当前位置:文档之家› 基于单片机的温度传感器

基于单片机的温度传感器

基于单片机的温度传感器
基于单片机的温度传感器

目录

0。前言 (1)

1. 总体方案设计 . (2)

2。硬件电路的设计。 (3)

2.1 温度传感器 (3)

2.1.1 温度传感器选用细则 (3)

2.1.2 温度传感器 DS18B20 (4)

2.1 单片机片子 (7)

2.2 显示电路设计 (9)

3 软件设计。 (11)

3.1 主程序方案 . (11)

3.2 各模块子程序 (11)

3.2.1 温度采集程序 . (11)

3.2.2 显示程序 . (14)

4。联合调试 . (15)

5。课设小结及进一步设想。 (16)

参考文献。 (16)

课设体会。 (17)

附录 I 元件清单 (18)

附录 II 整体电路图 (19)

附录 III 源程序清单 (20)

基于单片机的温度采集系统设计(DS18B20

邢帅沈阳航空航天大学自动化学院

摘要:随着社会的进步和工业技术的发展,人们越来越重视温度因素,许多产品对温度范围要求严格,而目前市场上普遍存在的温度检测仪器大都是单点测量, 同时有温度信息

传递不及时、精度不够的缺点,不利于工业控制者根据温度变化及时做出决定。在这样的形式下,开发一种能够同时测量多点,并且实时性高、精度高,能够综合处理多点温度信息的测量系统就很有必要。计算机技术特别是单片机技术的发展,单片机的应用领域越来越广泛,单片机在工业控制、数据采集以及仪器仪表自动化等许多领域都起着十分重要的作用。但在实际应用中,在要求响应速度快、实时性强、控制量多的应用场合,单个单片机往往难以胜任.本课题以AT89C5仲片机系统为核心,能对多点的温度进行实时巡检。 DS18B2(是一种可组网的高精度数字式温度传感器,由于其具有单总线的独特优点,可以使用户轻松地组建起传感器网络,并可使多点温度测量电路变得简单、可靠。本文结合实际使用经验,介绍了 DS18B2(数字温度传感器在单片机下的硬件连接及软件编程,并给出

了软件流程图.

关键词:温度测量;DS18B20温度传感器;单片机

0。刖言

在人类的生活环境中,温度扮演着极其重要的角色.无论你生活在哪里,从事什么工作,无时无刻不在与温度打着交道。自18世纪工业革命以来,工业发展对是否能掌握温度有着绝对的联系。在冶金、钢铁、石化、水泥、玻璃、医药等等行业,可以说几乎80%

的工业部门都不得不考虑着温度的因素。

进入21世纪后,温度传感器正朝着高精度、多功能、总线标准化、高可靠性及安全性、开发虚拟传感器和网络传感器、研制单片测温系统等高科技的方向迅速发展.目前市场主要存在单点和多点两种温度测量仪表。对于单点温测仪表,主要采用传统的模拟集成温度传感器,其中又以热电阻、热电偶等传感器的测量精度高,测量范围大,而得到了普遍的应用。此种产品测温范围大都在-200 C-800 C之间,分辨率12位,最小分辨温度在 0.001—0。01之间.自带LED显示模块,显示4位到16位不等。有的仪表还具有存储功能,可存储几百到几千组数据。该类仪表可很好的满足单个用户单点测量的需要.多点温度测量仪表,相对与单点的测量精度有一定的差距,虽然实现了多路温度的测控,但价格昂贵.

针对目前市场的现状,本课题提出了一种可满足要求、可扩展的并且性价比高的单片机多路测温系统。

随着科学技术的不断进步与发展,温度控制在工业控制、电子测温计、医疗仪器、家用电器等各种温度控制系统中广泛应用,且由过去的单点测量向多测量发展。目前温度传感器有模拟

和数字两类传感器,为了克服模拟传感器与微处理器接口时需要信号调理电路和A/ D转换器的弊端,大多数多点测温控制系统采用数字传感器,并大大方便了系统的设计.比较有代表性的数字温度传感器有 DS18B20 MAX6575 DS1722 MAX6635 SMT160—30 等。

在传统的温度测量系统设计中,往往采用模拟技术进行设计,这样就不可避免地遇到诸如引线误差补偿、多点测量中的切换误差和信号调理电路的误差等问题;而其中某一环节处理不当,就可能造成整个系统性能的下降。随着现代科学技术的飞速发展,特别是大规模集成电路设计技术的发展,微型化、集成化、数字化正成为传感器发展的一个重要方向。美国Dallas半导体公司推出的数字温度传感器 DS18B20具有独特的单总线接口,仅需要占用一个通用1/0端口即可完成与微处理器的通信;在—10?+85C温度范围内具有 -0。 5C精度;用户可编程设定9?12位的分辨率。以上特性使得DS18B20E常适用于构建高精度、多点温度测量系统.

1. 总体方案设计

温度检测系统有则共同的特点:测量点多、环境复杂、布线分散、现场离监控室远等。若采用一般温度传感器采集温度信号,则需要设计信号调理电路、A/D转换及相应的接口电路,才能把传感器输出的模拟信号转换成数字信号送到计算机去处理。这样,由于各种

因素会造成检测系统较大的偏差;又因为检测环境复杂、测量点多、信号传输距离远及各种干扰的影响,会使检测系统的稳定性和可靠性下降.而为了获得较高的测温精度,就

必须采用措施解决由长线传输,多点测量切换及放大电路零点漂移等造成的误差补偿问题.

采用数字温度芯片DS18B2C W量温度,输出信号全数字化。 DS18B2(是一种可组网的高精度数字式温度传感器,由于其具有单总线的独特优点,可以使用户轻松地组建起传感器网络,并可使多点温度测量电路变得简单、可靠。便于单片机处理及控制,省去传统的测温方法的很多外围电路。且该芯片的物理化学性很稳定,它能用做工业测温元件,此元件线形较好.在0—100摄氏度时,最大线形偏差小于1摄氏度。DS18B20的最大特点之一采用了单总线的数据传输,由数字温度计DS1820和微控制器AT89C51构成的温度测量

装置,它直接输出温度的数字信号,可直接与计算机连接.这样,测温系统的结构就比较简单,体积也不大,且由于AT89C51可以带多个DSB1820因此可以非常容易实现多点测量。轻松的组建传感器网络。

采用温度芯片DS18B20M量温度,可以体现系统芯片化这个趋势.部分功能电路的集成,使总体电路更简洁,搭建电路和焊接电路时更快。而且,集成块的使用,有效地避免外界的干扰,提高测量电路的精确度.所以集成芯片的使用将成为电路发展的一种趋势。

本方案应用这一温度芯片,也是顺应这一趋势其原理框图为图1

图1温度采集的结构框图

2. 硬件电路的设计

本课题研究的多点测温系统是以单片机和单总线数字温度传感器DS18B20为核心,充

分利用单片机优越的内部和外部资源及数字温度传感器DS18B20的优越性能构成一个完

备的测温系统,实现对温度的多点测量。整个系统由单片机控制,能够接收传感器的温度数据并显示出来,可以从键盘输入命令,系统根据命令,选择对应的温度传感器,并由驱动电路驱动温度显示.本课题设计了一种合理、可行的单片机监控软件,完成测量和显示的任务。由于单片机具有强大的运算和控制功能,使得整个系统具有模块化、硬件电路简单以及操作方便等优点。

本课题的整个系统是由单片机、显示电路、键盘电路、驱动电路,串口通信等构成。

2.1温度传感器

2。1.1温度传感器选用细则

现代传感器在原理与结构上千差万别,如何根据具体的测量目的、测量对象以及测量环境合理地选用传感器,是在进行某个量的测量时首先要解决的题.当传感器确定之后,与之相配套的测量方法和测量设备也就可以确定了. 测量结果的成败,在很大程度上取决

于传感器的选用是否合理。

(1) 根据测量对象与测量环境确定传感器的类型

要进行一个具体的测量工作,首先要考虑采用何种原理的传感器,这需要分析多方面的因素之后才能确定。因为,即使是测量同一物理量,也有多种原理的传感器可供选用, 哪一种原理的传感器更为合适,则需要根据被测量的特点和传感器的使用条件考虑以下一些具体问题:量程的大小;被测位置对传感器体积的要求;测量方式为接触式还是非接触式;信号的引出方法,有线或是非接触测量;传感器的来源,国产还是进口,价格能否承受,还是自行研制。

(2) 灵敏度的选择

通常,在传感器的线性范围内,希望传感器的灵敏度越高越好.因为只有灵敏度高时,与被测量变化对应的输出信号的值才比较大, 有利于信号处理。但要注意的是,传感器的灵敏度高,与被测量无关的外界噪声也容易混入,也会被放大系统放大,影响测量精度. 因此,要求传感器本身应具有较高的信噪比,尽员减少从外界引入的串扰信号

(3) 线性范围

传感器的线形范围是指输出与输入成正比的范围。以理论上讲,在此范围内,灵敏度

保持定值。传感器的线性范围越宽,则其量程越大,并且能保证一定的测量精度。在选择传感器时,当传感器的种类确定以后首先要看其量程是否满足要求。但实际上,任何传感

器都不能保证绝对的线性,其线性度也是相对的。当所要求测量精度比较低时,在一定的范围内,可将非线性误差较小的传感器近似看作线性的,这会给测量带来极大的方便。

(4) 稳定性

传感器使用一段时间后,其性能保持不变化的能力称为稳定性.影响传感器长期稳定性的因素除传感器本身结构外,主要是传感器的使用环境。因此,要使传感器具有良好的稳定性,传感器必须要有较强的环境适应能力。在选择传感器之前,应对其使用环境进行调查,并根据具体的使用环境选择合适的传感器,或采取适当的措施,减小环境的影响。

2.1.2 温度传感器DS18B20

DS18B2型单线智能温度传感器,属于新一代适配微处理器的智能温度传感器。全部传感元件及转换电路集成在形如一只三极管的集成电路内。与传统的热敏电阻相比,它能够直接读出被测温度,并且可根据实际要求通过简单的编程实现9?12位的数字值读数方式。其可以分别93。75mS?750m内完成9位和12位的数字量,最大分辨率为0。 0625C , 而且从DS18B2读出或写入DS18B2的信息仅需要一根口线(单线接口)读写.

(1) DS18B20的性能特点

单线数字化智能集成温度的传感器,其特点是:

①DSI8B20可将被测温度直接转换成计算机能识别的数字信号输出,温度值不需要经电桥电路

先获取电压模拟量,再经信号放大和 A/ D转换成数字信号,解决了传统温度传感器存在的因参数不一致性,在更换传感器时会因放大器零漂而必须对电路进行重新调

试的问题,使用方便。

②DS18B2能提供9到 12位温度读数,精度高,且其信息传输只需1根信号线,与计算机接口

十分简便,读写及温度变换的功率来自于数据线而不需额外的电源。

③每一个DS18B2都有一个惟一的序列号,这就允许多个 DS18B2连接到同一总线上。尤其适合

于多点温度检测系统。

④负压特性:当电源极性接反时,DS18B2虽然不能正常工作,但不会因发热而烧毁正

是由于具有以上特点,DS18B2在解决各种误差、可靠性和实现系统优化等方面与传统各种温度传感器相比,有无可比拟的优越性,因而广泛应用于过程控制、环境控制、建筑物、机器设备中的温度检测。其外形和管脚如下图:

图2 DS18B20外部形状及管脚图

⑵DS18B20与单片机的典型接口设计

DS18B2测温系统具有测温系统简单、测温精度高、连接方便、占用口线少等优点。

Dsl8B20与单片机的硬件连接有两种方法:一是 VCC接外部电源,GN接地,I/O与单片机的 I/O 线相连;二是用寄生电源供电,此时,~UDD? GN接地,I/O接单片机I/0.无论是哪种供电方式,I/0 口线都要接4. 7k Q左右的上拉电阻。图4给出了 DS18B20与微处理器的典型连接.

①DS18B20寄生电源供电方式:

如下面图7所示,在寄生电源供电方式下,DS18B2从单线信号线上汲取能量:在信号线DQt于高电平期间把能量储存在内部电容里,在信号线处于低电平期间消耗电容上的电能工作,直到高电平到来再给寄生电源(电容)充电.独特的寄生电源方式有三个好处:

1)进行远距离测温时,无需本地电源

2) 可以在没有常规电源的条件下读取ROM

3)电路更加简洁,仅用一根I/O 口实现测温

要想使DS18B2进行精确的温度转换,I/O线必须保证在温度转换期间提供足够的能量,由于每个DS18B2在温度转换期间工作电流达到1mA当几个温度传感器挂在同一根I/O 线上进行多点测温时,只靠4.7K上拉电阻就无法提供足够的能量,会造成无法转换温度或温度误差极大.

因此,该电路只适应于单一温度传感器测温情况下使用,不适宜采用电池供电系统中。

并且工作电源VCC、须保证在5V,当电源电压下降时,寄生电源能够汲取的能量也降低,会使温度误差变大。

②DS18B2(寄生电源强上拉供电方式:

改进的寄生电源供电方式如下面图 7所示,为了使DS18B2(在动态转换周期中获得足够的电流供应,当进行温度转换或拷贝到 E2存储器操作时,用MOSFE把I/O线直接拉到 VCC就可提供足够的电流,在发出任何涉及到拷贝到E2存储器或启动温度转换的指令后, 必须在最多10μ S 内把I/O线转换到强上拉状态.在强上拉方式下可以解决电流供应不走的问题,因此也适合于多点测温应用,缺点就是要多占用一根 I/O 口线进行强上拉切换。

(3) DS18B20的内部结构:

主要包括寄生电源、温度传感器、64位激光RoM 单线接口、存放中间数据的高速暂

存器,用于存储用户设定的温度上下限值的 TH 和TL 触发器存储与控制逻辑、8位循环冗 余校验码(CRC )发生器等七部分。64位光刻ROM 的排列是:开始8位是产品类型标号,接着 的48位是该DS18B2自身的序列号,最后8位是前面56位的循环冗余校验码。光刻R0M 的作

用是使每一个DS18B2都各不相同,这可实现一根总线上挂接多个 DS18B2的目的。暂存存 储器包含了 8个连续字节,前2个字节是测得的温度信息,第1个字节的内容是温度的低8位, 第2个字节是温度的高8位.第3个和第4个字节是TH TL 的易失性拷贝,第5个字节是结构 寄存器的易失性拷贝,这3个字节的内容在每一次上电复位时被刷新.第 & 7、8个字节用 于内部计算。第9个字节是冗余检验字节

图7 DS18B20的内部结构

(4)DS18B20的测温原理:

DS182(测温原理如下图所示。图中低温度系数晶振的振荡频率受温度影响很小,用于 产生固定频率的脉冲信号送给计数器1。

图8 DS18B20测温原理

高温度系数晶振随温度变化其振荡频率明显改变,所产生的信号作为计数器 2的脉冲

输 0 一 HKtft I ht? I

11

加J ?Λ? 存

St

电源检测

64?

WM

和 接口

高速

高 i??????TH

配置寄存器 高糧度姿敖晶撮 计雅罪壬

基于51单片机及DS18B20温度传感器的数字温度计程序(详细注释)

基于51单片机及DS18B20温度传感器的数字温度计程序(详细注释)

电路实物图如下图所示: C 语言程序如下所示: /******************************************************************** zicreate ----------------------------- Copyright (C) https://www.doczj.com/doc/f03731517.html, -------------------------- * 程序名; 基于DS18B20的测温系统 * 功 能: 实时测量温度,超过上下限报警,报警温度可手动调整。K1是用来 * 进入上下限调节模式的,当按一下K1进入上限调节模式,再按一下进入下限 * 调节模式。在正常模式下,按一下K2进入查看上限温度模式,显示1s 左右自动 * 退出;按一下K3进入查看下限温度模式,显示1s 左右自动退出;按一下K4消除 * 按键音,再按一下启动按键音。在调节上下限温度模式下,K2是实现加1功能, * K1是实现减1功能,K3是用来设定上下限温度正负的。 * 编程者:Jason * 编程时间:2009/10/2 *********************************************************************/ #include //将AT89X52.h 头文件包含到主程序 #include //将intrins.h 头文件包含到主程序(调用其中的_nop_()空操作函数延时) #define uint unsigned int //变量类型宏定义,用uint 表示无符号整形(16位) #define uchar unsigned char //变量类型宏定义,用uchar 表示无符号字符型(8位) uchar max=0x00,min=0x00; //max 是上限报警温度,min 是下限报警温度 bit s=0; //s 是调整上下限温度时温度闪烁的标志位,s=0不显示200ms ,s=1显示1s 左右 bit s1=0; //s1标志位用于上下限查看时的显示 void display1(uint z); //声明display1()函数 #include"ds18b20.h" //将ds18b20.h 头文件包含到主程序 #include"keyscan.h" //将keyscan.h 头文件包含到主程序 #include"display.h" //将display.h 头文件包含到主程序

基于51单片机的DS18B20数字温度计的实训报告

电子信息职业技术学院 暨国家示性软件职业技术学院 单片机实训 题目:用MCS-51单片机和 18B20实现数字温度计 姓名: 系别:网络系 专业:计算机控制技术 班级:计控 指导教师: * 伟 时间安排:2013年1月7日至 2013年1月11日

摘要 随着国民经济的发展,人们需要对各中加热炉、热处理炉、反应炉和锅炉中温度进行监测和控制。采用单片机来对他们控制不仅具有控制方便,简单和灵活性大等优点,而且可以大幅度提高被控温度的技术指标,从而能够大大的提高产品的质量和数量。 在日常生活及工业生产过程中,经常要用到温度的检测及控制,温度是生产过程和科学实验中普遍而且重要的物理参数之一。在生产过程中,为了高效地进行生产,必须对它的主要参数,如温度、压力、流量等进行有效的控制。温度控制在生产过程中占有相当大的比例。温度测量是温度控制的基础,技术已经比较成熟。传统的测温元件有热电偶和二电阻。而热电偶和热电阻测出的一般都是电压,再转换成对应的温度,这些方法相对比较复杂,需要比较多的外部硬件支持。我们用一种相对比较简单的方式来测量。 我们采用美国DALLAS半导体公司继DS18B20之后推出的一种改进型智能温度传感器DS18B20作为检测元件,温度围为-55~125 oC,最高分辨率可达0.0625 oC。DS18B20可以直接读出北侧温度值,而且采用三线制与单片机相连,减少了外部的硬件电路,具有低成本和易使用的特点。 本文介绍一种基于AT89C51单片机的一种温度测量及报警电路,该电路采用DS18B20作为温度监测元件,测量围0℃-~+100℃,使用LED模块显示,能设置温度报警上下限。正文着重给出了软硬件系统的各部分电路,介绍了集成温度传感器DS18B20的原理,AT89C51单片机功能和应用。该电路设计新颖、功能强大、结构简单。 关键词:单片机,数字控制,温度计, DS18B20,AT89S51

基于51单片机的跑表,秒表程序c语言程序

基于51单片机的跑表,秒表程序c语言程序#include #define uchar unsigned char #define uint unsigned int uchar table[]=" 00:00:00:00 "; bit flag=0; sbit en=P2^0; sbit rs=P2^1; sbit s1=P1^0; sbit s2=P1^1; sbit bb=P1^2; uchar shi,fen,miao,biao,tt,num1,aa; void delay(uint z) { uint i,j; for(i=z;i>0;i--) for(j=110;j>0;j--); } void write_com(uchar com) { rs=0; P0=com;

delay(10); en=1; delay(10); en=0; } void write_date(uchar date) { rs=1; P0=date; delay(10); en=1; delay(10); en=0; } void display(uchar com1,uchar date1) { uchar aa,bb; aa=date1/10; bb=date1%10; write_com(0x80+com1); write_date(0x30+aa);

write_date(0x30+bb); } void init() { TMOD=0x01; ET0=1; TR0=0; EA=1; TH0=(65536-10000)/256; TL0=(65536-10000)%256; en=0; write_com(0x38); write_com(0x0c); write_com(0x06); write_com(0x01); write_com(0x80+0x40); for(num1=0;num1<17;num1++) { write_date(table[num1]); delay(5); }

基于AT89C51单片机的温度传感器

基于AT89C51单片机的温度传感器 目录 摘要.............................................................. I ABSTRACT........................................................... I I 第一章绪论 (1) 1.1 课题背景 (1) 1.2本课题研究意义 (2) 1.3本课题的任务 (2) 1.4系统整体目标 (2) 第二章方案论证比较与选择 (3) 2.1引言 (3) 2.2方案设计 (3) 2.2.1 设计方案一 (3) 2.2.2 设计方案二 (3) 2.2.3 设计方案三 (3) 2.3方案的比较与选择 (4) 2.4方案的阐述与论证 (4) 第三章硬件设计 (6) 3.1 温度传感器 (6) 3.1.1 温度传感器选用细则 (6) 3.1.2 温度传感器DS18B20 (7) 3.2.单片机系统设计 (13)

3.3显示电路设计.................................错误!未定义书签。 3.4键盘电路设计................................错误!未定义书签。 3.5报警电路设计.................................错误!未定义书签。 3.6通信模块设计.................................错误!未定义书签。 3.6.1 RS-232接口简介..............................错误!未定义书签。 3.6.2 MAX232芯片简介.............................错误!未定义书签。 3.6.3 PC机与单片机的串行通信接口电路.............错误!未定义书签。 第四章软件设计..................................错误!未定义书签。 4.1 软件开发工具的选择..........................错误!未定义书签。 4.2系统软件设计的一般原则.......................错误!未定义书签。 4..3系统软件设计的一般步骤......................错误!未定义书签。 4.4软件实现....................................错误!未定义书签。 4.4.1系统主程序流程图.........................错误!未定义书签。 4.4.2 传感器程序设计...........................错误!未定义书签。 4.4.3 显示程序设计.............................错误!未定义书签。 4.4.4 键盘程序设计.............................错误!未定义书签。 4.4.5 报警程序设计.............................错误!未定义书签。 4.4.6 通信模块程序设计.........................错误!未定义书签。 第五章调试与小结..................................错误!未定义书签。致谢...............................................错误!未定义书签。参考文献...........................................错误!未定义书签。附录...............................................错误!未定义书签。系统电路图.......................................错误!未定义书签。系统程序.........................................错误!未定义书签。

基于51单片机的温度警报器的设计

西安文理学院物理与机械电子工程学院课程设计任务书

目录 摘要 (3) 1 引言 (3) 1.1课题背景 (3) 1.2研究内容和意义 (5) 2 芯片介绍 (5) 2.1 DS18B20概述 (5) 2.1.1 DS18B20封装形式及引脚功能 (6) 2.1.2 DS18B20内部结构 (6) 2.1.3 DS18B20供电方式 (9) 2.1.4 DS18B20的测温原理 (10) 2.1.5 DS18B20的ROM命令 (11) 2.2 AT89C52概述 (13) 2.2.1单片机AT89C52介绍 (13) 2.2.2功能特性概述 (13) 3 系统硬件设计 (13) 3.1 单片机最小系统的设计 (13) 3.2 温度采集电路的设计 (14) 3.3 LED显示报警电路的设计 (15) 4 系统软件设计...................................................15 4.1 流程图........................................................15 4.2 温度报警器程序.................................................16 4.3 总电路图..................................................... 19 5总结 (20)

摘要 随着时代的进步和发展,温度的测试已经影响到我们的生活、工作、科研、各个领域,已经成为了一种非常重要的事情,因此设计一个温度测试的系统势在必行。 本文主要介绍了一个基于AT89C52单片机的数字温度报警器系统。详细描述了利用数字温度传感器DS18B20开发测温系统的过程,重点对传感器在单片机下的硬件连接,软件编程以及各模块系统流程进行了详尽分析,对各部分的电路也一一进行了介绍,该系统可以方便的实现温度的采集和报警,并可以根据需要任意上下限报警温度,它使用起来相当方便,具有精度高、量程宽、灵敏度高、体积小、功耗低等优点,适合于我们日常生活和工、农业生产中的温度测量,也可以当做温度处理模块潜入其他系统中,作为其他主系统的辅助扩展。DS18B20与AT89C52结合实现最简温度报警系统,该系统结构简单,抗干扰能力强,适合于恶劣环境下进行现场温度测量,有广泛的应用前景。 关键词:单片机;温度检测;AT89C52;DS18B20; 1 引言 1.1课题背景 温度是工业对象中主要的被控参数之一,如冶金、机械、食品、化工各类工业生产中,广泛使用的各种加热炉、热处理炉、反应炉等,对工件的温度处理要求严格控制。随着科学技术的发展,要求温度测量的范围向深度和广度发展,以满足工业生产和科学技术的要求。 基于AT89C51单片机提高了系统的可移植性、扩展性,利于现代测控、自动化、电气技术等专业实训要求。以单片机为核心设计的温度报警器,具有安全可靠、操作简单方便、智能控制等优点。 温度对于工业生产如此重要,由此推进了温度传感器的发展。温度传感器主要经过了三个发展阶段[1]: (1)模拟集成温度传感器。该传感器是采用硅半导体集成工艺制成,因此亦称硅传感器或单片集成温度传感器。此种传感器具有功能单一(仅测量温度)、

51单片机定时器秒表设计程序

51单片机定时器秒表设计程序 #include typedef unsigned char UINT8; typedef unsigned int UINT16; code UINT8 SEGMENT[10]={0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90}; code UINT8 SHU[10] ={0x40,0x79,0x24,0x30,0x19,0x12,0x02,0x78,0x00,0x10}; code UINT8 SELECT[8] ={0x7f,0xbf,0xdf,0xef,0xf7,0xfb,0xfd,0xfe}; #define S1 0x0e #define S2 0x0d #define S3 0x0b #define S4 0x07 sbit SPEAK=P3^5; sbit P3_3=P3^3; UINT8 mSecond,Second; void Delay(UINT16 t) { UINT16 i,j; for(i=0;i

基于单片机正弦信发生器












专业班级:
学生姓名:
指导教师(签名):
一、课程设计(论文)题目
正弦波信号发生器设计
二、本次课程设计(论文)应达到的目的
本次课程设计是自动化专业学生在学习了《单片机原理及应用》课程 及《模拟电子线路》、《数字电子线路》等专业基础课程之后进行的一次综 合训练,其主要目的是加深学生对单片机软硬件技术和相关理论知识的理 解,进一步熟悉 51 单片机系统设计的基本理论、方法和技能;掌握工程 应用的基本内容和要求,力争做到理论与实际的统一;同时培养学生分析 问题、解决问题的能力和独立完成系统设计的能力,并按要求编写相关的 技术文档和设计报告等。
三、本次课程设计(论文)任务的主要内容和要求(包括原始数据、技 术参数、设计要求等)
1.设计内容
(1)选择 51 单片机,晶振采用 12MHz。
(2)设计一个能产生 0 至 50HZ 正弦波信号。通过 0832D/A 芯片完成 数模转换。

(3)频率值由键盘输入。 (4)将频率值由 LED 数码管上显示(两位)。 2.设计要求 (1)按照任务书的要求完成系统分析及方案设计。 (2)完成硬件原理图的设计,并选择相关元器件。 (3)完成控制软件流程图的设计,编写相应的单片机控制程序。 (4)撰写设计报告。 四、应收集的资料及主要参考文献: 1.李建忠.单片机原理及应用.西安电子科技大学出版社,2008 2.杨居义.单片机课程设计指导.清华大学出版社,2009 3.李海滨等.单片机技术课程设计与项目实例.中国电力出版社,2009 以及与 51 系列单片机相关的文献及教材。 五、审核批准意见
教研室主任(签字) 正弦信号发生器设计方案框图

基于51单片机DS18B20温度传感器的C语言程序和电路

基于51单片机DS18B20温度传感器的C语言程序和电路 DS18B20在外形上和三极管很像,有三只脚。电压范围为3.0 V至5.5 V 无需备用电源测量温度位温度转换为12位数字格式最大值为750毫秒用户可定义的非易失性温度报警设置应用范围包敏感系统。 下面是DS18B20的子程序,本人用过完全可行的: #include #include #define uchar unsigned char #define uint unsigned int sbit DQ=P2^0; void reset(); //DS18B20 void write_byte(uchar val); //DS18B20写命令函数 uchar read_byte(void); //DS18B20读1字节函数 void read_temp(); //温度读取函数 void work_temp(); //温度数据处理函数 uchar data temp_data[2]={0x00,0x00}; uchar data display[5]={0x00,0x00,0x00,0x00,0x00}; //对于温度显示值值 uchar code ditab[16]={0x00,0x01,0x01,0x02,0x03,0x03,0x04,0x04,0x05,0x06,0x06,0x07,0x0数部分查表 main() { while(1) { 自己添加; } } void delay1(uint t) { for(;t>0;t--); } ///////温度控制子函数 void reset() { uchar presence=1; while(presence) { while(presence) {

单片机温度传感器设计报告

泰州职业技术学院 电子与信息工程系 课程名称: 51单片机开发 课题名称:用1602LCD与DS18B20设 计的温度报警器 班级: 10信息 课题小组成员:林淑云朱翠竹 刘苏慧 指导老师:蔡菁

摘要 现代社会是信息社会,随着现代农业技术的发展及人们对生活环境要求的提高,人们也迫切需要检测与控制温度,所以对于温度的测量控制具有十分重要的意义。 随着全球温度的普遍升高,高温火灾更是无处不在:电气线路短路、过载、接触电阻过大等引发高温火灾;静电产生高温火灾;雷电等强电入侵导致高温火灾;最主要是机房内电脑、空调等用电设备长时间工作,导致设备老化,空调发生故障,而不能降温。因此,机房内所属的电子产品发热快,在短时间内机房温度升高超出设备正常温度,导致系统瘫痪或产生火灾,这时温度报警系统就会发挥应有的功能。 本课题介绍的就是利用温度传感DS18B20制作的温度报警器,自动测量当前环境温度。由单片机AT89C52控制,并通过1602LCD显示,若当前环境温度超过此温度,系统发出报警。

目录 一、系统总体设计要求 二、系统硬件设计 三、系统程序设计 四、调试与性能分析 五、源程序清单 六、心得体会

一、系统总体设计要求 1. 本设计采用集成温度传感器的的s18b20,设计一个数字显示的温度报警器。定安全温度值范围为20°C~30°C(可根据具体需要在程序中进行调整),对在这一范围内的温度变化采集后送入A/D转换器,A/D转换器的模拟电压范围为0~5V。例如传感器采集的温度为25°C,则对应液晶显示器的显示值为25°C。而温度高出30°C或者低于20°C时,不在安全温度范围之内,喇叭会进行报警、二极管发光显示 2 总体设计框图 本设计采用AT89C52作为主控芯片,蜂鸣器作为输出设备产生报警声,LCD1602能够实时的显示当前的的温度。其中P3.3和P3.2外接按键,P0口用作LCD输出数据端口,P2.3接蜂鸣器端口。详细原理图见附件 设计框图如图一所示。

51单片机秒表计时(protues)

51单片机秒表计时器 目录 摘要 (3) 一、实训目的 (3) 二、实训设备与器件 (3) (1)实验设备 (3) (2)实训器件 (3) 三、实训步骤与要求 (4) (1)要求 (4) (2)方法 (4) (3)实训线路分析 (4) (4)软件设计 (4) (5)程序编制 (4) 四、硬件系统设计 (4) 五、软件系统设计 (5) 六、系统调试 (9) 七、实训总结与分析 (10) 八、参考资料: (11) 九、附录 (12)

摘要: 秒表是由单片机的P0口和P2口分别控制两个数码管,使数码管工作,循环显示从00—59。同时,用一个开关控制数码管的启动与停止,另外加上一个复位电路,使其能正常复位,通常还使用石英晶体振荡器电路构成整个秒表的结构电路。 一、目的 (1)利用单片机定时器中断和定时器计数方式实现秒定时。 (2)通过LED显示程序的调整,熟悉单片机与LED的接口技术,熟悉LED动态显示的控制过程。 (3)通过阅读和调试简易秒表整体程序,学会如何编制含LED动态显示和定时器中断等多种功能的综合程序,初步体会大型程序的编制和调试技巧。(4)进一步学习单片机开发系统的整个流程。 二、元件 (1)实训设备:单片机开发系统、微机、万用表、电烙铁等。 (2)实训器件: 名称数量 7段数码管 2 电阻10k 1 电阻1k 8 键盘开关 1 电容10微法 1 电容30皮法 2 晶振12M 1

89C51 1 万能板 1 导线若干 三、步骤 (1)要求:利用实训电路板,以2位LED右边1位显示个位,左边1位显示十位,实现秒表计时显示。以一个按键开关实现启动、停止、清零等功能。 (2)方法:用单片机定时器T0中断方式,实现1秒定时;利用单片机定时器0方式1计数,实现00--59计数。 (3)实验线路分析:采用实训电路板,其原理图参见附录。两个7段LED 数码管分别由单片机的P0口和P2口控制,使数码管显示从00—59的字样。用一个开关控制数码管的启动与停止,另外加上一个复位电路,使其能正常复位。另外在加上一个晶体振荡电路就够成了整个秒表的电路。 (4)软件设计:软件整体设计思路是主程序进行初始化,以按键开关按下的次数确定定时器的启动与否,LED通过中断的方式进行显示。后二者间的联系是:按键按下,则定时器开始计时,中断后在LED上显示,不断循环;按键第二次按下时,定时器停止计时,LED不显示;按键第三次按下时,返回到初始状态重新开始。秒定时采用定时器T0中断方式进行,60秒计数由定时器0采用方式1完成,中断及计数的开启与关闭受控于按键处理程序。由上述设计思路可设计出软件流程图如图7.1所示。 (5)程序编制:编程时第一次按键为“启动”,第二次按键为“停止”,第三次按键为“清零”,因按键较少,在处理按键值时未采用散转指令“JMP”,而是采用条件转移指令“CJNE”,。2位LED显示的数据由显示缓冲区30H~31H单元中的数据决定。 四、设计 硬件电路的设计应从两个方面予以考虑。一是根据应用系统总体设计的参数范围、测控速度与精度等技术指标要求选择单片机。不同系列单片机或同一系列

基于51单片机的数字温度报警器

摘要:随着传感器在生产生活中更加广泛的应用,一种新型的数字式温度传感器实现对温度的测试与控制得到了更快的开发。本文设计了一种基于单片机AT89C52的温度检测及报警系统。该系统将温度传感器DS18B20接到单片机的一个端口上,单片机对温度传感器进行循环采集。将采集到的温度值与设定的上下限进行比较,当超出设定范围的上下限时,通过单片机控制的报警电路就会发出报警信号,从而实现了本次课程设计的要求。该系统设计和布线简单、结构紧凑、体积小、重量轻、抗干扰能力较强、性价比高、扩展方便,在工农业等领域的温度检测中有广阔的应用前景。本次课程设计的测量范围为0℃--99℃,测量误差为±2℃。 关键字:温度传感器、单片机、报警、数码管显示 一、概述 本次设计可以应用到许多我们用过的软件设计,将前面所学的知识融汇在一起实现温度监测及其报警的功能,来提醒农民当前大棚内温度是否适合农作物的生长。 电子技术是在十九世纪末、二十世纪初开始发展起来的新兴技术,在二十世纪发展最迅速,应用最广泛,成为近代科学技术发展的一个重要标志。 随着电子技术的飞速发展,电子技术在日常生活中得到了广泛的应用,各类转换电路的不断推出以及电子产品的快速更新,电子技术已成为世界发展和人们生活中必不可少的工具。 本次课设应用Protues软件设计一个温度检测报警系统,用温度传感器DS18B20采集大棚内的温度,当大棚内的温度高于30℃。或低于15℃。时,电路发出报警信号并显示当前温度,达到提醒农民的效果。 本次课设要求设计一个温度监测报警显示电路,要求温度范围:0℃--99℃;测量误差为±2℃;报警下限温度为:15℃;报警上限温度为:30℃。 二、方案论证 设计一个用于温室大棚温度监测系统。大棚农作物生长时,其温度不能太低,也不能太高,太低或太高均不适合农作物生长。该系统可实时测量、显示大棚的温度,当大棚温度超过农作物生长的温度范围时,报警提醒农民。 方案一: 方案一原理框图如图1所示。 图1 大棚温度检测系统的原理框图 方案二: 方案二原理框图如图2所示。

基于单片机数字控温器实验报告

重庆交通大学 课外实践报告 题目:基于单片机数字控温器 姓名:罗杰 专业:电子信息工程 班级:2011 级4 班 学号:631106020405 指导老师:王淑良

目录 设计目的-------------------------------------------------------------------------- 1 设计要求----------------------------------------------------------- ---------------1 设计方案--------------------------------------------- 1 系统工作原理-------------------------------------------------------------------- 2 各部分电路的设计和芯片的结构功能作用-------------------------------- 2 单片机程序(C语言程序)------------------------------------------------------ 11 设计总结------------------------------------------- 20 一、设计目的

1、系统地运用已学的理论知识解决实际问题的能力和查阅资料的能力。培养一定 的自学能力和独立分析问题、解决问题的能力,和团队协作能力,能通过独立思考、查阅工具书、参考文献,寻找解决方案。 2、能设计、安装和调试数显温度测试控制系统,并能利用模拟和数字电路和单片 机的知识分析和解决设计、安装和调试中遇到的实际问题。 3、能熟练的设计并良好的印制PCB电路板。 4、对温度的控制要求尽量的高效,精确。 二、设计要求 1、 (1)温度控制范围为30度~100度之间; (2)可键盘设置控制温度值,并显示; (3)数字显示水的实际温度; (4)设置温度控制值和检测值之间的误差在±1度; 2、发挥部分 (1)设计温度报警电路; (2)升温或降温在5—10分钟之内完成; 三、设计方案 方案:用控制器MCS-51系列单片机和数字传感器DS18B20来进行控制,并用七段数码显示管来显示温度,在程序中来设置温度的上下限,当温度超出上下限时,由单片机发出控制信号,外界控制电路接收信号并作相应的响应来调节温度。此为全控制型,最为简便。 四、系统工作原理 1、系统的总体结构图如下:

89C51单片机课程设计之秒表设计实验报告

单片机课程设计报告 单 片 机 秒 表 系 统 课 程 设 计 班级: 课程名称:秒表设计 成员: 实训地点:北校机房 实训时间:6月4日至6月15日

目录 1课程设计的目的和任务 1.1 单片机秒表课程设计的概述 1.2课程设计思路及描述 1.3 课程设计任务和要求 2硬件与软件的设计流程 2.1系统硬件方案设计 2.2所需元器件 3 程序编写流程及课程设计效果 3.1源程序及注释 3.2原理图分析 3.3课程设计效果 4 心得体会

1. 课程设计的目的和任务 1.1单片机秒表课程设计的概述 一、课程设计题目 秒表系统设计——用STC89C51设计一个4位LED数码显示“秒表”,显示时间为000.0~9分59.9秒,每10毫秒自动加一,每1000毫秒自动加一秒。 二、增加功能 增加一个“复位”按键(即清零),一个“暂停”和“开始”按键。 三、课程设计的难点 单片机电子秒表需要解决几个主要问题,一是有关单片机定时器的使用;二是如何实现LED的动态扫描显示;三是如何对键盘输入进行编程;四是如何进行安装调试。 四、课程设计内容提要 本课程利用单片机的定时器/计数器定时和记数的原理,结合集成电路芯片8051、LED数码管以及课程箱上的按键来设计计时器。将软、硬件有机地结合起来,使得系统能够正确地进行计时,数码管能够正确地显示时间。其中本课程设计有三个开关按键:其中key1按键按下去时开始计时,即秒表开始键,key2按键按下去时数码管清零,复位为“00.00”. key3按键按下去时数码管暂停。 五、课程设计的意义 1)通过本次课程设计加深对单片机课程的全面认识复习和掌握,对单片机课程的 应用进一步的了解。 2)掌握定时器、外部中断的设置和编程原理。 3)通过此次课程设计能够将单片机软硬件结合起来,对程序进行编辑,校验。 4)该课程通过单片机的定时器/计数器定时和计数原理,设计简单的计时器系统, 拥有正确的计时、暂停、清零,并同时可以用数码管显示,在现实生活中应用广泛,具有现实意义 1.2课程设计思路及描述

基于51单片机的波形发生器的设计讲解

目录 1 引言 (1) 1.1 题目要求及分析 (1) 1.1.1 示意图 (1) 1.2 设计要求 (1) 2 波形发生器系统设计方案 (2) 2.1 方案的设计思路 (2) 2.2 设计框图及系统介绍 (2) 2.3 选择合适的设计方案 (2) 3 主要硬件电路及器件介绍 (4) 3.1 80C51单片机 (4) 3.2 DAC0832 (5) 3.3 数码显示管 (6) 4 系统的硬件设计 (8) 4.1 硬件原理框图 (8) 4.2 89C51系统设计 (8) 4.3 时钟电路 (9) 4.4 复位电路 (9) 4.5 键盘接口电路 (10) 4.7 数模转换器 (11) 5 系统软件设计 (12) 5.1 流程图: (12) 5.2 产生波形图 (12) 5.2.1 正弦波 (12) 5.2.2 三角波 (13) 5.2.3 方波 (14) 6 结论 (16) 主要参考文献 (17) 致谢...................................................... 错误!未定义书签。

1引言 1.1题目要求及分析 题目:基于51单片机的波形发生器设计,即由51单片机控制产生正弦波、方波、三角波等的多种波形。 1.1.1示意图 图1:系统流程示意图 1.2设计要求 (1) 系统具有产生正弦波、三角波、方波三种周期性波形的功能。 (2) 用键盘控制上述三种波形(同周期)的生成,以及由基波和它的谐波(5次以下)线性组合的波形。 (3) 系统具有存储波形功能。 (4) 系统输出波形的频率范围为1Hz~1MHz,重复频率可调,频率步进间隔≤100Hz,非正弦波的频率按照10次谐波来计算。 (5) 系统输出波形幅度范围0~5V。 (6) 系统具有显示输出波形的类型、重复频率和幅度的功能。

温度传感器实验设计概要

成都理工大学工程 技术学院 单片机课程设计报告 数字温度计设计

摘要 在这个信息化高速发展的时代,单片机作为一种最经典的微控制器,单片机技术已经普及到我们生活,工作,科研,各个领域,已经成为一种比较成熟的技术,作为自动化专业的学生,我们学习了单片机,就应该把它熟练应用到生活之中来。本文将介绍一种基于单片机控制的数字温度计,本温度计属于多功能温度计,可以设置上下报警温度,当温度不在设置范围内时,可以报警。本文设计的数字温度计具有读数方便,测温范围广,测温精确,数字显示,适用范围宽等特点。 关键词:单片机,数字控制,数码管显示,温度计,DS18B20,AT89S52。

目录 1概述 (4) 1.1设计目的 (4) 1.2设计原理 (4) 1.3设计难点 (4) 2 系统总体方案及硬件设计...................................................... 错误!未定义书签。 2.1数字温度计设计方案论证 (4) 2.2.1 主控制器 (5) 2.4 系统整体硬件电路设计 (7) 3系统软件设计 (8) 3.1初始化程序 (8) 3.2读出温度子程序 (9) 3.3读、写时序子程序 (10) 3.4 温度处理子程序 (11) 3.5 显示程序 (12) 4 Proteus软件仿真 (13) 5硬件实物 (14) 6课程设计体会 (15) 附录1: (14) 附录2: (21)

1概述 1.1设计目的 随着人们生活水平的不断提高,单片机控制无疑是人们追求的目标之一,它所给人带来的方便也是不可否定的,其中数字温度计就是一个典型的例子,但人们对它的要求越来越高,要为现代人工作、科研、生活、提供更好的更方便的设施就需要从数单片机技术入手,一切向着数字化控制,智能化控制方向发展。 本设计所介绍的数字温度计与传统的温度计相比,具有读数方便,测温范围广,测温准确,其输出温度采用数字显示,主要用于对测温比较准确的场所,或科研实验室使用,可广泛用于食品库、冷库、粮库、温室大棚等需要控制温度的地方。目前,该产品已在温控系统中得到广泛的应用。 1.2设计原理 本系统是一个基于单片机AT89S52的数字温度计的设计,用来测量环境温度,测量范围为-50℃—110℃度。整个设计系统分为4部分:单片机控制、温度传感器、数码显示以及键盘控制电路。整个设计是以AT89S52为核心,通过数字温度传感器DS18B20来实现环境温度的采集和A/D转换,同时因其输出为数字形式,且为串行输出,这就方便了单片机进行数据处理,但同时也对编程提出了更高的要求。单片机把采集到的温度进行相应的转换后,使之能够方便地在数码管上输出。LED采用三位一体共阳的数码管。 1.3设计难点此设计的重点在于编程,程序要实现温度的采集、转换、显示和上下限温度报警,其外围电路所用器件较少,相对简单,实现容易。 2 系统总体方案及硬件设计 2.1数字温度计设计方案论证 由于本设计是测温电路,可以使用热敏电阻之类的器件利用其感温效应,在将随被测温度变化的电压或电流采集过来,进行A/D转换后,就可以用单片机进行数据的处理,在显示电路上,就可以将被测温度显示出来,这种设计需要用到A/D 转换电路,感温电路比较麻烦。进而考虑到用温度传感器,在单片机电路设计中,大多都是使用传感器,所以这是非常容易想到的,所以可以采用一只温度传感器DS18B20,此传感器,可以很容易直接读取被测温度值,进行转换,就可以满足设计要求。 2.2总体设计框图 温度计电路设计总体设计方框图如图1所示,控制器采用单片机AT89S52,温度传感器采用DS18B20,用3位共阴LED数码管以串口传送数据实现温度显示。

51单片机汇编秒表程序

ORG 0000H LJMP MAIN ORG 0003H LJMP INT_0 ORG 000BH LJMP T0_INT ORG 0013H LJMP INT_1 ORG 001BH LJMP T1_INT MAIN: MOV TMOD,#11H MOV TH1,#0D8H MOV TL1,#0F0H MOV TH0,#3CH MOV TL0,#0B0H SETB EA SETB ET1 SETB ET0 SETB EX0 SETB EX1 SETB IT0 SETB IT1 SETB TR1 MOV 32H,#00H MOV R1,#80H MOV 30H,#00H LOOP: MOV A,R4 CJNE A,33,Y MOV A,R5 CJNE A,32H,Y INC 30H Y: MOV A,P3 CJNE A,#0CFH,Y1 LJMP Y2 Y1: MOV A,30H CJNE A,#01H,LOOP CLR P1^0 LCALL DELAY2 SETB P1^0 LCALL DELAY2

LJMP LOOP Y2: JNB P3^5,Y2 JNB P3^4,Y2 MOV R3,#0AH LJMP Y3 Y3: MOV R4,33H MOV R5,32H MOV A,P3 CJNE A,#0DFH,Y5 Y4:JNB P3^4,OUT JNB P3^5,Y4 INC 32H MOV A,32H CJNE A,#10,Y3 INC 33H MOV 32H,#00H LJMP Y3 Y5: MOV A,P3 CJNE A,#0EFH,Y3 Y6: JNB P3^5,OUT JNB P3^4,Y6 MOV A,32H CJNE A,#00,JJ DEC 33H MOV 32H,#09H LJMP Y3 OUT:JNB P3^5,OUT JNB P3^4,OUT MOV R5,#00H MOV R3,#00H LJMP LOOP JJ: DEC 32H LJMP Y3 INT_0: CPL TR0 RETI INT_1: MOV R6,#00H MOV R5,#00H

基于单片机的信号发生器(完整电路_程序)资料

电子与信息工程学院综合实验课程报告 实验名称:基于单片机的信号发生器的设计与实现班级:10电工2班 学号:20101851046 姓名:李俊 指导教师: 时间:

摘要 本文以STC89C51单片机为核心设计了一个低频函数信号发生器。信号发生器采用数字波形合成技术,通过硬件电路和软件程序相结合,可输出自定义波形,如 正弦波、方波、三角波、三角波、梯形波及其他任意波形,波形的频率和幅度在一定范围内可任意改变。波形和频率的改变通过软件控制,幅度的改变通过硬件实现。介绍了波形的生成原理、硬件电路和软件部分的设计原理。本系统可以产生最高频率798.6HZ的波形。该信号发生器具有体积小、价格低、性能稳定、功能齐全的优点。 关键词:低频信号发生器;单片机;D /A转换; 1设计选题及任务 设计题目:基于单片机的信号发生器的设计与实现 任务与要求: 设计一个由单片机控制的信号发生器。运用单片机系统控制产生多种波形,这些波形包括方波、三角波、锯齿波、正弦波等。信号发生器所产生的波形的频率、幅度均可调节。并可通过软件任意改变信号的波形。 基本要求: 1. 产生三种以上波形。如正弦波、三角波、矩形波等。 2.最大频率不低于500Hz。并且频率可按一定规律调节,如周期按1T,2T,3T,4T 或1T,2T,4T,8T变化。 3.幅度可调,峰峰值在0——5V之间变化。 扩展要求:产生更多的频率和波形。 2系统概述 2.1方案论证和比较 2.1.1总体方案: 方案一:采用模拟电路搭建函数信号发生器,它可以同时产生方波、三角波、正弦波。但是这种模块产生的不能产生任意的波形(例如梯形波),并且频率调节很不方便。 方案二:采用锁相式频率合成器,利用锁相环,将压控振荡器(VCO)的输出频率锁定在所需频率上,该方案性能良好,但难以达到输出频率覆盖系数的要求,且电路复杂。

基于单片机的温度传感器的设计说明

基于单片机的温度传感器 的设计 目录 第一章绪论-------------------------------------------------------- ---2 1.1 课题简介 ----------------------------------------------------------------- 2 1.2 设计目的 ----------------------------------------------------------------- 3 1.3 设计任务 ----------------------------------------------------------------- 3 第二章设计容与所用器件 --------------------------------------------- 4第三章硬件系统设计 -------------------------------------------------- 4 3.1单片机的选择------------------------------------------------------------- 4 3.2温度传感器介绍 ---------------------------------------------------------- 5 3.3温度传感器与单片机的连接---------------------------------------------- 8 3.4单片机与报警电路-------------------------------------------------------- 9 3.5电源电路----------------------------------------------------------------- 10 3.6显示电路----------------------------------------------------------------- 10 3.7复位电路----------------------------------------------------------------- 11 第四章软件设计 ----------------------------------------------------- 12 4.1 读取数据流程图--------------------------------------------------------- 12 4.2 温度数据处理程序的流程图 -------------------------------------------- 13 4.3程序源代码 -------------------------------------------------------------- 14

相关主题
文本预览
相关文档 最新文档