且同服从正态分布)2.0,(2a N ,若以n X 表示n 次称重结果的算术平均值,则为使95.0)1.0(≥<-a X P n ,n 的最小值应不小于自然数 。 二、选择题 1.设随机变量ξ服从参数为n ,p 的二项分布,则当∞→n 时,≈<<)(b a P ξ( )。 (A))()(a b Φ+Φ (B))()(00a b Φ+Φ (C))()(a b Φ-Φ (D)1)(20-Φb 2.设ξ为服从参数为n ,p 的二项分布的随机变量,则当∞→n 时,npq np -ξ一定服从 ( )。 (A)正态分布。 ( B)标准正态分布。 (C)普哇松分布。 ( D)二项分布。 三、计算题 1.对敌人的防御地段进行100次射击,每次射击中,炮弹命中数的数学期望为2,而命中数的均方差为1.5,求当射击100次时,有180颗到220颗炮弹命中目标的概率。 2.计算机在进行加法时,对每个加数取整(取为最接近于它的整数),设所有的取整误差是相互独立的,且它们都在(-0.5,0.5)上服从均匀分布。(1)若将1500个数相加,问误

抽样分布习题与答案

第 4 章抽样分布自测题选择题 1.抽样分布是指() A. 一个样本各观测值的分布C. 样本统计量的分布 B. 总体中各观测值的分布D. 样本数量的分布 2.根据中心极限定理可知,当样本容量充分大时,样本均值的抽样分布服从正态分布,其分布的均值为() 2 A. B. x C.2 D. n 3.根据中心极限定理可知,当样本容量充分大时,样本均值的抽样分布服从正态分布,其分布的方差为() 2 A. B.x C.2 D. n 4.从均值为,方差为2 n 的样本,则()的任意一个总体中抽取大小为 A.当 n 充分大时,样本均值x 的分布近似服从正态分布 B.只有当 n<30 时,样本均值x的分布近似服从正态分布 C.样本均值 x 的分布与n无关 D. 无论 n 多大,样本均值x 的分布都是非正态分布 5.假设总体服从均匀分布,从该总体中抽取容量为 36 的样本,则样本均值的抽样分布() A. 服从非正态分布 B. 近似正态分布 C. 服从均匀分布 D. 服从 2 分布 6. 从服从正态分布的无限总体中分别抽取容量为4,16,36的样本,则当样本容量增大时,样 本均值的标准差() A. 保持不变 B. 增加 C.减小 D.无法确定 7. 某大学的一家快餐店记录了过去 5 年每天的营业额,每天营业额的均值为2500 元,标准差为 400 元。由于在某些节日的营业额偏高,所以每日营业额的分布是右偏的,假设从这5年中随机抽取100 天,并计算这100 天的平均营业额,则样本均值的抽样分布是() A. 正态分布,均值为250 元,标准差为40 元 B. 正态分布,均值为2500 元,标准差为40 元 C.右偏,均值为2500 元,标准差为400 元 D. 正态分布,均值为2500 元,标准差为400 元 8. 在一个饭店门口等待出租车的时间是左偏的,均值为12 分钟,标准差为 3 分钟。如果从饭店门口随机抽取 81 名顾客并记录他们等待出租车的时间,则样本均值的抽样分布是() A. 正态分布,均值为12 分钟,标准差为0.33 分钟 B. 正态分布,均值为12 分钟,标准差为 3 分钟 C. 左偏分布,均值为12 分钟,标准差为 3 分钟

第五章大数定律与中心极限定理习题

第五章 大数定律与中心极限定理 一、填空题: 1. 将一枚硬币连掷100次,则出现正面的次数大于60的概率约为 。 2.在概率论里,把研究在什么条件下,大量独立随机变量和的分布以 为极限这一类定理称为中心极限定理。 3.在天平上重复称量一重为a 的物体,假设各次称重结果相互独立且同服从正态分布)2.0,(2a N ,若以n X 表示n 次称重结果的算术平均值,则为使95.0)1.0(≥<-a X P n ,n 的最小值应不小于自然数 。 二、选择题: 1.设随机变量ξ服从参数为n ,p 的二项分布,则当∞→n 时,≈<<)(b a P ξ( )。 (A))()(a b Φ+Φ (B))()(00a b Φ+Φ (C))()(a b Φ-Φ (D)1)(20-Φb 2.设ξ为服从参数为n ,p 的二项分布的随机变量,则当∞→n 时,npq np -ξ一定服从 ( )。 (A)正态分布。 ( B)标准正态分布。 (C)普哇松分布。 ( D)二项分布。 三、计算题: 1. 对敌人的防御地段进行100次射击,每次射击中,炮弹命中数的数学期望为2,而命中数的均方差为1.5,求当射击100次时,有180颗到220颗炮弹命中目标的概率。 2.计算机在进行加法时,对每个加数取整(取为最接近于它的整数),设所有的取整误差是相互独立的,且它们都在(-0.5,0.5)上服从均匀分布。(1)若将1500个数相加,问误差总和的绝对值超过15的概率是多少?(2)多少个数加在一起时的误差总和的绝对值小于10的概率为0.90?

2. 已知某工厂生产一大批无线电元件,合格品占 61,某商店从该厂任意选购6000个这种元件,问在这6000个元件中合格品的比例与6 1之差小于1%的概率是多少? 3. 一生产线生产的产品成箱包装,每箱的重量是随机的,假设每箱平均重50千克,标准 差为5千克,若用最大载重量为5吨的汽车承运,试用中心极限定理说明每辆车最多可以装多少箱,才能保障不超载的概率大于0.9770? 4. 某工厂有400台同类机器,各台机器发生故障的概率都是0.02。假设各台机器工作是相 互独立的,试求机器出故障的台数不少于2的概率。

大数定理与中心极限定理典型题解

第四章 大数定理与中心极限定理典型题解 1. 计算器在进行时,将每个加数舍入,最靠近它的整数,设所有舍入误差 相互独立且在(-0.5,0.5)上服从均匀分布,将1500个数相加,问误差总和的绝对 值超过15的概率是多少? 解 设第k 个加数的舍入误差为 X k (k =1,2,…,1500),已知X k 在(-0.5,0.5) 1 1500 上服从均匀分布,故知E(X k ) =0,D(X k )=丄.记X =送X k ,由中心极限定理, 12 心 当n 充分时有近似公式 P{ 匸芒0 笄30} = P{30

中心极限定理

中心极限定理 中心极限定理(Central Limit Theorems) 什么是中心极限定理 大数定律揭示了大量随机变量的平均结果,但没有涉及到随机变量的分布的问题。而中心极限定理说明的是在一定条件下,大量独立随机变量的平均数是以正态分布为极限的。 中心极限定理是概率论中最著名的结果之一。它提出,大量的独立随机变量之和具有近似于正态的分布。因此,它不仅提供了计算独立随机变量之和的近似概率的简单方法,而且有助于解释为什么有很多自然群体的经验频率呈现出钟形(即正态)曲线这一事实,因此中心极限定理这个结论使正态分布在数理统计中具有很重要的地位,也使正态分布有了广泛的应用。 中心极限定理的表现形式 中心极限定理也有若干个表现形式,这里仅介绍其中四个常用定理: (一)辛钦中心极限定理 设随机变量相互独立,服从同一分布且有有限的数学期望a和方差σ2,则 随机变量,在n无限增大时,服从参数为a和的正态分布即n→∞时, 将该定理应用到抽样调查,就有这样一个结论:如果抽样总体的数学期望a和方差σ2是有限的,无论总体服从什么分布,从中抽取容量为n的样本时,只要n足够大,其样本平均数的分布就趋于数学期望为a,方差为σ2 / n的正态分布。 (二)德莫佛——拉普拉斯中心极限定理 设μ n是n次独立试验中事件A发生的次数,事件A在每次试验中发生的概率为P,则当n 无限大时,频率设μ n / n趋于服从参数为的正态分布。即:

该定理是辛钦中心极限定理的特例。在抽样调查中,不论总体服从什么分布,只要n充分大,那么频率就近似服从正态分布。 (三)李亚普洛夫中心极限定理 设是一个相互独立的随机变量序列,它们具有有限的数学期望和方 差:。 记,如果能选择这一个正数δ>0,使当n→∞时, ,则对任意的x有: 该定理的含义是:如果一个量是由大量相互独立的随机因素影响所造成的,而每一个别因素在总影响中所起的作用不很大,则这个量服从或近似服从正态分布。 (四)林德贝尔格定理 设是一个相对独立的随机变量序列,它们具有有限的数学期望和方差满足林德贝尔格条件,则当n→∞时,对任意的x,有 。 中心极限定理案例分析 案例一:中心极限定理在商业管理中的应用 水房拥挤问题:假设西安邮电学院新校区有学生5000人,只有一个开水房,由于每天傍晚打开水的人较多,经常出现同学排长队的现象,为此校学生会特向后勤集团提议增设水龙头。假

中心极限定理

中心极限定理 从总体中抽取容量为n的一个样本时,当样本容量足够大时,样本均值x的抽样分布近似服从于正态分布。 eg:用R从0-10的均匀分布中产生100个样本量为n=2的随机样本,对每个样本计算,并画出100个的频数分布,对于n=5,10,30,50,重复这一个过程。 a=matrix(rep(0,200),nrow=100,byrow=T) set.seed(200) for(i in 1:100) a[i,]=runif(2,0,10) b=matrix(rep(0,100),nrow=100) for(t in 1:100) b[t]=b[t]+mean(a[t,]) hist(b,freq=FALSE,density=20,main="100 个样本量n=2的随机样本",xlab="x的均值") sd=sd(b) mean=mean(b) x=seq(min(b),max(b),by=0.1) y=dnorm(x,mean,sd) lines(x,y,col="red",lwd=2) a=matrix(rep(0,1000),nrow=100,byrow=T) set.seed(1000) for(i in 1:100) a[i,]=runif(10,0,10) b=matrix(rep(0,100),nrow=100) for(t in 1:100) b[t]=b[t]+mean(a[t,]) hist(b,freq=FALSE,density=20,main="100个样本量n=10的随机样本",xlab="x的均值") sd=sd(b) mean=mean(b) x=seq(min(b),max(b),by=0.1) y=dnorm(x,mean,sd) lines(x,y,col="red",lwd=2) a=matrix(rep(0,3000),nrow=100,byrow=T) set.seed(3000) for(i in 1:100) a[i,]=runif(30,0,10) b=matrix(rep(0,100),nrow=100) for(t in 1:100) b[t]=b[t]+mean(a[t,]) hist(b,freq=FALSE,density=20,main="100个样本量n=30的随机样本",xlab="x的均值") sd=sd(b) mean=mean(b) x=seq(min(b),max(b),by=0.1) y=dnorm(x,mean,sd) lines(x,y,col="red",lwd=2) a=matrix(rep(0,5000),nrow=100,byrow=T) set.seed(3000) for(i in 1:100) a[i,]=runif(50,0,10) b=matrix(rep(0,100),nrow=100) for(t in 1:100) b[t]=b[t]+mean(a[t,]) hist(b,freq=FALSE,density=20,main="100个样本量n=50的随机样本",xlab="x的均值") sd=sd(b) mean=mean(b) x=seq(min(b),max(b),by=0.1) y=dnorm(x,mean,sd) lines(x,y,col="red",lwd=2)

(完整版)大数定律和中心极限定理

第五章 大数定律和中心极限定理 一、内容提要 (一)切贝谢夫不等式 1. 切贝谢夫不等式的内容 设随机变量X 具有有限的数学期望E (X )和方差D (X ),则对任何正数ε,下列不等式成立。 (){}() (){}() . 1, 2 2 εεεεX D X E X P X D X E X P - ≤-≤ ≥-π 2. 切贝谢夫不等式的意义 (1)只要知道随机变量X 的数学期望和方差(不须知道分布律),利用切贝谢夫不等式,就能够对事件(){} ε≥-X E X 的概率做出估计,这是它的最大优点,今后在理论推导及实际应用中都常用到切贝谢夫不等式。 (2)不足之处为要计算(){} ε≥-X E X P 的值时,切贝谢夫不等式就无能为力,只有知道分布密度或分布函数才能解决。另外,利用本不等式估值时精确性也不够。 (3)当X 的方差D (X )越小时,(){} ε≥-X E X P 的值也越小,表明X 与E (X )有较大“偏差”的可能性也较小,显示出D (X )确是刻画X 与E (X )偏差程度的一个量。 (二)依概率收敛 如果对于任何ε>0,事件{} επa X n -的概率当n →∞时,趋于1,即 {}1lim =-∞ →επa X P n n , 则称随机变量序列X 1,X 2,…,X n ,…当n →∞时依概率收敛于α。 (三)大数定律 1. 大数定律的内容 (1)大数定律的一般提法 若X 1,X 2,…,X n ,…是随机变量序列,如果存在一个常数序列α1,…,αn ,…,对任意ε>0,恒有 11lim 1=? ?? ???-∑=∞ →επn i n i n a X n P , 则称序列{X n }服从大数定律(或大数法则)。 (2)切贝谢夫大数定律 设随机变量X 1,X 2,…,X n ,…相互独立,分别有数学期望E(X i )和方差D(X i ),且它们的方差有公共上界C ,即 ()().,,,2,1,ΛΛn i C X D i =≤

中心极限定理的发展

中心极限定理的创立和发展 1141010113 万帅 关键词:中心极限定理,创立,严格证明,新的发展,三阶段。 引言:这组定理是数理统计学和误差分析的理论基础,指出了大量随机变量近似服从正态分布的条件。该定理为人们用正态分布来描述和解决大量的概率问题提供了坚实的理论基础。 中心极限定理,是概率论中讨论随机变量和的分布以正态分布为极限的一组定理。这组定理是数理统计学和误差分析的理论基础,指出了大量随机变量近似服从正态分布的条件。该定理为人们用正态分布来描述和解决大量的概率问题提供了坚实的理论基础。 “中心极限定理”这一名称的来源有两种说法。波利亚认为这个定理十分重要,在概率论中具有中心地位,所以他加上了“中心”这一名称,于1920年引入这一术语。另一种说法是,现代法国概率论学派认为极限定理描述了分布函数中心的情况,而不是尾部的情况。 历史上有不少数学家对中心极限定理的研究做出了贡献。中心极限定理的发展主要分为三个阶段。 创立阶段:1733-----1853年 人们通常认为,法国数学家隶莫弗在1733年首次证明了,二项发布近似正态分布。然而,当时正态发布的概念,隶莫弗并不知道自己本质上证明了“中心极限定理” 法国数学家拉普拉斯写了很多论文,想推广棣莫弗的工作。他意识到需要一种新的数学技巧,并在1785年成功地发明了这个技巧:特征函数的简单形式和反演公式。拉普拉斯把他的两个主要研究方向结合起来得到了这个方法-----母函数和积分的监禁展开。通过把母函数中的t换成it e ,就得到了特征函数。然而,直到1810年他才发表了特征函数与反演公示的一般理论,并证明了中心极限定理。他之所以推迟到1810年,有一种解释是,从1786年开始,他就专注于《天体力学》的写作,这本书1805年才完成。1810年,拉普拉斯证明了中心极限定理,先是服从均匀发布的连续随机变量的情形,接着是服从任意分布的随机变量。拉普拉斯的证明显然对独立有界的随机变量和成立,证明过程使用了现在所谓的特征函数,或傅里叶变换,即itXEe(t为实数)。在1812年,他先后考虑了对称的、离散的均匀分布,对称的连续分布,任意分布情形。最后,拉普拉斯在他的名著《概率的分析理论》中对任意的p证明了如下中心极限定理:【1】 泊松完善和推广了拉普拉斯关于中心极限定理的证明。在所有考虑的情况里,都假设随机变量是独立的。泊松证明了服从相同分布的随机变量的情况,还推广到服从不同分布的随机变量的情况。1824年,泊松证明了连续随机变量的中心极限定理,并给出了三个反例,其中包括服从柯西分布的随机变量和,这时中心极限定理不成立。受当时传统的影响,泊松没有明确阐明中心极限定理成立的条件。但是,从他的证明和例子中,可以看到,他假设每个变量的方差都是有界的,且不等于零。其他数学家也做了这方面工作,比如贝塞尔和柯西。拉普拉斯等人给出证明的前提假设是,和的分布是有限的,因此所有的矩都存在。他们把结果推广到无限情形,但没有给出证明,并隐含假定了矩的存在。以现在的观点来看,只要沿着拉普拉斯的方向继续下去,法国数学家们是可以给出中心极限定理的严格证明的,比如柯西,他知道特征函数和稳定率。 从当时环境来看,大约1870年代,概率学家还处于心理上的劣势,苦于自己的研究领

大数定理与中心极限定理典型题解

第四章 大数定理与中心极限定理典型题解 1.计算器在进行时,将每个加数舍入,最靠近它的整数,设所有舍入误差相互独立且在)5.0,5.0(-上服从均匀分布,将1500个数相加,问误差总和的绝对值超过15的概率是多少? 解 设第k 个加数的舍入误差为),1500,,2,1( =k X k 已知k X 在) 5.0,5.0(-上服从均匀分布,故知121)(,0)(==k k X D X E .记∑==15001 k k X X ,由中心极限定理,当n 充分 时有近似公式 )(}12115000 1500{x x X P Φ≈≤?-, 于是 {15}1{15}1{1515} 11[1[21]2(1.342)2[10.9099]0.1802. P x P x P X P >=-≤=--≤≤=-≤≤≈-Φ-Φ=-Φ=Φ=-= 即误差总和的绝对值超过15的概率近似地为1802.0. 2.有一批建筑房屋用的木柱,其中%80的长度不小于m 3,现在从这批木柱中地取100根,求其中至少有30根短于m 3的概率. 解 以X 记被抽取的100根木柱长度短于m 3的根数,则)2.0,100(~b X .于是由中心极限定理得 {30}{30} ()1(2.5)10.99380.0062. P X P X P ≥=≤<∞=≤<=Φ∞-Φ=-Φ=-= 3.将一枚硬币投掷49次,(I )求至多出现28次正面的概率;(II )求出现20-25次正面的概率.

解 以X 表示49次投掷中出现正面的次数,则有)2 1,49(~b X . (I )由中心极限定理得 8413.0)1()21214921 4928(}28{=Φ=??? -Φ≈≤X P ; (II )由中心极限定理得 112549204919{2025}()()770.55570.09850.4572.P X -? -?≤≤≈Φ-Φ=Φ-Φ-=-= 4.某厂有同号机器100台,且独立工作,在一段时间内每台正常工作的概率为8.0.求正常工作的机器超过85台的概率. 解 设ξ为100台中正常工作的机器数,则)8.0,100(~B ξ,且 16 ,80====ξξD npq E np . 由中心极限定理可得所求概率为 080808580{85}1{085}1{ }444 1[(1.25)(20)]0.1056.P P P ξξξ--->=-≤≤=-≤≤≈-Φ-Φ-= 5.一生产线生产的产品成箱包装,每箱的重量是随机的.假设每箱平均重50kg ,标准差5kg .若用最大载重量5t 的汽车承运最多可以装多少箱才能保障不超载的概率大于0.977. 解 设n 为每辆车所装的箱数,),,2,1(n i i =ε是装运的第i 箱的重量,且25,50==i i D E εε.n 箱的总重量 n εεεε+++= 21有n D n E 25,50==εε,由中心极限定理ε近似服从正态分布)25,50(n n N .现求使下面不等式成立的:n 977.0)101000(}5505000550{}5000{>-Φ≈-≤-=≤n n n n n n P P εε 查正态分布表得 2101000>-n n , 从而0199.98

(完整word版)概率论与数理统计教程习题(大数定律与中心极限定理)

习题10(切比雪夫不等式) 一.填空题 1. 设随机变量X 的数学期望μ=)(X E ,方差2 )(σ=X D ,则由切比雪夫不等式,得 ≤≥-)3(σμX P . 2. 随机掷6枚骰子,用X 表示6枚骰子点数之和,则由切比雪夫不等式,得≥<<)2715(X P . 3. 若二维随机变量),(Y X 满足,2)(-=X E ,2)(=Y E ,1)(=X D ,4)(=Y D , 5.0),(-=Y X R ,则由切比雪夫不等式,得≤≥+)6(Y X P . 4. 设ΛΛ,,,,21n X X X 是相互独立、同分布的随机变量序列,且0)(=i X E ,)(i X D 一致有界),,,2,1(ΛΛn i =,则=<∑=∞ →)( lim 1 n X P n i i n . 二.选择题 1. 若随机变量X 的数学期望与方差都存在,对b a <,在以下概率中,( )可以由切比雪夫不等式进行取值大小的估计。 ①)(b X a P <<; ②))((b X E X a P <-<; ③)(a X a P <<-; ④))((a b X E X P -≥-. 2. 随机变量X 服从指数分布)(λe ,用切比雪夫不等式估计≤≥ -)1 (λ λX P ( ). ①λ; ②2 λ③4 λ; ④ λ 1 . 三.解答题 1. 已知正常男性成年人的血液里,每毫升中白细胞含量X 是一个随机变量,若7300)(=X E , 2700)(=X D ,利用切比雪夫不等式估计每毫升血液中白细胞含量在5200至9400之间的概率。 2. 如果n X X X ,,,21Λ是相互独立、同分布的随机变量序列,μ=)(i X E ,

中心极限定理及其意义

中心极限定理及其意义

————————————————————————————————作者:————————————————————————————————日期:

题目:中心极限定理及意义 课程名称:概率论与数理统计 专业班级: 成员组成: 联系方式: 2012年5月25日 摘要: 本文从随机变量序列的各种收敛与他们的关系谈起,通过对概率经典定理——中心极限定理在独立同分布和不同分布两种条件下的结论做了比较系统的阐述,揭示了随机现象最根本的性质——平均结果的稳定性。经过对中心极限定理的讨论,给出了独立随机变量之和的分布用正态分布来表示的理论依据。同样中心极限定理的内容也从独立分布与独立不同分布两个角度来研究。同时通过很多相关的正反例题,进行说明这些定理所给出的条件是否是充要条件;签掉在实际问题中灵活的应用和辨别是否服从我们给出的定理条件。最后了解一些简单简便的中心极限定理在数理统计、管理决策、仅是计算以及保险业务等方面的应用,来进一步的阐明了中心极限定理分支学课中的中重要作用和应用价值。

关键词: 随机变量,独立随机变量,特征函数,中心极限定理 引言: 在客观实际中有许多随机变量,他们是由大量的相互独立的随机因数的综合 影响所形成的,而其中每一个别因数在总的影响中所起的作用都是渺小的,这种随机变量往往近似地服从正态分布,这种现象就是中心极限定理的客观背景。 中心极限定理自提出至今,其内容已经非常丰富。在概率论中,把研究在什么条件下,大量独立随机变量和的分布以正态分布为极限的这一类定理称为中心极限定理。但其中最常见、最基本的两个定理是德莫佛-拉普拉斯中心极限定理和林德贝格-勒维中心极限定理。 一、三个重要的中心极限定理 1.独立同分布的中心极限定理 设随机变量??????,,,,21n X X X 相互独立,服从统一分布,具有数学期望和方差 ()()) ,2,1(0,2???=>==k X D X E k k σμ,则随机变量之和 ∑=n k k X 1 的标准化变量, σ μ n n X X D X E X Y n k k n k k n k k n k k n -=?? ? ????? ??-=∑∑∑∑====1 111 的分布函数)(x F n 对于任意x 满足, ()x dt e x n n X P x F t x n k k n n n Φ==????????? ?? ??? ≤-=-∞-=∞→∞→?∑2/1221lim )(lim πσμ 2.李雅普诺夫定理 设随机变量??????,,,,21n X X X 相互独立,它们具有数学期望和方差 ()()) ,2,1(0,2???=>==k X D X E k k k k σμ,

中心极限定理证明

中心极限定理证明)题的方法应用于统计学,这从另一个方面也间接地开辟了统计学的方法领域,其在现代推断统计学方法论中居于主导地 位。参考文献 [1]邓永录著应用概率及其理论基础.清华大学出版社。 [2]魏振军著概率论与数理统计三十三讲.中国统计出版社。 [3]程依明等著概率论与数理统计习题与解答.高等数学出版社。 第五篇:中心极限定理 中心极限定理 中心极限定理(central limit theorems) 什么是中心极限定理 大数定律揭示了大量随机变量的平均结果,但没有涉及到随机变量的分布的问题。而中心极限定理说明的是在一定条件下,大量独立随机变量的平均数是以正态分布为极限的。 中心极限定理是概率论中最著名的结果之一。它提出,大量的独立随机变量之和具有近似于正态的分布。因此,它不仅提供了计算独立随机变量之和的近似概率的简单方法,而且有助于解释为什么有很多自然群体的经验频率呈现出钟形(即正态)曲线这一事实,因此中心极限定理这个结论使正态分布在数理统计中具有很重要的地位,也使正态分布有了广泛的应用。 中心极限定理的表现形式 中心极限定理也有若干个表现形式,这里仅介绍其中四个常用定理: (一)辛钦中心极限定理 设随机变量相互独立,服从同一分布且有有限的数学期望a和方差σ2,则 随机变量,在n无限增大时,服从参数为a 和的正态分布即n→∞时, 将该定理应用到抽样调查,就有这样一个结论:如果抽样总体的数学期望a和方差σ2是有限的,无论总体服从什么分布,从中抽取容量为n的样本时,只要n足够大,其样本平均数的分布就趋于数学期望为a,方差为σ2 / n的正态分布。

(二)德莫佛——拉普拉斯中心极限定理 设μn是n次独立试验中事件a发生的次数,事件a在每次试验中发生的概率为p,则当n无限大时,频率设μn / n 趋于服从参数为的正态分布。即: 该定理是辛钦中心极限定理的特例。在抽样调查中,不论总体服从什么分布,只要n充分大,那么频率就近似服从正态分布。 (三)李亚普洛夫中心极限定理 设 差:是一个相互独立的随机变量序列,它们具有有限的数学期望和方 。 记,如果能选择这一个正数δ>0,使当n→∞ 时, ,则对任意的x有: 该定理的含义是:如果一个量是由大量相互独立的随机因素影响所造成的,而每一个别因素在总影响中所起的作用不很大,则这个量服从或近似服从正态分布。 (四)林德贝尔格定理 设是一个相对独立的随机变量序列,它们具有有限的数学期望和方差满足林德贝尔格条件,则当n→∞时,对任意的x ,有 。 中心极限定理案例分析 案例一:中心极限定理在商业管理中的应用 水房拥挤问题:假设西安邮电学院新校区有学生5000人,只有一个开水房,由于每天傍晚打开水的人较多,经常出现同学排长队的现象,为此校学生会特向后勤集团提议增设水龙头。假

《大数定律及中心极限定理》习题

大数定律及中心极限定理 习题十五 大数定律及中心极限定理 一、填空题 1.随机变量ΛΛ,,,,21n X X X 相互独立,且它们服从参数为2的指数分布,则当∞→n 时, 21 1∑=n i i X n 依概率收敛于 。 2.随机变量ΛΛ,,,,21n X X X 相互独立,且它们服从参数为λ的泊松分布,则}{ 1lim x n n X P n i i n ≤-∑=∞→λ λ= 。 3.设n Y 表示n 次独立重复试验中事件A 出现的次数,p 是事件A 在每次试验中出现的概率,则≈≤<}{b Y a P n 。 二、选择题 1.设ΛΛ,,,,21n X X X 是相互独立的随机变量序列,n X 服从参数为n 的指数分布 ),2,1(Λ=n 。则下列选项中不服从切比雪夫大数定律的随机变量序列是( ) 。 A 、 ΛΛ,,,,21n X X X B 、ΛΛ,,,2,2221n X n X X C 、 ΛΛ,1,,21,21n X n X X D 、ΛΛ,,,2,21n nX X X 2.设随机变量ΛΛ,,,,21n X X X 独立同分布,其分布函数为: )0(arctan 1 )(≠+=b b x a x F π 则辛钦大数定律对此序列( )。 A 、适用 B 、当常数a,b 取适当数值时适用 C 、不适用 D 、无法判断 3.设n X X X ,,,21Λ是相互独立的随机变量,∑==n i i n X S 1,则根据独立同分布的中心极限 定理,当n 充分大时,n S 近似服从正态分布,只要n X X X ,,,21Λ( )。 A 、有相同的数学期望 B 、有相同的方差 C 、服从同一指数分布 D 、服从同一离散型分布 三、设某工厂生产的零件的合格品率为90%。 1.如果每箱装100个零件,求其中合格品数不少于95个的概率;

大数定律及中心极限定理 应用题

大数定律与中心极限定理 应用题 1. 设各零件质量都是随机变量,且独立同分布,其数学期望为0.5kg ,标准差 为0.1kg, 问(1)5000只零件的总质量超过2510kg 的概率是多少?(2)如果用一辆载重汽车运输这5000只零件,至少载重量是多少才能使不超重的概率大于0.975? 解 设第i 只零件重为i X ,500,...,2,1=i ,则5.0=i EX ,21.0=i DX 设 ∑==500 1i i X X ,则X 是这些零件的总重量 250050005.0=?=EX ,5050001.02=?=DX 由中心极限定理 )1,0(~50 2500N X a - (1))2510(≥X P =)50 25002510502500(-≥-X P )2(10Φ-≈=9213.01-=0.0787 (2) 设 汽车载重量为a 吨 )(a X P ≤=)502500502500(-≤-a X P 95.0)50 2500(0≥-Φ≈a 查表得 64.150 2500≥-a 计算得 59.2511≥a 因此汽车载重量不能低于2512公斤 2. 有一批建筑房屋用的木柱,其中80%的长度不小于3m ,先从这批木柱中随 机的取100根,求其中至少有30根短于3m 的概率? 解 设X 是长度小于3m 的木柱根数,则)2.0,100(~b X 由中心极限定理 )16,20(~N X a )30(≥X P =)16 20301620(-≥-X P )5.2(10Φ-≈=9938.01-=0.0062 3. 一个食品店有三种蛋糕出售,由于售出哪一种蛋糕是随机的,因而售出一种 蛋糕的价格是随机变量,它取1元,1.2元,1.5元的概率分别为0.3,0.2,0.5.若售出300只蛋糕,(1)求收入至少400元的概率 (2)售价为1.2元蛋糕售出多于60只的概率。

中心极限定理证明

中心极限定理证明 一、例子 高尔顿钉板试验. 图中每一个黑点表示钉在板上的一颗钉子.每排钉子等距排列,下一排的每个钉子恰在上一排两相邻钉子之间.假设有排钉子,从入口中处放入小圆珠.由于钉板斜放,珠子在下落过程中碰到钉子后以的概率滚向左边,也以的概率滚向右边.如果较大,可以看到许多珠子从处滚到钉板底端的格子的情形如图所示,堆成的曲线近似于正态分布. 如果定义:当第次碰到钉子后滚向右边,令;当第次碰到钉子后滚向左边,令.则是独立的,且 那么由图形知小珠最后的位置的分布接近正态.可以想象,当越来越大时接近程度越好.由于时,.因此,显然应考虑的是的极限分布.历史上德莫佛第一个证明了二项分布的极限是正态分布.研究极限分布为正态分布的极限定理称为中心极限定理. 二、中心极限定理 设是独立随机变量序列,假设存在,若对于任意的,成立 称服从中心极限定理. 设服从中心极限定理,则服从中心极限定理,其中为数列. 解:服从中心极限定理,则表明 其中.由于,因此

故服从中心极限定理. 三、德莫佛-拉普拉斯中心极限定理 在重贝努里试验中,事件在每次试验中出现的概率为为次试验中事件出现的次数,则 用频率估计概率时的误差估计. 由德莫佛—拉普拉斯极限定理, 由此即得 第一类问题是已知,求,这只需查表即可. 第二类问题是已知,要使不小于某定值,应至少做多少次试验这时利用求出最小的. 第三类问题是已知,求. 解法如下:先找,使得.那么,即.若未知,则利用,可得如下估计:. 抛掷一枚均匀的骰子,为了至少有的把握使出现六点的概率与之差不超过,问需要抛掷多少次 解:由例4中的第二类问题的结论,.即.查表得.将代入,便得.由此可见,利用比利用契比晓夫不等式要准确得多. 已知在重贝努里试验中,事件在每次试验中出现的概率为为次试验中事件出现的次数,则服从二项分布: 的随机变量.求. 解:

大数定律和中心极限定理 应用题

大数定律和中心极限定理 应用题 1. 设各零件质量都是随机变量,且独立同分布,其数学期望为0.5kg ,标准差 为0.1kg, 问(1)5000只零件的总质量超过2510kg 的概率是多少?(2)如果用一辆载重汽车运输这5000只零件,至少载重量是多少才能使不超重的概率大于0.975? 解 设第i 只零件重为i X ,500,...,2,1=i ,则5.0=i EX ,21.0=i DX 设 ∑==500 1i i X X ,则X 是这些零件的总重量 250050005.0=?=EX ,5050001.02=?=DX 由中心极限定理 )1,0(~50 2500N X a - (1))2510(≥X P =)50 25002510502500(-≥-X P )2(10Φ-≈=9213.01-=0.0787 (2) 设 汽车载重量为a 吨 )(a X P ≤=)502500502500(-≤-a X P 95.0)50 2500(0≥-Φ≈a 查表得 64.150 2500≥-a 计算得 59.2511≥a 因此汽车载重量不能低于2512公斤 2. 有一批建筑房屋用的木柱,其中80%的长度不小于3m ,先从这批木柱中随 机的取100根,求其中至少有30根短于3m 的概率? 解 设X 是长度小于3m 的木柱根数,则)2.0,100(~b X 由中心极限定理 )16,20(~N X a )30(≥X P =)16 20301620(-≥-X P )5.2(10Φ-≈=9938.01-=0.0062 3. 一个食品店有三种蛋糕出售,由于售出哪一种蛋糕是随机的,因而售出一种 蛋糕的价格是随机变量,它取1元,1.2元,1.5元的概率分别为0.3,0.2,0.5.若售出300只蛋糕,(1)求收入至少400元的概率 (2)售价为1.2元蛋糕售出多于60只的概率。

第五章 大数定律与中心极限定理习题

第五章 大数定律与中心极限定理习题 一、 填空题 1.设n ξ是n 次独立试验中事件A 出现的次数,P 为A 在每次试验中出现的概率,则对任意的0>ε,有=≥-)(εξp n P n 。 2.设随机变量ξ,E ξ=μ,D ξ=2σ,则≥<-)2(σμξP 。 3.设随机变量ξ的方差为2,则根据切比雪夫不等式有估计≤≥-)2(ξξE P 。 4.在概率论里,把研究在什么条件下,大量独立随机变量和的分布以 为极限这一类定理称为中心极限定理。 5.将一枚硬币连掷100次,则出现正面的次数大于60的概率约为 。 6.在天平上重复称量一重为a 的物体,假设各次称重结果相互独立且同服从正态分布)2.0,(2a N ,若以n X 表示n 次称重结果的算术平均值,则为使95.0)1.0(≥<-a X P n ,n 的最小值应不小于自然数 。 二、选择题 1.设随机变量ξ服从参数为n ,p 的二项分布,则当∞→n 时,≈<<)(b a P ξ( )。 (A))()(a b Φ+Φ (B))()(00a b Φ+Φ (C))()(a b Φ-Φ (D)1)(20-Φb 2.设ξ为服从参数为n ,p 的二项分布的随机变量,则当∞→n 时,npq np -ξ一定服从 ( )。 (A)正态分布。 ( B)标准正态分布。 (C)普哇松分布。 ( D)二项分布。 三、计算题 1.对敌人的防御地段进行100次射击,每次射击中,炮弹命中数的数学期望为2,而命中数的均方差为1.5,求当射击100次时,有180颗到220颗炮弹命中目标的概率。 2.计算机在进行加法时,对每个加数取整(取为最接近于它的整数),设所有的取整误差是相互独立的,且它们都在(-0.5,0.5)上服从均匀分布。(1)若将1500个数相加,问误

中心极限定理

心极限定理(上) 骰子和生日 了解中心极限定理 马克.吐温讽刺道:有三种避免讲zhenxiang的方式:谎言,该死的谎言和统计数据。这个笑话很中肯,因为统计信息频繁地看似一个黑匣子——了 解统计定理怎样让通过数据取得结论变成可能,这是有难度的。 但因为不论是喷气发动机可靠性还是安排我们平日看的电视节目的流程,数据分析,类似的任何事情中都扮演着重要角色,所以至少获取对统 计基本理解是重要的。要了解其中一个重要概念是中心极限定理。 在这篇文章中,我们将解释中心极限定理,通过普通的例子,诸如掷骰子和美国职业棒球联赛球员生日来展示如何操作它。 定义中心极限定理 某典型课本对中心极限定理的定义如下:

当样本容量增加时,样本均值X的分布接近均值等于μ,标准差σ/√n 注: μ是总体均值 σ是总体标准差 n是样本大小 换句话说,如果我们多次采用大小为n的独立随机抽样,那么当n足够大的时,样本平均值的分布就接近正态分布。 那么多大才是足够大呢?一般来说,样本容量大于或者等于30认为是足够大,此时中心极限定理起作用。如果总体分布越要接近正态分布,那么需要更多的样本来使用该定理。对于严重不对称的或者有几个模板的总体来说,也许要求更大的样本。 为什么有关呢 从一个总体中收集所有的数据是很难操作或者不可行的,统计学就是基于这个情况产生的。换种方式来做,我们可以从总体中获取数据的子集,然后对这个样本进行统计分析,以得到总体的结论。 举例来说,我们可以从工业生产流程中收集多个随机样本,然后使用各个样本的平均值来推断整个过程的稳定性。 2个常用于解释总体的特征值分别是平均值和标准差。当数据遵循正态分布,均值表示分布的中心位置,标准差揭示分布情况。

(完整版)五、大数定律与中心极限定理(答案)

概率论与数理统计练习题 系 专业 班 姓名 学号 第五章 大数定律与中心极限定理 一、选择题: 1.设n μ是n 次重复试验中事件A 出现的次数,p 是事件A 在每次试验中出现的概率,则对任意的0ε>均有lim {}n n P p n με→∞-≥ [ A ] (A )0= (B )1= (C )0> (D )不存在 2.设随机变量X ,若2() 1.1,()0.1E X D X ==,则一定有 [ B ] (A ){11}0.9P X -<<≥ (B ){02}0.9P X <<≥ (C ){|1|1}0.9P X +≥≤ (D ){|}1}0.1P X ≥≤ 3.121000,,,X X X L 是同分布相互独立的随机变量,~(1,)i X B p ,则下列不正确的是 [ D ] (A )1000111000i i X p =≈∑ (B )10001 {}i i P a X b =<<≈Φ-Φ∑ (C )10001~(1000,)i i X B p =∑ (D )1000 1{}()()i i P a X b b a =<<≈Φ-Φ∑ 二、填空题: 1.对于随机变量X ,仅知其1()3,()25 E X D X ==,则可知{|3|3}P X -<≥ 2.设随机变量X 和Y 的数学期望分别为2-和2,方差分别为1和4,而相关系数为5.0-,则根据契比雪夫不等式{}6P X Y +≥≤ 三、计算题: 1.设各零件的重量是同分布相互独立的随机变量,其数学期望为0.5kg ,均方差为 0.1kg ,问5000只零件的总重量超过2510kg 的概率是多少? 解:设第i 件零件的重量为随机变量i X ,根据题意得0.1.i EX ==

相关主题
文本预览
相关文档 最新文档