当前位置:文档之家› 核磁测井解释方法研究及应用

核磁测井解释方法研究及应用

核磁测井解释方法研究及应用
核磁测井解释方法研究及应用

前言

《核磁共振成像测井解释方法研究及应用》是2000年局级科研课题,该项目的主要研究目的是通过对核磁共振成像测井解释原理、解释模型和解释方法的研究建立一套具有较高精度的核磁共振成像测井解释方法,为利用核磁共振成像测井进行储层物性参数分析、储层流体识别和复杂油气层的评价奠定理论和方法依据。通过三年来的研究和分析主要完成了以下主要研究内容:

1、核磁共振成像测井原理的实验分析,根据实验数据分析了不同孔隙流体在核磁共振成像测井中的变化规律,从原理上阐明了不同性质流体的核磁共振特性,并根据实际数据研究建立了油、气和水的核磁共振响应的正演分析模型,确定了在不同地质情况下油、气和水的核磁响应特征和T2谱的分布特征。

2、利用实验分析方法对各种不同的影响因素进行了分析,确定了储层孔隙度、地层水矿化度、泥质含量、储层含油气和测量参数选择等因素对核磁共振成像测井的影响及响应特征,为核磁共振成像测井的精确解释及参数计算奠定了坚实的基础。

3、根据实验数据和测井数据相结合建立了储层有效孔隙度、粘土孔隙度、总孔隙度、毛管束缚水孔隙度、渗透率、含油饱和度、含气饱和度和含水饱和度的计算模型,根据实验分析和实际应用分析表明上述参数计算方法具有较高的精度和准确性。

4、分析总结了核磁共振成像测井的主要用途,在孔隙类型分析、储层孔隙分布、复杂储层的流体识别、低阻油层分析、储层伤害程度

评价等方面研究分析了核磁共振成像测井的主要应用。

通过上述研究,针对核磁共振成像测井解释方法研究取得了以下成果:

1、有针对性的分析研究了不同性质流体的核磁共振特性,确定了流体在储层中的核磁共振响应范围和规律;

2、全面系统地分析了各种影响因素在核磁共振成像测井中的作用,为下一步核磁共振成像测井的环境影响因素的较真奠定了基础;

3、建立了适合河南油田的核磁共振储层参数求取模型,并利用反演的方式建立了储层流体饱和度求取模型;

4、系统分析了核磁共振成像测井的主要应用,在统计分析的基础上说明了核磁共振成像测井的技术优势。

在分析研究过程中,核磁共振成像测井研究在以下几个方面具有较高的先进性:

1、系统的分析了各种流体的核磁共振响应特性;

2、深入分析了不同因素对核磁共振成像测井响应的影响;

3、建立了适合研究区域的核磁测井解释模型,并首次分析了T2截止值与储层泥质含量的定量关系;

研究中,储层有效孔隙度计算的平均相对误差为4.9%,渗透率计算的相对误差为21%,油水层解释与石油结论评价结果符合率为87%;研究中得到的方法在25口井的核磁测井解释中得到了应用,应用范围包括河南油田的主要勘探开发区域,得到了较好的应用效果。

第一章核磁共振成像测井原理

核磁共振成像测井是目前成像测井技术中的一项具有独特测量原理的新型测量技术。它既不同于地层电法的测量,也不同于放射性测井的测量。该项技术根据地层中不同物质在磁场中作用效果的差异,直接测量地层中的氢核含量。地层中含有氢原子的物质主要是水和碳氢化合物,因此利用核磁共振成像测井可以有效的识别储层的流体性质,而基本上不受地层岩性和地层水矿化度的影响。核磁成像测井在储层物性参数求取、储层流体识别等方面有其它测井方法无法比拟的先进性。

第一节流体的核磁共振性质

核磁共振测井的目的是要通过对氢核的核磁共振信号测量,识别地层孔隙中的流体及其含量。因此要利用核磁共振测井进行储层流体识别,首先要了解储层条件下各种流体的核磁共振性质。这些性质包括:含氢指数(I H)、扩散系数(D)、纵向弛豫时间(T1)、横向弛豫时间(T2)和回波时间间隔T E。

1、含氢指数

与中子测井一样,核磁共振测井也可以测量地层的含氢指数,但是,两者在储层的响应特性方面具有很大的差别。首先,核磁共振对核素有选择性,核磁共振测井主要观测地层中的氢核;而中子测井还受到地层中氯离子和一些稀有金属对它吸收和强散射的影响;其次,核磁共振测井测量的氢核可以将粘土结构水、毛管束缚水和自由流体束缚水等不同流体性质的氢核分开,而中子测井测量的是地层中所有

氢核的含氢指数,无法区分自由流体和束缚流体,因此核磁测井在详细描述储层含氢指数上是目前其它所有测井方法都无法比拟的。第三、核磁测井响应中不受挖掘效应的影响,信号的幅度基本与岩性无关。第四核测共振测井基本不受井眼流体的影响,当测量确实受到井眼环境的影响时,测量结果可以直观的显示出来,所以核磁测井的井眼影响是决定该井是否适合测量核磁测井的条件,而不是进行复杂井眼校正的条件。

地层中每一种流体的含氢指数是不同的,而且是地层温度和压力的函数。水的含氢指数与盐的溶解量有一定的关系,但目前一般的实验表明,水的矿化度变化对核磁共振测量结果影响很小。对于地层水以及多数有经济价值的原油,井底条件下温度和压力的影响趋向于相互抵消,其含氢指数与地面条件纯水的值差别不大。但气体的含烃指数在井底条件下随温度与压力的增加而显著增加,从而成为可观测的对象。

1)水的含氢指数

定义地表温度和压力条件下水的含氢指数为1,即I HW=1。由于水的密度几乎不随温度和压力变化,因而,井底条件下,I HW也近似于1,但是地层水矿化度增加的情况下,水的含氢指数会有一定的降低。如图1-1的实验结果所示。

图1-1 盐水的含氢指数

2)纯烃

纯有机化合物的含氢指数可以由体积密度d(g/cm3),分子重量Wm(g/mol),以及化学分子式中氢原子数n H 确定。纯水的质子密度为0.11mol/cm3,用这个值把质子密度转换成含氢指数:

I H =

Wm

dn H

11.0

石油中的常见成份正辛烷含氢指数为一个单位。被饱和的普通直链和支链与这个值的偏差在5%以内。非饱和烃(双键及三链键)含氢指数会减少。芳香化合物是非饱和的环,含氢指数也比较低。苯的含氢指数更低,只有0.61。

3)原油

原油是不同含氢量的有机分子组成的碳氢混合物,其含氢指数与粘度有关(用API 标准比重表示)。图1-2反映了无气原油的质子密度NMR 测量值与它们的API 标准比重之间的关系。比较轻的原油(API >250),含氢指数接近于一个单位;低于170API 标准比重时,测量的含氢指数明显减少,主要受原油中弛豫快于1ms 的成分影响。

稠油通常有比较高的芳香烃含量,其质子密度比较低,为了得到正确的孔隙度,需要进行含氢指数校正。

图1-2原油的含氢指数

4)天然气

天然气通常以甲烷为主,另加少量比较轻的烷烃和惰性成分,其含氢指数比较低,且与温度、压力直接有关。常温常压时,用核磁共振不易观察到信号,但是在储层温度与压力条件下,可以达到能够进行观测的程度。甲烷的含氢指数与温度及压力(深度)的关系如图1-3所示,图中曲线模数为地温梯度。

图1-3甲烷的含氢指数 2、扩散系数

NMR 实验期间,布郎运动将引起液体分子的扩散,遵循扩散方程:

Dt

62=??χ

式中, ??2χ为时间内分子扩散的均方距离;D 为扩散系数。室温条件下,水的扩散系数为D =2×10-5cm 2/s 。因此,一秒钟内(相当于一次NMR 实验需要的时间)分子扩散的均方距离达120μs ,远大于许多岩石的孔隙直径。通常液体的扩散系数与粘度η成反比,而与温度T 成正比,即:

D η

T

水、油、气三种液体的扩散系数随温度、深度及原油粘度的变化规律分别如图1-4、1-5和1-6所示。

图1-4水的扩散系数随温度的变化

0.00

10.00

20.0030.0040.0050.00

粘度(mPa.s)

0.01

0.10

1.00

10.00

100.00

149度

38度

图1-5原油的扩散系数随粘度及温度的变化

0.000

0.002

0.004

0.006

0.008

0.010

D

2

46

D E P T H (k m )

图1-6天然气的扩散系数随井深及温度的变化 (曲线模数为地温梯度) 3、 NMR 弛豫 1)自由弛豫

流体处于扩散不受限制的空间时,其NMR 弛豫称自由弛豫,它

反映流体本身的NMR 性质,主要是邻近核自旋随机运动产生的局部磁场涨落的结果。

水的自由弛豫只与温度有关,且T1=T2。

油的自由弛豫与油的成分、粘度及温度有关。对于原油来说。由于它是各种烃的混合物,其弛豫时间谱可能不是一个单峰,而是一个被展宽的分布,例如,从来自最可动氢核的长弛豫时间(轻质油)

深度(千米)

D (cm 2/s )

延伸到来自运动严重受限的氢核的短弛豫时间(稠油)。

天然气的弛豫与以自相互作用为主的液体不同,而是以相互作用为主。气体仅有T1自由弛豫,且与温度、深度有关,如图1-7所示。气体的T2几乎没有自由弛豫。

图1-7 天然气的T1与深度及温度有关

(曲线模数为地温梯度)

钻井泥浆中,如果含有顺磁离子,自由弛豫的速率将大大增加,其中铬或铁铬木质素磺酸盐最为明显。有时,为了减小水基泥浆溶液的横向弛豫时间T2,故意在泥浆中加入少量锰离子。当锰的浓度达到一定程度时,就可以把水相的T2减小到最小回波间隔,使整个水的信号在观测之前还没有开始之前就完全衰减掉。由于锰在水中是不分解的,所以烃的弛豫时间不受影响,观测信号中只剩下烃的贡献。这项技术已经被成功地用来寻找剩余油。类似地,在溶洞性地层中加入少量锰,可以减小溶洞水的纵向弛豫时间T1,从而缩短等待时间,加快测井速度。值得注意的是,锰通常必须与EDTA一起使用,以防

止它与泥质矿物进行离子交换。在没有页岩的井段,还可以使用相对便宜的氯化锰代替。图1-8是锰溶液的NMR 弛豫特性,可以看出,它的横向弛豫时间T2除了与浓度有关外,对温度也有一定的依赖性。

图1-8、磁性物质溶液的弛豫特性

此外,刻度过程中,在刻度器水箱中加入少量硫酸铜,同样可以缩短用于模拟地层的水的T1,减小实验过程中的等待时间,加快刻度速度。 2) 扩散弛豫

如同前章所讨论的,CPMG 测量自旋回波串的时候,分子扩散引起回波串衰减速率加快,由此引入的弛豫叫扩散弛豫,有

12

)(12

2E D GT D T γ= 式中 D —分子扩散系数; γ— 质子的旋磁化; G —梯度磁场强度;

T E—回波时间,T E=2τ, τ是CPMG脉冲串的脉冲间隔。

可见,扩散弛豫与流体的扩散系数(D)、观测时的磁场梯度(G)以及CPMG脉冲序列中使用的回波间隔T E等因素有关。

油、气、水都是能够扩散的流体,对它们做CPMG回波串观测都要受到扩散弛豫的影响。尤其是气体,它的横向弛豫几乎完全由扩散弛豫控制。如前所述,水的扩散系数与温度有关,油的扩散系数与粘度有关,天然气的扩散系数是温度及压力的函数,因而它们的扩散弛豫也将受到这些因素的影响。图1-9和1-10分别为水、油、天然气扩散弛豫的变化特征。顺便指出,扩散弛豫只对T2的观测产生影响,而纵向弛豫时间的观测不受扩散弛豫的影响。

图1-9 水的自由弛预和扩散弛预(磁场梯度2mT/cm)

(0.32ms)

0.10

1.00

10.00100.001000.00

粘度(mPa.s)

T 2(s )

图1-10 原油的横向弛预时间(仪器梯度2mT /cm )

图1-11 天然气的横向弛时间(磁场梯度2mT /cm )

第二节 岩石的核磁共振性质

岩石由矿物骨架和孔隙流体组成。实验观测表明,流体饱和在岩石孔隙中时其核磁共振弛豫比自由状态快得多(10-104倍)。原因在于,孔隙流体除了自由弛豫和扩散弛豫外,还受到一种新的经机制(即表面弛豫)的作用,使弛豫速率大大加快。孔隙流体的纵向弛豫过程受自由弛豫和表面弛豫两种机制控制,横向弛豫过程则受到自由弛豫、表面弛豫和扩散弛豫三种机制的作用。分子扩散使各种弛豫机制相结合,弛豫速率加快。在满足扩散的条件下,总的弛豫速率是单个弛豫机制引起的弛豫速率的和,单个孔隙仍然表现出单指数弛豫规律。

1、表面弛豫

海参体湿润在岩石颗粒表面,NMR 实验期间,扩散将使分子有足够的机会与颗粒表面碰撞。分了碰撞颗粒表面时,会把核自的能量传递给表面,使质子自沿B 0重新取向,由此引起纵向弛豫。同时,自被不可逆的失相,引起横向弛豫的加速。

岩石颗粒表面的顺磁离子,如铁、锰、铬、镍等,具有特别强的弛豫能力,只要它们存在,就会形成顺磁中心,对表面流体的NMR 弛豫起控制作用。通常,砂岩含有1%左右的铁,使其孔隙流体弛豫效率大为提高,超过碳酸盐岩。

岩石颗粒表面经能力的定量表征称作“表面弛豫强度”,用符号

1ρ(对纵向弛豫T1)和2ρ(对横向弛豫T2)表示。如果只有较少的

表面积来弛豫流体大量自旋,弛豫速率就会相对地慢,因此,表面弛

豫速率是表面弛豫强度与孔隙比表面的乘积。

V S

T s 1

11ρ= V

S T S 221ρ= “表面弛豫强度”ρ的值可以通过孔隙图像分析、脉冲场梯度核磁共振、压汞毛管压力曲线等方法确定,其数值与岩石颗粒表面及胶结物的性质有关,但不受温度及压力的影响。

2、扩散机制

对横向弛豫过程观测有显著影响的扩散弛豫是由磁场梯度中分子扩散引起的。对岩石孔隙中的流体扩散机制的认识,取决于对岩石孔隙磁场梯度及流体分子扩散特点的了解。做核磁共振测井时,地层岩石中的磁场梯度有两个来源,一个是测井仪器建立的,例如,NUMAR 的C 型MRIL 在观测区域产生约1.7mT /cm 的均匀梯度;另一个来源是岩石骨架颗粒与孔隙流体之间磁化率差异引起的内部背景梯度磁场,例如,岩石骨架颗粒通常呈顺磁性,油与水呈弱逆磁性,受到外加磁场作用时,在颗粒与孔隙流体分界面上产生一个磁场梯度,大小为:

r

x

B G ?=0

式中,G 为内部背景磁场梯度;B 0为外加磁场强度;x ?为骨架颗粒与孔隙流体之间磁化率的差,r为孔隙半径。当r很小时,这个背景梯度可能很大,甚至远远超过仪器建立的磁场梯度。r对孔隙的几何结构有相当的依赖性,在地层岩石中往往很难确切知道。背景磁场梯度的有关理论与实验至今尚处于研究之中。

当流体处于岩石孔隙中时,其扩散会受到孔壁的限制,故称作受限扩散。实验表明,此时观测到的视扩散系数将随着观测时间的增加而减小。对于短时扩散行为,MITRA 等人认为,视扩散系数的表达式可以写成:

)(941)(000t t D O D V

S

D t D +-=π

式中,S/V 是岩石样品的比表面积;t是扩散时间;D 0是自由流体的扩散系数;D(t)是扩散时间为t时观测的视扩散系数。如果孔隙为球形,设直径为d,则有S/V =6/d。此时,视受限扩散系数将随孔径线性减小,孔径越小,D(t) 相对于D 0减小越快。而对于中等扩散时间的行为,由于部分分子开始进入邻近的孔隙之中,D(t)趋向于变得平缓,它能够感受到孔径的分布和孔隙空间微观几何形态的变化。而在长时扩散行为中,通过分子的扩散,可以探测到孔隙空间的连通性。研究表明,随着扩散时间趋于无限,将会出现:

Φ

∞→=??→?F D t D t 1

1)(0ξ 式中,ξ是孔隙弯曲程度的度量;F 是地层电阻率因素;Φ是孔隙度。由此,通过弯曲程度,视扩散系数与地层的电导率以及渗透率有了联系。

3、自由弛豫

岩石孔隙中的流体,仍然存在自由弛豫机制。特别是非湿润相,如亲水岩石孔隙中的油或气珠,不与颗粒表面接触,因而,保持着自由流体弛豫的特征,即有自由弛豫又有扩散弛豫。水处于非常大的孔

隙中时,例如碳酸盐岩中的溶洞,极少与颗粒表面接触;非常粘的流体,如稠油,转动平均已经失效,弛豫时间相当短,分子向颗粒表面扩散的能力大大减小,即使是湿润相,自由弛豫也将成为主要因素。当孔隙流体顺磁离子浓度很高时,例如铬盐泥浆溶液中的铬离子,由于其自周围的局部场很大,使流体弛豫时间减小,也以自由弛豫为主。气体在静止状态下,极少以连续相存在,当含水饱和度比较低时,水阻塞着孔喉,气体以孤立的气泡存在于孔隙的中心。所以气体在岩石孔隙中总是非湿润相,NMR弛豫机制只有自由弛豫(T1)和扩散弛豫(T2),没有表面弛豫的影响。

4、岩石骨架的NMR弛豫

核磁共振测井以氢核为观测对象。岩石骨架固体中,例如粘土以及含有结晶水的其它矿物,都含有丰富的氢核。众所周知,它们对中子测井会产生影响,但对核磁共振测井响应不会有贡献。一方面,固体中氢核的横向弛豫时间很短,仅数十微秒,在仪器采集回波信号之前,早已衰减掉;另一方面,它们的纵向弛豫时间又非常长,达数十秒,不易被运动中的仪器磁场所磁化。

亲水岩石中各部分质子(孔隙水、油、气以及矿物骨架中)的弛豫机制如表1-1所示。

※指与骨架颗粒表面性质无关

5、含油饱和度与T

1和T

2

的关系

储层流体性质的不同,对于核磁测量的T1和T2具有一定的影响,而且储层流体性质差异越大,在T2谱上的反应越明显,因此利用核磁测井根据其流体性质的差异特征可以进行储层流体识别和含水饱和度的计算。

为了反映T2分布与含油饱和度的关系,图1-12中给出了对于不同含油饱和度的岩心测量得到的T2差谱测量结果。

图1-12 不同含油饱和度差谱特征图

从图中可以看到,随着含油饱和度的增大,油谱的差谱特征越明显,因此在地层含油饱和度达到一定水平的情况下,利用差谱可以进

行储层含油性质的识别,而且根据上述实验还可以说明在其它条件相同的情况下,含油饱和度越高,测量得到的差谱特征越明显。

图1-13是根据实验测量得到的移谱特征图。在测量过程中,对同一岩心不同含水饱和度下的差谱特征进行测量,移谱测量主要是反映储层流体的扩散性质,对于轻质油,其中含有一定的溶解气,利用移谱测量具有较为明显的效果。从图中可以看到,随着含油饱和度的增加,岩心中油的扩散作用越明显,移谱特征表现得越清晰,油谱的主峰位置向T 2减小的方向移动。

图1-14 不同含水饱和度的移谱特征图

第三节 核测共振成像测井正演分析方法研究

核磁共振成像测井目前具有多种测量模式,常用的的测量模式

有,标准T2测量、差谱测量和移谱测量三种模式。我油田引入的核磁测井是阿特拉斯公司最为新型的核磁测井仪器,它根据测量目的不同也分为三种测量模式,分别是地层评价模式、地层评价+油水识别模式、地层评价+气层识别模式和地层评价+重油模式。但无论采样怎样的组合,其最终目的都是测量得到储层的各项地质参数,识别储层流体,只是在测量方法和解释方法上有所差别。由于不同的测量模式对核磁共振成像测井解释具有很大的影响,如果选择的测量模式不正确,得到的解释结论较有很大的偏差,虽然在我油田引进的MREX 新型核磁共振成像测井仪在测井过程中可以利用FE+OIL模式代替其它测量模式,但由于该模式测量速度较低,影响测井时效,因此在测井前有必要根据测量层段的流体性质进行必要的测前设计,选择合适的测量方法进行储层评价。这种根据地层性质进行储层核磁响应特征分析的过程称为正演过程。

1、核磁共振成像测井正演的理论基础

核磁共振成像测井的正演过程是利用已知的储层物性、含油性及所含流体的物理性质进行计算,得到储层的核磁共振成像测井的T2分布谱和回波串组合。

(1)正演过程的输入参数

核磁共振成像测井的正演需要输入必要的地质参数,主要包括目的层段的压力、温度、岩石结构、分选、岩性以及与流体性质有关的地层水矿化度或电阻率,气的API比重或组成成份,油的油气比和脱气原油的密度等参数。

《测井方法与综合解释》11讲述

葆灵蕴璞 《测井方法与综合解释》综合复习资料 一、名词解释 声波时差: 声波在介质中传播单位距离所需要的时间 孔隙度:岩石孔隙体积在岩石外表总体积的比值,为小数。 地层压力: 地层孔隙流体压力 地层倾角:地层层面法相与大地铅垂轴的夹角 含油孔隙度:含油孔隙体积占地层体积的比值 泥质含量:泥质体积占地层体积的百分数 二、填空题 1.描述储集层的基本参数有孔隙度、渗透度、含油饱和度和有效厚度等。 2.地层三要素走向、倾向、倾角。 3.伽马射线去照射地层可能会产生电子对效应、康普顿效应和光电效应效应。 4.岩石中主要的放射性核素有铀238、钍和钾等。 5.声波时差Δt的单位是微秒/米,电导率的单位是毫西门子/米。 6.渗透层在微电极曲线上有基本特征是微梯度与微点位两条曲线不重合。 7.地层因素随地层孔隙度的减小而增大;岩石电阻率增大系数随地层含水饱和度的增大而增大。 8.当Rw大于Rmf时,渗透性砂岩的SP先对泥岩基线出现正异常。 9.由测井探测特性知,普通电阻率测井提供的是探测范围内共同贡献。对于非均匀电介质,其大小不仅与测井环境有关,还与测井仪器 --和--- 有关。电极系A0.5M2.25N的电极距是_0.5_。 10.地层对热中子的俘获能力主要取决于cl的含量。利用中子寿命测井区分油、水层时,要求地层水矿化度高,此时,水层的热中子寿命小于油层的热中子寿命。 11.某淡水泥浆钻井地层剖面,油层和气层通常具有较高的视电阻率。油气层的深浅电阻率显示泥浆低侵特征。 12.地层岩性一定,C/O测井值越高,地层剩余油饱和度越大。 13.在砂泥岩剖面,当渗透层SP曲线为负异常时,井眼泥浆为_淡水泥浆__,油层的泥浆侵入特征是__泥浆侵入_。 14.地层中的主要放射性核素是_铀__、_钍_、_钾__。沉积岩的泥质含量越高,地层放射性高。 15.电极系A3.75M0.5N 的名称底部梯度电极系_,电极距4米_。

核磁共振测井简介

核磁共振测井简介 发明了测量地磁场强度的核磁共振磁力计,随后他利用磁力计技术进行油井测量。1956 年,Brown 和Fatt 研究发现,当流体处于岩石孔隙中时,其核磁共振弛豫时间比自由状态相比显著减小。1960年,Brown 和Gamson 研制出利用地磁场的核磁共振测井仪器样机并开始油田服务。但是,地磁场核磁测井方案受到三个限制,即:井眼中钻井液信号无法消除,致使地层信号被淹没;“死时间”太长,使小孔隙信号无法观测;无法使用脉冲核磁共振技术。因此,这种类型的核磁共振测井仪器难以推广。1978 年,Jasper Jackson 突破地磁场,提出一种新的方案,即“Inside-out”设计,把一个永久磁体放到井眼中(Inside),在井眼之外的地层中(Outside)建立一个远高于地磁场、且在一定区域内均匀的静磁场,从而实现对地层信号的观测。这个方案后来成为核磁共振测井大规模商业化应用的基础。但是由于均匀静磁场确定的观测区域太小,观测信号信噪比很低,该方案很难作为商业测井仪而被接受。1985 年,Zvi Taicher 和 Schmuel 提出一种新的磁体天线结构,使核磁共振测井的信噪比问题得到根本性突破。 1988 年,一种综合了“Inside-out”概念和MRI 技术,以人工梯度磁场和自旋回波方法为基础的全新的核磁共振成像测井(MRIL)问世,使核磁共振测井达到实用化要求。此后,核

磁共振测井仪器不断改进,目前,投入商业应用的核磁共振测井仪器的世界知名测井服务公司分别为:斯仑贝谢、哈利伯顿和贝克休斯。他们代表性的产品分别是:Schlumberger--CMR、Halliburton--MRIL-P、Baker hughts—MREX。基本原理在没有任何外场的情况下,核磁矩(M)是无规律地自由排列的。在有固定的均匀强磁场σ0影响下,这个自旋系统被极化,即M重新排列取向,沿着磁场方向排列。同时,原子核还存在轨道动量矩,象陀螺一样环绕,这个场的方向以频率ω0 进动。 ω0与磁场强度σ0 成正比,并称ω0为拉莫尔频率。在极化后的磁场中,如果在垂直于的方向再加一个交变磁场,其频率也为质子(氢核)的进动频率时,将会发生共振吸收现象,即处于低能态的核磁矩,通过吸收交变磁场提供的能量,越迁至高能态,此现象称为核磁共振。造岩元素中各种原子核的核磁共振效应的数值是不同的,它首先决定于原子核的旋磁比,岩石中元素的天然含量以及包含该元素的物质赋存状态。核磁测井以氢核与外加磁场的相互作用为基础,可直接测量孔隙流体的特征,不受岩石骨架矿物的影响,能提供丰富的底信息,如地层的有效孔隙度、自由流体孔隙度、束缚水孔隙度、孔径分布及渗透率等参数。氢核在地磁场中具有最大的旋磁比和最高的共振频率,根据含氢物质的旋磁比、天然含量和赋存状态,氢是在钻井条件下最容易研究的元素。因此,包含某种流(水、油或天然气)中的氢原子核是核磁测井的研究对象。对于静磁场,热平衡时,处于地

测井方法与综合解释综合复习资料要点

《测井方法与综合解释》综合复习资料 一、名词解释 1、水淹层 2、地层压力 3、可动油饱和度 4、泥浆低侵 5、热中子寿命 6、泥质含量 7、声波时差 8、孔隙度 9、一界面 二、填空 1.储集层必须具备的两个基本条件是_____________和_____________,描述储集层的基本参数有____________、____________、____________和____________等。 2.地层三要素________________、_____________和____________。 3.岩石中主要的放射性核素有_______、_______和________等。沉积岩的自然放射性主要与岩石的____________含量有关。 4.声波时差Δt的单位是___________,电阻率的单位是___________。 5.渗透层在微电极曲线上有基本特征是________________________________。 6.在高矿化度地层水条件下,中子-伽马测井曲线上,水层的中子伽马计数率______油层的中子伽马计数率;在热中子寿命曲线上,油层的热中子寿命______水层的热中子寿命。 7.A2.25M0.5N电极系称为______________________电极距L=____________。 8.视地层水电阻率定义为Rwa=________,当Rw a≈Rw时,该储层为________层。 9、在砂泥岩剖面,当渗透层SP曲线为正异常时,井眼泥浆为____________,水层的泥浆侵入特征是__________。 10、地层中的主要放射性核素分别是__________、__________、_________。沉积岩的泥质含量越高,地层放射 性__________。 11、电极系A2.25M0.5N 的名称__________________,电极距_______。 12、套管波幅度_______,一界面胶结_______。 13、在砂泥岩剖面,油层深侧向电阻率_________浅侧向电阻率。 14、裂缝型灰岩地层的声波时差_______致密灰岩的声波时差。 15、微电极曲线主要用于_____________、___________。 16、地层因素随地层孔隙度的增大而;岩石电阻率增大系数随地层含油饱和度的增大 而。 17、当Rw小于Rmf时,渗透性砂岩的SP先对泥岩基线出现__________异常。

核磁共振测井技术的研究现状

摘要核磁共振测井在我国的应用已经有十余年的历史,对我国复杂油气藏测井评价以及石油测井技术本身的发展都做出了有目共睹的积极贡献。例如,它提供的地层信息的丰富性,远多于其他任何单项测井方法;在复杂岩性,特殊岩性,如砂砾岩、火山岩等储层,常常是少数几种有效的重要方法之一;在束缚水引起的低阻油气藏,它是必不可少的方法;它是迄今为止唯一能够提供比较合理的地层渗透率的测井方法;对于深部气层,当天然气孔隙体积比较大时,它的显示十分明显;在稠油以及水淹层,有一定的经验关系存在;对原油粘度以及毛管压力曲线等信息也有较好的反映,等等。但是,由于或是使用条件的不适应,或是使用方法的不恰当,或是技术本身的不完善,也存在或出现过不少问题。例如,它求出的孔隙度时常偏低,有时也偏高;它求出的束缚水对地区或地层的依赖性比较强;它求出的渗透率还没有得到油藏专家的广泛应用;而在流体识别方面,它还有比较大的随意性和不确定性,等等。深入研究这些问题,对提高应用效果,挖掘应用潜力,发展核磁共振测井技术等,都有重要意义。本文从实际效果和技术适应性等几个方面,介绍和讨论我国核磁共振测井应用中存在的一些常见问题,以促进该项技术的正确应用。 我国的核磁共振测井是1996年开始的[1]。中油测井有限公司(CNLC)和华北油田测井公司(现中国石油集团测井有限公司即CPL的华北事业部)最先引进了NUMAR公司的C型磁共振成像测井仪(MRIL-C)。随后,这项技术在我国迅速推广。如今,10余套老的MRIL-C或升级后的MRIL-C/TP,30余套新的代MRIL-Prime(哈里伯顿商标),6套MREx(贝克阿特拉斯商标),3套CMR(斯仑贝谢商标)以及1套MR-Scanner在我国境内服务。均估算,年测井工作量在1000口左右,既有探井,也有生产井。油田公司对核磁共振测井的认可程度正逐年增加,特别是在复杂岩性,特殊岩性(碳酸盐岩,火山岩,砂砾岩等),低孔低渗,束缚水引起的低饱和度等复杂油气藏,核磁共振测井时常成为最后的、甚至是少数几个真正有效的测井手段。 但是,在我国核磁共振测井应用实践中,也发现许多问题,不仅影响了应用效果,还曾经在某种程度上影响过人们对这项技术的信心。这些问题主要集中在孔隙度和流体识别上。在孔隙度方面,从理论上来讲,核磁共振测井是最好的测量方法,应该能够提供准确的地层孔隙度测量结果,而实际上在气层,稠油层,或高矿化度钻井液等条件下,往往出现测量孔隙度偏低或偏高的情况,甚至表现出与地层岩性的某种相关性。在流体识别方面,从理论上讲,有这些可能性,并且也发展了相应的数据采集和处理方法,但是,却都有非常强的使用条件!如果不满足这些使用条件,当然不会有好的使用效果。至于核磁共振测井得到的束缚水,渗透率,孔径分布,毛管压力曲线,原油粘度等信息,都是由回波串反演出T2分布,然后再导出的二级参数,也都有非常强的使用条件。对应用实践中出现的种种问题进行归纳,总结和分析,将有益于改进提高核磁共振测井的应用效果。 核磁共振测井孔隙度 核磁共振测井孔隙度是被观测区域孔隙流体含氢指数与孔隙度的综合反映[2][3],而且,受到多个因素的影响。这些因素包括:CPMG回波串采集参数;刻度;孔隙流体含氢指数;回波串的信噪比;钻井液矿化度;以及采集模式与处理方法。 一般来说,回波串采集参数如TW(等待时间),TE(回波间隔),NE(回波个数)以及90o脉冲和刻度等将影响对地层孔隙度的观测比较好理解。在测井作业中,也容易控制。孔隙流体含氢指数对核磁共振孔隙度的影响与对中子测井的影响是一样的,理论上容易分析,而实际情况则往往是:要么含氢指数无法已知,要么流体实际孔隙体积不能确定,所以,校正起来常常相当困难。这几个因素通常是使核磁共振观测的孔隙度比地层实际孔隙度偏低。而下

核磁共振测井简介

引言 核磁共振测井是一种适用于裸眼井的测井新技术,是目前唯一可以直接测量任意岩性储集层自由流体(油、气、水)渗流体积特性的测井方法,有明显的优越性。本文主要讲解了核磁共振测井的发展历史、基本原理、基本应用、若干问题及展望。 发展历史 核磁共振作为一种物理现象,最初是由Bloch和Purcell于1946年发现的,从而揭开了核磁共振研究和应用的序幕。1952 年,Varian 发明了测量地磁场强度的核磁共振磁力计,随后他利用磁力计技术进行油井测量。1956 年,Brown 和Fatt研究发现,当流体处于岩石孔隙中时,其核磁共振弛豫时间比自由状态相比显著减小。1960年,Brown 和Gamson研制出利用地磁场的核磁共振测井仪器样机并开始油田服务。 但是,地磁场核磁测井方案受到三个限制,即:井眼中钻井液信号无法消除,致使地层信号被淹没;“死时间”太长,使小孔隙信号无法观测;无法使用脉冲核磁共振技术。因此,这种类型的核磁共振测井仪器难以推广。1978 年,Jasper Jackson 突破地磁场,提出一种新的方案,即“Inside-out”设计,把一个永久磁体放到井眼中(Inside),在井眼之外的地层中(Outside)建立一个远高于地磁场、且在一定区域内均匀的静磁场,从而实现对地层信号的观测。这个方案后来成为核磁共振测井大规模商业化应用的基础。但是由于均匀静磁场确定的观测区域太小,观测信号信噪比很低,该方案很难作为商业测井仪而被接受。1985 年,ZviTaicher和Schmuel提出一种新的磁体天线结构,使核磁共振测井的信噪比问题得到根本性突破。1988 年,一种综合了“Inside-out”概念和MRI 技术,以人工梯度磁场和自旋回波方法为基础的全新的核磁共振成像测井(MRIL)问世,使核磁共振测井达到实用化要求。 此后,核磁共振测井仪器不断改进,目前,投入商业应用的核磁共振测井仪器的世界知名测井服务公司分别为:斯仑贝谢、哈利伯顿和贝克休斯。他们代表性的产品分别是:Schlumberger--CMR、Halliburton--MRIL-P、Baker hughts—MREX。 基本原理 在没有任何外场的情况下,核磁矩(M)是无规律地自由排列的。在有固定的均匀强磁场σ0影响下,这个自旋系统被极化,即M重新排列取向,沿着磁场方向排列。同时,原子核还存在轨道动量矩,象陀螺一样环绕,这个场的方向以频率ω0 进动。ω0与磁场强度σ

测井数据处理与解释 1010131126 张天恩

《测井数据处理与解释》实践报告 班级:地物一班 姓名:张天恩 学号:1010131126 指导老师:肖亮 中国地质大学(北京)地球物理与信息技术学院 2016年11月

一、实践课的目的和意义 1. 通过本次实践课,使学生能进一步的了解测井资料综合处理与解释的一般流程;通过实际测井资料的处理,将课本所学知识与现场资料很好的结合起来,以更进一步的巩固各种知识; 2. 了解测井资料人工解释的一般方法; 3. 掌握各种储层的测井响应特征及划分渗透层的一般方法; 4. 储层流体识别的一般方法; 4. 掌握储层孔隙度、渗透率、含油饱和度解释的一般方法; 5. 掌握储层有效厚度确定的一般方法; 二、实践课的基本内容 本次上机实验主要包括如下几个内容:1. 了解Ciflog测井解释软件及基本操作方法;2. 熟悉测井资料的数据加载及测井曲线的回放方法;3. 掌握储层流体的定性识别方法;4. 对实际测井曲线进行岩性,电性、含油性描述。5. 掌握储层参数的定量计算方法。根据实际区域地质特征,利用人工解释的方法划分渗透层,计算储层泥质含量、孔隙度、渗透率、含油饱和度,有效厚度,结合束缚流体饱和度信息,对储层流体性质进行初步定性解释。 首先,打开Ciflog软件会看到一个“打开项目”的对话框,提示有本地项目,在下面还有一个“新建”选项,我们点击“新建”就可以建立自己所做的项目,项目建立好后,就可以进入主界面了,在最左面可以看到有个“任务栏”,点进去可以看到有几个选项,有“数据管理”,“数据格式转换”,“数据拷贝”,“测井曲线数字化”,我们点进“数据管理”界面,我们可以看到自己所建立的项目,用鼠标右键点击项目出现对话框,选择“新建工区”,在出现的对话框中输入工区的名字,再鼠标右键“新建工区”出现的对话框中选择“新建井”,输入所测的数据井的名字,再右键会出现对话框选择“新建井次”,再输入井次名字,然后就可以进行数据的导入工作了,再点击“任务栏”找到“数据格式转换”,找到打开文件,在文件中找到自己想好要处理的数据,我们的数据是一维文本格式的所以我们在下面的格式中选择一维文本式,则数据就出来了。数据打开后找到数据格式转换初始设置,在设置中可以看到“曲线名所在行”和“数据起始行”分别是“1”,和“3”,这是所给数据所决定的,文本类型设置为等间隔,选择第一列为深度列,这样起始深度和终止深度和采样间隔就确定了,数据类型为浮点型,深度单位是米。 在数据导入之后我们就可以绘制测井曲线图了,我们再回到数据管理界面,单击井次就可以出现刚刚导入的井的数据了,我们可以看到有AC、CNL、CAL、DEN、GR、Rt、Rxo、SP七组数据,我们测井曲线分为三大类,分别为三岩性曲线,三孔隙度曲线,三电阻率曲线,其中三岩性曲线包括自然伽玛曲线(GR),自然电位曲线(SP),井径曲线(CAL),三物性曲线包括声波时差曲线(AC),密度曲线(DEN),补偿中子曲线(CNL),三电阻率曲线包括深侧向电阻率曲线,浅侧向电阻率曲线,冲洗带电阻率曲线(Rxo),共九条曲线,我们这了所

华东《测井方法与综合解释》2019年春学期在线作业(二)

------------------------------------------------------------------------------------------------------------------------------ (单选题)1: M—N交会图用于确定地层的()。 A: 岩性 B: 孔隙度 C: 含油性 正确答案: (单选题)2: 声波孔隙度反映的孔隙类型是 A: 次生孔隙; B: 缝洞孔隙; C: 原生孔隙 正确答案: (单选题)3: 地层因素F的大小 A: 与Ro成正比,与Rw成反比; B: 是基本与Rw大小无关的常数; C: 主要决定于岩石有效孔隙度,同时与岩性和孔隙结构有一定关系 正确答案: (单选题)4: 岩石骨架内的成分有()。 A: 泥质 B: 流体 C: 方解石白云石等造岩矿物 正确答案: (单选题)5: 准层或标志层的主要作用是 A: 作为划分岩性的标准; B: 作为划分油气水层的标准; C: 作为井间地层对比或油层对比的主要依据。 正确答案: (单选题)6: 泥浆高侵是指()。 A: 储层Rxo《Rt B: Rxo》R C: Rxo约等于Rt 正确答案: (判断题)7: 地层泥质含量越低,地层束缚水饱和度越高。 A: 错误 B: 正确 正确答案: (判断题)8: 地层孔隙度越大,其声波时差越大。 A: 错误 B: 正确 正确答案: (判断题)9: 地层泥质含量越低,地层放射性越强。 A: 错误 B: 正确 正确答案: (判断题)10: 地层含油孔隙度越高,其C/O值越大。

------------------------------------------------------------------------------------------------------------------------------ A: 错误 B: 正确 正确答案: (判断题)11: 地层含油孔隙度越大,其电阻率越小。 A: 错误 B: 正确 正确答案: (判断题)12: 地层含水孔隙度越大,其电阻率越小。 A: 错误 B: 正确 正确答案: (判断题)13: 视地层水电阻率为。 A: 错误 B: 正确 正确答案: (判断题)14: 地层孔隙度越大,其声波传播速度越快。 A: 错误 B: 正确 正确答案: (单选题)1: M—N交会图用于确定地层的()。 A: 岩性 B: 孔隙度 C: 含油性 正确答案: (单选题)2: 声波孔隙度反映的孔隙类型是 A: 次生孔隙; B: 缝洞孔隙; C: 原生孔隙 正确答案: (单选题)3: 地层因素F的大小 A: 与Ro成正比,与Rw成反比; B: 是基本与Rw大小无关的常数; C: 主要决定于岩石有效孔隙度,同时与岩性和孔隙结构有一定关系 正确答案: (单选题)4: 岩石骨架内的成分有()。 A: 泥质 B: 流体 C: 方解石白云石等造岩矿物 正确答案: (单选题)5: 准层或标志层的主要作用是 A: 作为划分岩性的标准; B: 作为划分油气水层的标准; C: 作为井间地层对比或油层对比的主要依据。

测井解释流程

测井解释流程 测井资料数据处理与综合解释 一、测井资料数据处理 1、测井解释收集的第一性资料: ①钻井取芯 ②井壁取芯和地层测试 ③钻井显示 ④岩屑录井 ⑤气测录井 ⑥试油资料 2、测井数据预处理 在用测井数据计算地质参数之前,对测井数据所做的一切处理都是预处理。主要包括: ①深度对齐:使每一深度各条测井数据同一采样点的数据。 ②把斜井曲线校正成直井曲线 ③曲线平滑处理:把非地层原因引起的小变化或不值得考虑的小变化平滑掉。 ④环境校正:把仪器探测范围内影响消除掉,获得地层真实的数值。 ⑤数值标准化:消除系统误差的方法。 二、测井资料的定性解释 测井资料的定性解释是确定每条曲线的幅度变化和明显的形态特征反映的地层岩性、物性和含油性,结合地区经验,对储集层做出综合性的地质解释。 三、测井综合解释由各油田测井公司的解释中心选择的处理解释程序,有比较富有经验的人员,较丰富的资料对测井数据做更完善的处理和解释,它向油田提供正式的单井处理与解释结果,综合地质研究,还可以完成地层倾角、裂缝识别、岩石机械性质解释等特殊处理。 1、地层评价方法 以阿尔奇公式和威里公式为基础,发展了一套定量评价储集层的方法,包括: ①建立解释模型; ②用声速或任何一种孔隙度测井计算孔隙度; ③用阿尔奇公式计算含水饱和度和含油气饱和度; ④快速直观显示地层含油性、可动油和可动水; ⑤计算绝对渗透率; ⑥综合判断油气、水层。 2、评价含油性的交会图 电阻率—孔隙度交会图 3、确定束缚水饱和度和渗透率 储集层产生流体类别和产量高低, 与地层孔隙度和含油气、束缚水饱和度、绝对渗透率和原油性质等有关。束缚水饱和度与含水饱和度的相互关系,是决定地层是否无水产油气的主要因素,绝对渗透率是决定地层能否产出流体的主要因素,束缚水饱和度有密切关系。没有一种测井方法可直接计算这两个参数。 确定束缚水饱和度的方法: 1)将试油证实的或综合分析确有把握的产油。油基泥浆取芯测量的含水饱和度就是束缚水饱和度。 2)深探测电阻率计算的含水饱和度作为束缚水饱和度。 3)根据试油、测井资料的统计分析,确定束缚水饱和度。 确定地层绝对渗透率的方法:

测井方法与综合解释在线作业答案

第一阶段作业 1.第1题单选题含油气泥质岩石冲洗带的物质平衡方程是() C、 2.第2题单选题泥浆高侵是指() C、Rxo约等于Rt 3.第3题单选题砂岩储层层段,微电极系曲线特征是 B、有正幅度差,幅度中等 4.第4题单选题窜槽层位在放射性同位素曲线上的幅度和参考曲线相比() A、明显增大 5.第5题单选题M0.5A2.25B表示 A、双极供电正装梯度电极系 6.第6题单选题超热中子的空间分布主要取决于地层的 A、含氢量 7.第7题单选题声波孔隙度反映的孔隙类型是() C、原生孔隙 8.第8题单选题岩石骨架内的成分有() C、方解石白云石等造岩矿物 9.第9题单选题储集层划分的基本要求是() C、一切可能含有油气的地层都划分出来,并要适当划分明显的水层 10.第10题单选题岩石包括泥质孔隙在内的孔隙度是() B、总孔隙度 11.第11题单选题地层因素F的大小() C、主要决定于岩石有效孔隙度,同时与岩性和孔隙结构有一定关系 12.第12题单选题仅用深探测电阻率高低判断储层的含油气、水特性时,这些地层应当是: A、岩性、孔隙度和地层水电阻率基本相同 13.第13题判断题视地层水电阻率为。 标准答案:错误 14.第14题判断题地层泥质含量越低,地层束缚水饱和度越高。 标准答案:错误 15.第15题判断题地层孔隙度越大,其声波传播速度越快。 标准答案:错误 16.第16题判断题地层泥质含量越低,地层放射性越强。 标准答案:错误 17.第17题判断题地层含水孔隙度越大,其电阻率越小。 标准答案:正确 第二阶段作业 1.第1题单选题地层含天然气对中子、密度测井曲线的影响是使___________ 。A、 2.第2题单选题同位素测井可以用于测量吸水剖面的相对吸水量。以下那个说法正确?()

[中石油华东]《测井方法与综合解释》2020年秋学期在线作业(一)

《测井方法与综合解释》2020年秋学期在线作业(一) 一、单选题 1.测井解释结论中,油层指的是()。 A.只含油,不含水的地层 B.含油饱和度高,含水饱和度低 C.只含束缚水,无可动水的含油地层 正确答案:C 2.标准测井的主要应用是 A.粗略划分岩性和油气、水层,井间地层对比; B.详细评价岩性和油气、水层,井间油层对比; C.计算固井需要的水泥量。 正确答案:A 3.中子测井的零源距是指 A.在该源距下中子孔隙度为0; B.在该源距下测井超热中子计数率与地层含H量无关 C.在该源距下,测井超热中子计数率与地层含H量成反比; 正确答案:B 4.地层电阻率与地层岩性、孔隙度、含油饱和度及地层水电阻率有关。以下那个说法正确()。 A.地层含油气饱和度越高,地层电阻率越低 B.地层含油气孔隙度越低,地层电阻率越高 C.地层水电阻率越低,地层电阻率越低 正确答案:C 5.MN交会图用于确定地层的()。 A.岩性 B.孔隙度 C.含油性 正确答案:A 6.地层声波时差是地层声波速度的倒数。以下那个说法正确()。 A.疏松欠压实地层的声波时差小,声波速度大 B.气层声波衰减严重,声波时差曲线常见周波跳跃现象,即声波时差大 C.泥岩声波时差与泥岩埋藏深度无关 正确答案:B 7.测井解释结论中,油层指的是()。 A.只含油,不含水的地层 B.含油饱和度高,含水饱和度低 C.只含束缚水,无可动水的含油地层 正确答案:C 8.同位素测井可以用于测量吸水剖面的相对吸水量。以下那个说法正确()。 A.地层吸水量的多少与吸水前后曲线覆盖面积之差无关 B.吸水前后曲线覆盖面积之差越大,地层相对吸水量越少 C.吸水前后曲线覆盖面积之差越大,地层相对吸水量越高

核磁共振测井原理

核磁共振测井原理 一、快速发展的核磁共振测井技术 1945年,Bloch 和Purcell发现了核磁共振(NMR)现象。从那时起,NMR作为一种有活力的谱分析技术被广泛应用于分析化学、物理化学、生物化学,进而扩展到生命科学、诊断医学及实验油层物理等领域。如今,NMR已成为这些领域的重要分析和测试手段。 40年代末,Varian公司证实了地磁场中的核自由运动,50年代,Varian Schlumberger-Doll,Chevron三个公司开展了核磁共振测井可行性研究。60年代初开发出实验仪器样机,它基于Chevron研究中心提出的概念,仪器使用一些大线圈和强电流,在志层中产生一个静磁场,极化水和油气中的氢核。迅速断开静磁场后,被极化的氢核将在弱而均匀的地磁场中进动。这种核进动在用于产生静磁场的相同线圈中产生一种按指数衰减的信号。使用该信号可计算自由流体指数FFI,它代表包含各种可动流体的孔隙度。这些早期仪器有一些严重的技术缺陷首先,共振信号的灵敏区包括了所有的井眼流体,这迫使作业人员使用专门的加顺磁物质的泥浆和作业程序,以消除大井眼背景信号,这是一促成本昂贵且耗时冗长的处理,作业复杂而麻烦,测井速度慢石油公司难以接受。其次,用强的极化电流持续20ms的长时间,减小了仪器对快衰减孔隙度成分的灵敏度,而只能检测具有长弛豫衰减时间的自由流体,由于固液界面效应对弛豫影响及岩石孔隙中油与水的弛豫时间差异不大,使得孔隙度和饱和度都很难求准。此外,这些仪器为翻转被极化的自旋氢核需消耗大量功率,不能和其它测井仪器组合。但这些难题没有使核磁共振测井研究中止。70年代末至80年代初,美国Los Alamos 国家实验室Jasper Jackson 博士提出“INSDE-OUT”磁场技术。在相同时期,磁共振成象(MRI)概念也得到很大发展。1983年,Melvin Miller博士在美国创办了NU-MAR公司,他们综合了“INSIDE-OUT”概念和MAR技术同时,斯伦贝谢公司几十年来,一直在努力发展核磁共振测井技术。总体来看,十几年来核磁共振测井技术的快速发展表现在以下几个方面: 第一,根据“INSIDE-OUT”思想,不用地磁场,而是在井中人工放置一个高强度磁体,所推出的核磁共振率统核心部分是由稳恒磁体发射射频(RF)脉冲并采集自旋回波信号的RF线圈组成。该技术使稳恒场B0与RF场B1相互垂直,磁体的轴沿井筒主向,其磁场方向垂直地地层。B0场与B1场的特点是:在空间任意处它们均相互正交;它们的等场强线为同心圆柱面;场强在径向上均与距离的平方成反比。B0与B1的正交性是获取最大信号的关鍵。核磁共振空间是由RF脉冲频率确定的,可以通过选频选定探测空间。因此使用各种新型核磁共振测井仪不象过去那样要进行繁重的泥浆处理作业。 第二,选用了由Carr,Purcell,Meiboon和Gill改进的脉冲回波序列技术,即CPMG 序列脉冲回波技术,它的思想是对可逆转散相效应引起的快衰减进行补偿。设计RF线圈和稳恒磁场的独特组合可以实现自旋回波序列。选用这种技术的优点是:(1)利用自旋转回波方法可以获得较高的信噪比,这对任何测量都是一个基本指标,对井下连续测量更重要。(2)自旋回波技术可放松对磁场极高均匀性的需求。这对MIR(核磁共振成象)和MRL(磁共振测井)都非常重要。MIR使用梯度场来定位信号怪生区域。MRL特别要求其测量对象置在探头之外,因此均匀度很高的磁场是不可能的。(3)自旋回波序列可视具体情况需要进行修改,有灵活可变化的特点,适于多种多样的井眼和地质情况。近二、三十年已发展出几百种回波序列。由于计算机和电子技术的不断发展,使僺作者控制RF脉冲的强度、相位、宽度和发射时间的能力不断增强,也使核磁共振测井可选用的自旋回波序列更丰富多样。 第三、开展了大量实验研究,为NMR测井应用提供了科学基础。实验研究是进场应用的基础,多年来国内外石油公司、研究单位、测井公司、大学对多孔岩石NMR测井应用的主要原理如孔隙度表面弛豫特性、体积流体弛豫特性、流体扩散弛豫、岩石中顺磁物质对弛豫影响,岩石孔隙度、渗透率、孔隙结构、润湿性与弛豫特性的关系,束缚流体、可动流体弛豫特性,油、水、气弛豫特性差别,粘度、矿化度对弛豫时间影响等等方面开展了大量实验研究,同时对实验资料分析处理研究所作的假设与近似作了充分阐述,为应用核磁共振测井资料求岩石物理参数,识别油、气、水,预测产能,选择测井参数等建立了应用基础,大大推进发该技在油气勘探、开发中的应用。 第四、对测量参数的选择做了很多分析研究工作。每次测井中有三个参数能够控制,它们是回波间隔、等待时间和采集的回波总数。因而NMR测量是一种动态结果,取决于如何

测井新技术进展综述

测井技术作为认识和识别油气层的重要手段,是石油十大学科之一。现代测井是当代石油工业中技术含量最多的产业部门之一,测井学是测井学科的理论基础,发展测井的前沿技术必须要有测井学科作指导。 二十一世纪,测井技术要在石油与天然气工业的三个领域寻求发展和提供服务:开发测井技术、海洋测井技术和天然气测井技术。目前,测井技术已经取得了“三个突破、两个进展”,测井技术的三个突破是:成像测井技术、核磁测井技术、随钻测井技术。测井技术的两个进展是:组件式地层动态测试器技术、测井解释工作站技术。“三个突破、两个进展”代表了目前世界测井技术的发展方向。为了赶超世界先进水平,我国也要开展“三个突破、两个进展” 的研究。 一、对测井技术的需求 目前我国油气资源发展对测井关键技术的需求主要有如下三个方面:复杂地质条件的需求、油气开采的需求、工程上的需求。 1)复杂地质条件的需求我国石油储量近90%来自陆相沉积为主的砂岩油藏,天然气储量大部分来自非砂岩气藏,地质条件十分复杂。油田总体规模小,储层条件差,类型多,岩性复杂,储层非均质性严重,物性变化大,薄层、薄互层及低孔低渗储层普遍存在。这些迫切需要深探测、高分辩率的测井仪器和方法,开发有针对性、适应性强的配套测井技术。 2)油气开采的需求目前国内注水开发的储量已占可采储量的90%以上,受注水影响的产量已占总产量的80%,综合含水85%以上。油田经多年注水后,地下油气层岩性、物性、含油(水)性、电声特性等都发生了较大的变化,识别水淹层、确定剩余油饱和度及其分布、多相流监测、计算剩余油(气)层产量等方面的要求十分迫切。 3)工程上的需求钻井地质导向、地层压力预测、地应力分析、固井质量检测、套管损坏检测、酸化压裂等增产激励措施效果检测等都需要新的测量方法。 二、测井技术现状 我国国内测井技术发展措施及道路主要有两条:一方面走引进、改造和仿制的路子;另一方面进行自主研究和开发。下面分别总结一下我国测井技术各个部分的现状: 1)勘探井测井技术现状测井装备以MAXIS-500、ECLIPS-5700及EXCELL-2000系统为主;常规探井测井以高度集成化的组合测井平台为主;数据采集主要以国产数控测井装备为主;测井数据的应用从油气勘探发展到油气藏综合描述。 2)套管井测井技术现状目前,套管和油管内所使用的测井方法主要有:微差井温、噪声测井、放射性示踪,连续转子流量计、集流式和水平转子流量计,流体识别、流体采样,井径测量、电磁测井、声测井径和套管电位,井眼声波电视、套管接箍、脉冲回声水泥结胶、径向微差井温、脉冲中子俘获、补偿中子,氯测井,伽马射线、自然伽马能谱、次生伽马能谱、声波、地层测试器等测井方法。测井结果的准确性取决于测井工艺水平、仪器的质量和科技人员对客观影响因素的校正。测井数据的应用发展到生产动态监测和工程问题整体描述与解决。 3)生产测井资料解释现状为了获得油藏描述和油藏动态监测准确的资料,许多公司都把生产测井资料和其它科学技术资料综合起来。不仅测得流体的流动剖面.而且要搞清流体流入特征,因此,生产测井资料将成为油藏描述和油藏动态监测最重要的基础。生产测井技术中一项最新的发展是产能测井,它建立了油藏分析与生产测井资料的关系。产能测井表明,生产流动剖面是评价完井效果的重要手段。产能测井曲线是裸眼井测井资料、地层压力数据、产液参数资料、射孔方案和井下套管设计方案的综合解释结果,其根本目的就是利用油层参数预测井眼流动剖面。生产测井流量剖面成为整个油层评价和动态监测的一个重要方法。 4)随钻测量及其地层评价的进展随钻测井(LWD)是随大斜度井、水平井以及海上钻井而发展起来的,在短短的十几年时间里,已成为日趋成熟的技术了。如今随钻测井已经拥有了

核磁测井原理与解释

核磁共振测井技术的进展 关键词:核磁共振测井,测量原理,测井解释,储层评价 1历史回顾 人们第一次认识核磁共振(NMR)的潜在价值是在20世纪50年代,在60年代早期研制出核磁测井(NML)仪。NML仪因其许多局限性最终在80年代末停止了服务。尽管它有诸多局限性,但为支持NML测井而进行的实验研究,预见了今天仍在进行的多种地层评价,其中包括估算渗透率、孔隙大小分布、自由流体体积、原油黏度和润湿性。 现代NMR测井的发展可以追溯到1978年在LosAlamos国家实验室开展的NMR井眼测井研究项目。该项目的部分目标是制造和测试一种在井眼中使用的NMR测井仪,它能克服NML仪的局限性。LosAlamos 试验仪器使用的是强永久磁铁,正如那些在现代实验室的NMR仪器一样,进行了脉冲NMR自旋回波测量。这些测量结果极其灵活,可适用于许多不同的地层评价。 LosAlamos实验室仪器证明了NMR测井的可行性,但由于其信噪比(S/N)太低,而且磁铁和射频(RF)线圈的设计产生很大的井眼信号而无法满足商用需求。可行性论证后不久,1983年成立的Numar公司和斯伦贝谢公司开始了独立的研究,试图设计NMR磁铁和RF天线,从而满足商用NMR测井需求。 20世纪90年代初,研究有了收获,有两家公司开始对电缆式仪器样机进行现场测试。仪器性能远远超过NML仪,在地层评价方面很快有了效果。自从第一支商用仪器投入使用以来,这两家公司都推出了

先进的电缆式NMR测井仪和随钻测井(LWD)NMR仪器。1997年,Numar 公司被哈里伯顿收购,现已完全成为其子公司。2001年,哈里伯顿公司推出了NMR流体分析仪,它是电缆式流体采样仪的一部分。2000和2002年,哈里伯顿公司和斯伦贝谢公司分别推出了LWD仪器。贝克·休斯公司在2004年推出了电缆式NMR仪,2005年推出了LwDNMR 仪。 2现代NMR测井 2.1脉冲NMR测井仪 传感器(如磁铁和天线)是脉冲NMR测井仪的核心部分。它对仪器的S/N、最小回波间距、探测深度(DOI)、测井速度和垂直分辨率有重要影响。在用的所有仪器在传感器的设计上都不尽相同,主要差别是电子线路、固件、脉冲序列、数据处理和解释算法。NMR仪器的详细技术指标都能在各家服务公司的网站上找到。 斯伦贝谢电缆式NMR测井仪器有三个天线和一个完全可编程的脉冲序列发生器,能进行多种不同方式的测量。两个152mm天线用于高分辨率测量,提供总孔隙度、束缚流体孔隙度和自由流体孔隙度。高分辨率天线还可用来探测天然气和轻烃,计算渗透率和孔隙大小分布。主天线长457mm,有多个频率,用于不同地层评价,提供多种NMR 测量。每个频率都对应不同DOI(从井壁算起为38~102mm)。主天线所提供的地层评价包括两个高分辨率天线所提供的所有地层评价,还用于评价流体径向剖面、流体体积和石油黏度。 所有的商用NMR仪都有一些共同的特征,譬如:所有的仪器都采

测井解释-原理与应用

绪论 电法测井被引入石油工业已经超过半个多世纪。从那时起,就有许多新的和改良的测井仪器被开发出来并投入使用。 随着测井技术的发展,测井资料解释技巧也取得了很大的发展。目前,详细分析由精心选择的配套电缆测井服务的测量结果,提供了一种用来导出或推断含油气和含水饱和度、孔隙度、渗透率指数和储集层岩石岩性的精确数值的方法。 已经有数百篇描述各种测井方法及其应用和解释的论文被发表,这些文献在内容上足够丰富,但通常情况下对于测井的普通用户却不适用。 因此,本书将对这些测井方法和解释技术做一个总的回顾,并对由斯伦贝谢公司提供的裸眼井测井项目做一些详细的讨论,包括测井解释的基本方法和基本应用。讨论过程尽可能的保持简洁、清晰,最大限度的减少数学推导。 希望本书能够成为任何一位对测井感兴趣的人的实用手册。某些可能对更详细资料感兴趣的人,可以查阅每章后列出的参考文献和其他测井文献。 1.1测井历史 世界上第一条电法测井曲线是于1927年在法国东北部阿尔萨斯省的佩彻布朗的一个小油田的油井内被记录到的。这条测井曲线,使用“点测”方法记录井眼穿过的岩层的单条电阻率曲线。井下测量设备(叫做探头或电极系)按照固定的间隔在井眼内停下来进行测量,然后计算出电阻率并通过手工绘制在曲线图上。逐点继续完成这个过程,直到整条测井曲线被记录下来。第一条测井曲线的一部分如图1-1所示。

图1-1 第一条测井曲线:由亨利-道尔点绘手工绘制在坐标纸上1929年,电阻率测井作为商业性服务被引入委内瑞拉、美国和前苏联,很快又进入荷属东印度(今天的印度尼西亚)。电阻率测量结果的对比功能和识别潜在油气层方面的用途很快被石油工业所承认。

《测井方法与综合解释》书面作业

《测井方法与综合解释》书面作业 适用层次所有层次适应专业石油工程、资源勘察工程 使用学期2009秋自学学时90面授学时 40实验学时 使用教材教材名称《矿场地球物理》编 者丁次乾 出 版 社石油大学出版社各章节书面作业 绪论 第一章 自然电位测井 上交作业1.扩散电动势;2.扩散吸附电动势;3.利用SP 计算R 的方法 第二章 普通电阻率测井 上交作业1.岩石电阻率和地层水性质关系 2.Archie 公式及其物理意义 3.均匀介质的电阻率 4.电极系 5.电位和梯度电极系理论曲线 第三章 侧向测井 上交作业1、 三侧向测井原理及应用 2、 双侧向测井原理及应用 3、 微电位、微梯度、微侧向测井、邻近侧向、微球形聚焦 测井原理及应用 第四章 感应测井 上交作业1、感应测井原理 2、横向几何因子3、纵向几何因子 第五章 声波测井 上交作业1、滑行坡 2、单发双收声波测井原理及应用 3、补偿声波测井原理及应用 4、普通声幅测井原理及应用

第七章自然伽玛测井和放射性同位素测井 上交作业1、伽玛射线和物质的相互作用 2、自然伽玛测井、自然伽玛能谱测井、放射性同位素测井的基本 原理及应用 第八章密度测井和岩性密度测井 上交作业1、密度测井原理及应用 2、岩性密度测井原理及应用 第九章中子测井 上交作业1、热中子测井原理及应用 2、补偿中子测井原理及应用 3、中子伽玛测井原理及应用 第十章脉冲中子测井 上交作 业 1、中子寿命测井原理及应用第十一章测井资料综合解释基础 上交作业1、储集层概念及分类 2、储层参数的确定 3、如何选择测井系列 岩石体积模型概念、要点及测井响应方程 第十二章用测井资料评价储集层岩性和孔隙度的基本方法 上交作业1、岩性的定性解释方法 2、储层岩性和孔隙度的定量解释方法 3、储集层岩性和孔隙度的快速直观解释方法 第十三章用测井资料评价储集层含油性的基本方法 上交作业1、储集层含油性的定性解释方法 2、储集层含油性的定量解释方法 3、储集层含油性的快速直观解释方法 编者:陈钢花

测井解释技术面临的难题与发展趋势

测井解释技术面临的难题与发展方向 测井解释技术是石油勘探开发关键技术之一,在油气田勘探开发过程中的地位举足轻重。目前面临的多项技术难题,几乎都与测井技术有关,而测井解释技术也在探索过程中取得了长足进步。测井解释技术也从最初的单井储层分析发展到多井储层评价、油气藏综合描述、生产动态监测和工程问题的整体描述和解决,但是,仍然无法满足目前勘探开发领域对测井解释提出的迫切要求。 (一)勘探开发对测井解释技术的需求 勘探开发难度的加大对测井解释技术也提出了新需求,主要表现在三个方面:(1)低渗、低丰度储层油气藏测井识别技术要求越来越高,低渗、低丰度储层油气藏在中东部老油田占有很高比例。为了将这类低品位难动用储量尽快转化为可动用的商业储量,需要对这类油气层进行及时准确地评价,迫切需要发展和完善配套的低渗、低丰度储层油气藏测井综合评价技术;(2)碳酸盐岩、砂砾岩、火山岩等复杂岩性裂缝孔洞型油气藏需要有适宜的测井评价方法,由于其储集空间极不均匀,基质孔隙度一般较低,测井资料识别储集空间及其流体类型、预测产能及结合地震资料预测储集空间横向发育分布规律需进一步完善,应在充分利用成像测井技术的同时,加强复杂岩性储层的四性关系研究,研究岩石电学性质的频率特性对建立合理电法测井方法、正确使用不同频率条件下电测井信息将更为重要;(3)油气田开发难度加大和油气田生产动态监测需要新的测井技术手段和技术解释方法,随着油气田开发难度越来越大,油气田开发井况越来越复杂,水平井、侧钻井、多底井、分支井、小井眼井和大斜度井越来越多,套损井、出砂井、高温高压井也越来越多,发展这些特殊钻井和井况条件下的测井技术方法已变得越来越迫切,例如:利用测井资料研究地层压力和井壁稳定信息用于指导钻井施工和油层改造是需要进一步探索的方法。 (二)测井解释技术的发展方向 测井解释技术的发展即要解决目前复杂油气藏勘探开发中的难题,又要着眼于在油气勘探开发全过程、全领域中发挥更大的作用,同时跟踪国际测井工程技术的发展趋势,提升在国际市场开拓能力和竞争能力。按照立足自我开发研制和适度引进部分先进测井技术,加快推广成熟技术和着眼长远技术储备的原则,提出以下技术发展方向。 (1)发展现代成像测井技术,提高数据的采集处理和解释能力

相关主题
文本预览
相关文档 最新文档