当前位置:文档之家› 函数求导和积分方法

函数求导和积分方法

函数求导和积分方法
函数求导和积分方法

高中数学典型例题详解和练习- 求分段函数的导数

求分段函数的导数 例 求函数?????=≠=0 ,00 ,1sin )(2 x x x x x f 的导数 分析:当0=x 时因为)0(f '存在,所以应当用导数定义求)0(f ',当 0≠x 时,)(x f 的关系式是初等函数x x 1 sin 2,可以按各种求导法同求它的导数. 解:当0=x 时,01sin lim 1 sin lim ) 0()(lim )0(0200 ===-='→?→?→?x x x x x x f x f f x x x 当 ≠x 时, x x x x x x x x x x x x x x x f 1 cos 1sin 2)1cos 1(1sin 2)1(sin 1sin )()1sin ()(22222-=-+='+'='=' 说明:如果一个函数)(x g 在点0x 连续,则有)(lim )(0 0x g x g x x →=,但如 果我们不能断定)(x f 的导数)(x f '是否在点00=x 连续,不能认为 )(lim )0(0 x f f x →='. 指出函数的复合关系 例 指出下列函数的复合关系. 1.m n bx a y )(+=;2.32ln +=x e y ; 3.)32(log 322+-=x x y ;4.)1sin(x x y +=。 分析:由复合函数的定义可知,中间变量的选择应是基本函数的结构,解决这类问题的关键是正确分析函数的复合层次,一般是从最外层开始,由外及里,一层一层地分析,把复合函数分解成若干个常

见的基本函数,逐步确定复合过程. 解:函数的复合关系分别是 1.n m bx a u u y +==,; 2.2,3,ln +===x e v v u u y ; 3.32,log ,322+-===x x v v u y u ; 4..1,sin ,3x x v v u u y +=== 说明:分不清复合函数的复合关系,忽视最外层和中间变量都是基本函数的结构形式,而最内层可以是关于自变量x 的基本函数,也可以是关于自变量的基本函数经过有限次的四则运算而得到的函数,导致陷入解题误区,达不到预期的效果. 求函数的导数 例 求下列函数的导数. 1.43)12(x x x y +-=;2.2 211x y -= ; 3.)3 2(sin 2π +=x y ;4.21x x y +=。 分析:选择中间变量是复合函数求导的关键.必须正确分析复合函数是由哪些基本函数经过怎样的顺序复合而成的,分清其间的复合关系.要善于把一部分量、式子暂时当作一个整体,这个暂时的整体,就是中间变量.求导时需要记住中间变量,注意逐层求导,不遗漏,而其中特别要注意中间变量的系数.求导数后,要把中间变量转换成自变量的函数.

常用基本初等函数求导公式积分公式

基本初等函数求导公式 (1) 0)(='C (2) 1 )(-='μμμx x (3) x x cos )(sin =' (4) x x sin )(cos -=' (5) x x 2 sec )(tan =' (6) x x 2csc )(cot -=' (7) x x x tan sec )(sec =' (8) x x x cot csc )(csc -=' (9) a a a x x ln )(=' (10) (e )e x x '= (11) a x x a ln 1 )(log = ' (12) x x 1)(ln = ', (13) 211)(arcsin x x -= ' (14) 211)(arccos x x -- =' (15) 21(arctan )1x x '= + (16) 21(arccot )1x x '=- + 函数的和、差、积、商的求导法则 设)(x u u =,)(x v v =都可导,则 (1) v u v u '±'='±)( (2) u C Cu '=')((C 是常数) (3) v u v u uv '+'=')( (4) 2v v u v u v u '-'=' ??? ?? 反函数求导法则 若函数)(y x ?=在某区间y I 内可导、单调且0)(≠'y ?,则它的反函数)(x f y =在对应 区间 x I 内也可导,且 )(1)(y x f ?'= ' 或 dy dx dx dy 1= 复合函数求导法则

设)(u f y =,而)(x u ?=且)(u f 及)(x ?都可导,则复合函数)]([x f y ?=的导数为 dy dy du dx du dx = 或 2. 双曲函数与反双曲函数的导数. 双曲函数与反双曲函数都是初等函数,它们的导数都可以用前面的求导公式和求导法则求出. 可以推出下表列出的公式:

隐函数求导公式

第5节:隐函数的求导公式 教学目的:掌握由一个方程和方程组确定的隐函数求导公式,熟练计算隐函数的导函数。 教学重点:由一个方程确定的隐函数求导方法。 教学难点:隐函数的高阶导函数的计算。 教学方法:讲授为主,互动为辅 教学课时:2 教学内容: 一、一个方程的情形 在第二章第六节中我们已经提出了隐函数的概念,并且指出了不经显化直接由方程 ),(y x f =0 (1) 求它所确定的隐函数的方法。现在介绍隐函数存在定理,并根据多元复合函数的求导法来导出隐函数的导数公式. 隐函数存在定理 1 设函数),(y x F 在点 ),(00y x P 的某一邻域内具有连续的偏导数,且0),(00=y x F ,, 0),(00≠y x F y ,则方程),(y x F =0在点),(00y x 的某一邻域内恒能唯一确定一个单值连续且具有连续导数的函数)(x f y =,它满足条件)(00x f y =,并有 y x F F dx dy -= (2) 公式(2)就是隐函数的求导公式 这个定理我们不证。现仅就公式(2)作如下推导。 将方程(1)所确定的函数)(x f y =代入,得恒等式 0))(,(≡x f x F , 其左端可以看作是x 的一个复合函数,求这个函数的全导数,由于恒等式两端求导后仍然恒等,即得 ,0=??+??dx dy y F x F

由于y F 连续,且0),(00≠y x F y ,所以存在(x 0,y 0)的一个邻域,在这个邻域内0≠y F ,于是得 .y x F F dx dy -= 如果),(y x F 的二阶偏导数也都连续,我们可以把等式(2)的两端看作x 的复合函数而再一次求导,即得 dx dy F F y F F x dx y d y x y x ???? ??-??+???? ??-??= 22 .23 2222y x yy y x xy y xx y x y x yy y xy y x yz y xx F F F F F F F F F F F F F F F F F F F F +--=???? ??-----= 例 1 验证方程012 2 =-+y x 在点(0,1)的某一邻域内能唯一确定一个单值且有连续导数、当x =0时,1=y 的隐函数)(x f y =,并求这函数的一阶和二阶导数在x =0的值。 解 设=),(y x F 12 2-+y x ,则y F x F y x 2,2==,02)1,0(,0)1,0(≠==y F F .因此 由定理1可知,方程012 2 =-+y x 在点(0,1)的某邻域内能唯一确定一个单值且有连续导数、当x =0时,1=y 的隐函数)(x f y =。 下面求这函数的一阶和二阶导数 y x F F dx dy -==y x -, 00 ==x dx dy ; 22dx y d =,1) (3 32222y y x y y y x x y y y x y -=+-=---='-- 10 2 2-==x dx y d 。 隐函数存在定理还可以推广到多元函数.既然一个二元方程(1)可以确定一个一元隐函

分段函数在分段点处的导数的求法

分段函数在分段点处的导数的求法 摘要: 分段函数又是函数中的一个难点。利用导数定义求分段函数在分段点处的导数。必须用导数的定义来判断该点的可导性。分段点,分段函数在分段点处的导数的求法。 关键词:分段函数,分段点,导数 高等数学研究的对象是函数,分段函数又是函数中的一个难点。一般教科书中只是在函数的定义之后给出了分段函数的一些简单介绍,并没有对分段函数进行严格地定义。对其特征、性质等都没有作出具体说明并且其后的有关知识对于分段函数应该如何处理,也没有明确指出。正是由于上述原因,对分段函数及其有关性质、处理方法难以把握。 分段函数是指在自变量变化的不同区间上,它有不同的表达式,而在整个自变量的变化区间上,它是一个函数。分段函数的分段点是指函数自变量的某一取值,函数在该点与在其它部分有不同的表达式。分段函数有多种形式,但对每一个分段点而言,最常见的分段函数可归结为以下两种形式: ,, 其中为函数的分段点。 在高等数学教学中,分段函数求导是学生学习的一个难点。对于分段函数的求导,关键在于分段点处导数的计算。一般高等数学教材在给出导数的定义后,都会给出可导的必要条件,;;可导必连续;;,这一必要条件的另一种说法:不连续一定不可导.利用这一必要条件,往往极易判断出函数在分段点的可导性。 1.若分段函数在分段点处不连续,则在分段点处必不可导。 例1 设,讨论在处是否可导? 解:,,由于,可得在处不连续,则在处不可导。

以下讨论,我们总假定分段函数在分段点处是连续的。 2.利用导数定义求分段函数在分段点处的导数。 分段函数在分段点处的导数一般通过定义来求解,即讨论在分段点处的左、右导数来获得。在处可导的充要条件是左导数和右导数均存在且相等,即(为常数)。 例2 设,讨论在处是否可导? 解:,, 由,可得在处可导,且。论文发表,分段点。 例3 设,讨论在处是否可导? 解:,, 因为,所以在处不可导。 3.利用导数极限定理求导 例4 设,讨论在处是否可导? 解法一:利用导数的定义, , 。论文发表,分段点。由,得到在处可导。 在教学过程中,我们常会发现一些学生是按照以下方式来做的。 解法二: 当时,,;当时,,。 于是,因此且有。论文发表,分段点。 分析: 解法一是正确的,解法二虽然得到了和解法一相同的结论,但是在最后一步,由,推出,学生是将分段连续函数在分段点的导数看作导函数在该点的极限值,这样是否成立呢?我们看下面这个例子。

考研数学:分段函数求导两种技巧

考研数学:分段函数求导两种技巧 从上面的例题中,可以看出,方法二在处理分段函数求导问题上,明显更简便一些。具体的方法选用,要具体的分析对应的题目。同学们可以做一些这一类的题目,进行巩固练习,加

深对两种方法的掌握。 考研数学高分规划 近几年的考研数学大纲基本没有变化。对于选择题仍然考查考生的基本计算能力、基本逻辑推导能力等;填空题考查基本计算能力;而计算题考查基本计算能力、简单的应用能力和证明能力等。我们考生在复习时,一定要以国家考试中心的考试大纲为标准,严格按照规定的考点及层次去复习,至今命题的核心是考察两个层次的问题,一个是基本概念、基本理论、基本方法,也就是“三基”,这些题目占到80%以上;再一个就是知识的运用能力,所以凯程教育数学辅导专家提醒考生考研数学复习的准备也应该从这样两个方面去针对性的复习。 第一个层次——扎实的基础知识。对于考试大纲中规定的所有考点,一定要系统、完备的理解和掌握,特别要注意课本外的理解和延展,结合一些基础题目去真正理解这些知识点以及了解这些知识点的使用条件等。 第二个层次——知识的灵活运用。如果仅是依靠教材,很难把这种考试命题的特点归纳总结出来,因此要了解考试必须熟悉历年考试真题,通过真题的分析帮助自己真正的归纳总结一些题型,再针对每一类问题去分析。根据真题,总结常考的题型及每种题型相应的解决方法有哪些,去总结和归纳,借助于题型再进一步完善知识点的理解和掌握。 不管进行哪个层次的复习,都必须保证一定的题量。不通过一定的题量练习稳固知识基础,也很难把握知识的灵活运用,所以建议大家找一些典型的题做一些训练,通过这种练习来反馈我们知识的把握情况,同时还能更好的掌握这些相关的知识。 根据命题考核层次及学习的科学规律,我们总的来说把复习规划可以分为三个阶段: 第一个阶段是基础阶段。这个阶段的长短应该根据自己的情况来实施,基础好一点的同学,这个时间可以短一点,基础差一点的同学,这个阶段可以长一点。但是要提醒大家,这个基础阶段的时间不能太长,不能到了十月、十一月份还在打基础,那这样的话,复习的效率就太低了,我们建议基础再差的同学也要尽量在五、六月份把这个教材的打基础复习的阶段做完。 第二个阶段是强化阶段。看一些提高类的辅导书和针对考研的这种考试参考书,按照题型分类。教材和参考书在复习上是有差异的,教材是不跨章节的,也就是你在看第六章的时候,例题也好,习题也好,不可能用到第六章以后的知识,考研的题是同学们上完全部课程,都学完了才来考试的,所以仅看教材的话就有些不足,难以提高自己的水平。而参考书已经将所有知识进行了综合整理,对于考研这个层次的数学知识来说哪些是重点、哪些是难点它都做了归纳总结,同学们要多花时间充分利用参考书复习透彻。 第三个阶段是冲刺阶段。通过强化阶段的复习,考生已经达到了一定的水平,那么怎么样保持这个水平呢?通过做适当的题,比如历年真题或是做模拟题,这个叫做总复习,或者说是冲刺的阶段。这个阶段什么时候开始是同学们关心的,一般来说,考生可以在十月份中旬以

常用基本初等函数求导公式积分公式.doc

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) , (13) (14) (15) (16) 函数的和、差、积、商的求导法则 设,都可导,则 ( 1)( 2)(是常数) ( 3)( 4) 反函数求导法则 若函数在某区间内可导、单调且,则它的反函数在对应区间内也可导,且 或 复合函数求导法则 设,而且及都可导,则复合函数的导数为 或 2. 双曲函数与反双曲函数的导数. 双曲函数与反双曲函数都是初等函数,它们的导数都可以用前面的求导公式和求导法则求出.

可以推出下表列出的公式: 常用积分公式表·例题和点评 ⑴kdx kx c ( k 为常数) ⑵x dx( 1) 1 x 1 c 1 特别, 1 dx 1 c , x d x 2 x23 c , 1 dx 2 x c x 2 x 3 x ⑶1 dx ln | x | c x ⑷ a x d x a x c , 特别,e x d x e x c ln a

⑸ sin x dx cos x c ⑹ cos x d x sin x c ⑺ 1 d x csc 2 x dx cot x c sin 2 x ⑻ 1 d x sec 2 x dx tan x c cos 2 x ⑼ 1 dx x c ( a 0) , 特别, a 2 x 2 arcsin a ⑽ 1 dx 1 x c (a 0) , 特别, a 2 x 2 arctan a a ⑾ 1 1 a x a 2 x 2 d x 2a ln a x c ( a 0) 或 1 1 x a x 2 a 2 dx 2a ln x a c ( a 0) ⑿ tan x dx ln cos x c ⒀ cot x dx ln sin x c 1 arcsin x c 1 d x x 2 1 1 x 2 dx arctan x c 1 ln csc x cot x c ⒁ csc x d x x dx ln tan c sin x 2 1 ln sec x tan x c ⒂ secx d x x dx c cos x ln tan 4 2 1 ( a 0) x 2 a 2 ⒃ a 2 dx ln x c x 2 ⒄ a 2 x 2 dx ( a 0) a 2 x x a 2 x 2 c arcsin 2 2 a ⒅ x 2 2 (a 0) x x 2 a 2 a 2 ln x x 2 a 2 c a d x 2 2

复合函数求导方法和技巧

复合函数求导方法和技巧 毛涛 (理工学院数计学院数学与应用数学专业2011级1班, 723000) 指导老师:延军 [摘要]复合函数求导是数学分析中的一个难点,也是微积分中的一个重点和难点,因此本文先从复合函数的 定义以及性质入手,在全面了解复合函数后再探讨复合函数的求导方法,分析复合函数求导过程中容易出现 的问题,然后寻求能快速准确的对复合函数进行求导的方法,并进行归纳总结,最终进行推广,帮助学生的 有效学习。 [关键词] 复合函数,定义,分解,方法和技巧,数学应用 1引言 复合函数求导是数学分析中的一个难点,也是高等数学三大基本运算中的关键,是学生深入学习高等数学知识,提高基本运算技能的基础,对学生后继课程的学习和思维素质的培养起着至关重要的作用,在各学科和现实生活中也发挥着越来越重要的作用,从而必须解决复合函数的求导问题。同时,在教学过程中,许多学生在进行求导时也犯各种各样的错误,有的甚至在学习复合函数求导之后做题时仍然不会进行求导,或者只能求导对一部分,而对另外一部分比较复杂的复合函数则还停留在一知半解的程度上,不知该求导哪一部分,也不知要对哪一部分得进行分解求导。复合函数求导方法是求导的重中之重,而且也是函数求导、求积分时不可缺少的工具,这个问题解决的好坏直接影响到换元积分法甚至以后的数学学习是否能够顺利进行。求复合函数的导数,关键在于搞清楚复合函数的结构,明确复合次数,然后由外层向层逐层求导(或者也可以由层向外层逐层求导),直到关于自变量求导,同时还要注意不能漏掉求导环节并及时化简计算结果。因此本文先给出了复合函数的定义和性质,在充分了解并且掌握复合函数的概念之后,根据其定义和性质对各种复合函数进行求导,通过对链式求导法、对数求导法、反序求导法、多元复合函数的一元求导法以及反函数求导法的分析,加以对各种对应例题的详细分解,分析每一步的步骤,比较各种求导方法,明确并且能够掌握各种题型的最佳解决方法,最终寻求一种能够既简便又准确的解决复合函数求导问题的方法,并总结技巧,方便在以后学习生活中的使用。 2复合函数的定义 如果y 是a 的函数,a 又是x 的函数,即()y f a =,()a g x =,那么y 关于x 的函数[]()y f g x =叫做函数()y f x =和()a g x =的复合函数,其中a 是中间变量,自变量为x ,函数值为y 。 3导数的四则运算

最新导数公式、微分公式和积分公式

基本公式 导数公式微分公式 积分公式 反三角函数公式 导数公式微分公式 积分公式

基本三角函数公式 导数公式微分公式 积分公式 其他积分公式 C a x x a x x C a x a x a x dx x a + ± + = ± + + - = - ? ? 2 2 2 2 2 2 2 2 2 ln d arctan 2 2 () C x x e x x e C x x e x x e C a x x a x x x a x x x x x + + = + - = + ± + + ± = ± ? ? ? ) cos (sin 2 1 d cos cos sin 2 1 d sin ln 2 d2 2 2 2 2 2

青岛市高三统一质量检测 数学(理科) 第Ⅰ卷(选择题 共60分) 一、选择题:本大题共12小题.每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1. i 是虚数单位,复数 i i +12的实部为 A .2 B .2- C .1 D .1- 2. 设全集R U =,集合{} 2|lg(1)M x y x ==-,{}|02N x x =<<,则()U N M = A .{}|21x x -≤< B .{}|01x x <≤ C .{}|11x x -≤≤ D .{}|1x x < 3. 下列函数中周期为π且为偶函数的是 A .)22sin(π - =x y B. )2 2cos(π-=x y C. )2sin(π+=x y D .)2cos(π +=x y 4. 设n S 是等差数列{}n a 的前n 项和,1532,3a a a ==,则9S = A .90 B .54 C .54- D .72- 5. 已知m 、n 为两条不同的直线,α、β为两个不同的平面,则下列命题中正确的是 A .若l m ⊥,l n ⊥,且,m n α?,则l α⊥ B .若平面α内有不共线的三点到平面β的距离相等,则βα// C .若n m m ⊥⊥,α,则α//n D .若α⊥n n m ,//,则α⊥m 6. 一个几何体的三视图如图所示,其中俯视图与左视图均为半径是2的圆,则这个几何体的表面积是 A .16π B .14π C .12π D .8π 7. 已知抛物线x y 42 =的焦点为F ,准线为l ,点P 为抛物 线上一点,且在第一象限,l PA ⊥,垂足为A ,4PF =,则直线AF 的倾斜角等于 正视图 俯视图 左视图

隐函数的求导方法总结

百度文库- 让每个人平等地提升自我 河北地质大学 课程设计(论文)题目:隐函数求偏导的方法 学院:信息工程学院 专业名称:电子信息类 小组成员:史秀丽 角子威 季小琪 2016年05月27日

摘要 (3) 一.隐函数的概念 (3) 二.隐函数求偏导 (3) 1.隐函数存在定理1 (3) 2.隐函数存在定理2 (4) 3.隐函数存在定理3 (4) 三. 隐函数求偏导的方法 (5) 1.公式法 (5) 2.直接法 (6) 3.全微分法 (6) 参考文献 (8)

摘要 本文讨论了一元隐函数,多元隐函数的存在条件及相关结论,总结出隐函数求偏导的方法和全微分法等方法和相应实例,目的是更好的计算隐函数的求导 关键字:隐函数 偏导数 方法 一.隐函数的概念 一般地,如果变量y x 和满足方程()0,=y x F ,在一定条件下,当x 取某区间的任一 值时,相应地总有满足这方程的唯一的y 值存在,那么就说方程()0,=y x F 在该区间内确 定了一个隐函数。例如,方程013 =-+y x 表示一个函数,因为当变量x 在()∞+∞-, 内取值时,变量y 有确定的值与其对应。如等时时321,10=-===y x y x 。 二.隐函数求偏导 1.隐函数存在定理1 设函数0),(=y x F 在P (x 。,y 。)在某一领域内具有连续偏导数, 且0),(= y x F ,0),(≠ y x F y ,则方程0),(=y x F 在点(x 。,y 。)的某一领域内恒能唯一确定一个连续且具有连续导数的函数)(x f y =,它满足条件)( x f y =,并有 y x y F F d d x - =。 例1:验证方程2x -2 y =0在点(1,1)的某一邻域内能唯一确定一个具有连续导数,且当x=1时y=1的隐函数y=)(x f ,并求该函数的导数dx dy 在x=1处的值。 解 令),(y x F =2x -2 y ,则 x F =2x ,y F =-2y ,)1,1(F =0,)1,1(y F =-2≠0 由定理1可知,方程2x -2y =0在点(1,1)的某一邻域内能唯一确定一个连续可导的隐函数,当x=1时,y=1的隐函数为y=x ,且有 dx dy =y x F F -=y x 22=y x

三角函数积分公式求导公式

一.三角函数 二.常用求导公式 三.常用积分公式 第一部分三角函数 同角三角函数的基本关系式 诱导公式

化asin α±bcos α为一个角的一个三角函数的形式(辅助角的三角函数的公式) 第二部分 求导公式 1.基本求导公式 ⑴0)(='C (C 为常数)⑵1)(-='n n nx x ;一般地,1)(-='αααx x 。 特别地:1)(='x ,x x 2)(2=',21 )1(x x -=',x x 21)(='。 ⑶x x e e =')(;一般地,)1,0( ln )(≠>='a a a a a x x 。 ⑷x x 1 )(ln =';一般地,)1,0( ln 1 )(log ≠>= 'a a a x x a 。 2.求导法则 ⑴ 四则运算法则 设f (x ),g (x )均在点x 可导,则有:(Ⅰ))()())()((x g x f x g x f '±'='±; (Ⅱ))()()()())()((x g x f x g x f x g x f '+'=',特别)())((x f C x Cf '='(C 为常数); (Ⅲ))0)(( ,) ()()()()())()(( 2≠'-'='x g x g x g x f x g x f x g x f ,特别21() ()()()g x g x g x ''=-。 3.微分 函数()y f x =在点x 处的微分:()dy y dx f x dx ''== 第三部分 积分公式

1.常用的不定积分公式 (1) ?????+==+=+=-≠++=+c x dx x x dx x c x xdx c x dx C x dx x 4 3 ,2,),1( 114 3 32 21αααα ; (2) C x dx x +=?||ln 1; C e dx e x x +=?; )1,0( ln ≠>+=?a a C a a dx a x x ; (3)??=dx x f k dx x kf )()((k 为常数) 2.定积分 ()()|()()b b a a f x dx F x F b F a ==-? ⑴???+=+b a b a b a dx x g k dx x f k dx x g k x f k )()()]()([2121 ⑵ 分部积分法 设u (x ),v (x )在[a ,b ]上具有连续导数)(),(x v x u '',则 ?? -=b a b a b a x du x v x v x u x dv x u )()()()()()(

常用的求导和定积分公式

一.基本初等函数求导公式 (1) 0)(='C (2) 1 )(-='μμμx x (3) x x cos )(sin =' (4) x x sin )(cos -=' (5) x x 2 sec )(tan =' (6) x x 2 csc )(cot -=' (7) x x x tan sec )(sec =' (8) x x x cot csc )(csc -=' (9) a a a x x ln )(=' (10) (e )e x x '= (11) a x x a ln 1 )(log = ' (12) x x 1)(ln = ', (13) 211)(arcsin x x -= ' (14) 211)(arccos x x -- =' (15) 21(arctan )1x x '= + (16) 21(arccot )1x x '=- + 函数的和、差、积、商的求导法则 设)(x u u =,)(x v v =都可导,则 (1) v u v u '±'='±)( (2) u C Cu '=')((C 是常数) (3) v u v u uv '+'=')( (4) 2v v u v u v u '-'=' ??? ?? 反函数求导法则

若函数)(y x ?=在某区间y I 内可导、单调且0)(≠'y ?,则它的反函数) (x f y =在对应区间 x I 内也可导,且 )(1)(y x f ?'= ' 或 dy dx dx dy 1 = 复合函数求导法则 设)(u f y =,而)(x u ?=且)(u f 及)(x ?都可导,则复合函数)]([x f y ?=的导数为 dy dy du dx du dx = 或()()y f u x ?'''= 二、基本积分表 (1)kdx kx C =+? (k 是常数) (2)1 ,1 x x dx C μμ μ+= ++? (1)u ≠- (3)1 ln ||dx x C x =+? (4)2 tan 1dx arl x C x =++? (5) arcsin x C =+?

高数(1)第三章一元函数的导数和微分

第三章一元函数的导 数和微分【字体:大中小】【打印】 3.1 导数概念 一、问题的提出 1.切线问题 割线的极限位置——切线位置 如图,如果割线MN绕点M旋转而趋向极限位置MT,直线MT就称为曲线C在点M处的切线. 极限位置即 切线MT的斜率为 2.自由落体运动的瞬时速度问题

二、导数的定义 设函数y=f(x)在点的某个邻域内有定义,当自变量x在处取得增量Δx(点 仍在该邻域内)时,相应地函数y取得增量;如果Δy与Δx之比当Δx→0时的极限存在,则称函数y=f(x)在点处可导,并称这个极限为函 数y=f(x)在点处的导数,记为 即 其它形式 关于导数的说明: 在点处的导数是因变量在点处的变化率,它反映了因变量随自变量的变化而变化的快慢程度。 如果函数y=f(x)在开区间I内的每点处都可导,就称函数f(x)在开区间I内可导。 对于任一,都对应着f(x)的一个确定的导数值,这个函数叫做原来函数f(x)

的导函数,记作 注意: 2.导函数(瞬时变化率)是函数平均变化率的逼近函数. 导数定义例题: 例1、115页8 设函数f(x)在点x=a可导,求: (1) 【答疑编号11030101:针对该题提问】 (2) 【答疑编号11030102:针对该题提问】

三、单侧导数 1.左导数: 2.右导数: 函数f(x)在点处可导左导数和右导数都存在且相等. 例2、讨论函数f(x)=|x|在x=0处的可导性。 【答疑编号11030103:针对该题提问】 解

闭区间上可导的定义:如果f(x)在开区间(a,b)内可导,且及都存在,就说f(x)在闭区间[a,b]上可导. 由定义求导数 步骤: 例3、求函数f(x)=C(C为常数)的导数。 【答疑编号11030104:针对该题提问】 解 例4、设函数 【答疑编号11030105:针对该题提问】 解

☆经典分段函数专题

经典分段函数专题 高考真题 类型一:与周期有关 类型二:与单调性有关 类型三:奇偶性有关 类型四:与零点和交点问题有关 类型五;与求导和函数性质有关 类型六:数形结合 高考真题 2010 11、已知函数21,0 ()1,0x x f x x ?+≥=?的x 的范围是_____。 【解析】考查分段函数的单调性。2212(1)10x x x x ?->??∈-?->?? 2011 11、(分类方程求解)已知实数0≠a ,函数???≥--<+=1 ,21,2)(x a x x a x x f ,若)1()1(a f a f +=-,则a 的值为________ 解析:30,2212,2a a a a a a >-+=---=-,30,1222,4 a a a a a a <-+-=++=- 2012 10.(方程组求解)设()f x 是定义在R 上且周期为2的函数,在区间[11]-,上,0111()201 x x ax f x bx x <+-??=+??+?≤≤≤,,,,其中a b ∈R ,.若1322f f ????= ? ????? ,则3a b +的值为 ▲ .

【解析】因为2T =,所以(1)(1)f f -=,求得20a b +=. 由1 3()()22f f =,2T =得11()()22 f f =-,解得322a b +=-. 联立20322a b a b +=??+=-?,解得24 a b =??=-? 所以310a b +=-. 2013 11.(分区间二次不等式求解)已知)(x f 是定义在R 上的奇函数。当0>x 时, x x x f 4)(2-=,则不等式x x f >)( 的解集用区间表示为 . 【答案】(﹣5,0) ∪(5,﹢∞) 【解析】做出x x x f 4)(2-= (0>x )的图像,如下图所示。由于)(x f 是定义在R 上的奇函数,利用奇函数图像关于原点对称做出x <0的图像。不等式x x f >)(,表示函数y =)(x f 的图像在y =x 的上方,观察图像易得:解集为(﹣5,0) ∪(5,﹢∞)。 2014 13. (周期函数+数形结合求范围)已知)(x f 是定义在R 上且周期为3的函数,当)3,0[∈x 时,|2 12|)(2+-=x x x f .若函数a x f y -=)(在区间]4,3[-上有10个零点(互不相同),则实数a 的取值范围是 ▲ . 【答案】1 (0,)2 【解析】作出函数21()2,[0,3)2f x x x x =-+∈的图象,可见1(0)2 f =,当1x =时,1()2f x =极大,7(3)2 f =,方程()0f x a -=在[3,4]x ∈-上有10个零点,即函数()y f x =和图象与直线y a =在[3,4]-上有10个交点,由于函数()f x 的周期为3,因此直线y a =与函数21()2,[0,3)2f x x x x =-+∈的应该是4个交点,则有1(0,)2 a ∈.

基本函数求导公式

基本函数求导公式

基本初等函数求导公式 (1) 0)(='C (2) 1 )(-='μμμx x (3) x x cos )(sin =' (4) x x sin )(cos -=' (5) x x 2 sec )(tan =' (6) x x 2csc )(cot -=' (7) x x x tan sec )(sec =' (8) x x x cot csc )(csc -=' (9) a a a x x ln )(=' (10) (e )e x x '= (11) a x x a ln 1 )(log = ' (12) x x 1)(ln = ', (13) 211)(arcsin x x -= ' (14) 211)(arccos x x -- =' (15) 21(arctan )1x x '= + (16) 21(arccot )1x x '=- + 函数的和、差、积、商的求导法则 设)(x u u =,)(x v v =都可导,则 (1) v u v u '±'='±)( (2) u C Cu '=')((C 是常数) (3) v u v u uv '+'=')( (4) 2v v u v u v u '-'=' ??? ?? 反函数求导法则 若函数)(y x ?=在某区间y I 内可导、单调且0)(≠'y ?,则它的反函数)(x f y =在对应 区间 x I 内也可导,且 )(1)(y x f ?'= ' 或 dy dx dx dy 1= 复合函数求导法则

隐函数存在定理 1 设函数),(y x F 在点),(0 0y x P 的 某一邻域内具有连续的偏导数,且0),(0 =y x F ,, ),(00≠y x F y ,则方程),(y x F =0在点),(0 y x 的某一邻域内 恒能唯一确定一个单值连续且具有连续导数的函数)(x f y =,它满足条件) (00 x f y =,并有 y x F F dx dy -= (2) 公式(2)就是隐函数的求 导公式 这个定理我们不证。现仅就公式(2)作如下推导。 将方程(1)所确定的函数)(x f y =代入,得恒等式 ))(,(≡x f x F , 其左端可以看作是x 的一个复合函数,求这个函数的全导数,由于恒等式两端求导后仍然恒等,即得 ,0=??+??dx dy y F x F 由于y F 连续,且0),(0 ≠y x F y ,所以存在(x 0,y 0)的一个

1常见函数的导数公式

1.常见函数的导数公式: (1)0'=C (C 为常数); (2)1)'(-=n n nx x (Q n ∈); (3)x x cos )'(sin =; (4)x x sin )'(cos -=; (5)a a a x x ln )'(=; (6)x x e e =)'(; (7)e x x a a log 1)'(log = ; (8)x x 1)'(ln = . 2.导数的运算法则: 法则1 )()()]()(['''x v x u x v x u ±=±. 法则2 [()()]'()()()'()u x v x u x v x u x v x '=+, [()]'()Cu x Cu x '=. 法则3 ' 2 ''(0)u u v uv v v v -?? =≠ ??? . 3.复合函数的导数:设函数u =?(x )在点x 处有导数u ′x =?′(x ),函数y =f (u )在点x 的对应点u 处有导数y ′u =f ′(u ),则复合函数y =f (? (x ))在点x 处也有导数,且x u x u y y '''?= 或f ′x (? (x ))=f ′(u ) ?′(x ). 例题:一:1:求函数323y x x =-+的导数. 2: y = x x sin 2.函数y =x 2cos x 的导数为 。 函数y =tanx 的导数为 。 2:求下列复合函数的导数: ⑴3 2 )2(x y -=; ⑵2 sin x y =; ⑶)4 cos(x y -=π ; ⑷)13sin(ln -=x y .3 2 c bx ax y ++=

4.曲线y =x 3的切线中斜率等于1的直线 ( ) A .不存在 B .存在,有且仅有一条 C .存在,有且恰有两条 D .存在,但条数不确定 5.曲线3()2f x x x =+-在0P 处的切线平行于直线41y x =-,则0P 点的坐标为( ) A 、( 1 , 0 ) B 、( 2 , 8 ) C 、( 1 , 0 )和(-1, -4) D 、( 2 , 8 )和 (-1, -4) 6.f (x )=ax 3 +3x 2 +2,若f ′(-1)=4,则a 的值等于 ( ) A. 3 19 B. 3 16 C. 3 13 D. 3 10 7.曲线22x y =在点(1,2)处的瞬时变化率为( ) A 2 B 4 C 5 D 6 8.已知曲线122+=x y 在点M 处的瞬时变化率为-4,则点M 的坐标是( ) A (1,3) B (-4,33) C (-1,3) D 不确定 9.物体按照s (t )=3t 2+t +4的规律作直线运动,则在4s 附近的平均变化率 . 10.曲线y =x 3-3x 2 +1在点(1,-1)处的切线方程为__________________. 11.已知l 是曲线y = 3 1x 3 +x 的切线中,倾斜角最小的切线,则l 的方程是 . 12.已知过曲线y =3 1x 3上点P 的切线l 的方程为12x -3y =16,那么P 点坐标只能为 ( ) A.?? ? ??38, 2 B.?? ? ??- 34,1 C.?? ? ??- -328,1 D.?? ? ??320, 3 13.已知c bx ax x f ++=24)(的图象经过点(0,1),且在x =1处的切线方程是y=x -2. 求)(x f y =的解析式. 14.求过点(2,0)且与曲线y = x 1相切的直线的方程.

隐函数地求导方法总结材料

地质大学 课程设计(论文)题目:隐函数求偏导的方法 学院:信息工程学院 专业名称:电子信息类 小组成员:史秀丽 角子威 季小琪 2016年05月27日

摘要 (3) 一.隐函数的概念 (3) 二.隐函数求偏导 (3) 1.隐函数存在定理1 (3) 2.隐函数存在定理2 (4) 3.隐函数存在定理3 (4) 三. 隐函数求偏导的方法 (5) 1.公式法 (5) 2.直接法 (6) 3.全微分法 (6) 参考文献 (8)

摘要 本文讨论了一元隐函数,多元隐函数的存在条件及相关结论,总结出隐函数求偏导的方法和全微分法等方法和相应实例,目的是更好的计算隐函数的求导 关键字:隐函数 偏导数 方法 一.隐函数的概念 一般地,如果变量y x 和满足方程()0,=y x F ,在一定条件下,当x 取某区间的任一 值时,相应地总有满足这方程的唯一的y 值存在,那么就说方程()0,=y x F 在该区间确定 了一个隐函数。例如,方程013 =-+y x 表示一个函数,因为当变量x 在()∞+∞-, 取值时,变量y 有确定的值与其对应。如等时时321,10=-===y x y x 。 二.隐函数求偏导 1.隐函数存在定理1 设函数0),(=y x F 在P (x 。,y 。)在某一领域具有连续偏导数, 且0),(= y x F ,0),(≠ y x F y ,则方程0),(=y x F 在点(x 。,y 。)的某一领域恒能唯一确定一个连续且具有连续导数的函数)(x f y =,它满足条件)( x f y =,并有 y x y F F d d x - =。 例1:验证方程2x -2 y =0在点(1,1)的某一邻域能唯一确定一个具有连续导数,且当x=1时y=1的隐函数y=)(x f ,并求该函数的导数dx dy 在x=1处的值。 解 令),(y x F =2x -2 y ,则 x F =2x ,y F =-2y ,)1,1(F =0,)1,1(y F =-2≠0 由定理1可知,方程2x -2y =0在点(1,1)的某一邻域能唯一确定一个连续可导的隐函数,当x=1时,y=1的隐函数为y=x ,且有 dx dy =y x F F -=y x 22=y x 故 1=x dx dy = ) 1,(!y x =1

隐函数的求导方法情况总结

河北地质大学 课程设计(论文)题目:隐函数求偏导的方法 学院:信息工程学院 专业名称:电子信息类 小组成员:史秀丽 角子威 季小琪 2016年05月27日

摘要 (3) 一.隐函数的概念 (3) 二.隐函数求偏导 (3) 1.隐函数存在定理1 (3) 2.隐函数存在定理2 (4) 3.隐函数存在定理3 (4) 三. 隐函数求偏导的方法 (6) 1.公式法 (6) 2.直接法 (6) 3.全微分法 (6) 参考文献 (8)

摘要 本文讨论了一元隐函数,多元隐函数的存在条件及相关结论,总结出隐函数求偏导的方法和全微分法等方法和相应实例,目的是更好的计算隐函数的求导 关键字:隐函数 偏导数 方法 一.隐函数的概念 一般地,如果变量y x 和满足方程()0,=y x F ,在一定条件下,当x 取某区间的任一 值时,相应地总有满足这方程的唯一的y 值存在,那么就说方程()0,=y x F 在该区间内确 定了一个隐函数。例如,方程013 =-+y x 表示一个函数,因为当变量x 在()∞+∞-, 内取值时,变量y 有确定的值与其对应。如等时时321,10=-===y x y x 。 二.隐函数求偏导 1.隐函数存在定理1 设函数0),(=y x F 在P (x 。,y 。)在某一领域内具有连续偏导数, 且0),(=οοy x F ,0),(≠οοy x F y ,则方程0),(=y x F 在点(x 。,y 。)的某一领域内恒能唯一确定一个连续且具有连续导数的函数)(x f y =,它满足条件)(οοx f y =,并有 y x y F F d d x - =。 例1:验证方程2 x -2 y =0在点(1,1)的某一邻域内能唯一确定一个具有连续导数,且当x=1时y=1的隐函数y=)(x f ,并求该函数的导数dx dy 在x=1处的值。 解 令),(y x F =2x -2 y ,则 x F =2x ,y F =-2y ,)1,1(F =0,)1,1(y F =-2≠0 由定理1可知,方程2 x -2 y =0在点(1,1)的某一邻域内能唯一确定一个连续可导的隐函数,

相关主题
文本预览
相关文档 最新文档