当前位置:文档之家› 相位噪声&抖动仿真方法VCO Design Using SpectreRF

相位噪声&抖动仿真方法VCO Design Using SpectreRF

相位噪声&抖动仿真方法VCO Design Using SpectreRF
相位噪声&抖动仿真方法VCO Design Using SpectreRF

【重要】锁相环的相位噪声分析

锁相环路相位噪声分析 张文军 电信0802 【摘要】本文对锁相电路的相位噪声进行了论述,并对其中各组成部件的相位噪声也做了较为详细的分析。文中最后提出了改进锁相环相位噪声的办法。 【关键词】锁相环;相位噪声;分析 引言 相位噪声是一项非常重要的性能指标,它对电子设备和电子系统的影响很大,从频域看它分布的载波信号两旁按幂律谱分布。用这种信号无论做发射激励信号,还是接收机本振信号以及各种频率基准,这些信号在解调过程中都会和信号一样出现在解调终端,引起基带信噪比下降。在通信系统中使环路信噪比下将,误码率增加;在雷达系统中影响目标的分辨能力,即改善因子。接收机本振的相位噪声遇到强干扰信号时,会产生“倒混频”,使接收机有效噪声系数增加。随着电子技术的发展,对频率源的信号噪声要求越来越严格,因此低相位噪声在物理、天文、无线电通信、雷达、航空、航天以及精密计量、仪器仪表等各种领域里都受到重视。 1 相位噪声概述 相位噪声 ,就是指在系统内各种噪声作用下所表现的相位随机起伏,相位的随机 起伏起必然引起频率随机起伏,这种起伏速度较快,所以又称之为短期频率稳定度。 理想情况下,合成器的输出信号在频域中为根单一的谱线,而实际上任何信号的频谱都不可能绝对纯净,总会受到噪声的调制产生调制边带。由于相位噪声的存在,使波形发生畸变。在频域中其输出信号的谱线就不再是一条单根的谱线,而是以调制边带的形式连续地分布在载波的两边,在主谱两边出现了一些附加的频谱,从而导致频谱的扩展,相位噪声的边带是双边 的,是以0f 为中心对称的,但为了研究方便,一般只取一个边带。其定义为偏离载频1Hz 带宽内单边带相位噪声的功率与载频信号功率之比,它是偏离 载频的复氏频率m f 的函 数 ,记为 () m f ζ,单位为d B c / Hz ,即 ()010lg[/](1) m SSB f P P ζ= 式中SSB P 为偏离载频m f 处,1Hz 带宽内单边带噪声功率;0P 为载波信号功率。

相位噪声的产生原因和影响

相位噪声的产生原因和影响 概述 相位噪声和抖动是对同一种现象的两种不同的定量方式。在理想情况下,一个频率固定的完美的脉冲信号(以1 MHz为例)的持续时间应该恰好是1微秒,每500ns有一个跳变沿。但不幸的是,这种信号并不存在。如图1所示,信号周期的长度总会有一定变化,从而导致下一个沿的到来时间不确定。这种不确定就是相位噪声,或者说抖动。 相位噪声是频率域的概念。相位噪声是对信号时序变化的另一种测量方式,其结果在频率域内显示。用一个振荡器信号来解释相位噪声。如果没有相位噪声,那么振荡器的整个功率都应集中在频率f=fo处。但相位噪声的出现将振荡器的一部分功率扩展到相邻的频率中去,产生了边带(sideband)。从图2中可以看出,在离中心频率一定合理距离的偏移频率处,边带功率滚降到1/fm,fm是该频率偏离中心频率的差值。 相位噪声通常定义为在某一给定偏移频率处的dBc/Hz值,其中,dBc是以dB为单位的该频率处功率与总功率的比值。一个振荡器在某一偏移频率处的相位噪声定义为在该频率处1Hz带宽内的信号功率与信号的总功率比值。 定义 定义1:相位噪声是指单位Hz的噪声密度与信号总功率之比,表现为载波相位的随机漂移,是评价频率源(振荡器)频谱纯度的重要指标源自: 有线数字电视传输特性与故障解析《中国有线电视》 2005年赵雨境,王恒江 定义2:相位噪声是指光的正弦振荡不稳定,时而出现某处相位的随机跳变.相位噪声导致光源线宽变宽.光强度噪声是指因自发辐射光强的随机变化和外界温度的变化,导致发射 光强的起伏源自: Fabry-Perot干涉式光纤温度传... 《传感器技术》 2001年曹满 婷来源文章摘要:分析了温度对相位的调制作用以及Fabry -Perot干涉结构检测相位变化的原理 ,提出了一种具有高灵敏度和高分辨率的相位调制型全光纤结构 ,并进行了系统的噪声分析。 定义3:是一随机量通常把信号的相似随机起伏中(t)称为相位噪声.(t)随时间变化的随机过程是一平稳的随机过程并使随机量的概率密度分布符合正态分布源自: 受多项噪声影响的二级方差估值的置信度《四川教育学院学报》 1997年林时昌来源文章摘要:有限次(m次)采样测量的二级方差估值(,m)随机地偏离其真值<)。这种随机不确定性不仅和m有关,而且和噪声的性质有关。计算出单项噪声所产生的不确定度;分析了多项噪声对总不确定度的影响,并引用置信度的概念表征测量的不确定度。 定义4:(t)〕sin[2兀厂t+小(t)]相位噪声是指频率信号中由频率源内部噪声调制(调相或调频)产生的随机相位起伏.当被测相位噪声比频谱分析仪自身的相位噪声大时,可直接利用频谱分析仪来测量相位噪声,这是一种简单、方便的相位噪声测量方法源自: 频谱分析仪在测量相位噪声过程中的数值修正《国外电子测量技术》 2002年曹芸来源文章摘要:本文介绍了在使用频谱分析仪测量相位噪声时,影响其测量结果的因素并讨论了如何对频谱分析仪输出结果进行修正。 定义5:则()rk的相角为()kknkqj+q+,其中()nkq是噪声()nk对相位的干扰,称为相位噪声.可见,kq中包含了全部的载波相位信息,kj包含了大量甚至全部的码字信息源自: 相位 处理载波恢复算法研究《信息与电子工程》 2003年袁清升,刘文来源文章摘要:针对

实验3 Okumura-Hata方法计算计算机仿真

课程实验报告 课程3G移动通信实验 学院通信学院 专业通信工程 班级13083414 学号13081403 学生姓名李倩

实验Okumura-Hata 方法计算机仿真 【实验目的】 ? 加深对奥村模型的理解; ? 能够使用C 语言(或者Matlab )利用Okumura-Hata 方法计算基本传输损耗; ? 比较奥村模型和Okumura-Hata 方法获得的基本传输损耗的差异,分析Okumura-Hata 方法的误差。 【实验内容】 ? 使用C 语言(或者Matlab )利用Okumura-Hata 方法计算基本传输损耗; ? 分析Okumura-Hata 方法的误差; 【实验设备】 ? 一台PC 机 【实验步骤】 1. 采用Okumura-Hata 方法分别计算大城市市区地区准平滑地形、郊区和开阔区,基站天线高度是hb=200米,手机天线高度是hm=3米情况下,不同传播距离d 和不同载波频率f 条件下的传播损耗中值。画出相应的曲线。 050010001500 20002500300080100 120 140 160 180 200 大城市 频率/MHz 损耗中值/d B

2. 将计算结果和通过奥村模型实测测得的结果进行比较,验证计算结果的正确性。 050010001500 2000250030008090 100 110 120 130140150 160 170 180 郊区 频率/MHz 损耗中值/d B 050010001500 200025003000100120 140 160 180200 220 240开阔区 频率/MHz 损耗中值/d B

锁相环相位噪声与环路带宽的关系分析

锁相环相位噪声与环路带宽的关系分析 2009-09-09 15:13:17 作者:李仲秋曾全胜来源:现代电子技术 关键字:电荷泵锁相环相位噪声功率谱密度环路带宽 0 引言 电荷泵锁相环是闭环系统,系统各个部分都是一个噪声源,各部分噪声的大小不仅与电路本身有关,而且还与环路带宽等因素有关。因此,设计时必须分析其各频率范围内噪声源影响力的大小,权衡确定环路带宽与各噪声源的相互制约关系。以下利用锁相环的等效噪声模型,重点分析电荷泵锁相环系统的相位噪声特性,得出系统噪声特性的分布特点以及与环路带宽的关系。 1 电荷泵锁相环的基本原理 图1为电荷泵锁相环的示意图,主要由鉴相鉴频器(PFD)、电荷泵、滤波器、压控振荡器(VCO)、分频器等5部分组成,鉴相鉴频器主要用来检测输入信号x(t)与反馈信号xf(t)的频率、相位误差,并产生UP,DOWN信号控制电荷泵的开关。电荷泵由两个对称的电流源和开关组成。电荷泵的开关会对滤波器上的电容充放电,电流经过滤波器滤波后滤掉高频信号,在滤波器上产生能调整压控振荡器频率和相位的电压v(t)。当v(t)上的电压被调整为一个合适的电压值时,xi(t)的频率和相位与x(t)的一致,系统最终处于平衡状态,从而实现对输入信号的跟踪。

2 电荷泵锁相环的噪声模型与相位噪声特性分析 电荷泵锁相环的环路等效噪声模型可以用锁相环各子模块附加噪声源表示。图2给出了带有无源滤波器锁相环噪声源模的型。设fm为距离调制频率的偏移量,该图中主分频器、参考时钟分频器的均方噪声功率谱密度分别被表示为ψd(fm)和ψrcf(fm);鉴相鉴频器的相位噪声被表示为ψpd(fm);晶体振荡器的相位噪声被表示为ψx(fm);相位噪声源的单位是电荷泵的噪声被等价为电流源inp(fm)(单位: ); 滤波器的噪声被等价为电压源Vnf(fm)(单位: 的自由振荡噪声被表示为 环路输出信号的均方噪声功率谱密度被表示为它是闭环情况下所有噪声源影响的总和。输出相位噪声功率谱密度可以表示为: 式中:ψo lp2(fm)为具有低通传输函数的噪声源功率谱密度;ψohp2(fm)为具有高通传输函数的噪声源功率谱密度。 在图2所示的噪声源等效模型中,ψd(fm),ψref(fm),ψpd(fm),ψx(fm)和inp(fm)具有低通传输特性,其传输函数可以表示为: 式中:G(s)和H(s)分别为环路的开环增益函数和闭环增益函数。归一化的电荷泵相位噪声inp(fm)/Kpd和晶体振荡器噪声ψx(fm)/R对ψo lp(fm)的影响也可以用式(2)来表示。当用j2πfm代替s时,ψo2(fm)中具有低通传输函数噪声源功率谱密度的噪声分量ψo lp2 (fm)可以表示为:

相位噪声基础及测试原理和方法

相位噪声基础及测试原理和方法 相位噪声指标对于当前的射频微波系统、移动通信系统、雷达系统等电子系统影响非常明显,将直接影响系统指标的优劣。该项指标对于系统的研发、设计均具有指导意义。相位噪声指标的测试手段很多,如何能够精准的测量该指标是射频微波领域的一项重要任务。随着当前接收机相位噪声指标越来越高,相应的测试技术和测试手段也有了很大的进步。同时,与相位噪声测试相关的其他测试需求也越来越多,如何准确的进行这些指标的测试也愈发重要。 1、引言 随着电子技术的发展,器件的噪声系数越来越低,放大器的动态范围也越来越大,增益也大有提高,使得电路系统的灵敏度和选择性以及线性度等主要技术指标都得到较好的解决。同时,随着技术的不断提高,对电路系统又提出了更高的要求,这就要求电路系统必须具有较低的相位噪声,在现代技术中,相位噪声已成为限制电路系统的主要因素。低相位噪声对于提高电路系统性能起到重要作用。 相位噪声好坏对通讯系统有很大影响,尤其现代通讯系统中状态很多,频道又很密集,并且不断的变换,所以对相位噪声的要求也愈来愈高。如果本振信号的相位噪声较差,会增加通信中的误码率,影响载频跟踪精度。相位噪声不好,不仅增加误码率、影响载频跟踪精度,还影响通信接收机信道内、外性能测量,相位噪声对邻近频道选择性有影响。如果要求接收机选择性越高,则相位噪声就必须更好,要求接收机灵敏度越高,相位噪声也必须更好。 总之,对于现代通信的各种接收机,相位噪声指标尤为重要,对于该指标的精准测试要求也越来越高,相应的技术手段要求也越来越高。 2、相位噪声基础 2.1、什么是相位噪声 相位噪声是振荡器在短时间内频率稳定度的度量参数。它来源于振荡器输出信号由噪声引起的相位、频率的变化。频率稳定度分为两个方面:长期稳定度和短期稳定度,其中,短期稳定度在时域内用艾伦方差来表示,在频域内用相位噪声来表示。 2.2、相位噪声的定义

第一章系统仿真的基本概念与方法

第一章控制系统及仿真概述 控制系统的计算机仿真是一门涉及到控制理论、计算数学与计算机技术的综合性新型学科。这门学科的产生及发展差不多是与计算机的发明及发展同步进行的。它包含控制系统分析、综合、设计、检验等多方面的计算机处理。计算机仿真基于计算机的高速而精确的运算,以实现各种功能。 第一节控制系统仿真的基本概念 1.系统: 系统是物质世界中相互制约又相互联系着的、以期实现某种目的的一个运动整体,这个整体叫做系统。 “系统”是一个很大的概念,通常研究的系统有工程系统和非工程系统。 工程系统有:电力拖动自动控制系统、机械系统、水力、冶金、化工、热力学系统等。 非工程系统:宇宙、自然界、人类社会、经济系统、交通系统、管理系统、生态系统、人口系统等。 2.模型: 模型是对所要研究的系统在某些特定方面的抽象。通过模型对原型系统进行研究,将具有更深刻、更集中的特点。 模型分为物理模型和数学模型两种。数学模型可分为机理模型、统计模型与混合模型。 3.系统仿真: 系统仿真,就是通过对系统模型的实验,研究一个存在的或设计中的系统。更多的情况是指以系统数学模型为基础,以计算机为工具对系统进行实验研究的一种方法。 要对系统进行研究,首先要建立系统的数学模型。对于一个简单的数学模型,可以采用分析法或数学解析法进行研究,但对于复杂的系统,则需要借助于仿真的方法来研究。 那么,什么是系统仿真呢?顾名思义,系统仿真就是模仿真实的事物,也就是用一个模型(包括物理模型和数学模型)来模仿真实的系统,对其进行实验研究。用物理模型来进行仿真一般称为物理仿真,它主要是应用几何相似及环境条件相似来进行。而由数学模型在计算机上进行实验研究的仿真一般则称为数字仿真。我们这里讲的是后一种仿真。 数字仿真是指把系统的数学模型转化为仿真模型,并编成程序在计算机上投入运行、实验的全过程。通常把在计算机上进行的仿真实验称为数字仿真,又称计算机仿真。

相位噪声性能测试

LMK04000 系列产品的相位噪声性能测试 30082862 加权函数H(f)是低通闭环传递函数,其中包含了诸如电 荷泵增益、环路滤波器响应、VCO增益和反馈通路( 数器等参数。该式表示了图1所示的每一级PLL AN-1910 30082801 图1 具有抖动清除能力的双PLL时钟合成器的架构 https://www.doczj.com/doc/f2663770.html, ? 2009 National Semiconductor Corporation 300828

https://www.doczj.com/doc/f2663770.html, 2 A N -1910 2.0 LMK04000系列产品介绍 图2示出了LMK04000精密时钟去抖产品系列的详细的框图。其PLL1的冗余的参考时钟输入(CLKin0,CLKin1),可以支持高达400 MHz 的频率。参考时钟信号可以是单端或者差分式的信号,为了实现操作中稳定性,还可以启用其中的自动开关模式。驱动OSCin 端口的VCXO 的最大容许频率为250 MHz 。OSCin 端口的信号被反馈到PLL2相位比较器上,而且也作为相位和频率基准注入到PLL2中。虽然在图中并未示出,其内部还是可以支持分立形式的、采用外接晶振的VCXO 。PLL2的相位比较器的基准信号输入端还提供了一 个可选用的频率倍增器,这可以使得相位比较的频率得以增加一倍,从而降低了PLL2的带内噪声。PLL2集成了一个内置的VCO ,以及可选的内置环路滤波器部件,这一部分可以提供PLL2环路滤波器的3阶和4阶极点。VCO 的输出带有缓冲,最终由Fout 引脚向外提供信号,该信号也可以经过一个VCO 分频器路由到内部的时钟分发总线上。时钟分发部分则对时钟信号进行缓冲,并将其分配给各个可以独立配置的通道。每个通道具有一个分频器、延迟模块和输出缓冲器。在时钟输出端,各信号格式的组合关系可以根据具体的器件编号来确定。 30082802 图2 LMK04000系列时钟电路的框图 下面的表格示出了LMK04000系列中目前已发布的器件。正如表1所示的那样,其中包含了2个VCO 频带以及 两种可配置的时钟输出格式。本报告中所测量的器件是LMK04031。 表1 LMK04000系列产品的器件编号、输出格式和VCO 频段 NSID 工艺2VPECL/LVPECL 输出 LVDS 输出 LVCMOS 输出 VCO 频率范围LMK04011BISQ BiCMOS 51430~1570 MHz LMK04031BISQ BiCMOS 22 2 1430~1570 MHz LMK04033BISQ BiCMOS 2 2 2 1840~2160 MHz

系统相位噪声的指标

系统相位噪声的指标 举个例子说明800MHz CDMA手机接收(参看IS-98标准) 你可以这样想, 所有的接收机的参数要求, 不管是GAIN, NF, 还是IP3 等等, 都是为了一个目的---实现一定的信噪比SNR从而能够对信号进行解调. 不论是灵敏度, 动态范围还是在有干扰信号条件下, 解调是接收机要达到的目的. 对CDMA手机接收机来说, 解调需要的SNR = -1.5 dB (大约值) IS-98里面有一个单音(Single tone)测试, 是测试CDMA接收机在一个单音强干扰情况下的性能. CDMA接收机灵敏度最低要求-104 dBm(带宽1.25 MHz). 也就是说在最差NF条件下, 热噪声功率 = -104 - SNR = -102.5 dBm/1.25MHz 单音测试条件如下 CDMA信号功率 = -101 dBm/1.25MHz 单音频偏 = 900 KHz 单音功率 = -30 dBm 如图所示, 不管是有中频还是零中频结构, 信号和LO混频后落在有用带宽内, 单音和LO 混频后还是会落在900 KHz处(会被中频或基带滤波器滤除), 单音和LO的相位噪声混频后(称为reciprocal mxing, 有人翻译为倒易混频, 即把单音当作一个本振信号, 把LO的相位噪声当作一个宽带信号进行混频, "倒易"意指单音和LO角色互换)的产物会落在有用带宽内, 这种噪声迭加在热噪声之上, 引起系统SNR下降. 接收机系统相位噪声的指标可以由此得出. 因为单音测试主要由双工器隔离度, LNA IP3和相位噪声决定, 因此计算相位噪声的指标要留裕量给其它指标(这里用 6 dB). 根据上面的计算, 我们可以对相位噪声提一个指标: 在900 KHz频偏处要求-139 dBc/Hz.

锁相环中的相位噪声研究

The Research of Noise in The PLL LU Shiqiang , YANG Guoyu ( School of the Microwave engineering ,UESTC ChengDu 610054 China ) Absract This articles introducs the basic concepts and the phase noise in phase-locked loops (PLLs). It focus on a detailed examination of two critical specifications associated with PLLs : phase noise and reference spurs. What causes them and how can they be minimized? Also it inculdes an example . Key words :PLL ; Phase Noise ; Oscillator 1 . The Basic Theory of the PLL A phase-locked loop is a feedback system combining a voltage controlled oscillator and a phase comparator so connected that the oscillator maintains a constant phase angle relative to a reference signal. Phase-locked loops can be used, for example, to generate stable output frequency signals from a fixed low-frequency signal . The phase locked loop can be analyzed in general as a negative feedback system with a forward gain term and a feedback term. .A simple block diagram of a voltage-based negative-feedback system is shown in Figure 1. Figure 1. Standard negative-feedback control system model In a phase-locked loop, the error signal from the phase comparator is proportional to the relative phase of the input and feedback signals. The average output of the phase detector will be constant when the input and feedback signals are the same frequency. The usual equations for a negative-feedback system apply. Forward Gain = G(s), [s = jw = j2pif] Loop Gain = G(s) H(s) Closed Loop Gain = G(s)/[1+G(s)H(s)] Because of the integration in the loop, at low frequencies the steady state gain, G(s) is very high and VO/VI, Closed-Loop Gain =1/ H and Fo=NF REF. . The components of a PLL that contribute to the loop gain include : 1. The phase detector (PD) and charge pump (CP). 2. The loop filter, with a transfer function of Z(s) 3. The voltage-controlled oscillator (VCO), with a sensitivity of KV /s 4. The feedback divider, 1/N

连续系统仿真的方法

第3章 连续系统仿真的方法 3.1 数值积分法 连续系统数值积分法,就是利用数值积分方法对广微分方程建立离散化形式的数学模型——差分方程,并求其数值解。可以想象在数学计算机上构造若干个数字积分器,利用这些数字积分器进行积分运算。在数字计算机上构造数字积分器的方法就是数值积分法,因而数字机的硬件特点决定了这种积分运算必须是离散和串行的。 把被仿真系统表示成一阶微分方程组或状态方程的形式。一阶向量微分方程及初值为 () (),00t Y Y t Y ???? ?????? Y =F = (3-1) 其中,Y 为n 维状态向量,F (t ,Y )为n 维向量函数。 设方程(3-1)在011,,,,n n t t t t t +=…处的形式上的连续解为 ()()()()n+1n+1 t t n+10t t t =Y t +,(),n Y F t Y dt Y t F t Y dt =+ ?? (3-2) 设 n =() n Y Y t ,令 1n n n Y Y Q +=+ (3-3) 则有: ()1n+1t n Y Y += 也就是说, 1 (,)n n t n t Q F t Y dt +≈ ? (3-4) 如果n Y 准确解()n Y t 为近似值,n Q 是准确积分值的近似值,则式(3-4)

就是式(3-2)的近似公式。换句话说,连续系统的数值解就转化为相邻两个时间点上的数值积分问题。 因此,所谓数值解法,就是寻求初值问题(3-1)的真解在一系列离散点12n t t t <…<…上的近似解12,,,n Y Y Y ……,相邻两个时间离散点的间隔 1n n n t t +=-h ,称为计算步距或步长,通常取n =h h 为定值。可见,数值积分法的主要问题归结为对函数(,)F t y 的数值积分问题,即如何求出该函数定积分的近似解。为此,首先要把连续变量问题用数值积分方法转化成离散的差分方程的初值问题,然后根据已知的初值条件0y ,逐步地递推计算后续时刻的数值解(1,2,)i y i =…。所以,解初值问题的数值方法的共同特点是步进式的,采用不同的递推算法,就出现各种不同的数值积分方法。 3.2 替换法 基于数值积分的连续系统仿真方法具有成熟、计算精度比较高的优点,但算法公式比较复杂、计算量比较大,通常只有在对速度要求不高的纯数字仿真时使用。当进行实时仿真或在计算机控制系统中实现数字控制器的算法时,要求计算速度快,以便能在一个采样周期内完成全部计算任务,这就需要一些快速计算方法。 用数值积分方法在数字机上对一个连续系统进行仿真时,实际上已经进行了离散化处理,只不过在离散化过程中每一步都用到连续系统的模型,离散一步计算一步。那么,能否先对连续的模型进行离散化处理,得到一个“等效”的离散化模型,以后的每一步计算都直接在这个离散化模型基础上进行,而原来的连续数学模型不再参与计算呢?回答是肯定的。这些结构上比较简单的离散化模型,便于在计算机上求解,不仅用于连续系统数字仿真,而且也可用于数字控制器在计算机上实现。 替换法的基本思想是:对于给定的函数G (s ),设法找到s 域到z 域的的某种映射关系,它将S 域的变量s 映射到z 平面上,由此得到与连续系统传递函数G (s )相对应的离散传函G (z )。进而再根据G (z )由z 反变换求的系统的时域离散模型——差分方程,据此便可以进行快速求解。

相位噪声基础及测试原理和方法

摘要: 相位噪声指标对于当前的射频微波系统、移动通信系统、雷达系统等电子系统影响非常明显,将直接影响系统指标的优劣。该项指标对于系统的研发、设计均具有指导意义。相位噪声指标的测试手段很多,如何能够精准的测量该指标是射频微波领域的一项重要任务。随着当前接收机相位噪声指标越来越高,相应的测试技术和测试手段也有了很大的进步。同时,与相位噪声测试相关的其他测试需求也越来越多,如何准确的进行这些指标的测试也愈发重要。 1、引言 随着电子技术的发展,器件的噪声系数越来越低,放大器的动态范围也越来越大,增益也大有提高,使得电路系统的灵敏度和选择性以及线性度等主要技术指标都得到较好的解决。同时,随着技术的不断提高,对电路系统又提出了更高的要求,这就要求电路系统必须具有较低的相位噪声,在现代技术中,相位噪声已成为限制电路系统的主要因素。低相位噪声对于提高电路系统性能起到重要作用。 相位噪声好坏对通讯系统有很大影响,尤其现代通讯系统中状态很多,频道又很密集,并且不断的变换,所以对相位噪声的要求也愈来愈高。如果本振信号的相位噪声较差,会增加通信中的误码率,影响载频跟踪精度。相位噪声不好,不仅增加误码率、影响载频跟踪精度,还影响通信接收机信道内、外性能测量,相位噪声对邻近频道选择性有影响。如果要求接收机选择性越高,则相位噪声就必须更好,要求接收机灵敏度越高,相位噪声也必须更好。 总之,对于现代通信的各种接收机,相位噪声指标尤为重要,对于该指标的精准测试要求也越来越高,相应的技术手段要求也越来越高。 2、相位噪声基础 2.1、什么是相位噪声 相位噪声是振荡器在短时间内频率稳定度的度量参数。它来源于振荡器输出信号由噪声引起的相位、频率的变化。频率稳定度分为两个方面:长期稳定度和短期稳定度,其中,短期稳定度在时域内用艾伦方差来表示,在频域内用相位噪声来表示。 2.2、相位噪声的定义 以载波的幅度为参考,在偏移一定的频率下的单边带相对噪声功率。这个数值是指在1Hz的带宽下的相对噪声电平,其单位为dBc/Hz。该定义最早是基于频谱仪法测试相位噪声,不区分调幅噪声和调相噪声。 单边带相位噪声L(f)定义为随机相位波动单边带功率谱密度Sφ(f)的一半,其单位为dBc/Hz。其中Sφ(f)为随机相位波动φ(t)的单边带功率谱密度,其物理量纲是rad2/Hz。

锁相环常见问题解答要点

ADI官网下载了个资料,对于PLL学习和设计来说都非常实用的好资料,转发过来,希望对大家有帮助(原文链接 https://www.doczj.com/doc/f2663770.html,/zh/content/cast_faq_PLL/fca.html#faq_pll_01) ?参考晶振有哪些要求?我该如何选择参考源? ?请详细解释一下控制时序,电平及要求? ?控制多片PLL芯片时,串行控制线是否可以复用? ?请简要介绍一下环路滤波器参数的设置? ?环路滤波器采用有源滤波器还是无源滤波器? ?PLL对于VCO有什么要求?以及如何设计VCO输出功率分配器? ?如何设置电荷泵的极性? ?锁定指示电路如何设计? ?PLL对射频输入信号有什么要求? ?PLL芯片对电源的要求有哪些? ?内部集成了VCO的ADF4360-x,其VCO中心频率如何设定? ?锁相环输出的谐波? ?锁相环系统的相位噪声来源有哪些?减小相位噪声的措施有哪些? ?为何我测出的相位噪声性能低于ADISimPLL仿真预期值? ?锁相环锁定时间取决于哪些因素?如何加速锁定? ?为何我的锁相环在做高低温试验的时候,出现频率失锁? ?非跳频(单频)应用中,最高的鉴相频率有什么限制? ?频繁地开关锁相环芯片的电源会对锁相环有何影响? ?您能控制PLL芯片了么?,R分频和N分频配置好了么?

?您的晶振输出功率有多大?VCO的输出功率有多大? ?您的PFD鉴相极性是正还是负? ?您的VCO输出频率是在哪一点?最低频率?最高频率?还是中间的某一点?VCO 的控制电压有多大? ?您的PLL环路带宽和相位裕度有多大? ?评价PLL频率合成器噪声性能的依据是什么? ?小数分频的锁相环杂散的分布规律是什么? ?到底用小数分频好还是整数分频好? ?ADI提供的锁相环仿真工具ADISimPLL支持哪些芯片,有什么优点? ?分频–获得高精度时钟参考源? ?PLL,VCO闭环调制,短程无线发射芯片? ?PLL,VCO开环调制? ?时钟净化----时钟抖动(jitter)更小? ?时钟恢复(Clock Recovery)? 问题:参考晶振有哪些要求?我该如何选择参考源? 答案:波形:可以使正弦波,也可以为方波。 功率:满足参考输入灵敏度的要求。

实验三_Okumura-Hata方法计算机仿真

姓名:123学号:321杭州电子科技大学 实验一Okumura-Hata方法计算机仿真 【实验目的】 ?加深对奥村模型的理解; ?能够使用Matlab利用Okumura-Hata方法计算基本传输损耗; ?比较奥村模型和Okumura-Hata方法获得的基本传输损耗的差异,分析 Okumura-Hata方法的误差。 【实验内容】 ?使用Matlab利用Okumura-Hata方法计算基本传输损耗; ?分析Okumura-Hata方法的误差; 【实验设备】 ?一台PC机 【实验步骤】 1.采用Okumura-Hata方法分别计算大城市市区地区准平滑地形、郊区和开阔区,基站天线高度 是200米,手机天线高度是3米情况下,不同传播距离和不同载波频率条件下的传播损耗中值。画出相应的曲线。 2.将计算结果和通过奥村模型实测测得的结果进行比较,验证计算结果的正确性。 3.分析Okumura-Hata方法在何距离以及何频率范围内存在较大的误差。 【实验内容】 1.大城市 clear; hb=200; hm=3; for d=[125103060100] f1=150:0.1:300; Lb11=69.55+26.16*log10(f1)-13.82*log10(hb)-(8.29*log10(1.54*hm).^2-1.1) +(44.9-6.55*log10(hb))*log10(d); f2=300:0.1:1920; Lb12=69.55+26.16*log10(f2)-13.82*log10(hb)-(3.2*(log10(11.75*hm)).^2-4. 97)+(44.9-6.55*log10(hb))*log10(d); f=[f1f2]; Lb1=[Lb11Lb12]; figure(1); hold on; plot(f,Lb1,'r'); end grid; title('大城市'); xlabel('频率/MHz');

计算机仿真概述

计算机仿真 概述

引言 仿真技术作为一门独立的科学已经有50多年的发展历史了,他不仅用于航天、航空、各种系统的研制部门,而且已经广泛应用于电力、交通运输、通信、化工、核能等各个领域。特别是近20年来,随着系统工程与科学的迅速发展,仿真技术已从传统的工程领域扩充到非工程领域,因而在社会经济系统、环境生态系统、能源系统、生物医学系统、教育系统也得到了广泛的应用。 在系统的规划、设计、运行、分析及改造的各个阶段,仿真技术都可以发挥重要作用。随着研究对象的规模日益庞大,结构日益复杂,仅仅依靠人的经验及传统技术难以满足愈来愈高的要求。基于现代计算机及其网络的仿真技术,不但能提高效率,缩短研究开发周期,减少训练时间,不受环境及气候限制,而且对保证安全、节约开支、提高质量尤其具有突出的功效。 现在,仿真技术成已为各个国家重点发展的一门高新技术,从某种角度上,它代表着一个国家的科技实力的强弱,同时在某些方面也制约着一些国家的现代化建设和发展。 从理论上讲,我们日常生活中以及自然界中碰到的一切问题,都可以利用计算机进行模拟。因此,要跟上时代的发展要求,学习和了解一定的仿真技术是必要的。 一、系统、模型与仿真 在认识仿真之前,首先要了解与仿真相关的两个概念:系统与模型。 系统:一般来说,所谓“系统”就是指按照某些规律结合起来,相互作用、相互依赖、相互依存的所有实体的集合。描述系统的“三要素”――实体、属性、活动。实体确定了系统的构成;属性也称为描述变量,用来描述每一实体的特性;活动定义了系统内部实体之间的相互作用,从而确定了系统内部发生的过程。举个例子说,我们可以把一个理发馆定义为一个系统。该系统的“实体”包括服务员和顾客,顾客到达模式和服务质量分别是顾客和服务员两个实体的“属性”,而整个服务过程就是“活动”。 模型:所谓“模型”就是系统某种特定功能的一种描述,它集合了系统必要的信息,通过模型可以描述系统的本质和内在的关系。它一般分为物理模型和数学模型两大类。物理模型与实际系统有相似的物理性质,它们与实际系统外貌相似,只不过按比例改变尺寸,如各种飞机、轮船的模型等。数学模型是用抽象的数学方程描述系统内部各个量之间的关系而建立的模型,这样的模型通常是一些数学方程。如带电粒子在电场中运动的数学模型,我们关心的是粒子的速度、位移随时间的变化。于是我们将系统的特征如电场强度,时间,粒子

接收机参数

Receiver Parameters 接收机参数 云南监测站业务室 2011年3月

Content 目录 *Receiver Parameters *接收机参数 1、Noise Figure 噪声系数 2、MDS 最小可探测信号 3、Sensitivity 灵敏度 4、IP2/IP3 二阶截获点/ 三阶截获点 5、1dB compression 1dB压缩点 6、Oscillator phase noise 振荡器相位噪声 7、2nd / 3rd IFfilter 第2/第3中频滤波器 8、Dynamic range / Spurious free dynamic range 动态范围/无杂散动态范围 * Receiver Operating Modes *接收机工作模式 1、Low noise mode 低噪声模式 2、Normal mode 常规模式 3、Low distortion mode 低失真模式

Noise 噪声 The physical causes for this effect ultimately lie in irregular electron movements. 有电流的地方就有噪声。这种现象的产生归结为电子的不规则运动。 The following principle applies: The higher the current, the more noise is generated in our receiver. 我们的接收机遵循下面的原则:电流越大,接收机产生的噪声就越大。 We must therefore try a low-current receiver design, although this very quickly conflicts with its linearity. 因此,我们将尽量采用低电流的接收机设计,尽管这与接收机的线性度形成了冲突。(接收机电流越小,接收机的线性度就越低。这就形成了一对矛盾) The requirements for "low noise" (NF) and "high linearity" (IP3) are opposite in nature. 对于低噪声(NF噪声系数)和高线性度(IP3三阶截获点)的要求在本质上是相反的,是一对矛盾关系。 Noise is understood as the inherent noise of a receiver, which reduces the original signal-to-noise ratio of an input signal. 噪声被理解为接收机的固有噪声(内部噪声),它降低了输入信号的信噪比。 Inherent noise is therefore a measure of the sensitivity of the receiver. It allows conclusions as to the minimum level the signals must have to be detectable save. 所以固有噪声(内部噪声)是衡量接收机灵敏度的尺度之一。由此得出结论:内部噪声是可靠检测小信号的关键。 The inherent noise is usually expressed as a bandwidth-independent value: Noise Figure(NF). 固有噪声通常表示为一个与带宽无关的值:噪声系数(NF)。

锁相环输出信号相位噪声噪声及杂散特性分析应用实践

锁相环输出信号相位噪声噪声及杂散特性分析应用实践 【摘要】本文详细地介绍了锁相环的鉴频鉴相器、分频器和输入参考信号的相位噪声对锁相环合成输出信号的近端相位噪声的具体贡献值。并以CDMA 1X基站系统中800MHz的FS 单板的锁相环输出信号相位噪声指标进行理论计算。为广大锁相环设计者提供理论计算方法的参考和实践设计的参考依据。 【关键词】锁相环设计,相位噪声 一、术语和缩略语 表格 1 术语和缩略语 二、问题的提出 锁相环工作原理图,由三部分组成:鉴相器(PFD)、环路滤波器(LPF)和压控晶体振荡器(VCXO),如图0-1所示。 图0-1锁相环原理框图 锁相环输出信号指标主要有相位噪声、谐波抑制、杂散、输出功率、跳频时间。在本文中以CDMA1X基站系统中800MHz的FS单板应用为背景,在CDMA基站中不需要跳频,所以调频时间基本不做要求。输出功率比较好控制,只要调整衰减网络就能保证。锁相环输出信号的相位噪声、谐波抑制和杂散成为影响系统指标的主要因素,成为锁相环技术的关键指标项。在锁相环设计中,相位噪声和杂散成为系统设计主要难点。 三、解决思路 相位噪声分析 相位噪声主要由VCO、鉴频鉴相器、分频器和输入参考信号的相位噪声这四部分引入。环路滤波器对于由鉴频鉴相器、分频器和输入参考信号的相位噪声这三部分引入的相位噪声

具有低通特性,对于VCO产生的相位噪声具有高通特性。一般来说环路带宽内的相位噪声主要决定于由鉴频鉴相器、分频器和输入参考信号,环路带宽以外的相位噪声主要决定于VCO,在环路带宽周围,这四部分的噪声影响相当。所以为了尽量降低输出信号的相位噪声环路滤波器的环路带宽的最佳点是由鉴频鉴相器、分频器和输入参考信号的相位噪声这三部分引入的相位噪声总和与VCO引入的相位噪声相同时的频率。在实际运用中还礼滤波器的设计是非常重要的。对于远端相位噪声如100KHz和1MHz处的一般远远高于环路带宽,其相位噪声主要决定于VCO,要保证其指标主要是选择良好的VCO。而近端相位噪声如100Hz主要由鉴频鉴相器、分频器和输入参考信号的相位噪声决定,但如果还礼带宽取得很小的话如200Hz则VCO的影响也将非常之大。而如果环路带宽远远大于1KHz如为6KHz 以上时1KHz处的相位噪声也将主要由鉴频鉴相器、分频器和输入参考信号的相位噪声决定。下面就分别分析这三部分相位噪声。 由鉴相器引入的相位噪声 由于鉴相器引入的相位噪声为: PD Phase Noise = ( 1 Hz Normalized Phase Noise Floor from Table ) + 10log( Comparison Frequency ) + 20log( N ) 现在FS板的中频环路采用的PLL芯片为NS的LMX2306,其相位噪声基底为-210dBc/Hz。 在CDMA 1X 基站系统800MHz的FS单板中采用的鉴相频率为30KHz,两个中频分别为69.99MHz和114.99MHz,由鉴相器产生的相位噪声为: 69.99MHz: PD Phase Noise= -210+10log(30000)+20log(69990000/30000)= -97.9dBc/Hz 114.99MHz: PD Phase Noise= -210+10log(30000)+20log(114990000/30000)=-93.5dBc/Hz 射频本振范围为754~779MHz。步进为30KHz,鉴相频率为240KHz。对于779MHz 的本振由鉴相器引入的相位噪声为: PD Phase Noise= -210+10log(240000)+20log(779000000/240000)=-85.9dBc/Hz 由分频器引入的相位噪声 由分频器引入的相位噪声的计算公式入下: DIV Phase Noise = (Device Phase Noise Floor )+ 20log( N ) PLL芯片中分频器的相位噪声在器件手册中并没有给出。一般高频分频器的相位噪声基底约为-165dBc/Hz左右。因此就假设分频器的相位噪声基底为-165dBc/Hz,于是得到分频器引起的相位噪声如下: 69.99MHz的中频频率为: DIV Phase Noise= -165+20log(69990000/30000)= -97.6dBc/Hz 114.99MHz的中频频率为: DIV Phase Noise= -165+20log(114990000/30000)= -93.3dBc/Hz 779MHz的射频频率为: DIV Phase Noise= -165+20log(779000000/240000)= -94.7dBc/Hz 由参考信号引入的相位噪声 参考信号引起的相位噪声的计算公式如下 REF Phase Noise = (REF’S Phase Noise )-20log(R)+ 20log( N ) 系统的参考信号都是由GPSTM模块提供的,GPSTM输出的参考信号的相位噪声为-130dBc/Hz@100Hz和-145dBc/Hz@1KHz。最后参考信号通过FDM板到FS板,FDM板输

相关主题
文本预览
相关文档 最新文档