证明两个平面平行基本思路
线线平行
线面平行
面面平行
证明两个平面平行一般步骤
一:在一个平面内找出两条相交直线
二:证明两条相交直线分别平行于另一个平面
三:利用判定定理得结论
平面与平面平行的性质
下面我们研究平面与平面平行的性质,也就是以平面与平面平行为条件,
探究可以推出哪些结论.
D'
C'
如图示,平面A'C'//平面AC, B'D'⊂平面A'C', 显然,A'
B.如果一个平面内任何一条直线都平行于另一个平面,那么这两个平面平行
√
C.平行于同一直线的两个平面一定相互平行
D.如果一个平面内的无数多条直线都平行于另一平面,那么这两个平面平行
解析
如果一个平面内任何一条直线都平行于另一个平面,
即两个平面没有公共点,
则两平面平行.
3.已知长方体ABCD-A′B′C′D′,平面α∩平面ABCD=EF,平面α∩平面
两个平面不一定平行. 但若把两条平行直线改成相交直线,则两个平面
就会平行. 下面我们借助长方体来说明这个问题.
如图, 在平面ADD'A'内画一条与AA'平行的直线EF, 显然AA'与EF都平
行于平面DCC'D', 但这两条平行直线所在的平面ADD'A'与平面DCC'D'不平
D'
C'
行. 若平面ABCD内两条相交直线AC, BD分别与平
证明:连接MF,则有MF // A1 D1 // AD,
四边形MFDA为平行四边形,
AM / / DF .