当前位置:文档之家› 概率论在日常生活中的应用

概率论在日常生活中的应用

概率论在日常生活中的应用
概率论在日常生活中的应用

谈谈概率论在日常生活中的应用

摘要:本文简单的介绍了概率论的一些知识点在日常生活中的典型应用,运用概率的的相关知识来解释与探讨生活中常见的问题,通过例题让我们更清晰地看到概率论与生活的联系。

关键词:概率论;社会热点;应用;生活

目录

1引言 (1)

2概率论知识在实际生活中的应用 (1)

2.1古典概率的应用 (1)

2.2随机变量的分布 (2)

2.2.1在射击问题中的应用 (3)

2.2.2在产品检测中的应用 (3)

2.3数学期望的应用 (4)

2.4 方差的应用 (5)

2.5 两事件间独立性的应用 (6)

2.6 正态分布的应用 (7)

2.7 区间估计的应用 (8)

2.8 棣莫弗——拉普拉斯中心极限定理的应用 (9)

3 结束语 (10)

参考文献......................................................

1 引言

我们知道,概率论是一门重要的数学分支。它来源于生活,最终也将应用于生活。伴随着科学技术的发展以及计算机的普及化, 概率论已被广泛地应用于各行各业,对于分析社会现象,研究自然科学,以及处理工程和公共事业提供了极大的帮助。本文主要探讨一些概率论知识点在日常生活中的实际应用,让我们从具体的实例中真切地体会到概率论与生活的联系。

2 概率论知识在实际生活中的应用

2.1 古典概率的应用

概率论发展初期,有一些基本的方法,古典方法就是其中比较常见的一种。它一般是基于事实和经验,通过分析被考察事件的可能性,经过一些处理后,得出此事件的概率,此类概率也因此被成为古典概率。一般来说,在古典方法中,求事件的概率,就是看此事件所含样本点占总样本的多少,在计算中一般会用到排列组合方法,下面的彩票问题就是古典方法的一个例子。

例 有种叫做好运35选7的彩票,也就是在购买时,从01,02,03,…,34,35这35个号码中任意的选择7个号码即可,中奖号码是由7个基本号码和一个特殊号码组成,其中,基本号码是从这35个号码中不重复选择得到的。按

解 由题意可知,这是类不放回抽样问题,显然此样本空间中共有样本点???

? ??735个。而抽奖也是在以下三种类型中抽取:

第一类型号码:7个基本号码。

第二类型号码:1个特殊号码。

第三类型号码:27个无用号码。

记第i 等奖的概率为i p ,(i =1,2,…,7),既知中个中奖的概率如下:

6110149.0672452017350270177-?==???

? ?????? ?????? ?????? ??=p ,

621004.1672452077350271167-?==???

? ?????? ?????? ?????? ??=p , 6310106.2867245201897351270167-?==???

? ?????? ?????? ?????? ??=p , 6410318.8467245205677351271157-?==???

? ?????? ?????? ?????? ??=p , 3510096.1672452073717350270157-?==???

? ?????? ?????? ?????? ??=p , 3610827.16724520122857352271147-?==???

? ?????? ?????? ?????? ??=p , 3710448.30672452020475073532711370270147-?==???

? ?????? ?????? ?????? ??+???? ?????? ?????? ??=p 。 在此,用字母A 表示事件“中奖”, 则字母A 表示事件“不中奖”,则由1)()(=+A P A P 可知:

P (中奖)=()A P =+1p +2p +3p +4p +5p +6p 7p =033485.06724520

225170=, P (不中奖)=()

=A P 1-()A P 966515.0=。

由此例可知,每一百个买彩票的人中,中奖的只有3人,而一等奖中奖的概率更是为610149.0-?,所以买彩票时一定要保持一颗平常心,不要期望过高。

2.2 随机变量的分布

每个随机变量都有分布,如分布列、密度函数或分布函数等。不同的随机变量,其分布可能相同,也可能不同。分布能够系统全面地描述随机变量的统计规律性,通过对这些统计规律的掌握,在实际问题中才能运用自如。

2.2.1 在射击问题中的应用

例 小明是一名专业射击手,已知他的单发命中目标的概率为p )10(<

解 又题意可知,此类题目属于伯努利试验,设一次伯努利试验中,首次命中目标的射击次数为X ,则X 服从几何分布)(p Ge ,即p p x X P x 1)1()(--==,,2,1=x …,其中p 表示命中概率,第二次命中的射击次数为Y ,则Y 服从几何分

布),2(p Nb ,即22)1(11)(p p y y Y P y --???

? ??-==,,3,2=y …。 由于X 与X-Y 是相互独立的,故知条件分布为

p p x y X Y P x X x y X Y P x X y Y P x y 1)1()()/()/(---=-=-==-=-===, ,2,1=x …1,-y , ,3,2=y …。

从而(X,Y )的联合分布列为)/()()/(x X y Y P x X P y Y x X P ====== )()(x y X Y P x X P -=-==p p p p x y x 11)1()1(-----=

22)1(p p y --=, ,2,1=x …1-y , ,3,2=y …。 而条件分布为)

(),()/(y Y P y Y x X P y Y x X P ====== =11)1)(1()1(2222-=-----y p

p y p p y y ,,3,2=y …。 2.2.2 在产品检测中的应用

例 某公司生产一批产品,共有100件,但其中有10件是不合格品。根据验收规则,要从中任取5件产品来进行质量检验,假如5件中没有不合格品,则这批产品可被接受,否则就要重新对这批产品进行逐个检验。

(1)试求这5件产品不合格品数X 的分布列;

(2)需要对这批产品进行逐个检验的概率是多少?

解 (1)这5件产品中不合格品数X 的全部可能取值为0,1,2,3,4,5,

则{}583752.0752875204394926851005900100==???

? ?????? ?????? ??==X P , {}339391.0752875202555190051004901101==???

? ?????? ?????? ??==X P , {}070219.075287520528660051003902102==???

? ?????? ?????? ??==X P , {}006384.07528752048060051002903103==???

? ?????? ?????? ??==X P , {}000251.0752875201890051001904104==???

? ?????? ?????? ??==X P , {}000003.07528752025251000905105==???

? ?????? ?????? ??==X P , 故X 的分布列为

(2)所求概率为{}{}416248.0583752.01010=-==-=>X P X P

2.3 数学期望的应用

对离散随机变量X ,设n x x x ,,,21 为其所有可能取值。若将这n 个数求和后再除n 所得值来作为“均值”,这种处理方法显然不太好,因为X 取不同值的概率是不同的,从而出现的机会也是不同的,在计算中其权也是不同的。这告诉我们,用取值的概率来作为一种“权数”进行加权平均是一种比较合理的方法,这

种加权平均的处理方法在概率中就称为随机变量X 的数学期望,数学期望在日常生活中也应用广泛,)(X E 一般作为X 的代表参与同类指标的比较,如下例。 例 在一次乒乓球的比赛中设立奖金1000元。比赛规定:谁先胜3盘,谁就获得全部奖金。设甲、乙二人的球技是相当的,现已打了3盘,甲2胜1负,由于某特殊原因比赛必须终止。问这1000元应如何分配才算公平呢?

分析:方案一:平均分,这对甲欠公平。

方案二:全部归甲,这对乙不公平。

方案三:按已胜盘数的比例对甲、乙进行分配。

方案三看似是合理的,是双方可以接受的方法,即甲拿2/3,乙拿1/3。但经仔细分析,发现这也并不合理。理由如下:设想继续比赛,要使甲、乙有一个胜3盘,只要再比2盘便可,那结果无非是以下四种情况之一:甲甲,甲乙,乙甲,乙乙,其中“甲乙”表示第4盘是甲胜、第5盘是乙胜,其余以此类推。把乙比赛过的3盘与上述的四种结果结合,即甲乙打完5盘后,可以看出前3个结果都是甲先胜3盘,因而甲可得到1000元,只有最后一个结果才是由乙得1000元。在球技相当的条件下,上述四个结果应有相等的可能性。因此,方案四,是因为甲乙最终获胜的可能性的大小这比为 3∶1, 所以全部的奖金应按制胜率的比例分,即甲分750元,乙分250元,这样才算公平合理。

用全概率公式计算:如果再比一盘,甲乙胜的概率各为1/2。如果甲胜,则甲得全部的奖金;如果乙胜,则甲、乙各胜2盘,奖金应平分。所以有甲得奖金7505002

1100021=?+?=(元)。 这个问题实际上是利用了加权平均数的方法 ,即求均值的思想方法,这在决策分析中经常会用到。

2.4 方差的应用

定义 若随机变量2X 的数学期望)(2X E 存在,则称偏差平方2)(EX X -为随机变量X (或相应分布)的方差,记为

???????--=-=?∑∞∞

-2i 22,)())(),())(())(()(在连续场合。(在离散场合,dx x p X E x x p X E x X E X E X Var i i

随机变量取值的分散与集中程度一般用方差来描述,随机变量取值越分散,表明其方差就越大;随机变量取值越集中,其方差就越小。在日常生活中,方差常用来处理“某事件发生大小”类问题,如商业投资风险、患病大小等。

例 有n 个小伙伴在一起做游戏,他们约定每人选择一个数字,且每个人所选数字均不相同,将这些数字写在相同大小的小纸条上,并折成相同形状的小纸团,游戏要求每人从堆放在一起n 个小纸团中随意的抽取一个,试求抽中写有自

己所选数字的小纸条的人数X 的均值与方差。

解 记???=纸条,个人拿到的是别人所选

,第纸条,个人刚好拿到自己所选,第i i X 01i .2,1i n ,, = 则,,,321X X X …n X 是同分布的,但是不独立。且其共同分布为

n X P i 1)1(=

=,n

X P i 11)0(-==,,2,1=i …n ,。 由此可得,n X E i 1)(=,)11(1)(n n X Var i -=,,2,1=i …n ,。 又因为++=21X X X …n X +,从而可知

++=)()()(21X E X E X E …11)(=?

=+n

n X E n 。 但由于i X 间是不独立的,故而 ∑∑∑==+=+=n i n i n

i j j i i X X Cov X Var X Var 111),(2)()(。

为了计算)(j i X X Cov ,应先给出j X X i 的分布列,显然由题意知,j X X i 可能取值为0,1.且,1

11)1,1()1(-?=====n n X X P X X P j i j i 所以 .)

1(1)1(1)0(0)(-==?+=?=n n X X P X X P X X E j i j i j i 因此 )(j i X X Cov =,)

1(11)1(1)()(-)(22i -=??? ??--=n n n n n X E X E X X E j j i 由此得

.1)

1(1221)(ar 2=-???? ??+-=n n n n n X V 2.5 两事件间独立性的应用

满足等式)()()(B P A P AB P =的事件A 和B 是相互独立的,也就是说,事件A 的发生与事件B 的发生互不影响。事件的独立性对概率的计算有很大的用处,也因此广泛应用于日常生活中,下面的赌博问题就用到了事件的独立性。

例 甲、乙两个人在一起打赌,已知他们在每局中获奖的概率均为2/1,两人事先约定先获得指定局数的人就会获得全部的赌金。但是由于赌局在中途被人打断,就面临如何分配赌金的问题,那么请问,在以下的这些情况中,怎样分配赌本才能比较合理:

(1)赌徒甲、乙两人都赢K 局才能获得胜利;

(2)赌徒甲再赢两局才能获得胜利,赌徒乙再赢3局才能获得胜利;

(3)赌徒甲再赢n 局才能获得胜利,赌徒乙再赢m 局才能获得胜利。

解 在每场赌局中,设5.0=p 表示赌徒甲获得胜利的概率,若赌博继续进行下去,我们按甲、乙两人最终获胜概率来计算,并以此来分配赌本。

(1)由题意可知,赌徒甲、乙两人获得胜利的概率相等,即有5.0)()(==B P A P ,

从而可知,甲、乙两人所获赌金相等,均为总镀金的一半。

)2(由题意可知,最多再赌4局便可分出胜负,若以i A 表示再赌下去的第i 局中

赌徒甲获得胜利,4,3,2,1=i 。则

P (甲最终获胜)= )(43214321432132132121A A A A A A A A A A A A A A A A A A A A P ????? 6875.05.035.025.0)1(3)1(24322222=?+?+=-+-+=p p p p p

则乙获得胜利的概率为3125.0)(1)(22=-=A p B P ,

综上可知,甲应得赌本占总赌本的%75.68,乙应得赌本占总赌本的%25.31;

)3(由题意可知,只需再赌n+m-1局便可以分出胜负,从而共有可能结果12-+m n 种,

而赌徒甲“最终获得胜利”意味着:乙在这n+m-1局中至多能赢m-1局,从而可知:

P (赌徒甲最终获得胜利)

+-???? ??++-???? ??+=n n n

p p n p p n p 2)1(21)1(1n m p p m m n 1)1(12--???? ??--++ = +???

? ??++???? ??+++215.0215.015.0n n n n n +,5

.0121-+???? ??--+m n m m n 则P (赌徒乙最终获得胜利)=1-P (赌徒甲最终获得胜利)

=1-??

???????? ??--+++???? ??++???? ??+-+++1215.0125.0215.015.0m n n n n m m n n n , 故而,甲应得总赌本的 +???

? ??++???? ??+++215.0215.015.0n n n n n +,5

.0121-+???? ??--+m n m m n 乙应得总赌本的1-??

???????? ??--+++???? ??++???? ??+-+++1215.0125.0215.015.0m n n n n m m n n n 2.6 正态分布的应用

定义 若随机变量X 的密度函数为2

2)(21

)(σμσ--∏=x e x p ,∞<<∞-x ,则

称X 服从正态分布,称X 为正态变量,记作),(~2σμN X 。其中参数∞<<∞-x ,0>σ。

正态分布又称高斯分布,它是常用连续分布的一种。日常生活中的很多随机变量可以用正态分布描述或者近似描述,如年降雨量、认得身高、产品重量等。

例 据某中学统计数据表明,此校高三男生的体重)(kg X 服从正态分布),(2σμN 。若已知5.0)70(=≤X P ,25.0)60(=≤X P .试求μ与σ各为多少?

解 由 ??

? ??-Φ=≤=σμ70)70(5.0X P 可知 070=-σμ

, 由此解得70=μ。

又因为 ??

? ??Φ-=??? ??-Φ=??? ??-Φ=≤=σσσ101107060)60(25.0X P 即??

? ??Φ=σ1075.0,查表得675.010=σ,由此解得81.14=σ。 2.7 区间估计的应用

我们知道,参数的点估计给出的是一个具体的数值,它虽然便于使用与计算,但并不能反映出精度,故而精度一般是由其分布来反映。而经验表明,区间是度量精度的最直观方法之一,这就产生了区间估计的概念。下面的播种问题就是其在实际生活中应用的例子。

例 科学家为了对两种大豆的产量做比较,用相同的耕种方法,在有相似条件的18块试验田上做试验,甲乙两品种播种的田数分别为:8和10,且试验田中,这两种大豆在单位面积上的产量(kg )分别为

品种甲:628 583 510 554 612 523 530 615

品种乙:535 433 398 470 567 480 498 560 503 426 若这两个品种的大豆在单位面积上的产量都是服从正态分布的,请给出这两个大豆品种的平均单位面积产量差的置信区间)05.0(=α。

解 将品种甲的单位面积产量记作821x x x ,,, ,品种乙的单位面积产量记作1021y y y L ,

由此计算可得 38.569=x ,55.21402

=x s ,8=m , 00.487=y ,22.32562=y s ,10=n ,

在下面两种情况下讨论。

(1)若这两个品种有相等的单位面积产量的标准差,显然在此处可以用二样本

t 区间来处理。从而有

6129.5216

22.3256955.214072)1()1(22=?+?=-+-+-=n m s n s m s y

x w , 1199.2)16()2(975.02/1==-+-t n m t α, 91.5210

1816129.521199.211)2(2/1=+??=+-+-n m s n m t w α, 故而21μμ-的95.0置信区间为

[]29.135,47.2991.5248738.569=±-。

(2) 若这两个品种有不等的单位面积产量的方差,显然在此处可以用近似t

区间来处理。从而有

19.59310/22.32568/55.21402

0=+=s ,36.240=s , 1699.1591022.32567855.214019.59322

222

≈=?+?=l , 64.511199.236.24)(975.00=?=l t s ,

故而21μμ-的 95.0近视置信区间为

[]02.134,74.3064.5148738.569=±-。

2.8 棣莫弗——拉普拉斯中心极限定理的应用

设p 重伯努利试验中,事件A 在每次试验中为为出现的概率为)10(<

S Y n n -=*。

则对任意实说y ,有 dt e y y Y P y t n n ?∞--*∞→∏=Φ=≤22

21)()(lim 。

这就是概率论史上第一个中心极限定理:棣莫弗——拉普拉斯中心极限定理,它是专门用于解决二项分布类题目的,也因此被称为“二项分布的正态近似”。它主要应用于5>np 和5)1(>-p n 时,它可以提高精度,从而在日常生活中应用

广泛。下面的这个例子,会促进我们对定理的内容的理解。

例 随着人们生活条件的提高,人们对保险的关注度也在不断地增加。据保险公司多年的资料统计得,被盗索赔户占总投保户的%20,记X 表示随意抽取的100位投保户中被盗索赔户的户数。

(1)写出户数X 的分布列;

(2)试求户数)3014(≤≤X P 的近似值。

解 (1)由题意可知,此题应用二项分布来计算,即)2.0,100(~b X ,从而

可知 k k k n k X P -???

? ??==1008.02.0)(, ,2,1,0=k …n ,。 (2)由题意可知,此题应用棣莫弗——拉普拉斯中心极限定理来计算,从而有

)5.305.13()3014(≤≤=≤≤X P X P =???

? ?????-Φ-???? ?????-Φ8.02.01002.01005.138.02.01002.01005.30 )625.1(1)625.2()625.1()625.2(Φ+-Φ=-Φ-Φ=

9437.0948.0199565.0=+-=。

这说明:被盗索赔户介于14户到30户之间的概率为0.9437.

3 结束语

上述所举的例子,只是概率论在日常生活中的一些简单的应用,其实概率论在生活中能帮助我们的例子还有很多,只要我们细心地留意我们的生活,不断的去发现,并以最大的限度挖掘概率的潜能。我们更应该看到学好概率论对我们未来在工作、生活中是不可或缺的。

概率论在实际生活中的应用

信息学院 14-15学年第1学期《概率论与数理统计》课程(单元)项目研究报告 项目名称 概率论在足球比赛中的应用 【项目内容】详细叙述拟完成项目的条件和问题,可配表或图。 足球号称世界第一运动,因为在全球范围内无论是哪个国家或者地区都有许多喜欢足球,热爱足球甚至从事足球这项运动的人.四年举行一次的世界杯更是球迷们的狂欢节.中国同样有许多热爱足球的人,中国国家队水平不高经常让中国老百姓失望,但是这丝毫不会减少大家对足球的热情,作为一个中国人我希望中国足球会越来越好. 下面我们来看看大家都喜爱的足球与概率论到底有哪些关联。 相关问题:在某届欧洲杯足球比赛上,西班牙,德国,英格兰和荷兰队进入到了四强,这四支球队中的一支将有希望最终夺冠.决赛四强对阵情况是西班牙对阵英格兰,而德国将与荷兰队争夺另一个进入决赛的名额,由于四支球队都是强队,所以两场半决赛将会十分激烈,先比赛完的一场半决赛中世界第一西班牙队战胜了英格兰队率先进入了决赛,大家此时都将目光放到了西班牙队上,根据以往的比赛成绩,西班牙战胜德国的概率为0.8,战胜荷兰队的概率为0.3,而德国队战胜荷兰队的概率为0.5,那么西班牙球迷迫切想知道西班牙队最终能获得冠军的概率究竟是多大? 对于上面西班牙球迷十分迫切关心的问题,让我们来利用概率的知识来帮助他们解决他们心中的疑虑. 由于西班牙队已经率先挺进决赛,所以还没有完成的德国和荷兰的比赛对于最终的冠军归属有很大的影响,如果德国战胜了荷兰队,那么西班牙队就有80%的可能性夺冠,但是如果荷兰队取得了半决赛的胜利,那么西班牙队夺冠的希望只有30% 根据以上条件,把西 班牙队夺冠记为事件C ,德国战胜荷兰记为事件C ,而荷兰战胜德国则记为事件A ,P(B)=0.5,P(A)=0.5由全概率公式,则A,B 是一个完备事件组,那么有公式就可以得出P(C)=P(B)P(C|B)+P(A)P(C|A)其中可以看出P(C|A)以及P(C|B)是条件概率,P(C|B)表示西班牙在决赛战胜了另一场半决赛的胜者德国队夺冠,P(C|B)=0.8,P(C|A)表示西班牙队在决赛战胜了另一场半决赛的胜出者荷兰队夺冠,P(C|A)=0.3. 所以根据上述公式(全概率公式)我们就可以计算出西班牙队最终夺冠的概率为 P(C)= P(B)P(C|B)+P(A)P(C|A)=0.5*0.8+0.5*0.3=0.55 所以西班牙队最终夺冠的概率应该为55%[10] 看到了西班牙队的最终夺冠的概率,西班牙队的球迷应该可以松一口气,好好享受西班牙队在决赛上的精彩表演啦,因为西班牙队夺冠概率还是比较大的.以上是利用了全概率公式的知识解决了足球比赛中的常见问题,希望能给读者和球迷一些帮助。 2.排列和组合在足球比赛中的应用 每次举行一些足球比赛时经常要事先安排好比赛场次,为了能使足球比赛顺利进行.下面就是举办足球比赛时经常遇到的一类问题。某大学要举行一次校园足球比赛以增强大学生的体质,学校规定每个学院至少要派出一支球队参加这项赛事,最终一共有12支球队参

概率论在日常生活中的应用

概率论在日常生活中的应用 概率论是一门与现实生活紧密相连的学科,不过大多数人对这门学科的理解还是很平凡的:投一枚硬币,0.5的概率正面朝上,0.5的概率反面朝上,这就是概率论嘛。学过概率论的人多以为这门课较为理论化,特别是像大数定律,极限定理等内容与现实脱节很大,专业性很强。其实如果我们用概率论的方法对日常生活中的一些看起来比较平凡的内容做些分析,常常会得到深刻的结果。 在自然界和现实生活中,一些事物都是相互联系和不断发展的。在它们彼此间的联系和发展中,根据它们是否有必然的因果联系,可以分成两大类:一类是确定性现象,指在一定条件下,必定会导致某种确定的结果。例如,同性电荷相互排斥,异性电和相互吸引;在标准大气压下,水加热到100摄氏度,就必然会沸腾。事物间的这种联系是属于必然性的。另一类是不确定性现象。这类现象在一定条件下的结果是不确定的,即人们在未作观察或试验之前,不能预知其结果。例如,向桌上抛一枚硬币,我们不能预知向上的是正面还是反面;随机地找一户家庭调查其收入情况,我们亦不能预知其收入是多少。为什么在相同的情况下,会出现这种不确定的结果呢?这是因为,我们说的“相同条件”是指一些主要条件来说的,除了这些主要条件外,还会有许多次要条件和偶然因素是人们无法事先预料的。但另一方面,对这些不确定性现象进行大量、重复的实验时,人们会发现,其结果会出现某种“统计规律性”:重复抛一枚硬币多次,出现正、反两面的次数大致会各占一半;调查多户家庭,其收入会呈现“两头小,中间大”的状况,即处于中间状态的是大多数。这种在每次试验中呈现不确定性,而在大量重复试验中又呈现某种统计规律性的现象较随机现象。概率统计就是研究随机现象并揭示其统计规律性的一个数学分支,它在自然科学及社会科学的诸多领域都有着广泛的应用。 概率,简单地说,就是一件事发生的可能性的大小。比如:太阳每天都会东升西落,这件事发生的概率就是100%或者说是1,因为它肯定会发生;而太阳西升东落的概率就是0,因为它肯定不会发生。但生活中的很多现象是既有可能发生,也有可能不发生的,比如某天会不会下雨、买东西买到次品等等,这类事件的概率就介于0和100%之间,或者说0和1之间。大部分人认为一件事概率为0即为不可能事件,这是不对的。比如甲乙玩一个游戏,甲随机写出一个大于0小于1的数,乙来猜。1.乙一次猜中这个数2.乙每秒才一次,一直猜下去,“最终”猜中这个数。这两件事发生的概率的概率都是0,但显然他们都有可能发生,甚至可以“直观”地讲2发生的可能性更大些。这说明概率为0的事件也是有可能发生的。不过在我看来,这样的可能性实在太小了,在实际操作中认为不可能也是有道理的,但不管怎么说,他们确实是可能事件。 在日常生活中无论是股市涨跌,还是发生某类事故,但凡捉摸不定、需要用“运气”来解释的事件,都可用概率模型进行定量分析。不确定性既给人们带来许多麻烦,同时又常常是解决问题的一种有效手段甚至唯一手段。 走在街头,来来往往的车辆让人联想到概率;生产、生活更是离不开概率。在令人心动的彩票摇奖中,概率也同样指导着我们的实践。继股票之后,彩票也成了城乡居民经济生活中的一个热点。据统计,全国100个人中就有3个彩民。通过对北京、上海与广州3城市居民调查的结果显示,有50%的居民买过彩票,其中5%的居民成为“职业”(经济性购买)彩民。“以小博大”的发财梦,是不少彩票购买者的共同心态。那么,购买彩票真的能让我们如愿以偿吗?以从36个号码中选择7个的投注方式为例,看起来似乎并不很难,其实却是“可望而不可及”的。经计算,投一注的理论中奖概率极其小。由此看出,只有极少数人能中奖,购买者应怀有平常心,既不能把它作为纯粹的投资,更不应把它当成发财之路。 在我国南方流行一种成为“捉水鸡”的押宝,其规则如下:有庄家摸出一只棋子,放在密闭盒中,这只棋子可以是红的或黑的将、士、象、车、马、炮之一。赌客们把钱压在一

概率论经典实例

概率论经典实例 概率论的研究问题大多与现实世界联系十分密切,有的甚至引人入胜,非常值得我们探讨以便激发我们对概率论学习的兴趣,同时引导我们对生活的思考,这对我们每一个大学生思维能力的培养有着重要的意义。下面我列举几个典型的概率实例加以说明其重要意义。 1990 年9 月9 日,美国一家报纸检阅提出一个有趣的概率问题:电视主持人指着三扇关着的门说,其中一扇后是汽车,另两扇后各有一只山羊。你可随意打开一扇,后面的东西就归你了。你当然想得到汽车。当你选定一扇门,如1 号门(但未打开) ,这时主持人打开有山羊的另一个扇门,不妨说是3号门( 主持人清楚哪扇门后是汽车) ,并对你说:现在再给你一次机会,允许你改变原来的选择。你为了得到汽车是坚持1号门还是改选2号门?问题及答案公诸于众后引发了出乎意料的轰动,编辑部收到了上万封从小学二年级的学生到大学教授的来信,给出了不尽相同的答案(当然正确的答案是唯一的),热烈讨论持续两年之久。此时,无论是一号门还是二号门都有可能门后是汽车,看上去好像每一个都是一半的几率。但从主持人的角度看,他不会让你轻易就得到汽车,于是打开三号门来迷惑你的思想,让你放弃一号门。由此看出,可能一号门的几率会大一点。若从主持人的话语中判断出他没有那种想法,则可以这样思考这个问题。将一号门看成一部分,里面有汽车的概率为0.33,将二号门和三号门看成另一部分,里面有汽车的概率为0.67。当发现三号门里没有汽车时,则一号门和二号门有汽车的概率分别为0.33和0.67。因此,选择二号门比较理智。 稍加留意就会发现若利用概率统计提供的科学思维方法就会大大提高获胜的几率。比如抛两颗均匀骰子,规定如下规则:总数之和小于6为出现小点,大于6为大点,则每局可押大点或小点,若押对了,以出现的点数为对应的奖品数目,若押不中则同样以出现的点数为惩罚品的数目。可以这样思考,当假设骰子理论意义上是均匀的,则六面中点数少的面较重,在抛出后点数多的面朝上的可能性较大,从而抛出点数大的情况的概率应大一些,这样,即可作如下观察:(1)随机抛2颗骰子若干次,观察出现的点数,若点数大于6的次数占多数,则初步判断骰子是均匀的。(2) 当比赛开始时,可做以下决策:刚开始可先押大点,无论押中或不中,第二轮可接着押大点,然后观察一轮,当出现小点后,可继续押大点,当然也可在连续出现几个大点后押一次小点,也有取胜的把握。这是因为,出现大点的机会要多于出现小点的机会,开始出现大点的概率要大一些,故应押大点,当出现几次大点后,小概率的事件也是会发生的,故可押一次小点,若一次不中可继续押,此时出现小点的概率将变大。另外,当连续出现几次小点或大点,则情况即将发生转变,应考虑押相反的情况。运用概率的思想来解决此类问题让我们更有把握赢得我们所要的东西,对此类问题,一味的乱猜,只能让我们处于劣势。 在第二次世界大战中,美国曾经宣布:一个优秀的数学家的作用超过10 个师的兵力,这句话有一个非同寻常的来历。1943年以前,在大西洋的英美运输船队常常受到德国潜艇的袭击。当时,英美两国限于实力,无力增派更多的护航舰,一时间德国的潜艇战搞得盟军焦头烂额。为此,有位美国海军将领专门去请教了几位数学家,数学家们运用概率论分析后,舰队与潜艇相遇是一个随机事件。从数学角度来看这一问题,它具有一定的规律性,一定数量的船(为100艘),编队规模越小,编次就越多(为每次20艘,就要有5个编次),编次越多,与敌

概率论在保险中的应

目录 摘要 (2) 关键字 (2) 一、简介 (2) 1.概率论的研究对象 (3) 2.概率论与保险的关系 (3) 二、随机变量及其分布与保险 (3) 三、数字特征与保险 (4) 四、大数法则与保险 (4) 1切比雪夫大数法则 (4) 2.贝努里大数法则 (5) 3.大数定律对风险转移的作用 (5) 4.大数定律在保险中的适用性 (5) 五、应用概率进行保险计算 (6) 六、总结 (7)

摘要:概率论与数理统计是研究随机现象统计规律的一门数学科学是对随机现象的统计规律进行的演绎和归纳的科学.随着社会的不断发展,概率论与数理统计的知识越来越重要.运用抽样数据进行推断已成为现代社会一种普遍适用并且强有力的思考方式.本文就概率论与数理统计的方法和思想,并就其在保险中的应用进行分析和讨论,从中可以看出在经济领域和日常生活中以概率方法和数理统计的思想解决问题的高效性,简捷性和实用性 关键词:概率论, 切比雪夫大数法则定理, 贝努里大数法则,大数定律 一、简介 1.概率论的研究对象 概率论是研究随机现象数量规律的数学分支.随机现象是相对于决定性现象而言的,在一定条件下必然发生某一结果的现象称为决定性现象.例如在标准大气压下,纯水加热到100度时水必然会沸腾等.随机现象则是指在基本条件不变的情况下,一系列试验或观察会得到不同结果的现象.每一次试验或观察前,不能肯定会出现哪种结果,呈现出偶然性.例如,掷一硬币,可能出现正面或反面,在同一工艺条件下生产出的灯泡,其寿命长短参差不齐等等.随机现象的实现和对它的观察称为随机试验.随机试验的每一可能结果称为一个基本事件,一个或一组基本事件统称随机事件,或简称事件.事件的概率则是衡量该事件发生的可能性的量度.虽然在一次随机试验中某个事件的发生是带有偶然性的,但那些可在相同条件下大量重复的随机试验却往往呈现出明显的数量规律.例如,连续多次掷一均匀的硬币,出现正面的频率随着投掷次数的增加逐渐趋向于1/2.又如,多次测量一物体的长度,其测量结果的平均值随着测量次数的增加,逐渐稳定于一常数,并且诸测量值大都落在此常数的附近,其分布状况呈现中间多,两头少及某程度的对称性.大数定律及中心极限定理就是描述和论证这些规律的.在实际生活中,人们往往还需要研究某一特定随机现象的演变情况随机过程.例如,微小粒子在液体中受周围分子的随机碰撞而形成不规则的运动(即布朗运动),这就是随机过程.随机过程的统计特性、计算与随机过程有关的某些事件的概率,特别是研究与随机过程样本轨道(即过程的一次实现)有关的问题,是现代概率论的主要课题.概率论与实际生活有着密切的联系,它在自然科学、技术科学、社会科学、军事和工农业生产中都有广泛的应用.

浅谈概率论在生活中的应用

单位代码: 分类号: X X 大学 题目: 浅谈概率论在生活中的应用专业名称: 数学与应用数学 学生: 学生学号: 指导教师: 毕业时间:

浅谈概率论在生活中的应用 摘要:随机现象存在于我们日常生活的方方面面和科学技术的各个领域,概率论与数理统计是一门十分重要的大学数学基础课,也是唯一一门研究随机现象规律的学科,它指导人们从事物表象看到其本质.它的实际应用背景很广,包括自然科学、社会科学、工程技术、经济、管理、军事和工农业生产等领域.经过不断的发展,学科本身的理论和方法日趋成熟,近年来,概率统计知识也越来越多的渗透到诸如物理学、遗传学、信息论等学科当中.另外,在社会生活中,就连面试、赌博、彩票、体育和天气等等也都会涉及到概率学知识.可以说,概率统计是当今数学中最活跃,应用最广泛的学科之一.本文通过对现实生活中的部分现象分析探讨了概率知识在日常生活中的广泛应用. 关键词:随机现象;概率;日常生活;应用分析

Discuss the application in life probability Abstract: Random phenomenon exists in every aspect of our everyday lives and scientific technology each domain, probability and mathematical statistics is an important basic course in college mathematics, and is the only the study of random phenomenon regular course, its guiding people from representation see its nature. Its actual application background is very wide, including natural science, social science, engineering, economics, management, military and industrial and agricultural production, etc. Through continuous development, the theory and method of subject itself becomes mature, in recent years, the probability and statistics knowledge also more and more penetrated into such as physics, genetics, information subjects such as the midst. In addition, in social life, even interview, gambling, lottery tickets, sports and weather, etc are also involves probability learn knowledge. Can say, probability and statistics is the most active in mathematics, the most widely used in the fields of. This article through to in real life part phenomenon discussed probability knowledge in daily life the widely application. Keywords:random phenomenon; probability; daily life; application analysis

毕业论文.概率统计在生活中的应用Word版

毕业论文 课题 学生姓名胡泽学 系别 专业班级数学与应用数学指导教师 二0 一六年三月

目录 摘要.................................................................... I ABSTRACT................................................................... II 第一章绪论. (1) 第二章概率在生活中的应用 (4) 2.1在抽签和摸彩中的应用 (4) 2.2经济效益中的应用 (8) 2.3在现实决策中的应用 (4) 2.4在相遇问题中的应用 (12) 2.5在预算及检测中的应用 (10) 结论 (13) 参考文献 (14) 致谢 (15)

概率统计在生活中的应用 摘要 随着时代的发展人类的进步,17—18世纪出现了一门新的学科概率论,概率论逐渐成为了为数不多的可以和传统数学相抗衡的学科之一,并一步步的走向了人们的生活,成为了人们生活中不可或缺的部分。 本文先简述了概率论的发展,之后从概率在抽签中的应用、经济效益中的应用、现实决策中的应用、追击相遇问题中的应用、最大利润问题中的应用、最佳配置问题中的应用、经济保险问题中的应用、获奖问题中的应用、概率和选购方案的综合应用、金融界中的应用、设计方案的综合应用、厂矿生产中的如何合理配置维修工人问题、在商品质检中的应用和在运输预算费用中的应用等。多方面论述了概率的应用。 关键词:概率;概率的含义;概率的应用

Abstract

第一章绪论 概率统计是一门和生活关联紧密的学科同样也是一门特别有趣的数学分支学科,17-18世纪,数学得到了快速的发展。数学家们打破了古希腊的演绎框架,社会生活对与自然界的多方面吸取灵感,数学领域涌现了许多新面孔,之后都形成了完整的数学分支。除了分析学这之外,概率论就是同时期能使"欧几里德几何不相上下"的几个伟大成就之一。 概率的发源与赌博有关,伴随着科学技术的发展进步以及计算机普及,它在最近几十年来的社会科学和自然科学中得到了特别广泛的应用,在生活与社会生产中起着很重要的作用。我们生活在一个千变万化千变万化、千变万化的时代里,而我们每个人无时无刻都要直面生活中遇到的问题。而其中很多的问题都是随机的与随机的随机的。如决策时如何获取最大利益,公司要如何组合生产才能取得最大收益,如何加大买彩票的获奖概率,怎样进行误差分析、所购买物品的产品检验,生产质量把控等,当我们在遇到这些问题时应该如何解决它呢?幸好我们如今有了概率,概率是一门探索和揭示随机现象和规律的一门学科。 实践证明,概率是对生活中碰到的问题进行量的解答的有效工具,对经济决策和预测提供了新型的手段。下文就通过列举实例来表述概率在抽签中的应用、经济效益中的应用、现实决策中的应用、追击相遇问题中的应用、最大利润问题中的应用、最佳配置问题中的应用、经济保险问题中的应用、获奖问题中的应用、概率和选购方案的综合应用、金融界中的应用、设计方案的综合应用、厂矿生产中的如何合理配置维修工人问题、在商品质检中的应用和在运输预算费用中的应用等。

《概率论与随机过程》第1章习题

《概率论与随机过程》第一章习题 1. 写出下列随机试验的样本空间。 (1) 记录一个小班一次数学考试的平均分数(设以百分制记分)。 (2) 同时掷三颗骰子,记录三颗骰子点数之和。 (3) 10只产品中有3只是次品,每次从其中取一只(取出后不放回),直到将3只次品都取出,记录 抽取的次数。 (4) 生产产品直到得到10件正品,记录生产产品的总件数。 (5) 一个小组有A ,B ,C ,D ,E5个人,要选正副小组长各一人(一个人不能兼二个职务),观察选 举的结果。 (6) 甲乙二人下棋一局,观察棋赛的结果。 (7) 一口袋中有许多红色、白色、蓝色乒乓球,在其中任意取4只,观察它们具有哪几种颜色。 (8) 对某工厂出厂的产品进行检查,合格的盖上“正品”,不合格的盖上“次品”,如连续查出二个次 品就停止检查,或检查4个产品就停止检查,记录检查的结果。 (9) 有A ,B ,C 三只盒子,a ,b ,c 三只球,将三只球装入三只盒子中,使每只盒子装一只球,观察 装球的情况。 (10) 测量一汽车通过给定点的速度。 (11) 将一尺之棰折成三段,观察各段的长度。 2. 设A ,B ,C 为三事件,用A ,B ,C 的运算关系表示下列事件。 (1) A 发生,B 与C 不发生。 (2) A 与B 都发生,而C 不发生。 (3) A ,B ,C 都发生。 (4) A ,B ,C 中至少有一个发生。 (5) A ,B ,C 都不发生。 (6) A ,B ,C 中至多于一个发生。 (7) A ,B ,C 中至多于二个发生。 (8) A ,B ,C 中至少有二个发生。 3. 设{}10,2,1, =S ,{}4,3,2=A ,{}5,4,3=B ,{}7,6,5=C ,具体写出下列各等式 (1)B A 。 (2)B A ?。 (3)B A 。 (4) BC A 。 (5))(C B A ?。 4. 设{}20≤≤=x x S ,??????≤<=121x x A ,? ?????<≤=234 1x x B ,具体写出下列各式。 (1)B A ?。 (2)B A ?。 (3)B A 。 (4) B A 。 5. 设A ,B ,C 是三事件,且41)()()(===C P B P A P ,0)()(==CB P AB P ,81)(=AC P ,求A , B , C 至少有一个发生的概率。 6. 在1500个产品中有400个次品,1100个正品,任意取200个。 (1) 求恰有90个次品的概率。 (2) 至少有2个次品的概率。 7.(1)在房间里有500个人,问至少有一个人的生日是10月1日的概率是多少(设一年以365天计算)? (2)在房间里有4个人,问至少有二个人的生日在同一个月的概率是多少?

概率论与数理统计在生活中的应用

概率论与数理统计在生活中的应用 单位:兴隆场初级中学姓名:姜宏琼 摘要:随机现象无处不在,渗透于日常生活的方方面面和科学技术的各个领域,概率论就是通过研究随机现象及其规律从而指导人们从事物表象看到其本质的一门科学。生活中买彩票显示了小概率事件发生的几率之小,抽签与体育比赛赛制的选择用概率体现了公平与不公平,用概率来指导决策,减少错误与失败等等,显示了概率在人们日常生活中越来越重要。数理统计在人们的生活中也不断的发挥重要的作用,如果没有统计学,人们在收集资料和进行各项的大型的数据收集工作是非常困难的,通过对统计方法的研究,使得我们处理各种数据更加简便,所以统计也是一门很实用的科学,应该受到大家的重视。 关键字:概率、保险、彩票、统计、数据、应用 由赌徒的问题引起,概率逐渐演变成一门严谨的科学。1654年,有一个法国赌徒梅勒遇到了一个难解的问题:梅勒和他的一个朋友每人出30个金币,两人谁先赢满3局谁就得到全部赌注。在游戏进行了一会儿后,梅勒赢了2局,他的朋友赢了1局。这时候,梅勒由于一个紧急事情必须离开,游戏不得不停止。他们该如何分配赌桌上的60个金币的赌注呢?梅勒的朋友认为,既然他接下来赢的机会是梅勒的一半,那么他该拿到梅勒所得的一半,即他拿20个金币,梅勒拿40个金币。然而梅勒争执道:再掷一次骰子,即使他输了,游戏是平局,他最少也能得到全部赌注的一半——30个金币;但如果他赢了,并可拿走全部的60个金币。在下一次掷骰子之前,他实际上已经拥有了30个金币,他还有50%的机会赢得另外30个金币,所以,他应分得45个金币。 赌本究竟如何分配才合理呢?后来梅勒把这个问题告诉了当时法国著名的数学家帕斯卡,这居然也难住了帕斯卡,因为当时并没有相关知识来解决此类问题,而且两人说的似乎都有道理。帕斯卡又写信告诉了另一个著名的数学家费马,于是在这两位伟大的法国数学家之间开始了具有划时代意义的通信,在通信中,他们最终正确地解决了这个问题。他们设想:如果继续赌下去,梅勒(设为甲)和他朋友(设为乙)最终获胜的机会如何呢?他们俩至多再赌2局即可分出胜负,这2局有4种可能结果:甲甲、甲乙、乙甲、乙乙。前3种情况都是甲最后取胜,只有最后一种情况才是乙取胜,所以赌注应按3:1的比例分配,即甲得

(完整版)北邮研究生概率论与随机过程2012-2013试题及答案

北京邮电大学2012——2013学年第1学期 《概率论与随机过程》期末考试试题答案 考试注意事项:学生必须将答题内容(包括填空题)做在试题答题纸上,做在试卷纸上一律无效。在答题纸上写上你的班号和选课单上的学号,班内序号! 一. 单项选择题和填空题:(每空3分,共30分) 1.设A 是定义在非空集合Ω上的集代数,则下面正确的是 .A (A )若A B ∈∈A,A ,则A B -∈A ; (B )若A A B ∈?A,,则B ∈A ; (C )若12n A n =∈?A,,,,则 1 n n A ∞=∈A ; (D )若12n A n =∈?A,,,,且123A A A ??? ,则 1 n n A ∞ =∈A . 2. 设(),ΩF 为一可测空间,P 为定义在其上的有限可加测度,则下面正确的是 .c (A )若A B ∈∈F,F ,则()()()P A B P A P B -=-; (B )若12n A n =∈?F,,,,,且123A A A ??? ,则1 li ( )()m n n n n P A A P ∞→∞ ==; (C )若A B C ∈∈∈F,F,F,,则()()()()P A B C P A P AB P A BC =++; (D )若12n A n =∈?F,,,,,且,i j A i j A =??=/,1 1 ( )()n n n n P P A A ∞ ∞===∑. 3.设f 为从概率空间(),P ΩF,到Borel 可测空间(),R B 上的实可测函数,表达式为100 0()k A k f kI ω==∑,其中1000 ,, i j n n i j A A A ==??=Ω/=,则fdP Ω=? ;

概率在现实生活中的应用

概率在现实生活中的应用

我认为学习概率应该有两种认识,一是要理性的理解概率的意义,二是要学以致用。 一、概率的意义 (1)一般地,频率是随着实验者、实验次数的改变而变化的; (2)概率是事件在大量重复试验中频率逐渐稳定到的值,即可以用大量重复试验中事件发生的频率去估计得到事件发生的概率,但二者不能简单地等同;(3)频率是概率的近似值,概率是频率的稳定值.它是频率的科学抽象.当试验次数越来越多时,频率围绕概率摆动的平均幅度越来越小,即频率靠近概率. (4)概率从数量上刻画了一个随机事件发生的可能性的大小. 二、学以致用 学以致用不仅是会做“单项选择题选对正确答案的概率是多少?”的问题,还要会解决生活中的实际问题。例如: 1、在保险公司里有2500个同一年龄的人参加了人寿保险,在一年里死亡的概率为0.002,每个人一年付12元保险费,而在死亡的时候家属可以领取由保险公司支付的2000元,问保险公司盈利的概率是多少,公司获利不少于10000的概率是多少? 这样的问题咋一看很难知道保险公司是否盈利,但经过概率统计的知识一 计算就可以得知公司是几乎必定盈利的。 2、李炎是一位喜欢调查研究的好学生,他对高三年级的12个班(每班50人)同学的生日作过一次调查,结果发现每班都有三位同学的生日相同,难道这是一种巧合吗? 解析:本题即求50个同学中出现生日相同的机会有多大? 我们知道,任意两个人的生日相同的可能性为1/365×1/365≈0.0000075,确实非常小,那么对于一个班而言,这种可能性是不是也不大呢? 正面计算这种可能性的大小并不简单,因为要考虑可能有2个人生日相同,3个人生日相同,……有50个人生日相同的这些情况。如果我们从反而来考察,即计算找不到俩个人生日相同的可能性,就可知道最少有两个人生日相同的可能性。 对于任意2个人,他们生日不同的可能性是(365/365)×(364/365)=365×364/3652对于任意3个人,他们中没有生日相同的可能性是 365/365×364/365×363/365=365×364×363/3653; 类似可得,对于50个人,找不到两个生日相同的可能性是 365×364×363×…×316/36550≈0.03,因此,50个人中至少有两个人生日相同的机会达97%,这么大的可能性有点出乎意料,然而事实就是如此,高三年级的12个班级(每班50人)都有两位同学生日相同的事件发生,并非巧合。那么,50人中有3人生日相同的概率有多大? 3、深夜,一辆出租车被牵涉进一起交通事故,该市有两家出租车公司——红色出租车公司和蓝色出租车公司,其中蓝色出租车公司和红色出租车公司分别占整个城市出租车的85%和15%。据现场目击证人说,事故现场的出租车是红色,并对证人的辨别能力作了测试,测得他辨认的正确率为80%,于是警察就认定红色出租车具有较大的肇事嫌疑。请问警察的认定对红色出租车公平吗?试说明理由

一些很有趣的概率学问题

一些很有趣的概率学问题 说到概率,有些好玩的东西不得不提。比如,你知道吗,23个人中至少两个人生日相同的概率竟然超过了1/2;假如你们班上有50个人的话,那更不得了,至少两人生日相同的概率达到97% !如果你会计算这个概率问题的话,你可以亲自证实这一点。本文适宜的读者是知道上述问题怎么算的高中朋友,上述问题也是高中阶段学的一些基本概率知识。 上面的问题都是简单概率,它包含了一个最基本的原则,即使没有系统地学习过,平常人们也都在无形之中使用它:概率等于你要算的东西除以总的数目。比如。我们要计算23个人中任何两个人都不在同一天生的概率。假设2月29 日与其它日期出现概率相同的话(这是为了便于计算我们做出的假设,它有悖于常理),那么它的概率为A(366,23)/366^23。它约为0.493677。因此,至少两人在同一天生的概率为1-0.493677=0.506323。当然,对于“你要算的东西除以总的数目”的认识是片面的,比如“投两个骰子出现的数字和从2到12共有11种可能,问数字和大于10的概率”这一问题的答案并不是2/11,因为这11个点数和出现的概率不是相等的,我们只能从投出的两个数字共6*6=36种情况中进行统计,可能的情况只有(5,6)、(6,5)和(6,6) (不会有人说还有(6,7)之类的吧),答案应该是3/36=1/12。这些都是废话,我不细说了。 但是,你有想过这个问题吗:要是这些数目是无穷的怎么办?换句话说,统计的东西不是“离散”的怎么办?比如看这样一个问题。明天早上我要和MM约会,但是具体见面时间我忘了,好像是8:00-9:00的某个时候。那么我随便在这个时段中选一个时间去等MM,最多等她半个小时,正好能见到MM的概率是多少(假设MM先到的话不会等我)。这个问题和我们平时见到的问题不同的地方在于,它的“情况”是连续的,不是离散的,不能逐一统计数目。咋办呢?我们注意到,我的时间随机取一个,MM的时间随机取一个,对于某些组合我们是有缘分的(这些组合无穷多)。这些组合正好对应了平面区域上的点。就是说,搞一个横坐标表示我的时间,纵坐标表示MM的时间,那么肯定能画出那么一块区域,区域里的所有点(x,y)对应所有我和MM可能相见的组合。任何一个时间组合有多大的可能落在这个区域呢?由于在矩形区域内点(x,y)是均匀分布的,我们只需要计算一个面积之比就行了。下图中显而易见,答案是3/8。 一个类似的问题是Buffon投针实验。有一个人,叫Buffon。他在地板上画了很多间隔相同的平行线,然后叫了一帮狐朋狗友来,把一些长度相同的针扔在地上。然后,他统计有多少针和地板上的线相交,并宣称可以得到圆周率π的值。换句话说,一根针投到间隔相同的平行线中,与平行线相交的概率和π有关。我们时常感到数学的神奇之处,比如当这个π在很多不该出现的场合莫明

《概率论与随机过程》第1章习题

《概率论与随机过程》第一章习题 1.写出下列随机试验的样本空间。 (1)记录一个小班一次数学考试的平均分数(设以百分制记分)。 (2)同时掷三颗骰子,记录三颗骰子点数之和。 (3)10只产品中有3只是次品,每次从其中取一只(取出后不放回),直到将3只次品都取出,记录抽取的次数。 (4)生产产品直到得到10件正品,记录生产产品的总件数。 (5)一个小组有A,B,C,D,E5个人,要选正副小组长各一人(一个人不能兼二个职务),观察选举的结果。 (6)甲乙二人下棋一局,观察棋赛的结果。 (7)一口袋中有许多红色、白色、蓝色乒乓球,在其中任意取4只,观察它们具有哪几种颜色。 (8)对某工厂出厂的产品进行检查,合格的盖上“正品”,不合格的盖上“次品”,如连续查出二个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。 (9)有A,B,C三只盒子,a,b,c三只球,将三只球装入三只盒子中,使每只盒子装一只球,观察装球的情况。 (10)测量一汽车通过给定点的速度。 (11)将一尺之棰折成三段,观察各段的长度。 2.设A,B,C为三事件,用A,B,C的运算关系表示下列事件。 (1)A发生,B与C不发生。 (2)A与B都发生,而C不发生。 (3)A,B,C都发生。 (4)A,B,C中至少有一个发生。 (5)A,B,C都不发生。 (6)A,B,C中至多于一个发生。 (7)A,B,C中至多于二个发生。 (8)A,B,C中至少有二个发生。

3. 设{ }10,2,1, =S ,{}4,3,2=A ,{}5,4,3=B ,{}7,6,5=C ,具体写出下列各等式 (1)B A 。 (2)B A ?。 (3)B A 。 (4) BC A 。 (5))(C B A ?。 4. 设{}20≤≤=x x S ,?????? ≤<=121x x A ,? ?????<≤=2341x x B ,具体写出下列各式。 (1)B A ?。 (2)B A ?。 (3)B A 。 (4) B A 。 5. 设A ,B ,C 是三事件,且41)()()(===C P B P A P ,0)()(==CB P AB P ,1)(=AC P ,求A ,B , C 至少有一个发生的概率。 6. 在1500个产品中有400个次品,1100个正品,任意取200个。 (1) 求恰有90个次品的概率。 (2) 至少有2个次品的概率。 7.(1)在房间里有500个人,问至少有一个人的生日是10月1日的概率是多少(设一年以365天计算) (2)在房间里有4个人,问至少有二个人的生日在同一个月的概率是多少 8. 一盒子中有4只次品晶体管,6只正品晶体管,随机地抽取一只测试,直到4只次品管子都找到为止。求 第4只次品管子在下列情况发现的概率。 (1) 在第5次测试发现。 (2) 在第10次测试发现。 9. 甲、乙位于二个城市,考察这二个城市六月份下雨的情况。以A ,B 分别表示甲,乙二城市出现雨天这一 事件。根据以往的气象记录已知4.0)()(==B P A P ,28.0)(=AB P ,求)/(B A P ,)/(A B P 及)(B A P ?。 10. 已知在10只晶体管中有2只次品,在其中取二次,每次随机地取一只,作不放回抽样,求下列事件的概 率。 (1) 二只都是正品。 (2) 二只都是次品。 (3) 一只是正品,一只是次品。 (4) 第二次取出的是次品。 11. 某人忘记了电话号码的最后一个数字,因而随意地拨号,求他拨号不超过三次而接通所需的电话的概率

概率论在日常生活中的应用

概率论在日常生活中的应用 及数理统计在国民经济中的应用 021251班 马璁02125007

引言 概率论与数理统计是研究随机现象统计规律的一门学科,简单地说,就是一件事发生的可能性的大小.这门学科在社会生产和生活中起着非常重要的作用,概率统计几乎遍及所有的科学技术领域,工农业生产国民经济及日常生活各个方面,,比如:,在研究最大经济利润中寻求最佳生产方案,在检验生产产品合格率,在面试通过方面,在公交站台的侯车时间,打电话时间长短分配,在各种比赛赛制问题上,在生日概率问题上,以下通过具体的例子讨论概率论在生活中的应用。

目录 引言 (2) 日常生活的应用 (4) 一、生日概率问题 (4) 二、街边抽奖 (5) 国民经济中的应用 (6) 一、数学期望在企业经营中的应用 (6) 二、参数估计在商品进货中的应用 (7) 三、中心极限定理在保险业中的应用 (8)

日常生活的应用 一、生日概率问题 小时侯看《少年科学》,记得一个问题,就是在一群人中,你很有可能找到相同生日的人.而且你找到生日相同的人的可能性超过找不到生日相同的人的可能性,对这群人数的数字要求,可能并不像你想象中的那样高. 一个班有五十个人,我赌班上肯定有生日相同的一对同学.《少年科学》讲,胜算非常大.一直记不清人数达到多少时,有生日相同的人的可能性会超过百分之五十.终于看到答案:23人. 我们来看一个经典的生日概率问题.以1年365天计(不考虑闰年因素),你如果肯定在某人群中至少要有两人生日相同,那么需要多少人?大家不难得到结果,366人,只要人数超过365人,必然会有人生日相同.但如果一个班有50个人,他们中间有人生日相同的概率是多少?你可能想,大概20%~30%,错,有97%的可能! 它的计算方式是这样的: a、50个人可能的生日组合是365×365×365×……×365(共50个)个; b、50个人生日都不重复的组合是365×364×363×……×316(共50个)个; c、50个人生日有重复的概率是1-b a . 这里,50个人生日全不相同的概率是b a =0.03,因此50个人生日有重复的概 率是1-0.03=0.97,即97%. 根据概率公式计算,只要有23人在一起,其中两人生日相同的概率就达到51%! 但是,如果换一个角度,要求你遇到的人中至少有一人和你生日相同的概率大于50%,你最少要遇到253人才成.

生活中的一些有趣事件分析

生活中的一些事件分析 1.升级游戏 升级游戏中(共有54张,留6张底牌),底牌中有“王”的概率。解:底牌中有王,即在洗牌时要至少放一张王牌于底牌的六张中。将54张牌 的每一种排列看作一次随机试验,即基本事件总数为:!5454 54==p n ,而底牌中有王所包还的基本事件数为:52 52 262253531612P P C P P C m +=故,所求事件的概率为 233.0159 37 ≈== n m p 2.考试猜答案能否及格的问题 考试的时候,许多学生都会遇到不会做的题目,对于选择题,不会做也不会空着,大家都会选择猜个答案填上去。我们所关心的是猜中正确答案的概率有多大?如果一个单项选择题有四个答案,那么猜中的概率应该是1/4。如果某试卷仅有10个单项选择题,每题10分。某学生完全不会做,随机答题,我们所关心的是他及格的概率是多少? 我们知道每答一个题有两个基本结果,就是答对和答错,所以做10道题就是10重伯努利试验。我们用A 表示答对,B 表示及格,那么及格就是至少答对6道题,所求概率 k k k k k C k p B p ?==?==∑∑1010 6 10 10 610)41 1()41()()(10 9 9910288103771046610)4 1(43()41()43()41(43(41(43()41(++++=C C C C 5 69091796870.01972770=从结果中我们知道,如果不学习,题目不会做的话只有不足2%的概率及格,在实际中,这种情况几乎不会发生,所以靠投机是不行的,学生还是要扎扎实实好好学习。

3.3.有志者事竟成 有志者事竟成“有志者事竟成”的意思是:只要有决心,有毅力,事情终究会取得成功。很多人在遇到失败时,都会用这句古话来不断激励自己。现在从概率论角度来思考,更感此语之妙。 将一个试验独立重复的做了n 次,设在每次试验中事件A 发生的概率为 )10(<

05-06概率论与随机过程试题(A卷)

05-06概率论与随机过程试题(A ) 一、选择题 1.设0

2. 设随机变量X 的密度函数为, 0 1, ()0, .ax x f x <

相关主题
文本预览
相关文档 最新文档