当前位置:文档之家› 芦柑皮中水溶性多糖提取条件的研究

芦柑皮中水溶性多糖提取条件的研究

芦柑皮中水溶性多糖提取条件的研究
芦柑皮中水溶性多糖提取条件的研究

117

※工艺技术食品科学

2009, Vol. 30, No. 06芦柑皮中水溶性多糖提取条件的研究

王丽艳,荆瑞勇,阮洪生,王北艳,方淑梅,殷奎德*

(黑龙江八一农垦大学生命科技学院,黑龙江 大庆 163319)

摘 要:本实验对芦柑皮中水溶性多糖的提取条件进行了研究,通过单因素试验和正交试验,研究了料液比、温度、时间对多糖提取率的影响。结果表明:温度是影响多糖提取率的最关键因素;芦柑皮中水溶性多糖的提取条件最佳条件为:料液比1:20,温度95℃,时间2h,在最佳提取条件下,芦柑皮的多糖提取率为4.99%。关键词:芦柑皮;水溶性多糖;提取条件

Study on Extraction Conditions of Water Soluble Polysaccharide from Citrus Skin

WANG Li-yan,JING Rui-yong,RUAN Hong-sheng,WANG Bei-yan,FANG Shu-mei,YIN Kui-de*(College of Life Science and Technology, Heilongjiang August First Land Reclamation University, Daqing 163319, China)Abstract :Based on single factor test and orthogonal test design, the effects of solid-liquid ratio, temperature and time on theextraction rate of water soluble polysaccharides from citrus skin were investigated. The results showed that temperature is thekey factor affecting the extraction rate, and the optimal extraction temperature, time and solid-liquid ratio are 95 ℃, 2 h and 1:20,respectively. Under these conditions, the extraction rate is 4.99%.

Key words:citrus skin;water soluble polysaccharide;extraction condition

中图分类号:O636.1 文献标识码:A 文章编号:1002-6630(2009)06-0117-03

收稿日期:2008-04-09

基金项目:黑龙江农垦总局课题项目(HNKXIV-06-06-04)

作者简介:王丽艳(1977-),女,讲师,硕士研究生,主要从事植物资源的开发与利用研究。E-mail:laosan1@126.com*通讯作者:殷奎德(1964-),男,教授,博士,主要从事植物分子生物学研究。E-mail:yinkuide@sohu.com

芦柑为芸香科植物橘属(Citrus reticulata Blanco),其果皮被当地作为陈皮使用。据文献报道,陈皮具有强心、抗休克、抗肿瘤、抗氧化、疏肝利胆等药理活性[1]。目前对陈皮的研究主要集中于黄酮类和挥发油[2],而有关资料显示柑橘皮中果胶多糖含量可达10%~30%[3],但对水溶性多糖的研究鲜有报道。本实验在单因素试验的基础上,利用正交试验设计研究芦柑皮水溶性多糖的最佳提取条件,以期为芦柑皮的综合利用提供理论基础。1材料与方法

1.1

材料、试剂与仪器

市售永春芦柑,皮洗净用组织捣碎机捣碎,在70℃烘箱中烘干备用。

蔗糖、无水乙醇、正丁醇、氯仿、浓硫酸、苯酚、活性炭等,化学试剂均为分析纯。

WFJ2100型可见分光光度计、Tu-1800紫外可见分光光度计、HWS24型电热恒温水浴锅、真空抽滤装置、上海飞鸽牌离心机、索氏抽提仪等。

1.2多糖测定

采用苯酚-硫酸显色法[5]测定总多糖含量。1.3

芦柑皮多糖的提取及纯化

将芦柑皮粉装入滤纸包,用索氏抽提仪40℃乙醚回

流2h脱脂,40℃烘箱中烘干;准确称取1.000g样品,以水作溶剂,采用不同的温度、料液比、提取时间对样品进行多糖提取实验。抽滤后合并滤液,浓缩至15ml,加入45ml 95%乙醇,多糖呈絮状沉淀析出,静置过夜后,3000~6000r/min离心20min得沉淀,用90ml水复溶,取一定量的水复溶溶液,置于分液漏斗中,按照提取液体积的1/4量加入Sevag试剂[4],振荡、静置、分离,直到没有乳白色变性蛋白质析出为止;收集上清液,加足量活性炭,摇匀,恒温30min以上,过滤;取0.1ml脱色后的粗多糖溶液,稀释20倍后取2ml进行分光光度的测定。

W1× f × V1×A

多糖提取率(%)=————————× 100

V ×W×106

2009, Vol. 30, No. 06

食品科学

※工艺技术

118式中:W为称取干燥芦柑皮粉的质量(g);W1为由回归方程计算所得多糖量(μg);V为提取液体积(ml);V1为测定用样品液的体积(ml);A为稀释倍数;f为多糖的校正系数,f≈0.9。2结果与分析2.1

多糖含量测定

在实验条件下以蔗糖量为横坐标,以A490nm为纵坐标,得标准曲线,如图1所示。回归方程:y = 0.0106x-0.0054,R2=0.999。

图1 蔗糖标准曲线

Fig.1 Standard curve of sucrose

1.61.41.210.80.60.40.20

020406080100120140160

A590nm

蔗糖量(μg)y=0.0106x-0.0054R2=0.999

2.2料液比对芦柑皮多糖提取率的影响

准确称量1.000g芦柑皮粉,料液比分别为1:10、1:20、1:30和1:40,提取温度85℃,提取1次,时间3h,3次重复。按照1.3方法操作,结果见图2。

由图2可知,料液比为1:10时的多糖提取率与1:20、1:30、1:40之间差别较大,即随着料液比的增加,多糖提取率也增加。而料液比为1:20、1:30、1:40 之间差别不大,且料液比达1:30时的多糖提取率增加不明显,料液比为1:30与1:40时,两者的数值基本持平。这种现象的产生是由于在相同溶解度状态下,当多糖已基本全部溶解,再增加溶剂的量也不会使溶剂中溶质的量增加。由于提取液在后续工序中需经浓缩,加水量过大会使后续工序能耗增加,效率降低,因此选取料液比为1:20。

2.3

提取时间对芦柑皮多糖提取率的影响

料液比1:20,提取温度85℃,提取1次,每次提取时间分别为1、2、3和4h,3次重复,结果见图3。

由图3可知,提取时间为1、2h时多糖的提取率增加不明显,当增加到3h时多糖提取率明显高于2h,这可能是由于在一定时间内提取时间越长,多糖溶解于热水中就更充分。而在4h时多糖提取率反而略低于3h,这可能是加热时间长导致多糖发生少量水解所致。故最佳提取时间为3h。2.4

提取温度对芦柑皮多糖提取率的影响

料液比1:20,提取时间3h,分别在65、75、85和95℃条件下,提取1次,提取时间1h,3次重复,结果见图4。

由图4可知,随着温度的增加,多糖提取率也明显增加。这一现象可能是由于温度升高使溶解度增大所致,从65℃到85℃,多糖提取率随温度的升高增加较缓慢,而从85℃到95℃多糖提取率显著增加,表明在此温度范围内温度对提取效果影响较显著,实验结果表明,95℃时提取效果最好。2.5

正交试验法优化芦柑皮多糖的提取工艺

在单因素试验的基础上,利用正交试验设计研究芦

柑皮多糖的最佳提取工艺。由表1正交试验结果分析可

图2 料液比对多糖提取率的影响

Fig.2 Effects of solid-liquid ratio on extraction rate of water

soluble polysaccharides

43.532.521.510.50

1:10

1:201:301:40多糖提取率(%)

料液比(W/V)

图3 提取时间对多糖提取率的影响

Fig.3 Effects of extraction time on extraction rate of water soluble

polysaccharides

4.543.532.521.510.50

12

34

多糖提取率(%)

时间(h)

图4 提取温度对多糖提取率的影响

Fig.4 Effects of temperature on extraction rate of water soluble

polysaccharides

654321

65

758595

多糖提取率(%)

温度(℃)

119

※工艺技术食品科学

2009, Vol. 30, No. 06知,提取温度是影响多糖提取率的最关键因素,其次是提取时间,料液比影响最小。

试验号A料液比B时间(h)

C温度(℃)

多糖得率(%)

11:101750.9221:102852.7531:103954.2441:201852.351:202954.9961:203752.4771:301954.5881:302752.2491:303853.05

T17.917.85.63T29.769.988.1T39.879.7613.81R1.962.188.18优水平

A3

B2

C3

表1 正交试验结果与分析

Table 1 Results and range analysis of orthogonal test on extraction conditions of water soluble polysaccharides 方差来源

偏差平方和

自由度均方F值A0.1420.072.47B0.1720.082.95C2.0621.0336.28**

试验误差0.45160.03

总和

17.73

27

表2 方差分析表

Table 2 Analysis of variance

注:*.差异显著;**.差异极显著。

很小,选择A2可以降低以后程序的成本。因此确定芦柑皮多糖的最佳提取条件为:料液比1:20,温度95℃,提取时间2h。且在最佳提取条件下,芦柑皮多糖的得率为4.99%。3

结论与讨论

在水浸提取芦柑皮可溶性多糖的过程中,温度是影响多糖提取率的最关键因素,水溶性多糖最佳提取工艺为:料液比1:20、提取时间2h、提取温度95℃,在最佳提取条件下多糖的最高提取率为4.99%。

通过正交试验发现,提取温度是影响多糖提取率的最关键因素,此结果与李巧云等[6]研究五味子粗多糖提取工艺的报道的结果一致,其最佳提取温度为100℃。另外,王振斌等[7]报道的无花果多糖提取的最佳温度为100℃。但提取温度的影响是多方面的,温度过高不仅会造成多糖的降解,甚至使多糖失去活性,另外还会增加杂质的溶出,加大后续纯化的工作量。本实验确定的最佳温度为95℃,此温度对芦柑皮多糖活性等是否有影响还有待进一步的研究。

参考文献:

[1]赵小艳, 吕武清. 陈皮的研究概况[J]. 中国药业, 2006, 15(15): 68-70.[2]张志海, 王彩云, 杨天鸣, 等. 陈皮的化学成分及药理作用研究进展[J]. 西北药学杂志, 2005, 20: 47-48.

[3]高虹. 从柑桔皮中提取果胶的探讨[J]. 广州化工, 2000, 28(3): 22-25.[4]陈伟, 林新华. 芦荟多糖中游离蛋白去除的分光光度法[J]. 光谱实验室, 2005, 22(1): 14-115.

[5]

刘文生, 薛霖莉, 卫萍. 潞党参多糖的提取及含量测定[J]. 安徽中医学院学报, 2005, 24(1): 42-43.

[6]李巧云, 居红芳, 翟春. 五味子粗多糖提取工艺的研究[J]. 食品科学,2004, 25(5): 105-109.

[7]

王振斌, 马海乐, 王超. 无花果多糖提取技术研究[J]. 食品科学, 2006,27(2): 174-177.

表2显示,温度对芦柑皮多糖提取率的影响达到了极显著水平,起最主要作用,因此先优选温度,而料液比和时间在此实验范围内没有显著性差异,对测定结果的影响较小。通过极差分析表可以看出A2和A3差别

不同生长期白术多糖的含量测定

不同生长期白术多糖的含量测定 (作者:___________单位: ___________邮编: ___________) 【摘要】目的比较不同生长期白术多糖含量的动态变化,确定白术的最佳采收时期,为白术多糖的开发利用提供依据。方法用乙醇去杂和水回流提取白术多糖,于489 nm波长处用苯酚-硫酸比色法测定其含量。结果不同生长期白术多糖变化较大,其中9月底到10月底时期白术多糖的含量最高。结论以白术多糖含量为指标,不同生长期白术的最佳采收期为9月底到10月底。 【关键词】白术; 不同生长期; 多糖; 含量测定 白术(Rhizoma Atractylodis Macrocephalae)为菊科(Compositae)植物白术Atractylodes macrocephala Koidz的干燥根茎。白术为多年生草本, 栽培历史悠久,主产中国浙江省东阳、磐安一带, 是著名的道地中药材“浙八味”之一[1],分布于浙江、江西、湖南、湖北、陕西,亦多栽培[2]。近几年以来,中国对白术的需求量大增,居全国大宗常用中药材之首。其含有白术多糖、挥发油、氨基酸等多种有效成分[3~6],中药多糖具有增强机体免疫功能及抗肿瘤等药理作用[7~9],而且几乎没有毒性。但目前对白术多糖的含量测定报道还较少。因此可采

用一种方法提取不同时期白术中多糖类成分,应用硫酸-苯酚比色法测定其含量[10,11],分析并对其进行比较,考察出多糖类成分的含量特征,为确定最佳采收期、种植条件打下基础,也为白术多糖的开发应用提供参考。 1 材料、仪器与试剂 1.1 材料样品采集于浙江林学院试验地百草园,从4月份采样至10月份,每半个月一次,有4月21日,5月5日,5月18日,6月3日,6月17日,7月7日,7月24日,8月6日,8月27日,9月10日,9月25日,10月12日,10月26日共13批样品,分别对其不同药用部位进行分离,标记分装,干燥,每批取样5份,洗净,减压干燥,粉碎,再分装干燥储存得到。 1.2 仪器UV-2501型紫外可见分光光度计(日本SHIMADZU)。 1.3 试剂乙醇,无水乙醇,苯酚,硫酸(均为分析纯);对照品葡萄糖(含量测定专用)。 2 方法与结果 2.1 多糖的精制称取切片白术200 g加6倍量70%乙醇→回流2次(每次2 h)→抽滤→药渣加8倍量水→煎煮3次(每次1.5 h)→合并水煎液浓缩至400 ml→静置→上清液加乙醇调至70%静置→抽滤→沉淀加蒸馏水溶解,在上清液中加乙醇调至70%,静置→抽滤,沉淀用无水乙醇洗涤→60℃真空干燥,即得精制多糖。 2.2 样品溶液的配制准确称取0.2 g白术药材粉末加70%乙醇50 ml置锥形瓶中→冷浸2 h →超声20 min→抽滤→药渣挥干后

中草药叶下花总黄酮提取方法

中草药叶下花总黄酮提取方法 作者:杨发忠,杨斌,杨德强,陈厚琴,代红娟,张丽,李东海 【摘要】目的对叶下花总黄酮的种类与提取方法进行初步研究。方法采用定性检测、光谱分析、单因素测定、正交实验等,研究黄酮种类,考察乙醇体积分数、温度、固液比、时间对提取率的影响。结果叶下花含黄酮、黄酮醇、二氢黄酮、二氢黄酮醇等多种黄酮类化合物;所考察的影响因素中,对总黄酮提取率影响程度大小顺序为乙醇体积分数>温度>时间>固液比。结论最佳提取条件为A1B2C3D3 (乙醇体积分数30%、温度65℃,提取时间180 min,固液比1∶80),在此提取条件下,提取量高达5.233%。 【关键词】叶下花总黄酮提取方法正交实验 Abstract:ObjectiveTo optimize the extraction conditions for the total flavonoids from Ainsliaea pertyoides Franch and to study the categories of the total flavonoids. MethodsThe methods of the chemical qualitative detection, the spectral analysis, single factor determination, orthogonal test were adopted to study the categories of the total flavonoids, and the effect of four factors, i.e. the volume fraction of ethanol, the temperature, the ratio of solid to liquid, the

总黄酮的提取方法

总黄酮的提取方法 1、熔剂法热水提取法、碱性水或碱性稀醇提取法、有机溶剂提取法 2、微波提取法微波提取是利用不同结构的物质在微波场中吸收微波能力的差异,使基体物质中的某些区域或提取体系中的某些组分被选择性加热,从而使被提取物质从基体或体系中分离,进入介电常数较小,微波吸收能力相对差的提取剂[1]。这种方法的优点是对提取物具有较高的选择性、提取率高、提取速度快、溶剂用量少、安全、节能、设备简单 3、超声波提取法用超声波提取法提取黄酮类物质,是目前比较新的方法。原理是利用超声波在液体中的空化作用加速植物有效成分的浸出提取,另外,还利用其次效应,如机械振动、扩散、击碎等,使其加速被提取成分的扩散、释放。超声波提取法具有设备简单,操作方便,提取时间短,产率高,无需加热,同时有利于保护热不稳定成分,省时,节能,提取率高的优点。 4、超临界流体萃取法超临界流体萃取技术是利用超临界流体处于临界温度和临界压力以上,兼有气体和液体的双重特点,对物质具有良好的溶解能力,从而作溶剂进行萃取分离。可做超临界流体的物质很多,一般为低分子量的化合物,如CO2、C2H6、NH3、N2O 等。目前多采用CO2 做萃取剂,因为它具有密度大、溶解能力强、临界压力适中、临界温度接近常温、不影响萃取物的生理活性、无毒无味、化学性质稳定、生产过程中容易回收、无环境污染、价格便宜等一系列优点。但单一的CO2作萃取剂只对低极性、亲脂性化合物有较强的溶解能力,对大多数极性较强的组分则不起作用,因此,在其中加入夹带剂,通过影响溶剂的密度和溶质与夹带剂分子间的作用力来影响溶质在二氧化碳流体中的溶解度和选择性[15]。超临界流体萃取技术有许多传统分离技术不可比拟的优点:过程容易控制、达到平衡的时间短、萃取效率高、无有机溶剂残留、对热敏性物质不易破坏等[16]。但它所需要的设备规模较大,技术要求高,投资大,安全操作要求高,难以用于较大规模的生产。 5、酶法提取酶解法适用于被细胞壁包围的黄酮类物质,利用酶反应的高度专一性,破坏细胞壁,使其中的黄酮类化合物释放出来。黄剑波等[22]采用纤维素酶辅助法从甜茶中提取黄酮类化合物,黄酮类物质的提取率为91%,提取纯度为54%。王悦等[23]对桔皮细胞进行游离酶、固定化酶和常规法提取,黄酮得率分别是%,% 和%,和传统的方法相比,游离酶法的总黄酮得率提高了81%。

甘露醇的性质与应用

40  牙 膏 工 业 T OOTHP ASTE I N DUSTRY 第十九卷第四册 2009年10月 甘露醇的性质与应用 陈为民 (黑龙江省轻工科学研究院150010) 摘 要:阐述了甘露醇的性质,介绍了甘露醇在医药、食品、日用化学等领域的应用及发展前景。 关键词:甘露醇 性质 应用 1 产品概述 甘露醇(Mannit ol )又称D -甘露糖醇,分子式C 6H 14O 6,分子量182.17,是一种人们熟悉的六元 醇,与山梨醇为同分异构体。它是一种不吸湿、无臭、白色或无色的结晶粉末,密度1.489,熔点166~168℃,沸点290~295℃(在0.4~0.467kPa 下),旋 光度+23~+24。 甘露醇具有令人愉快的甜味,其甜度为蔗糖的0.55~0.65倍,具有多元糖醇的通性。 最早发现甘露醇存在于南瓜、蘑菇、洋葱与海藻等植物中。在自然界中广泛存在于海藻及某些水果、树木中。具有优良的止咳化痰功能的杮饼,其表面的白色粉末就是甘露醇。我们熟悉的褐藻的一种———海带中,常常含有10%~20%的甘露醇,于海带表面的白色粉末就是由甘露醇与盐类构成的。新鲜蘑菇中约含有1%。可以说,在自然发展历史上,甘露醇是最早进入人们生活的一种功能性糖醇。 在功能性糖醇中,甘露醇是唯一一种不易吸潮的六元糖醇,同时具有甜度适宜、热量低、无毒副作用等特点。在人体生理代谢中,它与其他功能糖醇一样,具有与胰岛素无关,不提高血糖值,不致龋齿等特点,可用作糖尿病人、肥胖病人的甜味剂。 目前,世界上工业生产甘露醇主要有两种工艺,一种是以海带为原料,在生产海藻酸盐的同时,将提碘后的海带浸泡液,经多次提浓、除杂、离交、蒸发浓缩、冷却结晶而得;一种是以蔗糖和葡萄糖为原料,通过水解、差向异构与酶异构,然后加氢而得。 我国利用海带提取甘露醇已有几十年的历史, 这种工艺简单易行,但受到原料资源、提取收率、气候条件、能源消耗等限制,长期以来,其发展受到制约。20世纪我国的甘露醇年产量始终未超过8000吨。我国的合成法工艺在20世纪80年代开始试验、90年代问世,时间不长,但由于其具有不受原料限制、适合大规模生产等优点,已经取得了长足的发展。 甘露醇本身是一种极好的功能性糖醇,其应用已经有几十年的历史。但过去受到产量与价格的限制,甘露醇的应用受到相当的约束。随着合成法甘露醇技术的发展,开展新的应用领域,特别是在食品上的应用,具有重要意义。 2 甘露醇在医药上的应用 甘露醇作为一种六元糖醇,除具有性质稳定、生理代谢不需要胰岛素等特点外,还具有自己独特的生理性能。甘露醇进入体后,可以自由地从肾小球滤过,且肾小管对甘露醇的重吸收极有限,在药理学上无活性,在人体内也很少代谢,也不易通过毛细血管进入组织。 在向体内注射甘露醇后,甘露醇分子只能在血管中流动,使组织与血管内系统产生渗透梯度,促进液体从组织流向血管,迅速提高血浆渗透压,使组织中过多的水分向血浆转移,然后通过肾脏排泄系统排出体外,达到利尿排水的作用。甘露醇是最好的渗透性利尿剂与脱水剂,能预防和治疗急性肾损伤,防治水肿与脑内压、眼内压升高,对防治脑水肿、青光眼有重要作用。因此在临床上有较大量的作用。甘露醇对肾小管的主要作用在于抑制水份的重吸

多糖的提取分离方法

1.多糖的提取方法 生物活性多糖主要有真菌多糖、植物多糖、动物多糖3 大类。多糖的提取首先要根据多糖的存在形式及提取部位,决定在提取之前是否做预处理。动物多糖和微生物多糖多有脂质包围,一般需要先加入丙酮、乙醚、乙醇或乙醇乙醚的混合液进行回流脱脂,释放多糖。植物多糖提取时需注意一些含脂较高的根、茎、叶、花、果及种子类,在提取前,应先用低极性的有机溶剂对原料进行脱脂预处理,目前多糖的提取方法主要有溶剂提取法、生物提取法、强化提取法等。1.1溶剂法 1.1.1水提醇沉法 水提醇沉法是提取多糖最常用的一种方法。多糖是极性大分子化合物,提取时应选择 水、醇等极性强的溶剂。用水作溶剂来提取多糖时,可以用热水浸煮提取,也可以用冷水浸提渗滤,然后将提取液浓缩后,在浓缩液中加乙醇,使其最终体积分数达到70 %左右,利用多糖不溶于乙醇的性质,使多糖从提取液中沉淀出来,室温静置 5 h,多糖的质量分数和得率均较高。影响多糖提取率的因素有:水的用量、提取温度、浸提固液比、提取时间以及提取次数等。 水提醇沉法提取多糖不需特殊设备,生产工艺成本低,安全,适合工业化大生产,是一种可取的提取方法。但由于水的极性大,容易把蛋白质、苷类等水溶性的成分浸提出来,从而使提取液存放时腐败变质,为后续的分离带来困难,且该法提取比较耗时,提取率也不高。 1.1.2酸提法 为了提高多糖的提取率,在水提醇沉法的基础上发展了酸提取法。如某些含葡萄糖醛酸等酸性基团的多糖在较低pH 值下难以溶解,可用乙酸或盐酸使提取液成酸性,再加乙醇使多糖沉淀析出,也可加入铜盐等生成不溶性络合物或盐类沉淀而析出。 由于H+的存在抑制了酸性杂质的溶出,稀酸提取法提取得到的多糖产品纯度相对较高,但在酸性条件下可能引起多糖中糖苷键的断裂,且酸会对容器造成腐蚀,除弱酸外,一般不宜采用。因此酸提法也存在一定的不足之处。 1.1.3碱提法 多糖在碱性溶液中稳定,碱有利于酸性多糖的浸出,可提高多糖的收率,缩短提取时间,但提取液中含有其它杂质,使粘度过大,过滤困难,且浸提液有较浓的碱味,溶液颜色呈黄色,这样会影响成品的风味和色泽。 1.1.4超临界流体萃取法 超临界流体萃取技术是近年来发展起来的一种新的提取分离技术。超临界流 体是指物质处于临界温度和临界压力以上时的状态,这种流体兼有液体和气体的特点,密度大,粘稠度小,有极高的溶解,渗透到提取材料的基质中,发挥非常有效的萃取功能。而且这种溶解能力随着压力的升高而增大,提取结束后,再通过减压将其释放出来,具有保持有效成分的活性和无溶剂残留等优点。由于CO2的超临界条件(TC=304.6 ℃,Tp=7.38 MPa)容易达到,常用于超临界萃取的溶剂,在压力为8~40 MPa 时的超临界CO2足以溶解任何非极性、中极性化合物,在加入改性剂后则可溶解极性化物。 该法的缺点是设备复杂,运行成本高,提取范围有限。 1.2酶解法 1.2.1单一酶解法 单一酶解法指的是使用一种酶来提取多糖,从而提高提取率的生物技术。其中经常使 用的酶有蛋白酶、纤维素酶等。蛋白酶对植物细胞中游离的蛋白质具有分解作用,使其结构变得松散;蛋白酶还会使糖蛋白和蛋白聚糖中游离的蛋白质水解,降低它们对原料的结合力,有利于多糖的浸出。

不同产地白术多糖含量考察

不同产地白术多糖含量考察 目的分析测定浙江、安徽、河北不同产地白术的多糖含量。方法用乙醇除去干扰物质后采用水浸提法提取多糖,以苯酚-硫酸比色法测定多糖的含量。结果多糖含量最高的为浙江白术,其次为安徽白术,再次为河北白术。结论浙江、安徽、河北三产地白术原药材中多糖含量有存在明显的差异。 标签:白术;多糖;苯酚-硫酸比色法 菊科植物白术有健脾益气,燥湿利水,止汗,安胎等功效,常用于治疗脾虚食少,腹胀泄泻,痰饮眩悸,水肿,自汗,胎动不安[1]。白术主要含挥发油、内酯类和多糖类成分[2]。由于多糖具有独特疗效的物质基础,白术多糖在抗肿瘤、抗衰老、增强机体免疫力、降血糖等方面的均有作用[3~5]。白术多为人工栽培品,分布广泛,主产于浙江、安徽、湖南、湖北、江西、河北等地。其中,浙江的于潜、新昌、天台等地为传统的地道产区。已有研究表明,白术随生长期或者生长地不同,药材中活性成分的含量不同[6]。近年来,国内外对白术的需求量大增,传统产地的白术供不应求,因此不同地区的白术培植得到了大力发展。研究不同产地白术中的活性成分对于白术的研究与医用具有重要的意义。本文将采用硫酸-苯酚比色法测定产地为浙江、安徽和河北的白术多糖的含量,为评判不同产地白术品质及合理用药提供科学依据。 1 材料与方法 1.1仪器与试药采用的主要仪器为双光束紫外-可见分光光度计IU-1901(日本岛津)。使用的药品试剂包括:80%乙醇、硫酸锌、氢氧化钡、硫酸、苯酚(均为分析纯)、浙江白术、安徽白术、河北白术(由天津中医药大学提供)、葡萄糖对照品(中国药品生物制品检定,批号:110833-200503)。 1.2方法 1.2.1供试品溶液的制备称取浙江、安徽、河北三产地白术药材粉末各0.5g,置于平底烧瓶中,分别加入80%乙醇50ml,加热微沸,计时1h停止,放置室温时滤过,滤渣中加入80℃水10ml,浸提1h,取出,趁热滤过,所得滤渣与第一次滤渣合并,加80℃水10ml,继续浸提1h,取出趁热过滤,合并2次所得滤液。将所得滤液转移至100ml容量瓶中,加蒸馏水定容。 1.2.2对照品溶液的制备精密称取经五氧化二磷减压干燥12h的无水葡萄糖对照品50mg,加蒸馏水使溶解,转移至100ml容量瓶中,定容,制成每1ml含无水葡萄糖0.5mg的溶液,作为对照品溶液。 1.3方法学考察 1.3.1线性关系考察精密量取质量浓度为0.5mg/ml的对照品溶液0.0、0.2、

举例说明黄酮的提取分离方法

举例说明黄酮的提取分离方法 组长:崔宁 组员:翟雪王璐璐冯子涵赵子惠罗春雨刘红成 1.提取方法 1.1热水提取法 热水提取法一般仅限于提取苷类. 在提取过程中要考虑加水量、浸泡时间、煎煮时间及煎煮次数等因素. 此工艺成本低、安全,适合于工业化大生产。以水做溶剂,同时提高浸提温度、延长浸提时间和增加液料比(60倍) ,可以明显提高芦丁的产率。 实例 桑叶:采用热水提取法测定桑叶中各有效成分含量,发现黄酮类化合物含量为1%以上,其中霜后桑叶黄酮类化合物含量最高为1.54% ,其次是晚秋桑叶,春季桑芽和后期桑叶含量最低。 甘草:过去甘草黄酮的提取主要为水提法,其主要原理通过甘草粉与水按一定配比,加热混合至80~95 ℃浸提甘草粉,利用甘草黄酮的水溶性进而提取甘草黄酮。此法虽然要求设备简单,但因提取杂质多、提取时间长、提取液存放易腐败变质、后续过滤操作困难、收率较低等缺点,现已不常使用。 1.2有机溶剂萃取法 其原理是利用黄酮类化合物与混入的杂质极性不同,选用不同的溶剂萃取。常用的有机溶剂有甲醇、乙醇、丙酮、乙酸乙酯等,一般采取乙醇为提取溶剂。高浓度的乙醇(如90 %~95 %) 适于提取苷元,浓度60 %左右的乙醇适于提取苷类。提取次数一般为2~4 次,提取方法有热 回流提取和冷浸提取两种方式。 实例 桑叶:使用乙醇提取桑叶中总黄酮的最佳工艺条件为:乙醇的浓度为70%,料液比为1:15,在80℃的条件下浸泡3h。使用多种有机溶剂提取发现桑叶中黄酮类化合物的最佳提取溶剂是60%丙酮。 西芹:使用无水乙醇为提取剂,按西芹鲜重与提取剂的比例(W/ V) 1∶2 ,在80 ℃下回流提取2~4h ,制备西芹总黄酮。 银杏叶:从银杏叶中提取总黄酮时, 随乙醇浓度的增加总黄酮提取率逐渐上升, 当乙醇浓度增至70% 时提取率最高, 之后反而下降, 故选用70% 的乙醇作浸提剂最佳。 生姜:生姜黄酮提取用40倍原料的90%甲醇溶液, 在60 ~ 65℃条件下提取4 h 为其优化组合, 而其试验组合中以用40倍原料的75%甲醇溶液,在60~ 65 ℃条件下提取2 h的提取效果最好。 1.3碱性水或碱性稀醇提取法 黄酮类化合物大多具有酚羟基, 易溶于碱水, 酸化后又可沉淀析出。其原因一是由于黄酮酚羟基的酸性, 二是由于黄酮母核在碱性条件下开环, 形成2′-羟基查耳酮, 极性增大而溶解。因此可用碱性水( 碳酸钠、氢氧化钠、氢氧化钙水溶液) 或碱性稀醇( 50 %乙醇) 浸出, 浸出液经酸化后析出黄酮类化合物。 实例 菊花:各取5g干菊花4份, ,在80℃恒温水浴分别以pH为8,9,10,11的NaOH溶液分两次温浸1h和0.5h。pH降低时.由于提取不完全.含量较低;pH为11时,虽然黄酮

甘露醇的生产工艺及流程

甘露醇的生产工艺及流程 甘露醇概述 甘露醇(Mannitol或mannite),又称D-甘露糖醇,己六醇,木蜜醇。分子式C6H14O6,分子量182.17。甘露醇是山梨醇的异构体。 甘露醇为白色结晶粉末,密度1.489,熔点166℃—168℃,沸点290℃—295℃(在0.4—0.467KPa),旋光度+28—+24。甘露醇可溶于水(1克可溶于约5.5毫升水),微溶于甲醇乙醇,溶于吡啶和苯胺,不溶于乙醚。甘露醇是山梨醇的异构体,山梨醇的吸湿性很强,但甘露醇完全没有吸湿性。甘露醇甜度相当于蔗糖的70%。人体能吸收,部分代谢,部分从尿中排出。甘露醇主要用于医药和食品,作为食品添加剂、无糖甜食品、饲料添加剂。甘露醇是常用糖醇食糖替代品之一,常用于无糖口香糖配料。甘露醇是吸水性最小的糖醇,可用于食品防粘粉。我国食品添加剂使用卫生标准GB2760规定,可用于无糖口香糖,最大用量200g/kg。 甘露醇市场及标准 世界市场95%为粉状甘露醇,年消费1.8—2万吨,销售额1亿美元。最大用户是无糖口香糖,约占市场的10%。2004年粉状甘露醇用于口香糖价格4.87—5.9美元/kg,而2000为3.1美元/kg,但医药用的价更高。 2003年国内医药用甘露醇5600吨,其中注射用4500吨。食品及添加剂用2200吨,包括出口总需求9500吨。 甘露醇生产 过去我国甘露醇生产方法主要为天然提取法(如从海带中提取甘露醇的方法),之后逐渐发展为利用蔗糖水解、催化还原工艺以及葡萄糖酶异构化成果葡糖再氢化制取的方法得到甘露醇。 据报道,美国发明一种新的生物法生产甘露醇的方法,比过去氢化法能大幅降低成本。美国农业部研究中心于2002年与伊利诺斯州一家化学公司进行扩试验证。2003年这家化学公司从芬兰一生物技术公司取得专利权,用Lactobacillus生产高纯果糖浆,并转化成甘露醇。2004年伊利诺斯州这家化学公司获FDA批准,生产生物法甘露醇。 海带提取工艺 我国渤海湾的海带,甘露醇含量较高,可作为提取甘露醇的原料,我国青岛、烟台、日照、胶南、大连等地年产千吨以下的十多家中小企业均以此法生产甘露醇。山东长富洁晶药业下属海带加工厂,用纯度90的粗晶经脱色交换净化,浓缩至比重1.2时结晶,纯度99.9%,年产2500吨。2002年,我国甘露醇装置总能力约为1.5万t/a,产量只有6000吨。 传统的海带提取工艺 海带浸泡液经浓缩、水洗、离心分离、去杂质糖胶、蒸发、最后结晶。每生产1吨甘露醇约需消耗60吨蒸汽,能耗太高。为改革传统海带提取甘露醇工艺,国家海洋局杭州水处理技术研究开发中心对工艺进行了系统的、突破性的技术改造,采用整套膜集成技术提取甘露醇,由料液预处理、—级超滤净化、电渗析脱盐、反渗透浓缩和后处理几部分组成。 1.料液预处理是提碘后的海带浸泡水先后经过絮凝。 2.采用中空纤维内压管式超滤膜组件,膜的材质为聚砜,截留分子量1—3万道尔顿。由于海带浸泡液成分复杂,含有丰富的胶体、蛋白质、多糖类有机物及无

多糖提取工艺流程

第一部分:野生灵芝菌种的分离、扶壮、保藏和培养 前言 采集吉林长白山野生灵芝,经过菌种分离,鉴定为GANODERMA(英文名称)多孔菌科真菌赤芝Ganoderma lucidum(Leyss.ex Fr.) Karst.的菌种。经过纯化扶壮培养,成为一支优良的灵芝菌种,为灵芝菌丝体发酵培养和灵芝多糖的提取奠定了基础。 实验室流程:(百级净化超净工作台)菌种分离菌种接种(恒温培养箱)菌种培养扶壮(恒温恒湿冷藏柜)优良菌种保藏(百级净化超净工作台)菌种分离菌种接种(摇床)发酵菌种摇瓶培养(用于接种菌种罐) 第二部分:灵芝菌丝体液体发酵培养 前言 液体发酵培养不同于灵芝子实体栽培,周期短,产量高,无污染,灵芝多糖含量高,节省木材和耕地。是一种灵芝多糖理想的工厂化现代科技生产方式。经过摇瓶培养的灵芝菌种接种于种子罐,待生长良好,在接种于扩大的发酵罐中,通过通气恒温培养,长成成年灵芝菌丝体,生长完全后,进行离心分离喷雾干燥,就得到相当于灵芝子实体的灵芝菌丝体粉,多糖含量达到15%左右。进一步提取加工得到高含量的灵芝多糖。 灵芝菌丝体发酵工艺流程:(配料罐)培养液的配制(菌种罐)菌种的发酵培养 (发酵罐)灵芝菌丝体发酵培养(离心机)灵芝菌丝体固液分离(浓缩液配制罐)灵芝菌丝体配制成浓缩液(喷雾干燥塔)浓缩液喷雾干燥,得到灵芝菌丝体粉 第三部分:灵芝菌丝体多糖的提取分离 前言 灵芝菌丝体粉,是大部分不溶解于水,食用以后象灵芝子实体一样,只有少部分成分被吸收,通过现代提取手段,将灵芝菌丝体经过提取罐的水提取,经过真空浓缩,在经过醇沉工艺,加工成可以全部被人体吸收,灵芝多糖含量提高到30-40%灵芝菌丝体提取物。极大的提高了功效,减少了服用量。 灵芝多糖提取工艺流程:(提取罐)灵芝菌丝体粉水提取(外循环真空浓缩罐)提取液真空浓缩(醇沉罐)浓缩液乙醇沉淀多糖(离心机)沉淀多糖分离 (浓缩液储罐)沉淀物配制成多糖浓缩液(喷雾干燥塔)灵芝多糖喷雾干燥 (粉碎机)灵芝多糖粉碎到100目(混合机)灵芝多糖粉批量混合(真空包装机)食品塑袋真空包装。灵芝多糖原料成品

多糖分离纯化的基本原则和方法

多糖分离纯化的基本原则和方法 多聚糖(polysaccharide),简称多糖,常由一百个以上甚至几千个单糖基通过糖苷键连接而成的,其性质已大不同于单糖,如甜味和强的还原性已经消失,广泛存在于动物细胞膜和植物、微生物的细胞壁中,是构成生命的四大基本物质之一,与生命功能的维持密切相关。近年来,大量研究表明多糖除了有增强免疫功能、抗肿瘤作用、抗氧化、抗衰老、消化系统保护作用的生物学效应外,还有抗菌、抗病毒、降血糖、降血脂、抗辐射、抗凝血等作用。 1、基本原则 在不破坏多糖活性的前提下进行多糖的分离纯化。尽量不引入新的杂质,或引入的新杂志易于除去,如小分子盐类可经过透析作用除去,铵根离子可通过加热挥发除去等[1]。 2、分离纯化方法 多糖的生物活性倍受关注,但不少多糖的提取方法和工艺尚未成熟,基于效率、成本多方面的考虑,各种方法的开发、比较、分析是研究工作的焦点之一。目前多糖提取方法主要有溶剂提取法、酸提法、碱提法、酶解法、超滤法、超声法、微波法、超临界流体萃取法。首先要根据多糖的存在形式及提取部位不同,决定在提取之前是否做预处理:提取时需注意对一些含脂较高的根、茎、叶、花、果及种子类,在用水提取前,应先加入甲醇或l:l的乙醇乙醚混合溶液或石油醚进行脱脂,而对含色素较高的根、茎、叶、果实类,需进行脱色处理。 2.1多糖的提取与分离方法 由于各类多糖的性质及来源不同,所以提取方法也各有所异,主要归纳为以下几类: 第一类难溶于水,可溶于稀碱液的主要是胶类,如木聚糖及半乳糖等。原料粉碎后用0.5mol/L NaOH水溶液提取,提取液经中和及浓缩等步骤,最后加入乙醇,即得粗糖沉淀物。 第二类易溶于温水,难溶于冷水的多糖,可用70~80℃热水提取,提取液用氯仿:正丁醇(4:1)混合除去蛋白质,经透析、浓缩后再加入乙醇即得粗多糖产物[2]。 第三类粘多糖的提取。在组织中,粘多糖与蛋白质以共价键结合,故提取

药用白术的研究

湖北中医药大学本科生毕业论文题目:药用白术的研究 姓名:李晓华 学号: 20080305002 专业:中药资源与开发 年级: 2008 级 实习单位:武汉市健恒药业有限公司指导老师:刘强 完成日期: 2012 年 5 月 10日

药用白术的研究 白术为菊科植物白术(Atractylodes macrocephala Koidz.)的干燥根茎,为我国传统用药,始载于《神农本草经》,原名“术”,后因宋代林亿等人的极力推行,改为白术。白术是道地药材“浙八味”之一。野生白术主要产于浙江於潜、昌化、天目山一带,以於潜所产白术质量为佳,称“於术”,现多栽培,少有野生。2005 年版《中国药典》中白术药材居全国大宗常用中药材之首,全国年需求量 7000t[1]。白术性温,味苦甘,有补脾、益胃、燥湿、和中的功效,常用于脾胃气弱、不思饮食、腹胀泄泻、痰饮眩悸、水肿、自汗、胎动不安等症状,经典医书中就有“脾虚不健,术能补之,胃虚不纳,术能助之”的论断[2]。 1 白术的药用资源研究 1.1 白术的鉴别 1.1.1白术性状鉴别 根茎规则的肥厚团块,长3-13cm,直径1.5-7cm。表面灰黄构灰棕色,有瘤状突起及断续的纵皱和沟纹,并有须根痕,顶端有殖留茎基和芽痕。质坚硬,不易折断;断面不平坦,黄白色至淡棕色,有棕黄色的点状油室散在,烘干者断面角质样,色较深或有裂隙。茎下部叶羽状分裂,上部叶狭披针形。秋季开紫花,全为管状。气清香,味甘、微辛,嚼之略带粘性。 以个大、质坚实、断面黄白色、香气浓者为佳[3]。 1.1.2白术显微鉴别

根茎横切面:木栓层为1-5列木栓细胞,其间夹有1-2列断续的石细胞带。皮层、韧皮部及射线中散有油室,长径180-370μm,短径135-200μm。表成层环明显。木质部外侧的导管1-3列径向排列,基旁无木纤维束,内侧的导管周围有较发达的木纤维束。薄壁细胞中含草酸钙会晶和菊糖[4] 。 1.1.3 白术理化鉴别 (1)取本品粉末1g,加乙醚5ml,振摇浸出15min,滤过。取滤液2ml,置蒸发皿中,待乙醚挥散后,加含5%对二甲氨基苯甲醛的10%硫酸溶液1ml,则显玫瑰红色;再于100℃烘5min即变成紫色。(检查苍术酮)(2)薄层色谱按“苍术”顶下的方法进行薄层色谱,喷显色剂后苍术酮即显红色,烘后变成紫色[5]。 1.1.4 白术应用鉴别 (1)白术生用取其健脾而不燥,炒用则燥湿力量增加,炒焦则用在脾湿有寒,土炒则补脾止泻,米泔水制者,可以完全消灭燥气,适用于脾虚肝脏之体。 (2)术有苍白二种,古时曾通用不分。但因性效有殊,分别应用亦已甚久。苍术苦温辛烈,燥散之性有余,而补养之力不足;白术微辛,苦而不烈,燥散之性不足,而补养之力有余。故一般脾虚气弱用白术,脾为湿困苍术,止汗安胎用白术,发汗散邪用苍术[6]。 1.1.5 白术品质标志 (1)本品总灰分子得过5.0%。 (2)色度取本品最粗粉,精密称取2g,置100ml玻璃烧瓶中,加55%

黄酮类化合物的提取纯化方法

黄酮类化合物的提取、药用价值和产品开发应用前景 任红丽2009090141 摘要:对黄酮类化合物的药用价值、提取工艺、分离方法等方面进行综述。在 药用价值方面,讨论了其抗抑郁作用、抗氧化与自由基消除活性作用、对化学性肝损伤的保护作用、抗肿瘤作用、抗骨质疏松作用、抗心肌缺血作用;在提取工艺方面,讨论了溶剂提取法、超声提取法、酶法、微波法等;及其开发应用,为今后黄酮类化合物的深入研究提供理论基础。 关键词:黄酮类化合物提取工艺药用价值 黄酮类物质是一类低分子天然植物成分,是自然界中存在的酚类物质[14],又称生物黄酮或植物黄酮,属植物次级代谢产物,广泛存在于各种植物的各个部位,尤其是花、叶,主要存在于芸香科、唇形科、豆科、伞形科、银杏科与菊科中。迄今,已有数百种不同类型的黄酮类化合物在植物中被发现,人工合成的黄酮类化合物也不断问世。最初这类物质仅用于染料方面,自20世纪20年代,槲皮素、芦丁等黄酮类物质用于临床后,才开始引起人们的关注,研究发现其中相当一部分具有显著的生理及药理活性,例如抗氧化、抗病毒、抗炎、调节血管渗透性,改善记忆,抗抑郁、抗焦虑、中枢抑制、神经保护等功能[2,12]诸多生理和药理特性使其广泛应用于食品、医药等领域。 1.提取纯化方法 1.1 传统提取方法 1.1.1 热水提取法 水是最廉价的提取溶剂,是地球最丰富的物质,无色无味无毒,对人体和环境无害,挥发性不大,具有真正的绿色环保意义。但用水作为提取溶剂时,从中药材中提取的黄酮类化合物中杂质含量较多,往往因泡沫或粘液很多,给进一步分离带来许多麻烦,而且浓缩也会很困难。此外,水提取物容易发霉发酵[22]。1.1.2 碱性水、碱性稀醇浸提法 中草药中黄酮类成分多为多酚类化合物,因其结构中具有酚羟基[7],故可用碱性水或碱性稀醇液来提取中草药中的黄酮类化合物。黄酮母核的多样性主要是由黄酮本身骨架、环系的变化、氧化程度和数量而定,当碱的浓度过高,加热时便破坏黄酮类化合物的母核。 1.1.3 有机溶剂热回流及冷浸提取法 根据杂质极性不同,可选用不同的有机溶剂(如石油醚、乙酸乙酯、氯仿、乙醇、甲醇、丙酮等),一般采取乙醇为提取溶剂[15]。

白术挥发油的提取汇总

白术挥发油的提取、包合及质量检查 摘要 目的:研究β-环糊精超声法包合白术挥发油物制备工艺。方法:以β-环糊精与白术挥发油的比例、包合温度、包合时间为变量,以挥发油的包合率及包合物收得率作为判断指标,采用正交设计优化包合工艺的条件,并采用薄层色谱鉴定方法对该包合物进行鉴定。结果:包合的最佳条件为挥发油与β-环糊精投料比为8:1,超声温度为40℃,超声时间为40min。结论:采用β-环糊精超声法包合白术挥发油包合物工艺可行,包合效果良好、制成品质量保证,工艺简单、设备要求不高,适用于工业化生产。 关键词 白术;β-环糊精;挥发油;正交实验;超声法 The volatile oil of atractylodes extraction, inclusion and quality inspection Abstract Objective: study the β-Cyclodextrin inclusion compound of volatile oil of rhizoma atractylodis macrocephalae ultrasonic method of preparation. Methods: β-Cyclodextrin inclusion temperature and proportion of volatile oil of rhizoma atractylodis macrocephalae, packing time as a variable, inclusion rate and the inclusion of essential oil yield as the outcome by using orthogonal design optimization process conditions, and by means of thin-layer chromategraphic identification of the inclusion complexes were identified. Inclusion of results of best conditions as follows: volatile oil and ratio 8:1 β-cyclodextrins, ultrasonic trasonic temperature 40℃, time to 40min.Conclusion: Ultrasound method using β-cyclodextrin inclusion compound of volatile oil of rhizome atractylodis macrocephalae clathrate is feasible, good packing effect, quality assurance of manufactured goods, simple technology, equipment demand is not high, suitable for industrial production. Keywords Atractylodes; beta – cyclodextrin; naphtha; orthogonal experiment; Ultrasonic method

【CN110105458A】从罗汉果甜苷提取废液中提取多糖和D甘露醇的方法【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910228093.6 (22)申请日 2019.03.25 (71)申请人 湖南华诚生物资源股份有限公司 地址 410205 湖南省长沙市高新区杏康南 路8号 (72)发明人 陈钱 黄华学 贺进军  (74)专利代理机构 长沙星耀专利事务所(普通 合伙) 43205 代理人 陆僖 宁星耀 (51)Int.Cl. C08B 37/00(2006.01) C07C 29/74(2006.01) C07C 31/26(2006.01) (54)发明名称 从罗汉果甜苷提取废液中提取多糖和D-甘 露醇的方法 (57)摘要 从罗汉果甜苷提取废液中提取多糖和D -甘 露醇的方法,包括以下步骤:(1)将罗汉果甜苷提 取废液煮沸,保温,灭菌,冷却,超滤,加水赶洗, 透过液上阴离子交换树脂柱,收集流出液,水洗, 收集水洗液,浓缩;(2)上凝胶树脂柱,等度洗脱, 分段收集目标洗脱液,浓缩;(3)在罗汉果多糖粗 品浓缩液中,加入醇溶液,搅拌,静置,过滤,干 燥,得罗汉果多糖产品;将滤液浓缩与D -甘露醇 粗品浓缩液混合,结晶,过滤,醇洗,干燥,得D -甘 露醇产品。本发明方法所得罗汉果多糖的质量含 量≥95%,收率≥92%;所得D -甘露醇的质量含量 ≥98%,收率≥92%,质量稳定;本发明方法简单, 提取时间短,成本低,废液排放少,可实现大规模 生产。权利要求书2页 说明书7页CN 110105458 A 2019.08.09 C N 110105458 A

权 利 要 求 书1/2页CN 110105458 A 1.一种从罗汉果甜苷提取废液中提取多糖和D-甘露醇的方法,其特征在于,包括以下步骤: (1)超滤、脱色:将罗汉果甜苷提取废液煮沸,保温,灭菌,冷却至常温后,超滤,加水赶洗陶瓷膜上的滤渣至透过液无色透明且糖度为0,透过液上阴离子交换树脂柱,收集流出液,水洗至糖度为0,收集水洗液,减压浓缩,得脱色浓缩液; (2)凝胶柱层析:将步骤(1)所得脱色浓缩液上凝胶树脂柱,再以水为流动相进行等度洗脱,分段收集目标洗脱液,减压浓缩,分别得罗汉果多糖粗品浓缩液和D-甘露醇粗品浓缩液; (3)醇沉、结晶:在步骤(2)所得罗汉果多糖粗品浓缩液中,加入醇溶液,搅拌均匀后,静置,离心过滤,将沉淀物冷冻干燥,得罗汉果多糖产品;将过滤的滤液减压浓缩,与步骤(2)所得D-甘露醇粗品浓缩液混合,静置冷冻结晶,过滤,醇洗至纯白色,真空干燥,得D-甘露醇产品。 2.根据权利要求1所述从罗汉果甜苷提取废液中提取多糖和D-甘露醇的方法,其特征在于:步骤(1)中,所述罗汉果甜苷提取废液中多糖的质量含量为0.30~0.70%,D-甘露醇的质量含量为0.05~0.35%;所述煮沸的温度为90~100℃;所述保温的时间为30~120min;所述灭菌的温度为100~140℃,压力为0.1~0.8MPa,时间为5~60s。 3.根据权利要求1或2所述从罗汉果甜苷提取废液中提取多糖和D-甘露醇的方法,其特征在于:步骤(1)中,用于超滤的超滤膜为陶瓷膜或高分子材料有机超滤膜;所述陶瓷膜的孔径为0.2~10.0μm;所述高分子材料有机超滤膜的截留分子量为1~10万道尔顿。 4.根据权利要求1~3之一所述从罗汉果甜苷提取废液中提取多糖和D-甘露醇的方法,其特征在于:步骤(1)中,上柱的流速为0.2~2.0BV/h;所述阴离子交换树脂柱的装柱径高比为1:2~8;透过液中的固含量与阴离子交换树脂的质量体积比为1:5~20;所述阴离子交换树脂为弱碱性或强碱性阴离子交换树脂;所述阴离子交换树脂的型号为D-280型、LSA-700型、D-285型、D-941型或D-296型中的一种或几种;所述水洗的流速为0.2~2.0BV/h;所述减压浓缩的温度为50~80℃,真空度为-0.10~-0.07MPa,浓缩至固含量为20~60%。 5.根据权利要求1~4之一所述从罗汉果甜苷提取废液中提取多糖和D-甘露醇的方法,其特征在于:步骤(1)中,在所述阴离子交换树脂使用前,先用1.5~2.5BV,体积分数85~99%的乙醇溶液浸泡20~30h,再用体积分数85~99%的乙醇溶液洗至流出液无色、无异味,水洗至无醇味,再用3~5BV质量浓度4~6%的氢氧化钠溶液碱洗,再水洗至中性,然后用3~5BV质量浓度4~6%的盐酸溶液酸洗,再水洗至中性,最后再用3~5BV质量浓度4~6%的氢氧化钠溶液碱洗,再水洗至中性,即成。 6.根据权利要求1~5之一所述从罗汉果甜苷提取废液中提取多糖和D-甘露醇的方法,其特征在于:步骤(2)中,上柱的流速为0.2~2.0BV/h;所述凝胶树脂柱的装柱径高比为1: 10~50;所述脱色浓缩液中的固含量与凝胶树脂的质量体积比为1:8~50;所述凝胶树脂为Sephadex G-100型、Sephadex G-150型或Sephadex G-200型葡聚糖凝胶树脂中一种或几种;所述等度洗脱的流速为5~10BV/h;所述减压浓缩的温度为20~80℃,真空度为-0.10~-0.07MPa,浓缩至固含量为40~60%。 7.根据权利要求1~6之一所述从罗汉果甜苷提取废液中提取多糖和D-甘露醇的方法,其特征在于:步骤(2)中,在所述凝胶树脂使用前,先用沸水溶胀2~4h后,湿法均匀地填充 2

多糖各种提取方法

一、植物多糖的提取 1 溶剂提取法 1.1 水提法 水对植物组织的穿透力强,提取效率高,在生产上使用安全、经济。用水作溶剂来提取多糖时,可以用热水浸煮提取,也可以用冷水浸提。一般植物多糖提取采用热水浸提法,该法所得多糖提取液可直接或离心除去小溶物;或者利用多糖不溶于高浓度乙醇的性质,沉淀提纯多糖;但由于不同性质或不同相对分子质量的多糖沉淀所需乙醇浓度不同,它也可以用于样品中不同多糖组分的分级分离;还可按多糖不同性质在粗分阶段利用混合溶剂提取法对植物中不同的多糖进行分离;其中,以乙醇沉淀最为普遍。但以根茎为主的植物体,细胞壁多糖含量高,热水直接提取率不高。此时为破坏细胞壁,增加多糖的溶出,有两种处理方法:一为酶解,二为弱碱溶解。 1.2酸碱提法 有些多糖适合用稀酸提取,并且能得到更高的提取率。但酸提法只在一些特定的植物多糖提取中占有优势,目前报道的并不多。而且即使有优势,在操作上还应严格控制酸度,因为酸性条件下可能引起多糖中糖苷键的断裂。 有些多糖在碱液中有更高的提取率,尤其是提取含有糖醛酸的多糖及酸性多糖。采用的稀碱多位为0.1mol/L氢氧化钠、氢氧化钾,为防止多糖降解,常通以氮气或加入硼氢化钠或硼氢化钾。同样,碱提优势也是因多糖类的不同而异。与

酸提类似,碱提中碱的浓度也应得到有效控制,因为有些多糖在碱性较强时会水解。另外,稀酸、稀碱提取液应迅速中和或迅速透析,浓缩与醇析而获得多糖沉淀。

1.4 生物酶提取法 酶技术是近年来广泛应用到有效成份提取中的一项生物技术,在多糖的提取过程中,使用酶可降低提取条件,在比较温和的条件中分解植物组织,加速多糖的释放或提取。此外,使用酶还可分解提取液中淀粉、果胶、蛋白质等的产物,常用的酶有蛋白酶,纤维素酶,果胶酶等。 1.5 超声提取法 超声波是一种高频率的机械波,其主要原理是利用超声波产生的“空化作用”对细胞膜的破坏,有利用植物有效成分的释放,而且超声波能形成强大的冲击波或高速射流,有效地减小、消除与水相之间的阻滞层,加大了传质效率,有助于溶质的扩散。另外,超声波的热效应使水温基本在57℃,对原料有水浴作用。超声波提取与传统的提取方法相比,有提取效率高、时间短、耗能低等优点。超声提取的影响因素有:超声时间、超声频率(一般低频中提取效率高,但也有例外)、料液比和温度等。 1.6 微波提取 微波是频率介于300MHz和300GHz之间的非电离电磁波,微波提取的原理是微射线辐射于溶剂并透过细胞壁到达细胞内部,由于溶剂及细胞液吸收微波能细胞内部温度升高,压力增大,当压力超过细胞壁的承受能力时,细胞壁破裂,位于细胞内部的有效成份从细胞中释放出来,传递转移到溶剂周围被溶剂溶解。微波技术应用于植物细胞破壁,有效地提高了收率。具有穿透力强、选择性高、加

海藻提取甘露醇的分离

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 海藻提取甘露醇的分离 海藻提取甘露醇的分离、纯化浸泡、碱炼、酸化在洗藻池中放约 2-3t 自来水,投入 120kg 海藻,至藻体膨胀后,仔细地把海藻上的甘露醇洗入水中,洗净的海藻供提取海藻酸钠用。 洗液再洗第二批海藻,如此约洗四批。 将上述洗液加 300g/L(30%)氢氧化钠液,Ph10-11,静置 8h,待褐藻糖液、淀粉及其他有机黏性物充分凝聚沉淀。 虹吸上清液,用硫酸(1: 1)酸化,调节为 pH6-7,进一步除胶状物,得中性清液。 海藻或海带[自来水]洗液[NaOH][pH10-11, 8h]上清液[H2SO4][pH6-7]中性清液浓缩、醇洗将上述中性清液用直火或蒸气加热至沸腾蒸发,温度 110-115℃,大量氯化钠沉淀,不断将盐类与胶污物捞出,直至呈浓缩液,取小样倒地上,稍冷却应凝固,此时放料,含甘露醇30%以上,水分约含 10%。 将浓缩液冷至 60-70℃,趁热加 95%乙醇(2: 1),不断搅拌,渐渐冷至室温后,离心甩干除去胶质,得灰白色松散物。 中性清液[110-115℃]浓缩液[乙醇][60-70℃]松散物提取称取松散物,装入备有回流冷凝管的提取锅内,加 8 倍量的 94%乙醇,搅拌,缓慢加热,沸腾回流 30min 出料,流水冷却 8h,放置一昼夜,离心甩干,得白色松散甘露醇粗品,含甘露醇 70%-80%。 1 / 10

相关主题
文本预览
相关文档 最新文档