当前位置:文档之家› [整理]ProE渐开线斜齿圆柱齿轮精确建模方程式曲线的创建和实例剖析.

[整理]ProE渐开线斜齿圆柱齿轮精确建模方程式曲线的创建和实例剖析.

[整理]ProE渐开线斜齿圆柱齿轮精确建模方程式曲线的创建和实例剖析.
[整理]ProE渐开线斜齿圆柱齿轮精确建模方程式曲线的创建和实例剖析.

【概述】:

基于Pro/E的渐开线斜齿圆柱齿轮精确建模教程.

基于Pro/E的渐开线斜齿圆柱齿轮精确建模

作者:lm2000i

关键词:Pro/E,渐开线,斜齿,圆柱,齿轮,教程

来源:无维网(https://www.doczj.com/doc/f12075273.html,)

前言:本贴是个人原创贴,如有不妥之处,请指正。同时整个建模思路参照了开思网的袖珍天使和三昧书生两位朋友的方法,并加以细化和拓展,在此对他们表示感谢!渐开线斜齿圆柱齿轮相关理论知识请参阅《机械原理》或相关资料,在此不再详述。

(一)

参数定义

符号定义初始值

Z齿数24

Beta螺旋角12

M_n法面模数 2.5

B齿宽50

Alpha_n法面压力角20

C_n法面顶隙系数0.25

X_n法面变位系数0 Ha_n法面齿顶高系数1

DS 螺旋方向(规定DS取值:左旋为1,右旋为-1)

1

Alpha_t端面压力角

Ha齿顶高

Hf齿根高

D分度圆直径

Db/Rr基圆直径/半径

Da齿顶圆直径

Df齿根圆直径

(二)在Top面上做从小到大的4个圆(圆心点位于默认坐标系原点),直径为任意值。生成后修改各圆直径尺寸名为(从小到大)Df、DB、D、Da,加入关系:

Alpha_t=atan(tan(Alpha_n)/cos(Beta))

Ha=(Ha_n+X_n)*M_n

Hf=(Ha_n+C_n-X_n)*M_n

D=Z*M_n/cos(Beta)

Db=D*cos(Alpha_t)

Da=D+2*Ha

Df=D-2*Hf

注:当然这里也可不改名,而在关系式中采用系统默认标注名称(如d1、d2...),将关系式中的“Df、DB、D、Da”用“d1、d2…”代替。改名的方法为:退出草绘----点选草图----编缉----点选标注----右键属性----尺寸文本----名称栏填新名称

[本帖最后由 lm2000i 于 2007-3-26 19:58 编辑]

==更多精彩,源自无维网(https://www.doczj.com/doc/f12075273.html,)

(三)以默认坐标系为参考,偏移类型为“圆柱”,建立用户坐标系原点CS0。此步的目的在于后面优化(步5)时,能够旋转步4所做的渐开线齿形,使DT M2能与FRONT重合。

选坐标系CS0,用笛卡尔坐标,作齿形线(渐开线):Rb=Db/2

theta=t*45

x= Rb*cos(theta)+ Rb*sin(theta)*theta*pi/180

y=0

z= Rb*sin(theta)- Rb*cos(theta)*theta*pi/180

注:笛卡尔坐标系渐开线方式程式为

其中:theta为渐开线在K点的滚动角。因此,上面关系式theta=t*45中的45是可以改的,其实就是控制上图中AB的弧长。

(四)过Front/Right,作基准轴A_1;以渐开线与分度圆交点,作基准点PNT0;过轴A_1与PNT0做基准面DTM1。

过轴A_1、与DTM1成任意角度,做基准面DTM2,修改角度尺寸名字为Angl e,加入关系:Angle=360/(4*Z) ;以DTM2为镜像面,镜像渐开线。

(五)用分析特征使DTM2与FRONT重合。步骤如下:

5-1 建立分析特征:

5-2 优化使DTM2与FRONT重合

选默认坐标系,用笛卡尔坐标,做分度圆上的螺旋线。许多CAD论坛都是用投影线来代替螺旋线的,理论上是不对的,可以参看齿轮齿廓的形成原理。

x=D*cos(t*beta)/2

y=B*t

z=Ds*D*sin(t*beta)/2

注:笛卡儿坐标系圆柱螺旋线方程:

x = r * cos ( t *(n*360))

y = r * sin ( t *(n*360))

z = B*t

其中r?圆柱螺旋线半径,n?螺旋圈数,B?螺旋线总高(补充:

1、在圆柱坐标系圆锥螺旋线方程:

r=t

theta=Alpha+t*(n*360)

z=t*H

Alpha?在圆柱坐标中起始位置与极轴夹角,n?螺旋圈数,H?螺旋线总高

2、在球坐标系球面螺旋线方程:

rho=r

theta=t*180

phi=t*360*n

r?球半径,n?螺旋圈数,180?整个球(如90就半球了))

[本帖最后由 lm2000i 于 2007-3-26 20:01 编辑]

==更多精彩,源自无维网(https://www.doczj.com/doc/f12075273.html,)

(六)做一圆柱面,直径等于分度圆直径,深度为齿宽(加关系式)。然后用上面的螺旋线修剪掉,剩下图示的部分。我们后续要的就是这个螺旋圆柱面的边去充当后面变截面的原始轨迹线。

(七)拉伸圆柱,直径等于齿顶圆直径,深度为齿宽(加关系式);做VSS(可

变剖面扫描

)剪切拉伸圆柱,用上面分度圆曲面被剪切的边做原始轨迹,剖面控制选“恒定法向”,-j4f{1an8Q)https://www.doczj.com/doc/f12075273.html,水平垂直选“垂直于曲面”。这也就是为什么做上面的分度圆上螺旋线的原因,如果不用边,而采用方程做出的螺旋线的话,pro/e就没办法控制水平垂直方向了。另外在在选项中还要选“恒定剖面”,这样就实现了截面形状不变,而只是沿分度圆上螺旋线变换角度了,与斜齿轮的形成原理相吻合。

这里是当基圆直径大于齿根圆直径的情况下的。

当基圆小于等于齿根圆直径时,原理也和上面一样,只不过齿廓的根部都是渐开线了,即去掉Db与Df间的直线段。

比如上述初始值中Z改为Z=0,其它不变,则出现Db。此时零件生成及修改方法如下图:

(八)最后一步,阵列上步所得齿形槽。

最后的齿轮全图:

可以验证是否每个垂直于轴心的截面是不是和两端面一样,可以任意截面,验证一丝不差。

最后关系式中的方程如下:

Alpha_t=atan(tan(Alpha_n)/cos(Beta))

Ha=(Ha_n+X_N)*M_N

Hf=(Ha_n+C_N-X_N)*M_N

D=Z*M_N/cos(Beta)

DB=D*cos(Alpha_t)

DA=D+2*Ha

DF=D-2*Hf

ANGLE=360/(4*Z)

/*步骤4加

d15=B

/*步骤7加,d15是圆柱面深度

d40=B

/*步骤8加,d40是圆柱深度

p64=z

/*步骤9加,p64是阵列数

d61=360/z

/*步骤9加,d61是阵列角度

【概述】:

通过逐步从简单到复杂方程曲线的剖析讲解,让用户从原理上理解方程式曲线的构成和变化控制。

ProE方程式曲线的创建和实例剖析

作者:IceFai

关键词:ProE,WildFire,方程式,曲

线,Curve

来源:无维网(https://www.doczj.com/doc/f12075273.html,)

【概述】方程式曲线是Pro/Engineer中一种特殊形式的曲线。它的创建方式是通过曲线的数学方程式来直接创建,在一些特殊的应用场合有着不可取代的作用。本教程详细讲解在Pro/Engin eer中的各种形式的方程式的创建和演变和一些常见的方程式曲线的定义方法,务求让读者能更多地理解方程式的创建而不是记住某些方程式曲线的方程。

1.方程式曲线的创建

指令位置:单击创建基准曲线的图标,在弹出的边菜单中选择From Equation…(从方程式…)(图eqcurve.1.01)。创建方程式曲线必需一个坐标系作为参考,所以下一步我们要给它选择一个坐标系,在Pro/Engineer中,有三种使用坐标系的方式来创建方程式曲线,它们是Cartes ian(笛卡尔坐标)、Cylindrical(圆柱坐标)和Spherical(球坐标也就是极坐标)(图eqc urv.1.02)

三种坐标系对于不同的形式的方程式曲线各有独特的优势,根据曲线的表现选用适当的坐标系方法可以大大简化方程式并且也更直观易懂,在本文的后面我们将详细讨论这三种坐标系的应用方法。

选择了坐标系后就可以进入方程式的编辑环境了(图eqcurve.1.04)。可以看到在编辑器的前面是一些方程式的编写指导。在Pro/Engineer的关系式(方程实际是关系式)编写中/*是代表注释。

在注释下面你就可以输入自己的曲线方程式了,一行对应一条关系

内幕:系统默认的设置一般方程式的编辑器是Pro/Engineer自带的Pro/Table编辑器,如果想改用系统默认的记事本来编辑,你可以设定config选项:relation_file_editor的值为edito r。

2. 方程式的含义和编写

在Pro/Engineer中,方程式的编写规则和关系式的是一样的,并且可以使用关系式的所有函数,实际上方程式本身就是关系式。

在所有的坐标系形式中,都有一个共用的可变参数t,这个实际就是用来确定方程式取值域的,同时也是用它来驱动方程式的生成的。它的变动范围是0~1,如果我们要需要别的范

围,可以通过乘以系数和添加前导值来实现,比如我们要求变动范围是0~10,那么我们可以用1 0*t来表达;而如果我们需要的变动范围是5~10,那么可以用5+5*t来表达。

如果你对数学的参数方程式足够熟悉的话,那么理解曲线的方程式是毫无障碍的。如果你不熟悉,可以这样来看待方程式:

把一个方程式看成是某一个点的坐标值,通过t的变化实际就是产生一系列的点。连续的点就构成了实际的曲线。

【概述】:

通过逐步从简单到复杂方程曲线的剖析讲解,让用户从原理上理解方程式曲线的构成和变化控制。

2.1.坐标系的表达方式

对于同一方程式曲线,在Pro/Engineer中你都可以从三个坐标系表示方式中选择一个作为方程式的编写坐标系。三个坐标系的不同之处是确定一个点的表示方式不一样而已。

笛卡尔坐标系使用点的三个轴的坐标值(x,y,z)来确定一个点(图eqcurve.2.01);圆柱坐标系使用半径r,和x轴的夹角theta和高度z来表示(图eqcurve.2.02);而球坐标系则使用球半径rho,原点到点的向量和Z轴的夹角theta和向量在xy平面上和X轴的夹角phi来表示(图eqcuve.2.03)。

2.2.方程式中的常用函数

主要使用的是一些数学函数。

sin 正弦函数 sqrt 开平方根

cos 余弦函数 abs 取绝对值

tan 正切函数 pi 圆周率3.1415926…

3.实例方程式曲线剖析

我们就从一个简单圆开始。我们都用笛卡尔坐标系(Cartesian)坐标系来写。我们知道正弦和余弦函数是周期变化的函数,所以我们如果要实现周期变化就要借助这两个函数的帮助。而要实现值的变化,自然需要使用t来辅助了。基本上很多貌似复杂的效果都是周期变化加上大小变化的叠加。

【概述】:

通过逐步从简单到复杂方程曲线的剖析讲解,让用户从原理上理解方程式曲线的构成和变化控制。

通过上面我们的演变和叠加,相信大家对于曲线方程式的概念和编写有了一定的概念了。上面我们的方程都是用笛卡尔坐标来进行编写方程式的,其实有一些我们应用其它的坐标方式来写的化就会更直接和直观,比如对于圆螺旋,我们如果用圆柱坐标系来写的话,就可以这样:

r=10

theta=t*360*12

z=24*t

这是不是比上面的笛卡尔坐标系的写法简单和直观的多呢?同样对于另外的方程式曲线,我们用球坐标的

方式来写就可以收到奇效

例如对图eqcurve.3.11的半球螺旋线,如果我们用球坐标的方式来写,就可以写成这样:

rho=10

theta=t*90

phi=t*360*12

这样是不是更为直观些呢?

Proe曲线方程大全及关系式详细说明

Proe 曲线方程大全及pro/e 关系式、函数的相关说明资料 Pro/E 各种曲线方程集合 1.碟形弹簧 圓柱坐标 方程:r = 5 theta = t*3600 z =(sin(3.5*theta-90))+24*t 图1 2.葉形线. 圆柱坐标(cylindrical ) 方程: r=t theta=10+t*(20*360) z=t*3 图3

笛卡儿坐标 方程:x = 4 * cos ( t *(5*360)) y = 4 * sin ( t *(5*360)) z = 10*t 图6 11.心脏线 圓柱坐标 方程:a=10 r=a*(1+cos(theta))

Pro/E 各种曲线方程集合(二) 22.外摆线 迪卡尔坐标 方程:theta=t*720*5 b=8 a=5 x=(a+b)*cos(theta)-b*cos((a/b+1)*theta) y=(a+b)*sin(theta)-b*sin((a/b+1)*theta) z=0 图22 23. Lissajous 曲线 theta=t*360 a=1 b=1 c=100 n=3 x=a*sin(n*theta+c) y=b*sin(theta) 图23 24.长短幅圆内旋轮线 卡笛尔坐标 方程:a=5 b=7 c=2.2 theta=360*t*10 x=(a-b)*cos(theta)+c*cos((a/b-1)*theta) y=(a-b)*sin(theta)-c*sin((a/b-1)*theta)

图24 25.长短幅圆外旋轮线 卡笛尔坐标 方程:theta=t*360*10 a=5 b=3 c=5 x=(a+b)*cos(theta)-c*cos((a/b+1)*theta) y=(a+b)*sin(theta)-c*sin((a/b+1)*theta) 图25 26. 三尖瓣线 a=10 x = a*(2*cos(t*360)+cos(2*t*360)) y = a*(2*sin(t*360)-sin(2*t*360))

Proe斜圆柱齿轮画法教程

斜齿圆柱齿轮 步骤1:新建零件文件 (1)在工具栏中单击(新建)按钮,弹出“新建”对话框。 (2)在“类型”选项组中选择“零件”单选按钮,在“子类型”选项组中选择“实体”单选按钮;在“名称”文本框中输入TSM;并清除“使用缺省模板”复选框,不使用默认模板,单击“确定”按钮。 (3)弹出“新文件选项”对话框,在“模板”选项组中,选择mmns_part_solid 选项。单击“确定”按钮,进入零件设计模式。 步骤2:定义参数 (1)选择“工具”——“参数”命令,此时系统弹出“参数”对话框。 (2)单击7次添加按钮,从而增加7个参数。 an 图4-48 (3)分别修改参数名称和相应的数值,并注写“说明”信息,如图所示。新参数名分别为mn、z、angle_a、angle_b、han、cn和B,其中mn为法向模数,Z 为齿数,ANGLE-A为齿形角,ANGLE-B为螺旋角, han为齿顶系数,cn为顶系数,B为齿轮宽。 (4)在参数对话框中单击“确定”按钮,完成用户自定义参数的建立。 步骤3 :草绘曲线 (1)单击草绘工具按钮,弹出草绘对话框。 (2)选择TOP平面,默认以RIGHT基准平面作为“右”方向参考,单击“草绘”按钮。

(3)分别绘制4个圆,如图4-49所示,这时候不必修改其尺寸。 图4-49 (4)选择“工具”→“关系”命令,打开“关系”窗口。此时草绘截面的各尺寸 以变量符号显示,在窗口中输入以下关系式: Sd3=mn*z/cos(angle_b)+2*(han*mn) Sd2=mn*z/cos(angle_b) Sd1=mn*z/cos(angle_b)-2*(han+cn)*mn angle_at=atan(tan(angle_a)/cos(angle_b)) sd0=cos(angle_at)*mn*z/cos(angle_b) DB=sd0 如图4-50所示,在“关系”窗口上单击“确定”按钮。系统自动计算齿顶圆、 分度圆、齿根圆和基圆这4个圆的直径尺寸。

Pro E齿轮库及画法教程

齿轮基本知识 1.什么是齿廓啮合基本定律,什么是定传动比的齿廓啮合基本定律?齿廓啮合基本 定律的作用是什么? 答:一对齿轮啮合传动,齿廓在任意一点接触,传动比等于两轮连心线被接触点的公法线所分两线段的反比,这一规律称为齿廓啮合基本定律。若所有齿廓接触点的公法线交连心线于固定点,则为定传动比齿廓啮合基本定律。 作用;用传动比是否恒定对齿廓曲线提出要求。 2.什么是节点、节线、节圆?节点在齿轮上的轨迹是圆形的称为什么齿轮? 答:齿廓接触点的公法线与连心线的交点称为节点,一对齿廓啮合过程中节点在齿轮上的轨迹称为节线,节线是圆形的称为节圆。具有节圆的齿轮为圆形齿轮,否则为非圆形齿轮。 。。。 ProE齿轮参数化模型设计系统(精简版)免费下载: https://www.doczj.com/doc/f12075273.html,/html/download/proe/2007-08/1430.html 估计这个大家也需要,一并分享其他相关下载 proe标准件库-免费下 载:https://www.doczj.com/doc/f12075273.html,/html/download/proe/2010-11/proe_libs.html PROE画锥齿轮教程:https://www.doczj.com/doc/f12075273.html,/html/article/proe/2007-05/551.html 基于Pro/E的渐开线斜齿圆柱齿轮精确建模(原创教程): https://www.doczj.com/doc/f12075273.html,/bbs./thread-732-1-1.html proe机械运动仿真(齿轮+齿条): https://www.doczj.com/doc/f12075273.html,/bbs/thread-23012-1-1.html proe行星齿轮运动仿真教程(原创教程): https://www.doczj.com/doc/f12075273.html,/bbs/thread-734-1-1.html proe全参数化渐开线标准圆柱直齿轮模型(WildFire2.0): https://www.doczj.com/doc/f12075273.html,/bbs./thread-11237-1-1.html

ProE各种曲线及方程

1.碟形弹簧 圓柱坐标 方程:r = 5 theta = t*3600 z =(sin(3.5*theta-90))+24*t 此主题相关图片如下:1.jpg 2.葉形线. 笛卡儿坐標标 方程:a=10 x=3*a*t/(1+(t^3)) y=3*a*(t^2)/(1+(t^3)) 此主题相关图片如下:2.jpg 3.螺旋线(Helical curve) 圆柱坐标(cylindrical)

方程:r=t theta=10+t*(20*360) z=t*3 此主题相关图片如下:3.jpg 4.蝴蝶曲线 球坐标 方程:rho = 8 * t theta = 360 * t * 4 phi = -360 * t * 8

此主题相关图片如下:4.jpg 5.渐开线 采用笛卡尔坐标系 方程:r=1 ang=360*t s=2*pi*r*t x0=s*cos(ang) y0=s*sin(ang) x=x0+s*sin(ang) y=y0-s*cos(ang) z=0 此主题相关图片如下:5.jpg

6.螺旋线. 笛卡儿坐标 方程:x = 4 * cos ( t *(5*360)) y = 4 * sin ( t *(5*360)) z = 10*t 此主题相关图片如下:6.jpg 7.对数曲线 笛卡尔坐标系 方程:z=0 x = 10*t y = log(10*t+0.0001) 此主题相关图片如下:7.jpg

采用球坐标系 方程:rho=4 theta=t*180 phi=t*360*20 此主题相关图片如下:8.jpg 9.双弧外摆线 卡迪尔坐标 方程:l=2.5 b=2.5 x=3*b*cos(t*360)+l*cos(3*t*360) Y=3*b*sin(t*360)+l*sin(3*t*360) 此主题相关图片如下:9.jpg 10.星行线 卡迪尔坐标

proe(creo)曲线方程式和详细表达式

最全proe(creo)方程式曲线和表达式 作者:登科 螺旋曲线 建立环境:Pro/E软件、笛卡尔坐标系 半径是10,螺距是2,总长是20的螺旋线 x=10*cos(t*10*360) y=10*sin(t*10*360) z=20*t 名称:正弦曲线 建立环境:Pro/E软件、笛卡尔坐标系 x=50*t y=10*sin(t*360) z=0

名称:螺旋线(Helical curve) 建立环境:PRO/E;圆柱坐标(cylindrical)r=t theta=10+t*(20*360) z=t*3 蝴蝶曲线 球坐标PRO/E 方程:rho = 8 * t theta = 360 * t * 4 phi = -360 * t * 8

Rhodonea 曲线 采用笛卡尔坐标系 theta=t*360*4 x=25+(10-6)*cos(theta)+10*cos((10/6-1)*theta) y=25+(10-6)*sin(theta)-6*sin((10/6-1)*theta) ********************************* 圆内螺旋线 采用柱座标系 theta=t*360 r=10+10*sin(6*theta) z=2*sin(6*theta) 渐开线的方程 r=1 ang=360*t s=2*pi*r*t x0=s*cos(ang) y0=s*sin(ang) x=x0+s*sin(ang) y=y0-s*cos(ang) z=0

对数曲线 z=0 x = 10*t y = log(10*t+0.0001) 球面螺旋线(采用球坐标系)rho=4 theta=t*180 phi=t*360*20

proe齿轮画法大全

第3章齿轮零件 齿轮传动是最重要的机械传动之一。齿轮零件具有传动效率高、传动比稳定、结构紧凑等优点。因而齿轮零件应用广泛,同时齿轮零件的结构形式也多种多样。根据齿廓的发生线不同,齿轮可以分为渐开线齿轮和圆弧齿轮。根据齿轮的结构形式的不同,齿轮又可以分为直齿轮、斜齿轮和锥齿轮等。本章将详细介绍用Pro/E创建标准直齿轮、斜齿轮、圆锥齿轮、圆弧齿轮以及蜗轮蜗杆的设计过程。 3.1直齿轮的创建 3.1.1渐开线的几何分析 图3-1 渐开线的几何分析 渐开线是由一条线段绕齿轮基圆旋转形成的曲线。渐开线的几何分析如图3-1所示。线段s绕圆弧旋转,其一端点A划过的一条轨迹即为渐开线。图中点(x1,y1)的坐标为:x1=r*cos(ang),y1=r*sin(ang) 。(其中r为圆半径,ang为图示角度) 对于Pro/E关系式,系统存在一个变量t,t的变化范围是0~1。从而可以通过(x1,y1)建立(x,y)的坐标,即为渐开线的方程。 ang=t*90 s=(PI*r*t)/2 x1=r*cos(ang) y1=r*sin(ang) x=x1+(s*sin(ang)) y=y1-(s*cos(ang)) z=0

以上为定义在xy平面上的渐开线方程,可通过修改x,y,z的坐标关系来定义在其它面上的方程,在此不再重复。 3.1.2直齿轮的建模分析 本小节将介绍参数化创建直齿圆柱齿轮的方法,参数化创建齿轮的过程相对复杂,其中要用到许多与齿轮有关的参数以及关系式。 直齿轮的建模分析(如图3-2所示): (1)创建齿轮的基本圆 这一步用草绘曲线的方法,创建齿轮的基本圆,包括齿顶圆、基圆、分度圆、齿根圆。并且用事先设置好的参数来控制圆的大小。 (2)创建渐开线 用从方程来生成渐开线的方法,创建渐开线,本章的第一小节分析了渐开线方程的相关知识。 (3)镜像渐开线 首先创建一个用于镜像的平面,然后通过该平面,镜像第2步创建的渐开线,并且用关系式来控制镜像平面的角度。 (4)拉伸形成实体 拉伸创建实体,包括齿轮的齿根圆实体和齿轮的一个齿形实体。这一步是创建齿轮的关键步骤。 (5)阵列轮齿 将上一步创建的轮齿进行阵列,完成齿轮的基本外形。这一步同样需要加入关系式来控制齿轮的生成。 (6)创建其它特征 创建齿轮的中间孔、键槽、小孔等特征,并且用参数和关系式来控制相关的尺寸。

ProE直齿、斜齿轮的参数化建模

摘要 随着科技的发展,计算机辅助设计技术越来越广泛的应用在各个设计领域。现在,它已经突破了二维图纸电子化的框架,转向以三维实体建模、动力学模拟仿真和有限元分析为主线的机械系统动态仿真技术。其研究范围主要是机械系统运动学和动力学分析,核心是利用计算机辅助技术进行机械系统的运动学和动力学分析,以确定系统及其各构件在任意时刻的位置、速度和加速度,同时,通过求解代数方程组确定引起系统各构件运动所需的作用力和反作用力。动态仿真技术一出现,就受到人们的普遍关注和重视,并且出现了许多基于动态方=仿真技术的商业软件,较有影响的有美国参数技术公司的PTC。 以Pro/MECHANICA为分析平台,运用有限元分析方法,对直齿轮、斜齿轮实际受力情况、边界条件和施加载荷进行研究。运动分析模块可以进行机构的干涉分析,跟踪零件的运动轨迹,分析机构中零件的速度、加速度、作用力、反作用力和力矩等。运动分析模块的分析结果可以指导修改零件的结构设计(加长或者缩短构件的力臂长度、修改凸轮型线、调整齿轮齿数比和中心距等)或者调整零件的材料(减轻或者加重或者增加硬度等)。设计的更改可以直接反映在装配主模型的复制品分析方案(Scenario)中,再重新分析,一旦确定优化的设计方案,设计更改就可直接反映到装配主模型中。将Pro/E三维实体造型与Pro/MECHANICA机构运动分析相结合,完成对连杆和凸轮机构的机构运动分析,及运动仿真。加强对连杆和凸轮机构的认识与理解。 关键词: 直齿轮、斜齿轮; Pro/E 、Pro/MECHANICA; 运动仿真、有限元

Abstract With the development of technology, computer-aided design technology becomes more widely used in various design.Now, it has broken through the framework of two-dimensional drawings、 electronic、shift tothree-dimensional solid modeling, dynamic simulation and finite element analysis of the main line of the mechanical system dynamic simulation techniques.The major areas of its study kinematics and dynamics of mechanical systems, the core technology is the use of computer-aided kinematics and dynamics of mechanical systems analysis to determine the system and its components at any time of the position, velocity and acceleration at the same time,by solving algebraic equations determine the cause of the required system component moving action and reaction.Dynamic simulation appeared to be widespread concern and attention, and there were many parties = simulation based on dynamic business software, more influential technology companies of U.S. parameters PTC. To Pro / MECHANICA platform for analysis using the finite element method, on the spur gear, helical gear by the force of the actual situation, boundary conditions and applied load were studied.Motion analysis module analyzes institutional interference, tracking the trajectory of parts, parts of bodies in the speed, acceleration, force, reaction force and torque and so on.Motion analysis results of the analysis module to modify parts of the structure could guide design (longer or shorter moment arm length of the component, modify the cam, adjust the gear ratio and center distance, etc.) or adjust the parts of the material (to reduce or add to or increase the hardnessetc.).Design changes can be directly reflected in the assembly of copies of the master model program (Scenario), the re-analysis, Once optimized design, design changes can be directly reflected in the assembly of the main model.The Pro / E three-dimensional solid modeling and Pro / MECHANICA combined kinematic analysis, complete linkage and cam mechanism of the body motion analysis and

ProE 各种曲线方程集合(超全)

Pro/E 各种曲线方程集合 1.碟形弹簧 圓柱坐标 方程:r = 5 theta = t*3600 z =(sin(3.5*theta-90))+24*t 此主题相关图片如下:1.jpg 2.葉形线. 笛卡儿坐標标 方程:a=10 x=3*a*t/(1+(t^3)) y=3*a*(t^2)/(1+(t^3)) 此主题相关图片如下:2.jpg

3.螺旋线(Helical curve) 圆柱坐标(cylindrical) 方程:r=t theta=10+t*(20*360) z=t*3 此主题相关图片如下:3.jpg 4.蝴蝶曲线 球坐标 方程:rho = 8 * t theta = 360 * t * 4 phi = -360 * t * 8

此主题相关图片如下:4.jpg 5.渐开线 采用笛卡尔坐标系 方程:r=1 ang=360*t s=2*pi*r*t x0=s*cos(ang) y0=s*sin(ang) x=x0+s*sin(ang) y=y0-s*cos(ang) z=0 此主题相关图片如下:5.jpg

6.螺旋线. 笛卡儿坐标 方程:x = 4 * cos ( t *(5*360)) y = 4 * sin ( t *(5*360)) z = 10*t 此主题相关图片如下:6.jpg 7.对数曲线

笛卡尔坐标系 方程:z=0 x = 10*t y = log(10*t+0.0001) 此主题相关图片如下:7.jpg 8.球面螺旋线 采用球坐标系 方程:rho=4 theta=t*180 phi=t*360*20 此主题相关图片如下:8.jpg 9.双弧外摆线 卡迪尔坐标

PROE齿轮画法大全---直齿轮

3.1直齿轮的创建 3.1.1渐开线的几何分析 图3-1 渐开线的几何分析 渐开线是由一条线段绕齿轮基圆旋转形成的曲线。渐开线的几何分析如图3-1所示。线段s绕圆弧旋转,其一端点A划过的一条轨迹即为渐开线。图中点(x1,y1)的坐标为:x1=r*cos(ang),y1=r*sin(ang) 。(其中r为圆半径,ang为图示角度) 对于Pro/E关系式,系统存在一个变量t,t的变化范围是0~1。从而可以通过(x1,y1)建立(x,y)的坐标,即为渐开线的方程。 ang=t*90 s=(PI*r*t)/2 x1=r*cos(ang) y1=r*sin(ang) x=x1+(s*sin(ang)) y=y1-(s*cos(ang)) z=0 以上为定义在xy平面上的渐开线方程,可通过修改x,y,z的坐标关系来定义在其它面上的方程,在此不再重复。 3.1.2直齿轮的建模分析 本小节将介绍参数化创建直齿圆柱齿轮的方法,参数化创建齿轮的过程相对复杂,其中要用到许多与齿轮有关的参数以及关系式。

直齿轮的建模分析(如图3-2所示): (1)创建齿轮的基本圆 这一步用草绘曲线的方法,创建齿轮的基本圆,包括齿顶圆、基圆、分度圆、齿根圆。并且用事先设置好的参数来控制圆的大小。 (2)创建渐开线 用从方程来生成渐开线的方法,创建渐开线,本章的第一小节分析了渐开线方程的相关知识。 (3)镜像渐开线 首先创建一个用于镜像的平面,然后通过该平面,镜像第2步创建的渐开线,并且用关系式来控制镜像平面的角度。 (4)拉伸形成实体 拉伸创建实体,包括齿轮的齿根圆实体和齿轮的一个齿形实体。这一步是创建齿轮的关键步骤。 (5)阵列轮齿 将上一步创建的轮齿进行阵列,完成齿轮的基本外形。这一步同样需要加入关系式来控制齿轮的生成。 (6)创建其它特征 创建齿轮的中间孔、键槽、小孔等特征,并且用参数和关系式来控制相关的尺寸。

Proe曲线方程大全

钣金件展开长度计算的推导 在Pro/E 钣金模块中,计算折弯部分的展开长度公式是: DL =(pi/2*Ri+y_factor*t)*a/90 式中:DL 板材的中性层长度 Ri 折弯内径 y_factor Y 轴比例因子 T 板材厚度 a 折弯部分相对的圆心角 以下是推导过程: 其中,k 为中性层系数(即内壁到中性层距离与板厚的比值) DL =2*pi (Ri+k*T)*a/360 =(pi*Ri+pi*k*T)*a/180 = (pi/2*Ri+pi/2*k*T)*a/90 令pi/2*k=y_factor 则 DL =(pi/2*Ri+y_factor*T)*a/90 我个人认为,其中的k 因子对我们计算展开长度有直接意义,所以在设定折弯许可的时候,设定k 因子就可以了。k 值针对不同的材料有不同的值。普通钢板k 值为0.45,实际取0.5,误差极小。 Pro/E 各种曲线方程集合 1.碟形弹簧 圓柱坐标 方程:r = 5 theta = t*3600 z =(sin(3.5*theta-90))+24*t 图1 圆柱坐标(cylindrical ) 方程: r=t theta=10+t*(20*360) z=t*3 图3

图 5 6.螺旋线. 笛卡儿坐标 方程:x = 4 * cos ( t *(5*360)) y = 4 * sin ( t *(5*360)) z = 10*t 图6

11.心脏线 圓柱坐标 方程:a=10 r=a*(1+cos(theta)) theta=t*360 Pro/E 各种曲线方程集合(二)Array 22.外摆线 迪卡尔坐标 方程:theta=t*720*5 b=8 a=5 x=(a+b)*cos(theta)-b*cos((a/b+1)*theta) y=(a+b)*sin(theta)-b*sin((a/b+1)*theta) z=0 图22 23. Lissajous 曲线 theta=t*360 a=1 b=1 c=100 n=3 x=a*sin(n*theta+c) y=b*sin(theta) 图23 24.长短幅圆内旋轮线 卡笛尔坐标 方程:a=5 b=7 c=2.2 theta=360*t*10 x=(a-b)*cos(theta)+c*cos((a/b-1)*theta) y=(a-b)*sin(theta)-c*sin((a/b-1)*theta)

proe斜齿轮的画法

专题练习一 一.设计任务 创建一个斜角圆柱齿轮,要设计参数为:面模数为:3, 压力角为:20°,螺旋角为:12°,其立体效果如下图所示: 二. 模型分析 与上一章所创建的直齿圆柱齿轮不同的是,这里要创建的齿轮轮齿具有12°的螺旋角,因此在轮齿的创建方法上较直齿轮要复杂一些。 这里我们先创建出轮齿的渐开线轮廓曲线,再通过平移和旋转的方式得到不同位置的轮齿轮廓曲线,最后有“扫描混合”工具得到轮齿,注意仔细调整旋转角度即可实现精确的螺旋角。 创建该斜齿轮渐开线圆柱齿轮所用到的主要命令: ◆用“曲线”工具生成渐开线曲线。 ◆用“扫描混合”工具创建轮齿曲面。 ◆用“旋转”工具创建齿轮轮幅。 ◆用“拉伸”工具形成键槽。 ◆用“复制”工具复制尺廓曲面。 ◆用“阵列”工具阵列出轮齿。 ◆用“倒角”工具形成斜角。

1.创建齿轮设计参数 选择工具→参数设置参数如下图所示: 选择工具→关系添加如下图所示的参数: 2.分别创建各圆基准曲线 2.1 创建分度圆,命名为:分度圆,如下图所示:

2.2 创建齿顶圆,命名为: 齿顶圆,如下图所示: 2.3 创建齿根圆,命名为: 齿根圆,如下图所示: 3.创建齿轮形曲线: 基准曲线→从方程→选择坐标系→笛卡尔→输入方程关系式内容(如下图所示) 3.1建立基准轴 3.2创建基准点 3.3 创建两个基准平面 3.4 镜像齿廓曲线,如下图所示:

3.5创建齿形曲线,如下图所示: 注意:新建一图层,将渐开线隐藏 4.创建轮齿 设定参数如下图所示: 4.1 创建轮齿第二个截面: 选择编辑→特征操作→复制→移动→选取→独立→选择创建的齿形曲线→完成→平移→选择FRONT面→正方向→输入:face_width*cos(bta)/3→旋转→坐标系→Z轴→正方向→输入:bta/3→完成移动→完成→确定 4.2 按此方法依次创建轮齿第三个截面和第四个截面 4.3 创建扫描轨迹曲线,截面如下图所示: 4.4创建第一个轮齿: 选择插入→扫描混合→伸出项→选取截面→垂直于原始轨迹→完成→选取轨迹→依次→选取→选择轨迹曲线→完成→选出曲线→选取环→完成/返回→完成 4.5 以同样的方法选取其余三个曲线链分别作为截面 4.6 回到伸出项:扫描混合→确定完成扫描混合特征,如下图所示:

Proe 斜齿轮建模详细图文教程

参数化柱形斜齿轮的建模 建模分析: (1)输入参数、关系式,创建齿轮基本圆 (2)创建渐开线 (3)创建扫引轨迹 (4)创建扫描混合截面 (5)创建第一个轮齿 (6)阵列轮齿 斜齿轮的建模过程 1.输入基本参数和关系式 (1)单击,在新建对话框中输入文件名“hecial_gear”,然后单击。 (2)在主菜单上单击“工具”→“参数”,系统弹出“参数”对话框,如图1所示。 图1“参数”对话框 (3)在“参数”对话框内单击按钮,可以看到“参数”对话框增加了一行,依次输 入新参数的名称、值、和说明等。 需要输入的参数如表1所示。 表1齿轮参数设置 名称值说明名称值说明 Mn5模数HA0齿顶高 Z25齿数HF0齿根高ALPHA20压力角X0变位系数BETA16螺旋角D0分度圆直径B50齿轮宽度DB0基圆直径HAX1齿定高系数DA0齿顶圆直径CX0.25顶隙系数DF0齿根圆直径

注意:表1中未填的参数值(暂时写为0),表示是由系统通过关系式将自动生成的尺寸,用户无需指定。 完成后的参数对话框如图2所示。 图2完成后的“参数”对话框 (4)在主菜单上依次单击“工具”→“关系”,系统弹出“关系”对话框,如图3所示。 图3“关系”对话框 (5)在“关系”对话框内输入齿轮的分度圆直径关系、基圆直径关系、齿根圆直径关系和齿顶圆直径关系。由这些关系式,系统便会自动生成表1所示的未指定参数的值。输入的关系式如下:

ha=(hax+x)*mn hf=(hax+cx-x)*mn d=mn*z/cos(beta) da=d+2*ha db=d*cos(alpha) df=d-2*hf 完成后的“关系”对话框如图4所示。 图4完成后的“关系”对话框 点击“再生”按钮,再进入“参数”对话框后,发现数据已经更新,如图5所示。 图5更新后的“参数”对话框

proe所有方程

方程式名称坐标系统内容 碟形弹簧圆柱r = 5 theta = t*3600 z =(sin(3.5*theta-90))+24*t 叶形线笛卡儿a=10 x=3*a*t/(1+(t^3)) y=3*a*(t^2)/(1+(t^3)) 螺旋线圆柱r=t theta=10+t*(20*360) z=t*3 蝴蝶曲线球rho = 8 * t theta = 360 * t * 4 phi = -360 * t * 8

渐开线笛卡儿r=1 ang=360*t s=2*pi*r*t x0=s*cos(ang) y0=s*sin(ang) x=x0+s*sin(ang) y=y0-s*cos(ang) z=0 螺旋线笛卡儿x = 4 * cos ( t *(5*360)) y = 4 * sin ( t *(5*360)) z = 10*t 对数曲线笛卡儿z=0 x = 10*t

y = log(10*t+0.0001) 球面螺旋线球rho=4 theta=t*180 phi=t*360*20 双弧外摆线笛卡儿l=2.5 b=2.5 x=3*b*cos(t*360)+l*cos(3*t*360) Y=3*b*sin(t*360)+l*sin(3*t*360) 星形线笛卡儿a=5 x=a*(cos(t*360))^3 y=a*(sin(t*360))^3

心脏线圆柱a=10 r=a*(1+cos(theta)) theta=t*360 圆内螺旋线圆柱theta=t*360 r=10+10*sin(6*theta) z=2*sin(6*theta) 正弦曲线笛卡儿x=50*t y=10*sin(t*360)

[整理]ProE曲线方程.

by daivone1.碟形弹簧 圓柱坐标 方程:r = 5 theta = t*3600 z =(sin(3.5*theta-90))+24*t 2.葉形线. 笛卡儿坐標标 方程:a=10 x=3*a*t/(1+(t^3)) y=3*a*(t^2)/(1+(t^3)) 3.螺旋线(Helical curve) 圆柱坐标(cylindrical) 方程:r=t theta=10+t*(20*360) z=t*3 4.蝴蝶曲线 球坐标 方程:rho = 8 * t theta = 360 * t * 4 phi = -360 * t * 8 5.渐开线 采用笛卡尔坐标系 方程:r=1 ang=360*t s=2*pi*r*t x0=s*cos(ang) y0=s*sin(ang)

x=x0+s*sin(ang) y=y0-s*cos(ang) z=0 6.螺旋线. 笛卡儿坐标 方程:x = 4 * cos ( t *(5*360)) y = 4 * sin ( t *(5*360)) z = 10*t 7.对数曲线 笛卡尔坐标系 方程:z=0 x = 10*t y = log(10*t+0.0001) 8.球面螺旋线 采用球坐标系 方程:rho=4 theta=t*180 phi=t*360*20 9.双弧外摆线 卡迪尔坐标 方程:l=2.5 b=2.5 x=3*b*cos(t*360)+l*cos(3*t*360) Y=3*b*sin(t*360)+l*sin(3*t*360) 10.星行线

卡迪尔坐标 方程:a=5 x=a*(cos(t*360))^3 y=a*(sin(t*360))^3 11.心脏线 圓柱坐标 方程:a=10 r=a*(1+cos(theta)) theta=t*360 12.圆内螺旋线 采用柱座标系 方程:theta=t*360 r=10+10*sin(6*theta) z=2*sin(6*theta) 13.正弦曲线 笛卡尔坐标系 方程:x=50*t y=10*sin(t*360) z=0 15.费马曲线(有点像螺纹线) 数学方程:r*r = a*a*theta 圓柱坐标 方程1: theta=360*t*5 a=4 r=a*sqrt(theta*180/pi) 方程2: theta=360*t*5 a=4 r=-a*sqrt(theta*180/pi) 由于Pro/e只能做连续的曲线,所以只能分两次做 16.Talbot 曲线 卡笛尔坐标 方程:theta=t*360 a=1.1

ProE中渐开线齿轮画法讲解

齿轮传动是最重要的机械传动之一。齿轮零件具有传动效率高、传动比稳定、结构紧凑等优点。因而齿轮零件应用广泛,同时齿轮零件的结构形式也多种多样。根据齿廓的发生线不同,齿轮可以分为渐开线齿轮和圆弧齿轮。根据齿轮的结构形式的不同,齿轮又可以分为直齿轮、斜齿轮和锥齿轮等。本章将详细介绍用Pro/E创建标准直齿轮、斜齿轮、圆锥齿轮、圆弧齿轮以及蜗轮蜗杆的设计过程。 3.1直齿轮的创建 3.1.1渐开线的几何分析 图3-1 渐开线的几何分析 渐开线是由一条线段绕齿轮基圆旋转形成的曲线。渐开线的几何分析如图3-1所示。线段s绕圆弧旋转,其一端点A划过的一条轨迹即为渐开线。图中点(x1,y1)的坐标为:x1=r*cos(ang),y1=r*sin(ang) 。(其中r为圆半径,ang为图示角度)

对于Pro/E关系式,系统存在一个变量t,t的变化范围是0~1。从而可以通过(x1,y1)建立(x,y)的坐标,即为渐开线的方程。 ang=t*90 s=(PI*r*t)/2 x1=r*cos(ang) y1=r*sin(ang) x=x1+(s*sin(ang)) y=y1-(s*cos(ang)) z=0 以上为定义在xy平面上的渐开线方程,可通过修改x,y,z的坐标关系来定义在其它面上的方程,在此不再重复。 3.1.2直齿轮的建模分析 本小节将介绍参数化创建直齿圆柱齿轮的方法,参数化创建齿轮的过程相对复杂,其中要用到许多与齿轮有关的参数以及关系式。 直齿轮的建模分析(如图3-2所示): (1)创建齿轮的基本圆 这一步用草绘曲线的方法,创建齿轮的基本圆,包括齿顶圆、基圆、分度圆、齿根圆。并且用事先设置好的参数来控制圆的大小。

proe常用曲线方程解读

proe常用曲线方程 常用曲线方程 1. 名称:正弦曲线 建立环境:Pro/E软件、笛卡尔坐标系 x=50*t y=10*sin(t*360) z=0 2. 名称:螺旋线(Helical curve) 建立环境:PRO/E;圆柱坐标(cylindrical) r=t theta=10+t*(20*360) z=t*3 3. 蝴蝶曲线 球坐标

方程: rho = 8 * t theta = 360 * t * 4 phi = -360 * t * 8 4.Rhodonea 曲线 采用笛卡尔坐标系 theta=t*360*4 x=25+(10-6)*cos(theta)+10*cos((10/6-1)*theta) y=25+(10-6)*sin(theta)-6*sin((10/6-1)*theta) ********************************* 圆内螺旋线 采用柱座标系

r=10+10*sin(6*theta) z=2*sin(6*theta) 5. 渐开线的方程 r=1 ang=360*t s=2*pi*r*t x0=s*cos(ang) y0=s*sin(ang) x=x0+s*sin(ang) y=y0-s*cos(ang) z=0 6. 对数曲线 z=0 x = 10*t y = log(10*t+0.0001) 7. 球面螺旋线(采用球坐标系)rho=4

phi=t*360*20 8. 名称:双弧外摆线 卡迪尔坐标 方程: l=2.5 b=2.5 x=3*b*cos(t*360)+l*cos(3*t*360) Y=3*b*sin(t*360)+l*sin(3*t*360) 9. 名称:星行线 卡迪尔坐标 方程: a=5 x=a*(cos(t*360))^3 y=a*(sin(t*360))^3 没有分加吗? 10. 名稱:心臟線 建立环境:pro/e,圓柱坐標 a=10 r=a*(1+cos(theta))

斜齿圆柱齿轮PROE画法

斜齿圆柱齿轮PROE画法 斜齿圆柱齿轮PROE画法 1. 设定齿轮各项参数 进入菜单栏中――工具――参数,然后添加并设定下列参数(参数可随意命名,只要自己知道各项参数名所代表含义). M=6 (代表模数) Zn=34(代表齿数) A=20 (代表压力角) Beta=20 (代表齿轮斜度) B=80(代表齿轮宽度) Hax=1(代表齿顶系数) Cx=0.25(代表齿根系数) X1=0 (代表变位系数,等于0表示无变位) 2. 设定关系式 D=M*Zn/cos(Beta)----------------------这是分度圆直径的计算公式 DA=D+2*(Hax+X1)*M------------------这是齿顶圆直径的计算公式 DB=D*cos(A)---------------------------这是基圆直径的计算公式 DF=D-2*(Hax+Cx-X1)*M---------------这是齿根圆直径的计算公式

3. 建立坐标系 (这一步可以省略,其主要的目的是为了控制第一个齿的位置),将现有坐标系绕Z轴旋转一个任意角度,先复制原始坐标,再选择性粘贴即可.如图 4. 沿坐标系Z轴方向建立一根轴线 如图.

5. 草绘曲线 分别绘制四个圆,分别代表齿顶圆,分度圆,齿根圆,基圆,并添加关系式控制. Sd0=D Sd1=DA Sd2=DB Sd3=DF 6. 绘制渐开线 点选绘制"曲线"的图标,然后选"从方程",再选笛卡尔坐标系,然后再选第三步建立的坐标系.然后定义方程: r=DB/2 theta=t*45 x=r*cos(theta)+r*sin(theta)*theta*pi/180 y=r*sin(theta)-r*cos(theta)*theta*pi/180 z=0

Proe曲线方程大全及关系式详细说明

Proe曲线方程大全及pro/e关系式、函数的相关说明资料 Pro/E 各种曲线方程集合 1.碟形弹簧 圓柱坐标 方程:r = 5 theta = t*3600 z =(sin*theta-90))+24*t 图1 2.葉形线. 笛卡儿坐標标 方程:a=10 x=3*a*t/(1+(t^3)) y=3*a*(t^2)/(1+(t^3)) 图2 3.螺旋线(Helical curve) 圆柱坐标(cylindrical) 方程: r=t theta=10+t*(20*360) z=t*3 图3 4.蝴蝶曲线 球坐标 方程:rho = 8 * t theta = 360 * t * 4 phi = -360 * t * 8 图4 5.渐开线 采用笛卡尔坐标系 方程:r=1 ang=360*t s=2*pi*r*t x0=s*cos(ang) y0=s*sin(ang) x=x0+s*sin(ang) y=y0-s*cos(ang) z=0 图5

6.螺旋线. 笛卡儿坐标 方程:x = 4 * cos ( t *(5*360)) y = 4 * sin ( t *(5*360)) z = 10*t 图6 7.对数曲线 笛卡尔坐标系 方程:z=0 x = 10*t y = log(10*t+ 图7 8.球面螺旋线 采用球坐标系 方程:rho=4 theta=t*180 phi=t*360*20 图8 9.双弧外摆线 卡迪尔坐标 方程: l= b= x=3*b*cos(t*360)+l*cos(3*t*360) Y=3*b*sin(t*360)+l*sin(3*t*360) 图9 10.星行线 卡迪尔坐标 方程:a=5 x=a*(cos(t*360))^3 y=a*(sin(t*360))^3 图10 11.心脏线 圓柱坐标 方程:a=10 r=a*(1+cos(theta)) theta=t*360

proe二级斜齿轮减速器完整装配图

黄山学院 基于Pro/E的课程设计 二级斜齿轮减速器 课题名称:二级斜圆柱齿轮减速器的三维造型 学生学号:21206072043 专业班级:12机械卓越班 学生姓名:谢坤林 学生成绩: 指导教师:刘胜荣 课题工作时间:2012.12.23 至2013.01.14

目录 1.引言------------------------------------------1 2.上箱体的绘制------------------------------4 3.下箱体的绘制------------------------------12 4.齿轮、齿轮轴的绘制--------------------17 5.轴的绘制------------------------------------29 6.其他零部件的绘制------------------------31 7.总体装配------------------------------------39 8.设计小结------------------------------------48

1引言: 减速器是应用于原动机和工作机之间的独立传动装置,具有结构紧凑、传动效率较高、传递运动准确可靠、使用维护方便和可成批生产等特点。传统的减速器手工设计通常采用二维工程图表示三维实体的做法,这种做法不仅不能以三维实体模型直观逼真地显现出减速器的结构特征,而且对于一个视图上某一尺寸的修改,不能自动反应在其他对应视图上。 1985年美国PTC公司开始建模软件的研究,1988年V1.0的Pro/ENGINEER 诞生,随后美国通用汽车公司将该技术应用于各种类型的减速器设计与制造中。目前在基于Pro/E的减速器的模型设计、数据分析与生产制造方面美国、德国和日本处于领先地位,美国Alan-Newton公司研制的X-Y式精密减速器和日本住友重工研制的FA型减速器都是目前先进的高精密型齿轮减速器。 Pro/ENGINEER技术可以方便快捷的实现建立基于零件或子装配体的三维模型设计和装配,并且提供了丰富的约束条件完成可以满足的工程实践要求。建立三维模型在装配体环境下可以很好的对零件进行编辑和修改,在生产实际中便捷的把立体图转换为工程图,在生产应用中充分利用Pro/E软件进行几何造型设计,进一步利用数控加工设备进行技术加工,可以显著提高减速器的设计制造精密、设计制造质量、设计制造效率,从而缩短产品更新换代生产的整个周期。而我国在Pro/E的减速器三维模型设计方面还相对比较薄弱,因此,随着经济全球化的发展,在此技术上我国需要不断的突破创新,逐步提高“中国创造”在国际市场的竞争力。 基于Pro/Engineer的二级减速器设计 机械电子工程专业学生XXX 指导教师XX 摘要:Pro/Engineer一个参数化、基于特征的实体造型系统,具有单一数据库功能。本文在减速器零部件几何尺寸数值计算的基础上,利用Pro/E软件实现了齿轮系和轴系等零件特征的三维模型设计;利用Pro/E软件实现了齿轮系和轴系的虚拟装配,具有较好的通用性和灵活性。此系统的实现可以使设计人员在人机交互环境下编辑修改,快速高效地设计出圆柱齿轮减速器产品,同时通过PRO/E 对二级减速器进行建模设计,规划零件的装配过程,对实现预期的运动仿真,建立机构运动分析,提高效率和精度奠定了基础。 关键字:二级减速器轴承齿轮机械传动 Pro/E The design of two-grade cylindrical gear reducer based on Pro/Engineer Student majoring in Mechanical and Electronic Engineering XXX Tutor XXX

相关主题
文本预览
相关文档 最新文档