当前位置:文档之家› 旋风除尘器

旋风除尘器

旋风除尘器
旋风除尘器

目录

1、旋风除尘器简介 (2)

2、旋风除尘器原理 (2)

3、旋风除尘器分类 (2)

4、旋风除尘器性能指标 (3)

5、旋风除尘器效率因素 (5)

6、旋风除尘器的设计 (6)

7、旋风除尘器的维护 (7)

8、XLT型旋风除尘器的工业运用 (9)

9、旋风除尘器的除尘效率计算方法 (11)

1、旋风除尘器简介

旋风除尘器是利用旋转气流产生的离心力从气流中分离粉尘并捕集于器壁,再借助重力作用使尘粒落入灰斗。用来分离粒径大于5μm 以上的颗粒物。工业上已有100多年的历史。

特点:结构简单、占地面积小,投资低,操作维修乖、方便,压力损失中等,动力消耗不大,能用于高温、高压及腐蚀性气体并可回收干颗粒物,效率可达80%左右。但捕集<5μm颗粒的效率不高,粉尘浓度较高时一般作多级除尘预除尘用。

2、旋风除尘器的工作原理

含尘气体由进口切向进入后,沿筒体内壁由上向下做旋转运动,在这个过程中由于离心力的作用,气流内的尘粒被甩向筒壁,实现气体和固体的分离,尘粒在重力作用下沿筒壁旋转落入灰斗,这个由上而下沿筒壁的旋流叫外涡旋。

锥体使得外旋流的旋转半径不断减小,根据旋转距不变原理,在锥体里外旋流的切向速度不断提高,当气流达到椎体某一位置时,在分离器的中部形成由下而上的旋风,并由排气口排出这个中部的由下而上的旋流被称为内涡流。

此外,当气流从除尘器顶向下高速旋转时,顶部压力下降,使一部分气流带着微细尘粒沿筒体内壁旋转向上,到达顶盖后再沿排气管外壁旋转向下,最后汇入排气管排走。

3、旋风除尘器的分类

1)按进气方式分 :切向进入式、轴向进入式

A 垂直切入进入式 、

B 蜗壳切向进入时、

C 轴向进入时

2)按压力损失系数对旋风除尘器进行分类:

2

12

in P V ξρ?=

:ξ局部阻力系数

2

=16e A d ξ

A :旋风除尘器进口面积 de :旋风除尘器排出口直径

3) 按除尘效率和处理风量分:

高效旋风除尘器:筒体直径较小(<900mm),效率高:>95%。K=6—13.5 高流量旋风除尘器:直径较大(1.2—3.6m),处理流量大。除尘效率:50~80%。K<3。

通用旋风除尘器:K=4—6,除尘效率:80—90%

(相对截面比(K):筒体截面面积和进气口截面面积之比。)

4)按结构形式分:

多管旋风除尘器:由多个相同构造形状和尺寸的小型旋风除尘器(又叫旋风子)组合在一个壳体内并联使用。具有处理风量大, 除尘效率较高的特点。

旁路式旋风除尘器:设有旁路分离室, 利用上旋涡分离粉尘, 从而提高除尘效率。为了使除尘器顶部空间形成明显的上旋涡, 进气口上沿离顶盖要相距一定的距离。

扩散式旋风除尘器:它是一种具有呈倒锥体形状的锥体, 并在锥体的底部装有反射屏的旋风除尘器. 反射屏可防止上升气流卷起粉尘, 从而提高除尘效率。

4、旋风除尘器的性能指标

除尘装置性能用技术指标和经济指标来评价。技术指标主要有处理风量、净化效率和压力损失等;经济指标主要有设备费、运行费和占地面积等。此外,还应考虑装置的安装、操作、检修的难易等因素。本文从技术指标作简要分析:(1)处理风量(Q)

除尘装置的处理风量是指除尘装置在单位时间内所能处理的含尘气体的流量,一般以体积流量Q表示。实际运行的净化装置,由于本体漏气等原因,往

往装置进口和出口的气体流量不同,因此,用两者的平均值表示处理能力。

(2)净化效率

净化效率是表示除尘装置捕集粉尘效果的重要技术指标,可定义为被捕集的粉尘量与进入装置的总粉尘量之比。

总效率η:总效率是指同一时间内净化装置去除的污染物数量与进入装置的污染物数量之比。

通过率:当净化效率很高时,或为了说明污染物的排放率,有时采用通过率来表示除尘装置的性能。所谓通过率是指未被捕集的粉尘量占进入除尘装置的粉尘总量的百分数。

分级除尘效率:除尘装置的总除尘效率的高低,往往与粉尘粒径大小有很大关系。

分级除

dpi 或某一粒

径间隔dpi 至dpi+Δdpi 内粉尘的除尘效率,简称分级效率

dc 式):

1

1501exp 0.693n p d c d d η+????

?=-- ? ?

??

?

D ——旋风器的直径

(3)尘粒的分割粒径

旋风除尘器的除尘效率与尘粒的粒径有关。粒径越大,效率越高,当粒径大到某一值时,其除尘效率可达100%,此时的尘粒粒径称为全分粒径p d ,或称为临界粒径。临界粒径dp 愈小,除尘器除尘性能愈好。

同样,除尘效率为50%时相应的尘粒粒径为 50c d ,或称为分割粒径。分割粒径越小,表明除尘器的分离性能越好。

一般而言:dp(100%)≈2-3dp(50%)

分级效率与总除尘效率关系:

其中,di f 是指入口处某一粒径的粒子质量占粒子群总质量的百分数。

(4)压力损失

压力损失时代表装置能耗大小的技术经济指标,是指装置的进口和出口气流的全风压之差。净化效率压力损失的大小,不仅取决于装置的种类和结构形式,还与处理气体流量大小有关。 即:2

2

u P ρξ

?= 式中

P ? Pa; 1

n

T pi di

i f ηη==∑

ξ

u—装置进口气流速度,m/s;ρ—气体的密度,kg/m3 。

(5)使用温度(℃)

因为气体温度升高,其粘度变大,使粉尘粒子受到的向心力加大,于是分离效率会下降。为保证除尘效率,高温条件下运行的旋风除尘器应有较大的入口气流速度和较小的截面流速。

5、旋风除尘器的效率因素

(1)进气口

旋风除尘器的进气口是形成旋转气流的关键部件,是影响除尘效率和压力损失的主要因素。切向进气的进口面积对除尘器有很大的影响,进气口面积相对于筒体断面小时,进入除尘器的气流切线速度大,有利于粉尘的分离。

(2)圆筒体直径和高度

A 圆筒体直径是构成旋风除尘器的最基本尺寸。旋转气流的切向速度对粉尘产生的离心力与圆筒体直径成反比,在相同的切线速度下,筒体直径D越小,气流的旋转半径越小,粒子受到的离心力越大,尘粒越容易被捕集。但若筒体直径选择过小,器壁与排气管太近,粒子又容易逃逸;筒体直径太小还容易引起堵塞,尤其是对于粘性物料。

当处理风量较大时,因筒体直径小处理含尘风量有限,可采用几台旋风除尘器并联运行的方法解决。并联运行处理的风量为各除尘器处理风量之和,阻力仅为单个除尘器在处理它所承担的那部分风量的阻力。但并联使用制造比较复杂,

所需材料也较多,气体易在进口处被阻挡而增大阻力,因此,并联使用时台数不宜过多。

B 筒体总高度是指除尘器圆筒体和锥筒体两部分高度之和。增加筒体总高度,可增加气流在除尘器内的旋转圈数,使含尘气流中的粉尘与气流分离的机会增多,但筒体总高度增加,外旋流中向心力的径向速度使部分细小粉尘进入内旋流的机会也随之增加,从而又降低除尘效率。筒体总高度一般以4倍的圆筒体直径为宜,锥筒体部分,由于其半径不断减小,气流的切向速度不断增加,粉尘到达外壁的距离也不断减小,除尘效果比圆筒体部分好。因此,在筒体总高度一定的情况下,适当增加锥筒体部分的高度,有利提高除尘效率,一般圆筒体部分的高度为其直径的1.5倍,锥筒体高度为圆筒体直径的2.5倍时,可获得较为理想的除尘效率。

(3)排气管直径和深度

排风管的直径和插入深度对旋风除尘器除尘效率影响较大。排风管直径必须选择一个合适的值:排风管直径减小,可减小内旋流的旋转范围,粉尘不易从排风管排出,有利提高除尘效率,但同时出风口速度增加,阻力损失增大;若增大排风管直径,虽阻力损失可明显减小,但由于排风管与圆筒体管壁太近,易形成内、外旋流“短路”现象,使外旋流中部分未被清除的粉尘直接混入排风管中排出,从而降低除尘效率。一般认为排风管直径为圆筒体直径的0.5~0.6倍为宜。

排风管插入过浅,易造成进风口含尘气流直接进入排风管,影响除尘效率;排风管插入深,易增加气流与管壁的摩擦面,使其阻力损失增大,同时,使排风管与锥筒体底部距离缩短,增加灰尘二次返混排出的机会。排风管插入深度一般

以略低于进风口底部的位置为宜。由于旋风除尘器单位耗钢量比较大,因此在设计方案上比较好的方法是从筒身上部向下材料由厚向薄逐渐递减!

6、旋风除尘器的设计

(1)选择除尘器的型式

根据含尘浓度、粒度分布、密度等烟气特征,及除尘要求、允许的阻力和制造条件等因素。

(2)根据允许的压力降确定进口气速

或取为12~25 m/s

b和高度h

(3)确定入口截面A,入口宽度

(4)确定各部分几何尺寸

旋风除尘器的设计原则:

①为防止粒子短路漏到出口管,h≤s,其中s为排气管插人深度;

②为避免过高的压力损失,b≤(D-de)/2;

③为保持涡流的终端在锥体内部,(H+L)≥3D;

④为利于粉尘易于滑动,锥角=7o~8o;

⑤为获得最大的除尘效率,de/D≈0.4~0.5,(H+L)/de≈8~10;s/de≈1;

7、旋风除尘器的维护

(1)稳定运行参数

旋风式除尘器运行参数主要包括:除尘器入口气流速度,处理气体的温度和含尘气体的入口质量浓度等。

1)入口气流速度。对于尺寸一定的旋风式除尘器,入口气流速度增大不仅处理气量可提高,还可有效地提高分离效率,但压降也随之增大。当入口气流速度提高到某一数值后,分离效率可能随之下降,磨损加剧,除尘器使用寿命缩短,因此入口气流速度应控制在18~23m/s范围内。

2)处理气体的温度。因为气体温度升高,其粘度变大,使粉尘粒子受到的向心力加大,于是分离效率会下降。所以高温条件下运行的除尘器应有较大的入口

气流速度和较小的截面流速。

3)含尘气体的入口质量浓度。浓度高时大颗粒粉尘对小颗粒粉尘有明显的携带作用,表现为分离效率提高。

(2)防止漏风

旋风式除尘器一旦漏风将严重影响除尘效果。据估算,除尘器下锥体或卸灰阀处漏风1%时除尘效率将下降5%;漏风5%时除尘效率将下降30%。旋风式除尘器漏风有三种部位:进出口连接法兰处、除尘器本体和卸灰装置。引起漏风的原因如下:

1)连接法兰处的漏风主要是螺栓没有拧紧、垫片厚薄不均匀、法兰面不平整等引起的。

2)除尘器本体漏风的主要原因是磨损,特别是下锥体。据使用经验,当气体含尘质量浓度超过10g/m3时,在不到100天时间里可以磨坏3mm的钢板。

3)卸灰装置漏风的主要原因是机械自动式(如重锤式)卸灰阀密封性差。(3)预防关键部位磨损

影响关键部磨损的因素有负荷、气流速度、粉尘颗粒,磨损的部位有壳体、圆锥体和排尘口等。防止磨损的技术措施包括:

1)防止排尘口堵塞。主要方法是选择优质卸灰阀,使用中加强对卸灰阀的调整和检修。

2)防止过多的气体倒流入排灰口。使用的卸灰阀要严密,配重得当。

3)经常检查除尘器有无因磨损而漏气的现象,以便及时采取措施予以杜绝。

4)在粉尘颗粒冲击部位,使用可以更换的抗磨板或增加耐磨层。

5)尽量减少焊缝和接头,必须有的焊缝应磨平,法兰止口及垫片的内径相同且保持良好的对中性。

6)除尘器壁面处的气流切向速度和入口气流速度应保持在临界范围以内。

8、XLT型旋风除尘器的工业运用

XLT型旋风除尘器属于干式旋风除尘器,具有处理风量大、阻力小、使用寿命长等特点,适用于冶炼、建材、铸造、粉料加工中的除尘、回收也可用于系统除尘的一级处理,除尘效率高达85%以上。

题目:已知条件:某工厂烟气量Q=68000m3/h,烟气密度ρ=1.8kg/m3,允许压力损失△P=1050Pa。

解:

表一

查表一的ζ=5.3

入口速度u=﹙2Δp/ζρ﹚1/2

=(2×1050÷5.3÷1.8)1/2

=14.84m/s

确定除尘器的个数n

A=Q/n ,

b=(A/1.75)1/2

D=4.9b=4.9 (A/1.75)1/2

∵D≤1m

∴4.9 (A/1.75) 1/2≤1

解得n≥17.4

由于烟气量太大,在保证除尘效率的前提下要满足设计要求,经验算选择18组XLT型除尘器并联。

确定入口截面A1,入口宽度b和高度h

A1=Q/nu=68000/(18×3600×14.84)=0.071m2

表二几种旋风除尘器的主要尺寸比例

尺寸内容XLP/A XLP/B XLT/A XLT

入口宽度b (A/3)1/2(A/2)1/2(A/2.5)1/2(A/1.75)1/2入口高度h (3A)1/2(2A)1/2(2.5A)1/2(1.75A)1/2

筒体直径D 上3.85b

下0.7D 3.33b

/

3.85b

/

4.9b

/

排除管直径d00.6D 0.6D 0.6D 0.58D 筒体长度L 上1.35D

下1.00D

1.7D

2.26D 1.6D

锥体长度上0.5D

下1.0D

2.3D 2.0D 1.3D

入口宽度 :

b=(A/1.75)1/2=( 0.071/1.75)1/2=0.21m 入口高度:

h=(1.75A )1/2=(1.75×0,071)1/2=0.36m 筒体直径:

D=4.9b =4.9×0.20=1.029m

参考XLT 型产品系列,选取XLT-11型。(XLT-11 D=1111mm ) 排出管直径:

d 0=0.58D=0.58×1.111=0.65m

排灰口直径d e 0.296D 0.43D 0.3D 0.145D 压力损失(Pa)

12m/s 700(600) 500(420) 860(770) 440(490) 15m/s 1100(940) 890(700) 1350(1210) 670(770) 18m/s

1400(126

0)

1450(1150)

1950(1150)

990(1110)

筒体长度:

L=1.6D=1.6x1.111=1.782m

锥体长度:

H=1.3D=1.3×1.111=1.50m

排灰口直径:

d e=0.145D=0.145×1.111=0.16m

9、旋风除尘器的除尘效率计算方法

除尘器效率是评价除尘器性能的重要指标之一。它是指除尘器从气流中兵捕集粉尘的能力,常用除尘器全效率、筛分效率、分级效率和穿透率表示。

9.1 全效率计算

9.1.1质量算法(称量法)

含尘气体通过除尘器时所捕集的粉尘量占进入除尘器的粉尘总量的百分数称为除尘器全效率,以表示。全效率的定义式为:

式中——进入除尘器的粉尘量,g/s;

——从除尘器排风口排出的粉尘量,g/s;

——除尘器所捕集的粉尘量,g/s。

通过称重求得全效率,称为质量法,用这种方法测出的结果比较准确,主要用于实验室。

9.1.2浓度算法

如果除尘器结构严密,没有漏风,除尘器入口风量与排气口风量相等,均为L,全效率的定义式可替换为:

式中L——除尘器处理的空气量,m3/s;

——除尘器进口的空气含尘浓度,g/m3;

——除尘器出口的空气含尘浓度,g/m3。

现场测定除尘器效率时,通常先同时测出除尘器前后的空气含尘浓度,再按公式求得全效率,这种方法称为浓度法。含尘空气管道内的浓度分布既不均匀又不稳定,要测得准确的结果是比较困难的。

9、2 筛分效率

筛分效率是选矿过程中重要的参数,当筛下或溢流中的细粒级占主要部分时,可使用量的筛分效率;当筛下或溢流中粗粒级占一定百分数时,这时应使用质的筛分效率。但是生产过程中经常使用质的筛分效率比较符合实际情况。

筛分效率:

筛分效率定义:筛下物料中某细粒级含量与给料中该细粒级含量的百分数(一般)。

=

100%η?筛分筛下物中某细粒级含量

给料中该细粒级含量

分级效率定义:溢流中某粒级含量与给料中该细粒级含量的百分数(一般),它是考查分级机工作好坏的指标。

=

100%η?分级溢流中某细粒级含量

给料中该细粒级含量

首先定义一下参数: Q ··························· 给料重量 (t/h)

Q 1 ·························· 筛下或溢流物料重量 (t/h) Q 2 ·························· 筛上或返砂物料重量 (t/h)

α ·························· 给料中某粒级占的百分数 %)

β ·························· 筛下或溢流中某粒级占的百分数 (%)

θ ··························· 筛上或返砂中某粒级占的百分数 (%) E ·························· 筛分或分级效率 (%)

x ε ·························· 筛下细粒的回收率 (%)

c ε ·························· 筛下粗粒的回收率 (%)

通过对给料、溢流、沉砂进行取样筛析,得到α、β、θ的数值之后,按上述公式即可计出分级效率。

量的筛分效率:筛下的细粒级含量占主要部分。

根据物料平衡,由上图关系可知:

Q 1 Q 2 θ

所以,筛分效率:1100%Q E Q ββαθααβθ-=

=?-量()

()

质的筛分效率:筛下的细粒级的筛分效率。

若由于筛子结构、筛面破损等原因,造成筛下产物粒度大于筛孔尺寸,这部分粗粒占一定含量时,这时应使用质的筛分效率,即:x c E εε=-质。

那么:11(1)(1)

Q Q E Q Q ββαα-=--质 即:%100)

1)(()

)((?----=

αθβααβθα质E

9.3 分级效率

除尘器全效率的大小与处理粉尘的粒径有很大关系,例如有的旋风除尘器处理40 m 以上的粉尘时,效率接近100%,处理5 m 以下的粉尘时,效率会下降到40%左右。因此,只给出除尘器的全效率对工程设计是没有意义的,必须同时说明试验粉尘的真密度和粒径分布或该除尘器的应用场合。要正确评价除尘器的除尘效果,必须按粒径标定除尘器效率,这种效率称为分级效率。

如果除尘器进口处粉尘的粒径分布为 、空气含尘浓度为

,那末进入除尘器的粒径在 范围内的粉尘量

。同理在

除尘器出口处, 。

是除尘器出口处理粉尘的粒

径分布。

对粒径在

范围内的粉尘,除尘器的分级效率为 :

θ

βα21Q Q Q +=2

1Q Q Q +=12Q Q αθβα-=

-

如果(不漏气的情况下),则

如果除尘器捕集下的粉尘的粒径分布为,除尘器所捕集的粒径在

范围内的粉尘量为

当时,上式可简化为

分级效率

研究表明,大多数除尘器的分级效率可用下列经验公式表示:

式中a、m——特定的常数。

9.4 穿透率

有时两台除尘器的全效率分别为99%或99.5%,两者非常接近,似乎两者的降尘效果差别不大。但是从大气污染的角度去分析,两者的差别是很大的,前者排入大气的粉尘量要比后者高出一倍。因此,对于高效除尘器,除了用除尘器效率外,还用穿透率P表示除尘器的性能。其计算式为:

9.5 分级效率与全效率的关系

旋风除尘器设计说明

旋风除尘器设计计算说明书 1、旋风除尘器简介 旋风除尘器是利用旋转气流产生的离心力使尘粒从气流中分离的,用来分离粒径大于5—10μm以上的的颗粒物。工业上已有100多年的历史。 特点:结构简单、占地面积小,投资低,操作维修方便,压力损失中等,动力消耗不大,可用于各种材料制造,能用于高温、高压及腐蚀性气体,并可回收干颗粒物。 优点:效率80%左右,捕集<5μm颗粒的效率不高,一般作预除尘用。 旋风除尘器的结构形式按进气方式可分为直入式、蜗壳式和轴向进入式;按气流组织分类有回流式、直流式、平流式和旋流式多种 1.1 工作原理 (1)气流的运动 普通旋风除尘器是由进气管、筒体、锥体和排气管等组成;气流沿外壁由上向下旋转运动:外涡旋;少量气体沿径向运动到中心区域;旋转气流在锥体底部转而向上沿轴心旋转:涡旋;气流运动包括切向、轴向和径向:切向速度、轴向速度和径向速度。 图1 (2)尘粒的运动: 切向速度决定气流质点离心力大小,颗粒在离心力作用下逐渐移向外壁;到达外壁的尘粒在气流和重力共同作用下沿壁面落入灰斗;上涡旋-气流从除尘器顶部向下高速旋转时,一部分气流带着细小的尘粒沿筒壁旋转向上,到达顶部后,再沿排出管外壁旋转向下,最后从排出管排出。 1.2 影响旋风器性能的因素 (2)二次效应-被捕集粒子的重新进入气流 在较小粒径区间,理应逸出的粒子由于聚集或被较大尘粒撞向壁面而脱离气流获得捕集,实际效率高于理论效率; 在较大粒径区间,粒子被反弹回气流或沉积的尘粒被重新吹起,实际效率低于理论效率; 通过环状雾化器将水喷淋在旋风除尘器壁上,能有效地控制二次效应;

临界入口速度。 (2)比例尺寸 在相同的切向速度下,筒体直径愈小,离心力愈大,除尘效率愈高;筒体直径过小,粒子容易逃逸,效率下降; 锥体适当加长,对提高除尘效率有利; 排出管直径愈少分割直径愈小,即除尘效率愈高;直径太小,压力降增加,一般取排出管直径d e =(0.6~0.8)D ; 特征长度(natural length )-亚历山大公式: 2 1/3e 2.3()=D l d A 排气管的下部至气流下降的最低点的距离 旋风除尘器排出管以下部分的长度应当接近或等于l ,筒体和锥体的总高度以不大于5倍的筒体直径为宜。 (3)运行系统的密闭性,尤其是除尘器下部的严密性:特别重要,运行中要特别注意。 在不漏风的情况下进行正常排灰 (4) 烟尘的物理性质 气体的密度和粘度、尘粒的大小和比重、烟气含尘浓度 (5)操作变量 提高烟气入口流速,旋风除尘器分割直径变小,除尘器性能改善 ;入口流速过大,已沉积的粒子有可能再次被吹起,重新卷入气流中,除尘效率下降;效率最高时的入口速度,一般在10~25m/s 围。 2、设计资料 (1)所处理的粉尘为某水泥干燥窑的排烟,主要成分为水泥粉尘; (2)平均烟气量为2300 m 3/h ,最大烟气量为3450 m 3/h (3)烟气日变化系数K 日=1.5 (4)气温293 K,大气压力为101325 Pa (5)烟气颗粒物特征: 粒径围: 5~80m μ 中位径:36.5m μ 主要粒径频数分布: 颗粒物浓度:3000 kg/m 3 空气密度:1.205 kg/m 3 空气粘度:1.81×10-5Pa ﹒s (6)作为后继处理的前处理器,要求颗粒物的总去除效率不低于90%。压力损失不高 于2500Pa. 3、旋风除尘器的选型设计

多管除尘器的构造原理和特点

精品文档 多管除尘器的构造原理和特点:多管除尘器是利用离心分离的原理进行工作,当含尘气体经除尘器入口进入按等高排列的旋风子的切口入口,颗粒在旋风子内受离心力的作用被分离出来,经灰斗排出,被净化的气体经芯管排出,达到净化烟气的目的。 多管除尘器的主要特点: 1、适用于各种型号和各种燃烧方式的工业锅炉及热电站锅炉的粉尘治理。 2、对于其它工业粉尘,同样可用本除尘器治理,还可进行水泥及其它有实用价值的粉尘进行回收。 3、处理风量大,负荷适应性强, 占地面积小,置于室内、露天均可。 4、管理方便、维修简单。 5、对老除尘设备改造,原则上不用更换引风机。 陶瓷多管除尘器陶瓷多管式旋风除尘器是由若干个并联的陶瓷旋风除尘器单元(又称陶瓷旋风体)组成的除尘设备。它可以由一般的陶瓷旋风除尘器单元或直流型旋风除尘器单元组成,这些单元被有机的组合在一个壳体内,有总的进气管、排气管和灰斗。灰斗排灰可以有多种自动排灰形式,因为本设备是由陶瓷旋风管组成,它比铸铁管更耐磨,表面更光滑,并耐酸耐碱,因此还可以湿式除尘。适用于捕集各种锅炉的非黏结型的干燥粉尘。该产品不但用于锅炉烟尘和有害气体的治理,而且是冶金、采矿、建材、化工等行业对粉尘治理的理想设备。 一、工作原理 含尘气体由总进气管进入气体分布室,随后进入陶瓷旋风体和导流片之间的环形空隙。导流片使气体由直线运动变为圆周运动,旋转气流的绝大部分沿旋风体自圆筒体呈螺旋形向下,朝锥体流动,含尘气体在旋转过程中产生离心力,将密度大于气体的尘粒甩向筒壁。尘粒在与筒壁接触,便失去惯性力而靠入口速度的动量和向下的重力沿壁面向下落入排灰口进入总灰斗。旋转下降的外旋气流到达锥体下端位时,因圆锥体的收缩即以同样的旋转方向在旋风管轴线方向由下而上继续做螺旋形流动(净气),经过陶瓷旋风体排气管进入排气室,由总排气口排出。 二、主要技术参数 除尘效率:92~95% 阻力:900~1000pa 进口流速:15~20m/s 陶瓷多管除尘器 精品文档

轴流式旋风除尘器危险分析(新版)

When the lives of employees or national property are endangered, production activities are stopped to rectify and eliminate dangerous factors. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 轴流式旋风除尘器危险分析(新 版)

轴流式旋风除尘器危险分析(新版)导语:生产有了安全保障,才能持续、稳定发展。生产活动中事故层出不穷,生产势必陷于混乱、甚至瘫痪状态。当生产与安全发生矛盾、危及职工生命或国家财产时,生产活动停下来整治、消除危险因素以后,生产形势会变得更好。"安全第一" 的提法,决非把安全摆到生产之上;忽视安全自然是一种错误。 其主要危险有害因素如下: (1)粉尘 a.在除尘器除尘过程中,会产生大量高浓度粉尘,当作业人员长期进行除尘器操作时,吸入这些粉尘,将引起尘肺等职业病。 b.在处理除尘器灰仓时,如果防护措施不当,可能对作业人员健康造成危害,甚至可能发生窒息事故。 c.在除尘机风机检查、维修过程中,高浓度粉尘可能对人体造成危害。 (2)机械伤害 a.在卸灰过程中,操作工人由于误操作,可能被绞叶卡伤。 b.在除尘机风机检查、维修过程中,由于机械分离导致伤人事故。 c.在操作除尘风机电机液压器时,操作工人误入旋转部位,导致绞伤。 (3)触电

a.除尘机风机检查、维修、卸灰等作业中,由于电气断路、短路、裸露,而工人在没有防护措施的情况下,用手触摸运行电机、电缆时,可能发生触电事故。 b.在高压转换开关时,带电操作,可能导致触电事故。 (4)高空坠落 除尘机风机检查、维修、卸灰等作业中可能涉及高空作业,如操作工人误正确防护措施情况下可能发生高空坠落事故。 (5)火灾、爆炸 在高浓度粉尘区域,如存在火星、火源,则可能导致爆炸,引起火灾。 (6)噪声 由于风机在运转过程中,产生高强度噪音,如防护措施不当,工人长期在噪声环境下工作,可能导致工人听力受损。 XX设计有限公司 Your Name Design Co., Ltd.

旋风式除尘器的正确使用(精)

旋风式除尘器的正确使用 风式除尘器是依靠含尘气体在除尘器内快速旋转、离心力促使颗粒粉尘与气体分离,因此其结构、原理与其他机械式除尘器截然不同,运行操作和维护管理也显得特别重要。旋风式除尘器的操作包括启动、运行、停车,维护工作主要是常见故障的分析、排除和预防。 关键词 颗粒粉尘旋风除尘运行操作维护管理 1 旋风除尘器的正确操作 1.1启动前的准备工作 1)检查各连接部位是否连接牢固。 2)检查除尘器与烟道,除尘器与灰斗,灰斗与排灰装置、输灰装置等结合部的气密性,消除漏灰、漏气现象。 3)关小挡板阀,启动通风机、无异常现象后逐渐开大挡板阀,以便除尘器通过规定数量的含尘气体。 1.2运行时技术要求 1)注意易磨损部位如外筒内壁的变化。 2)含尘气体温度变化或湿度降低时注意粉尘的附着、堵塞和腐蚀现象。 3)注意压差变化和排出烟色状况。因为磨损和腐蚀会使除尘器穿孔和导致粉尘排放,于是除尘效率下降、排气烟色恶化、压差发生变化。 4)注意除尘器各部位的气密性,检查旋风筒气体流量和集尘浓度的变化。 1.3作业后的技术工作 1)为防止粉尘的附着和腐蚀,除尘作业结束后让除尘器继续运行一段时间,直到除尘器内完全被清洁空气置换后方可停止除尘器运行。 2)消除内筒、外筒和叶片上附着的粉尘,清除灰斗内的粉尘。 3)必要时修补磨损和腐蚀引起的穿孔。

4)检查各部位的气密性,必要时更换密封元件。 5)按照使用说明书的规定对风机进行例行保养。 2 旋风式除尘器的维护 旋风式除尘器运行时应稳定运行参数、防止漏风和关键部位磨损、避免粉尘的堵塞,否则将严重影响除尘效果。 2.1稳定运行参数 旋风式除尘器运行参数主要包括:除尘器入口气流速度,处理气体的温度和含尘气体的入口质量浓度等。 1)入口气流速度。对于尺寸一定的旋风式除尘器,入口气流速度增大不仅处理气量可提高,还可有效地提高分离效率,但压降也随之增大。当入口气流速度提高到某一数值后,分离效率可能随之下降,磨损加剧,除尘器使用寿命缩短,因此入口气流速度应控制在18~23m/s范围内。 2)处理气体的温度。因为气体温度升高,其粘度变大,使粉尘粒子受到的向心力加大,于是分离效率会下降。所以高温条件下运行的除尘器应有较大的入口气流速度和较小的截面流速。 3)含尘气体的入口质量浓度。浓度高时大颗粒粉尘对小颗粒粉尘有明显的携带作用,表现为分离效率提高。 2.2防止漏风 旋风式除尘器一旦漏风将严重影响除尘效果。据估算,除尘器下锥体或卸灰阀处漏风1%时除尘效率将下降5%;漏风5%时除尘效率将下降30%。旋风式除尘器漏风有三种部位:进出口连接法兰处、除尘器本体和卸灰装置。引起漏风的原因如下: 1)连接法兰处的漏风主要是螺栓没有拧紧、垫片厚薄不均匀、法兰面不平整等引起的。 2)除尘器本体漏风的主要原因是磨损,特别是下锥体。据使用经验,当气体含尘质量浓度超过10g/m3时,在不到100天时间里可以磨坏3mm的钢板。 3)卸风装置漏风的主要原因是机械自动式(如重锤式)卸灰阀密封性差。 2.3预防关键部位磨损 影响关键部磨损的因素有负荷、气流速度、粉尘颗粒,磨损的部位有壳体、圆锥体和排尘口等。防止磨损的技术措施包括:

旋风除尘器设计资料

中南大学 本科生课程设计(实践)任务书、设计报告 题目除尘器设计计算 学生姓名苏小根 指导教师马爱纯 学院能源科学与工程学院 专业班级热能与动力工程0902 学生学号1003090419 2012年9 月21日

1.除尘器 1.1 除尘器简介 除尘器是把粉尘从烟气中分离出来的设备叫除尘器或除尘设备。除尘器的性能用可处理的气体量、气体通过除尘器时的阻力损失和除尘效率来表达。日常工业上使用的除尘器主要有:重力除尘器、惯性除尘器、电除尘器、湿除尘器、袋式除尘器、旋风除尘器等。 重力除尘器是使含尘气体中的粉尘借助重力作用自然沉降来达到净化气体的装置,它的特点是结构简单,阻力小,但体积大,除尘效率低,设备维修周期长。惯性除尘器是一种利用粉尘在运动中惯性力大于气体惯性力的作用,将粉尘从气体中分离出来的除尘设备,特点是结构简单,阻力较小,但除尘效率低。电除尘器利用含尘气体在通过高压电场电离时,尘粒荷电并受电场力的作用,沉积于电极上,从而使尘粒和气体分离的一种除尘设备,其特点是效率高、阻力低、适用于高温和除去细微粉尘等优点。湿式除尘器是使含尘气体与水或者其他液体相接触,利用水滴和尘粒的惯性膨胀及其他作用而把尘粒从气流中分离出来,特点是投资低、造作简单,占地面积小,能同时进行有害气体的净化、含尘气体的冷却和加湿等优点。袋式除尘器主要依靠编织的或毡织的滤布作为过滤材料达到分离含尘气体中粉尘的目的,特点是适应性比较强,不受粉尘比电阻的影响,也不存在水的污染问题,同时存在过滤速度低、压

降大、占地面积大、换袋麻烦等缺点。 1.2除尘器的概念和分类 除尘器是把粉尘从烟气中分离出来的设备叫做除尘器或除尘设备。除尘器的性能用可处理的气体量、气体通过除尘器时的阻力损失和除尘效率来表达。同时,除尘器的价格、运行和维护费用、使用寿命长短和操作管理的难易也是考虑其性能的重要因素。除尘器是锅炉及工业生产中常用的设施。在国家采暖通风与空气调节术语标准中,明确了若干除尘器的具体含义,摘抄部分如下: 除尘器:用于捕集、分离悬浮于空气或气体中粉尘例子粒子的设备,也称收尘器。 沉降室:由于含尘气流进入较大空间速度突然降低,使尘粒在自身重力作用下与气体分离的一种重力除尘装置。也称重力除尘器。 旋风除尘器:含尘气流沿切线方向进入筒体做螺旋形旋转运动,在离心作用下将尘粒分离和捕集的除尘器。 袋式除尘器:用纤维性滤袋捕集粉尘的除尘器。 惯性除尘器:借助各种形式的挡板,迫使气流方向改变,利用尘粒的惯性使其和挡板发生碰撞而将尘粒分离和捕集的除尘器。 除尘器有很多种类,除尘器按其作用原理分成以下五类: (1)机械力除尘器包括重力除尘器、惯性除尘器、离心除尘器等。 (2)洗涤式除尘器包括水浴式除尘器、泡沫式除尘器,文丘里管除尘器、水膜式除尘器等。

旋风除尘器(精)

旋风除尘器是利用气流旋转过程中作用在粉尘上的离心力,使粉尘从含尘气流中分离出来的设备。旋风除尘器的结构原理及优缺点 普通旋风除尘器的结构如图1所示,它是由进口、筒体、锥体、排出管(筒)4部分组成的。含尘气流由除尘器进口沿切线方向进入除尘器后,沿外壁由上向下作旋转运动,这股从上向下旋转的气流称为外旋涡。外旋涡到达锥体底部后,转而向上,沿轴心向上旋转,最后从排出管排出。这股从下向上的气流称为旋涡。向下的外旋涡和向上的旋涡旋转方向是相同的。气流作旋转运动时,粉尘在离心力的作用下甩向外壁,到达外壁的粉尘在下旋气流和重力的共同作用下沿壁面落入灰斗。 图1 旋风除尘器 1—进口 2—筒体 3—锥体 4—排出管 旋风除尘器的优缺点 旋风除尘器的优点有:(1)结构简单,造价低;(2)除尘器中没有运动部件,维护保养方便; (3)可耐400℃高温,如采用特殊的耐高温材料,还可以耐受更高的温度;(4)除尘器敷设耐磨衬后,可用以净化含高磨蚀性粉尘的烟气。其缺点是:(1)对捕集微细粉尘(小于5μm)和尘粒密度小的粉尘(如纤维性粉尘)除尘效率不高;(2)由于除尘效率随筒体直径的增加而降低,因而单个除尘器的处理风量受到一定限制。 影响旋风除尘器性能的主要因素 1.进口速度。旋风除尘器气流的旋转速度,是由进口速度造成的。增加进口速度,能

提高除尘器气流的旋转速度vt,使尘粒所受到的离心力(尘粒所受离心力,式中:m为尘粒质量,kg;vt为尘粒的旋转速度,可近似认为等于该点气流的旋转速度,m/s;r为旋转半径,m)增大,从而提高除尘效率,同时也增大了除尘器的处理风量。但进口速度不宜过大,过大会导致除尘器阻力急剧增加(除尘器阻力与进口速度的平方成正比),耗电量增大,而且,当进口速度增大到一定限度后,除尘效率的增加就非常缓慢,甚至有所下降。这主要是由于除尘器部涡流加剧,破坏了正常的除尘过程造成的。因此,最适宜的进口速度一般应控制在12~20m/s之间。 2.筒体直径和高度。由离心力公式可知,在同样的旋转速度下,简体直径越小(简体直径减小,旋转半径也减小),尘粒受到的离心力越大,除尘效率越高,但处理风量减小。目前常用的旋风除尘器,直径一般不超过800mm。风量较大时,可用几台除尘器并联运行或采用多管旋风除尘器。 增加简体高度,从直观上看可以增加气流在除尘器的旋转圈数,有利于尘粒的分离,使除尘效率提高。但筒体加高后,外旋下降的含尘气流和旋上升的洁净气流之间的紊流混合也要增加,从而使带人洁净气流的尘粒数量增多。故简体不宜太高,一般取筒体高度为2D(D 为筒体直径)左右。 3.锥体高度。在锥体部分,由于断面不断减小,尘粒到达外壁的距离也逐渐减小,气流的旋转速度不断增加,尘粒受到的离心力不断增大,这对尘粒的分离都是有利的。现代的高效旋风除尘器大都是长锥体就是这个原因。目前国的高效旋风除尘器,如ZT型和XCX型也都是采用长锥体,锥体高度为(2.8~2.85)D。 4.除尘器底部的严密性。旋风除尘器无论是在正压下还是在负压下运行,其底部(即排尘口)总是处于负压状态,如果除尘器底部不严密,从外部渗入的空气就会把正在落人灰斗的一部分粉尘带出除尘器,使除尘效率显著下降。所以如何在不漏风的情况下进行正常排尘,是旋风除尘器运行中必须重视的一个问题。 在收尘量不大时,可在除尘器底部设固定灰斗定期排尘;在收尘量较大,要求连续排尘时,可采用锁气器,常用的锁气器有翻板式、压板式和回转式几种。 5.粉尘的性质。尘粒密度越大,粒径越大,离心力越大,除尘效率也就越高。因而旋风除尘器一般不适用于处理细微的纤维性粉尘。对非纤维性粉尘,粒径太小时,效率也不高。用于处理粒径大、密度大的矿物性粉尘效果好。 几种常用的旋风除尘器 旋风除尘器的发展虽然经历了一百多年的历史,但到目前为止,其结构形式方面的研究工作一直都在继续进行,因而出现了许多结构形式,下面介绍常用的几种。 1.多管旋风除尘器。如前所述,旋风除尘器的效率是随着简体直径的减小而增加的,但直径减小,处理风量也减小。当要求处理风量较大时,如将几台旋风除尘器并联起来使用,占地面积太大,管理也不方便,因此就产生了多管组合的结构形式。多管除尘器是把许多小直径(100~250mm)的旋风子并联组合在一个箱体,合用一个进气口、排气口和灰斗。为使风

轴流式旋风除尘器危险分析

编号:SY-AQ-00081 ( 安全管理) 单位:_____________________ 审批:_____________________ 日期:_____________________ WORD文档/ A4打印/ 可编辑 轴流式旋风除尘器危险分析 Risk analysis of axial flow cyclone

轴流式旋风除尘器危险分析 导语:进行安全管理的目的是预防、消灭事故,防止或消除事故伤害,保护劳动者的安全与健康。在安全管 理的四项主要内容中,虽然都是为了达到安全管理的目的,但是对生产因素状态的控制,与安全管理目的关 系更直接,显得更为突出。 其主要危险有害因素如下: (1)粉尘 a.在除尘器除尘过程中,会产生大量高浓度粉尘,当作业人员长期进行除尘器操作时,吸入这些粉尘,将引起尘肺等职业病。 b.在处理除尘器灰仓时,如果防护措施不当,可能对作业人员健康造成危害,甚至可能发生窒息事故。 c.在除尘机风机检查、维修过程中,高浓度粉尘可能对人体造成危害。(2)机械伤害 a.在卸灰过程中,操作工人由于误操作,可能被绞叶卡伤。 b.在除尘机风机检查、维修过程中,由于机械分离导致伤人事故。 c.在操作除尘风机电机液压器时,操作工人误入旋转部位,导致绞伤。(3)触电 a.除尘机风机检查、维修、卸灰等作业中,由于电气断路、短路、裸

露,而工人在没有防护措施的情况下,用手触摸运行电机、电缆时,可能发生触电事故。 b.在高压转换开关时,带电操作,可能导致触电事故。 (4)高空坠落 除尘机风机检查、维修、卸灰等作业中可能涉及高空作业,如操作工人误正确防护措施情况下可能发生高空坠落事故。 (5)火灾、爆炸 在高浓度粉尘区域,如存在火星、火源,则可能导致爆炸,引起火灾。 (6)噪声 由于风机在运转过程中,产生高强度噪音,如防护措施不当,工人长期在噪声环境下工作,可能导致工人听力受损。 这里填写您的公司名字 Fill In Your Business Name Here

旋风式除尘器简介

旋风式除尘器简介 旋风除尘器是除尘装置的一类。除沉机理是使含尘气流作旋转运动,借助于离心力降尘粒从气流中分离并捕集于器壁,再借助重力作用使尘粒落入灰斗。 旋风除尘器于1885年开始使用,已发展成为多种型式。按其流进入方式,可分为切向进入式和轴向进入式两类。在相同压力损失下,后者能处理的气体约为前者的3倍,且气流分布均匀。 旋风除尘器结构 普通旋风除尘器是由进气管、排气管、圆筒体、圆锥体和灰斗组成。旋风除尘器结构简单,易于制造、安装和维护管理,设备投资和操作费用都较低,已广泛用来从气流中分离固体和液体粒子,或从液体中分离固体粒子。在普通操作条件下,作用于粒子上的离心力是重力的5~2500倍,所以旋风除尘器的效率显著高于重力沉降室。在机械式除尘器中,旋风式除尘器是效率最高的一种。它适用于非黏性及非纤维性粉尘的去除,大多用来去除5μm以上的粒子,并联的多管旋风除尘器装置对3μm的粒子也具有80~85%的除尘效率。选用耐高温、耐磨蚀和腐蚀的特种金属或陶瓷材料构造的旋风除尘器,可在温度高达1000℃,压力达500×105Pa的条件下操作。从技术、经济诸方面考虑旋风除尘器压力损失控制范围一般为500~2000Pa。因此,它属于中效除尘器,且可用于高温烟气的净化,是应用广泛的一种除尘器,多应用于锅炉烟气除尘、多级除尘及预除尘。它的主要缺点是对细小尘粒(<5μm)的去除效率较低。 优点 按照前面轴向速度对流通面积积分的方法,一并计算常规旋风除尘器安装了不同类型减阻杆后下降流量的变化,并将各种情况下不同断面处下降流量占除尘器总处理流量的百分比绘入,为表明上、下行流区过流量的平均值即下降流量与实际上、下地流区过流量差别的大小。可看出各模型的短路流量及下降流量沿除尘器高度的变化。与常规旋风除尘器相比,安装全长减阻杆1#和4#后使短路流量增加但安装非全长减阻杆H1和H2后使短路流量减少。安装1#和4#后下降流量沿流程的变化规律与常规旋风除尘器基本相同,呈线性分布,三条线近科平行下降。但安装H1和H2后,分布呈折线而不是直线,其拐点恰是减阻杆从下向上插入所伸到的断面位置。由此还可以看到,非全长减阻杆使得其伸至断面以上各断面的下降流量增加,下降流量比常规除尘器还大,但接触减阻杆后,下降流量减少很快,至锥体底部达到或低于常规除尘器的量值。

几种新型旋风除尘器的简析

技 术 创 新 文章编号 0952(2000)05 TH12 几 种 新 型 旋 风 除 尘 器 的 简 析 兰州铁道学院 李 炎 兰州市城市建设设计院 周鸣镝 旋风除尘器经历了100多年的发展历史,其被广泛应用于工业除尘 它是利用旋转气流对粉尘产生离心力使其从气流中 分离出来的 阻力损失更小的旋风除尘器 以下就几种新型旋风除尘器作简要介绍 处于同轴心的内外 筒体中间留有一定的环隙内筒低于外 筒一定距离排气管插入外筒内一 定距离 进气管由外筒下端切向进入内筒 其下部为灰斗  内筒 含尘气流中所含较大的固体颗 粒在重力作用下直接沉入锥体 由于离心力作用而被甩向筒壁 一次分离后的大部分纯净气体直接 从顶部排气管排出 被甩向内外筒体间的环隙 在锥体内得到二次分离 亦由排气管排出 速度梯度小不易造成 阻力损失也相对 较小 其特点是在旋风器内部 设置有在电机带动下能够旋转的开孔圆筒6外旋筒6 的直径为0.95D 旋筒表面均 匀地开孔 开孔率为40% 内圆锥体也开有同样的孔其工作原理是含尘气体 由切向入口进入到外旋筒 从入口进入的气流就会在开孔旋筒表面附面 层的摩擦力的作用下 从而增加了旋回流的强度和对粉尘粒子的离心分离作用 含尘气流在粉尘粒子逐渐离心沉降的同时 边旋转 进而通过中心旋筒及出口排出 但阻力损失也相对较大

技 术 创 新 续螺旋式旋风除尘器采用了阿基米得连续螺旋线型结构 其工作原理是含尘气体由切向入口进入 与其入口宽度相同的内部螺旋通道 粉尘被抛向螺旋通道的内外壁上干净气体最后由顶部排气管排出 具有体积小 除尘效率 高 也许在不久的将来 4 切流直流式旋风除尘器 这种类型的旋风除尘器取消了上排气芯管 其筒体结构也较为独特 下部 筒体直径大 如图4所示在稳流体与筒壁 之间的环形区域做旋转运动 向下旋转 在气流推动和重力作用下 直接进入排气芯管排出再折转向上最后经排气芯管 排出 它消除了内旋涡旋 使除尘器 在保持高除尘效率的基础上 图4 切流直流式旋风除尘器结构简图 1-上筒体 2-过渡段 3-下筒体 4-锥体 5-排尘口 6-排气管 7-稳流体 8-进气管 5 总结 根据以上的介绍 这四种型式的旋风 除尘器的共同特点是低阻高效 因此 有重点地发展某种型式的除尘器 地下水的开采超过天然补给量水位 下降 6 水资源开采方式要得当 如方法 也会 带来环境问题在某些干旱 由于水文地质和气候方面的原因还要进行排 水 要采用不同的灌溉组合方式 使良田变为荒碱滩 7 严格控制废水排放标准 严格控制废水排放标准是保护水资源最有效的措施 污水一旦进入自然 水体BOD 必然造成对水资源的破坏 变成毫无用处的废水 使缺水问题 进一步尖锐化 社会问题和经问题 而且能持水 不仅水质好 但是 就会造成土的流失和水流 含沙量增加 给水资源的开发 利用带来很大的困难 还能改变地区 气候 所以 9 聚雨蓄水 聚雨蓄水关键是发动群众和依靠群众 村干部 带领 本村的地形优势兴修塘 池 下雨时 堰 窖储存起 来 还可用于农田灌溉和其他方面使用 还可补充地下水 预防河床升高减少水患 水的需求量将不断 增加 节约用水是我 们的长期国策 减少浪费 推行 循环用水和一水多用的措施 工业产业结构如缺水区绝来能新 建玉米淀粉厂要根据作物生 长要求配水 城市生活用水可用经济杠杆 作用 水是生命之源保护水资源就 是保护人类本身

旋风除尘器工作原理

旋风式除尘器的组成及内部气流 旋风除尘器是除尘装置的一类。除沉机理是使含尘气流作旋转运动,借助于离心力降尘粒从气流中分离并捕集于器壁,再借助重力作用使尘粒落入灰斗。旋风除尘器于1885年开始使用,已发展成为多种型式。按其流进入方式,可分为切向进入式和轴向进入式两类。在相同压力损失下,后者能处理的气体约为前者的3倍,且气流分布均匀。普通旋风除尘器由简体、锥体和进、排气管等组成。旋风除尘器结构简单,易于制造、安装和维护管理,设备投资和操作费用都较低,已广泛用来从气流中分离固体和液体粒子,或从液体中分离固体粒子。在普通操作条件下,作用于粒子上的离心力是重力的5~2500倍,所以旋风除尘器的效率显著高于重力沉降室。大多用来去除0.3μm以上的粒子,并联的多管旋风除尘器装置对3μm的粒子也具有80~85%的除尘效率。选用耐高温、耐磨蚀和服饰的特种金属或陶瓷材料构造的旋风除尘器,可在温度高达1000℃,压力达500×105Pa的条件下操作。从技术、经济诸方面考虑旋风除尘器压力损失控制范围一般为500~2000Pa。 编辑本段行业标准 AQ 1022-2006 煤矿用袋式除尘器 DL/T 514-2004 电除尘器 JB/T 10341-2002 滤筒式除尘器 JB/T 20108-2007 药用脉冲式布袋除尘器 JB/T 6409-2008 煤气用湿式电除尘器 JB/T 7670-1995 管式电除尘器 JB/T 8533-1997 回转反吹类袋式除尘器 JB/T 9054-2000 离心式除尘器 MT 159-1995 矿用除尘器 JC/T 819-2007 水泥工业用CXBC系列袋式除尘器 JC 837-1998 建材工业用分室反吹风袋式除尘器

旋风除尘器除尘效率的分析及改进

旋风除尘器 旋风式除尘器的组成及内部气流 简介 旋风除尘器是除尘装置的一类。除沉机理是使含尘气流作旋转运动,借助于离心力降尘粒从气流中分离并捕集于器壁,再借助重力作用使尘粒落入灰斗。旋风除尘器于1885年开始使用,已发展成为多种型式。按其流进入方式,可分为切向进入式和轴向进入式两类。在相同压力损失下,后者能处理的气体约为前者的3倍,且气流分布均匀。普通旋风除尘器由简体、锥体和进、排气管等组成。旋风除尘器结构简单,易于制造、安装和维护管理,设备投资和操作费用都较低,已广泛用来从气流中分离固体和液体粒子,或从业体重分离固体粒子。在普通操作条件下,作用于粒子上的离心力是重力的5~2500倍,所以旋风除尘器的效率显著高于重力沉降室。大多用来去除.3μm以上的粒子,并联的多管旋风除尘器装置对3μm的粒子也具有80~85%的除尘效率。选用耐高温、耐磨蚀和服饰的特种金属或陶瓷材料构造的旋风除尘器,可在温度高达1000℃,压力达500×105P a的条件下操作。从技术、经济诸方面考虑旋风除尘器压力损失控制范围一般为500~2000Pa。 行业标准 AQ 1022-2006 煤矿用袋式除尘器 DL/T 514-2004 电除尘器 JB/T 10341-2002 滤筒式除尘器 JB/T 20108-2007 药用脉冲式布袋除尘器 JB/T 6409-2008 煤气用湿式电除尘器 JB/T 7670-1995 管式电除尘器 JB/T 8533-1997 回转反吹类袋式除尘器 JB/T 9054-2000 离心式除尘器 MT 159-1995 矿用除尘器

JC/T 819-2007 水泥工业用CXBC系列袋式除尘器 JC 837-1998 建材工业用分室反吹风袋式除尘器 特点 按照前面轴向速度对流通面积积分的方法,一并计算常规旋风除尘器安装了不同类型减阻杆后下降流量的变化,并将各种情况下不同断面处下降流量占除尘器总处理流量的百分比绘入,为表明上、下行流区过流量的平均值即下降流量与实际上、下地流区过流量差别的大小。可看出各模型的短路流量及下降流量沿除尘器高度的变化。与常规旋风除尘器相比,安装全长减阻杆1#和4#后使短路流量增加但安装非全长减阻杆H1和H2后使短路流量减少。安装1#和4#后下降流量沿流程的变化规律与常规旋风除尘器基本相同,呈线性分布,三条线近科平行下降。但安装H1和H2后,分布呈折线而不是直线,其拐点恰是减阻杆从下向上插入所伸到的断面位置。由此还可以看到,非全长减阻杆使得其伸至断面以上各断面的下降流量增加,下降流量比常规除尘器还大,但接触减阻杆后,下降流量减少很快,至锥体底部达到或低于常规除尘器的量值。 短路流量的减少可提高除尘效率,增大断面的下降流量,又能使含尘空气在除尘器内的停留时间增长,为粉尘创造了更多的分离机会。因此,非全长减阻杆虽然减阻效果不如全长减阻杆,但更有利于提高旋风除尘器的除尘效率。常规旋风除尘器排气芯管入口断面附近存在高达24%的短路流量,这将严重影响整体除尘效果。如何减少这部分短路流量,将是提高效率的一个研究方向。非全长减阻杆减阻效果虽然不如全长减阻杆好,但由于其减小了常规旋风除尘器的短路流量及使断面下降流量增加、使旋风除尘器的除尘效率提高,将更具实际意义。 影响旋风除尘器除尘效率的因素分析 分析了旋风除尘器中流体流动状态及除尘效果影响因素,包括除尘器的结构、进气口、圆筒体直径和高度、排气管、排灰口及操作工艺参数。此外流速粉尘状况、气流运行也对除尘效果有影响,并提出了提高旋风除尘器除尘效率的改进措施。 旋风除尘器是利用含尘气流作旋转运动产生的离心力将尘粒从气体中分离并捕集下来的装置。旋风除尘器与其他除尘器相比,具有结构简单、没有运动部件、造价便宜、除尘效率较高、维护管理方便以及适用面宽的特点,对于收集5~10 μm 以上的尘粒,其除尘效率可达90%左右。广泛用于工业炉窑烟气除尘和工厂通风除尘,工业气力输送系统气固两相离与物料气力烘干回收等。此外,旋风器亦可以作为高浓度除尘系统的预除尘器,能与其他类型高效除尘器串联使用。旋风除尘器在粮食行业也得到了广泛的应用,如原料输送、加工、包装等生产环节的除尘。然而,许多粮食企业的旋风除尘器运行效率并不高,排放指标未到达设计要求,研究和探讨旋风除尘器除尘效率影响因素,对提高其除尘效率具有重要的现实意义。

实验一旋风除尘器

实验一旋风除尘器、袋式除尘性能实验 一旋风除尘器 1.1实验目的 1.了解旋风除尘器的常用结构型式和性能特点。 2.掌握旋风除尘器的基本原理及基本操作方法。 3.掌握用质量法计算除尘器的除尘效率。 1.2实验原理 旋风除尘器是利用旋转气流产生的离心力使尘粒从气流中分离的装置。气流作旋转运动时,尘粒在离心力作用下逐步移向外壁,到达外壁的尘粒在气流和重力作用下沿壁面落入灰斗。 1.3设备及用具 1.旋风除尘器:湖南长沙长风教具厂生产; 2.托盘天平; 3.锯木屑或米糠; 4.电源插线板 实验装置如图所示 1.4实验步骤 1.用托盘天平称出发尘量(Gf); 2.同时启动风机和发尘搅拌器,进行除尘,记下除尘所需要的时间 (T); 3.除尘结束后,称出被捕集的粉尘量 (Gs);

4.计算除尘器的除尘效率: %100?=f s G G η 1.5思考题 1、画出旋风除尘器除尘原理示意图; 2、简述旋风除尘器主要应用领域及处理何种含尘废气。 二 袋式除尘器 2.1实验目的 1. 通过本实验,进一步提高对袋式除尘器的结构形式和除尘机理的认识。 2. 掌握袋式除尘器基本操作方法。 2.2实验原理 含尘气流从下部进入圆筒形滤袋,在通过滤料的孔隙时,粉尘被捕集于滤料上, 透过滤料的清洁气体由排出口排出。沉积在滤料上的粉尘,通过逆气流清灰的方式, 从滤料表面脱落,落入灰斗。 2.3设备及用具 1.袋式除尘器:湖南长沙长风教具厂生产 2.木屑或米糠 3.电源插线板 实验装置如图所示

2.4实验流程 1. 过滤除尘 关闭阀门T1、打开阀门T2,如下图所示,前后两个双开开关扭至双开位置,两布袋同时过滤,净化后的气体从上部管道排出。 2. 左清灰右过滤 关闭阀门T2、打开阀门T1,正面双开开关旋向右边关位置、后面的双开开关旋向左边关位置,则左边布袋清灰、右边布袋过滤,净化后的气体从上部管道排出。 3.左过滤右清灰 关闭阀门T2、打开阀门T1,正面双开开关旋向左边关位置、后面的双开开关旋向右边关位置,左边布袋过滤,右边布袋清灰,净化后气体从上部管道排出。 2.5实验报告要求 1.画出过滤除尘、左清灰右过滤和左过滤右清灰三个流程工作示意图。 2.影响袋式除尘效率的因素主要有哪些?

旋风除尘器(内部机密)

旋风除尘器 (河南宏科重工)提供 旋风除尘器的特点 实践证明:利用机械力(包括重力、惯性力、离心力等)的除尘过程中,依靠离心力要比单纯利用惯性力对尘粒具有更大的捕集分离能力。旋风分离器就是利用离心力使固体微粒从气相的载流介质中分离出来的一种气固分离设备。这种设备用于化工及粉状物料生产过程称之为气固分离器;用于一般工业除尘及锅炉烟气净化过程,通常称为旋风除尘器。 旋风除尘器具有以下特点: 1)结构简单、加工制作容易、造价低; 2)除尘器本身没有运动部件,运行管理及维护检修方便; 3)对粉尘的物理性能无特殊要求,对粉尘负荷的适应性比较强; 4)可耐较高的温度,适应高温烟气处理; 5)属于干式收尘,便于粉状物料的回收处理; 6)设备阻力适中,除尘效率较高。 旋风除尘器一般只能捕集分离10微米以上的尘粒,而且处理风量受到一定的限制,一般多用于中小型锅炉烟气除尘以及粉状物料的回收。 除尘器内气流流型及除尘过程 旋风除尘器是目前工业除尘及锅炉烟气净化中应用较为广泛的除尘设备之一。尽管除尘器的种类繁多,形状各异,但其除尘原理基本上是相同的。下图是普通旋风除尘器内气流流动概况示意图。

进入旋风除尘器的含气气流,沿着圆筒体的内壁一边旋转一边下降,通常称这部分气流为外旋气流。当外旋气流到达锥体下部时,由于受到器壁的限制,气流改变方向,折转向上,形成在中心区域旋转上升的气流,通常称这部分气流为内旋气流。内旋气流升至顶部经排气芯管排出。实际上旋风除尘器内的气流及尘粒的运动状况是相当复杂的,上述图示是简化后的气流流型。 研究表明:气流在旋风除尘器内作旋转运动时,任何一点的速度都可以分解成三个分速度,即切向速度、径向速度和轴向速度。许多研究者的测试结果都大致相同。 可以看出,器壁附近的切向速度随气流不断向下旋转而逐渐增加,而在同一水平断面上的切向速度随与轴心距离逐渐减小而增大;径向速度比切向速度要小的多,而且在同一水平断面上几乎不变,接近中心区域的径向速度方向指向器壁;轴向速度表示器壁区域轴向速度向下,中心区域气流向上。研究结果表明,旋风除尘器内的切向速度是决定气流质点离心力大小的主要因素,其最大值约在排气管直径的1/2-1/3的圆环处。 在旋风除尘器内含尘气体中的尘粒随气流一起作旋转运动,尘粒的密度要比载流气体的密度大得多。因此在同一点处尘粒获得的切向分离速度也比气体大得多。 旋风除尘器的构造及分类 旋风除尘器通常按气流进入方式不同,可分为切向进入式和轴向进入式两类。 一、切向进入式旋风除尘器 切向进入式旋风除尘器是指进入除尘器的含尘气流方向与除尘器的圆筒壁相切。这是应用最广泛的一种旋风除尘器。这种除尘器的基本构造由一个外圆筒体和一个圆锥体焊接在一起构成除尘器外壳。圆形排气芯管设在圆筒体内,两者具有同一轴心。圆锥体下部与集尘箱或

环流式旋风除尘器

环流式旋风除尘器,达到袋式除尘效果 一、企业简介: 青岛成海工业有限公司本公司追求高新技术,研制适合各行业的主打产品,为此,我们不断的开发新产品,引进德国阿盖尔、欧洲温蒂莱科斯、法国埃森恩等知名大公司的先进技术,先后在国内独家推出具有国际水平的双质体振动流化床、高级曲柄拉杆式振动流化床干燥机械、双质体振动输送机械、箱式激振器、行业专用设备等,并形成了自己的主打产品。 本公司在除尘设备具有的高科技主打产品有循环式旋风除尘器、旋风除雾器及循环除尘系统装置,是我公司引进高校开发的专利技术产品,采用全新革命性的理论、原理结构,解决了气、固、液相分离过程中存在的几十项工程技术难题,除尘颗粒半径最小可达到0. 33μm,拓展了旋风除尘器的应用领域,使旋风除尘器达到了静电除尘器和布袋除尘器的除尘效率,具有压降低、放大效应小、投资少、运行费用低、操作简单、应用范围广等优点;循环式旋风分离系列专利技术已经通过山东省科技厅组织的专家鉴定,该产品在世界范围内旋风除尘设备技术上革命性的突破。 二、CLT、CLK、XZZ型等传统旋风除尘器的缺点和弊端: 常规旋风除尘器有CLT/A型旋风除尘器、CLK扩散式旋风除尘器、XZZ型旋风除尘器器等等,使用时,气体由直筒段上部进入器内,沿边壁螺旋向下流入锥体,由于流体向下流动时,锥体截面不断缩小,大部分气体逐渐趋向中心,并沿轴心自下而上螺旋上升至除尘器顶部,再从中心排气管排出。部分气体夹带着被分离下来的粉尘进入灰仓,在灰仓内与粉尘分离后返回除尘器内。这些除尘器存在的弊端有: 1、分割直径一般为10μm,分离效率低,对10μm以下的粉尘,分离效率很低,而对5μm以下的粉尘,分离效率很低几乎为零; 2、放大效应大,常规的旋风除尘器直径约大,除尘效率急剧下降; 3、流体剪应力大,压降太大; 4、操作稳定性太差,弹性小; 常规除尘器缺点弊端在于:流体的流动路线为沿边壁自上而下再沿轴心自下而上,流体流动路线长,轴向流速快,且存在两个相反流动方向的流体旋涡,导致了流体剪应力大,故压降大;对于大直径的旋风除尘器,由于剪应力大,器内流体易产生剧烈的湍动,且不易形成分离所必须的稳定流型,所以随直径增大,分离效率急剧下降,故放大效应显著;由于大部分气体要在锥体从边壁区域流向中心部位,会导致已达到锥体壁面附近的细粉尘的二次卷扬;大量流体流入灰仓,会造成灰仓内细粉尘的飞扬,并会被返回气体带回器内;由于顶盖附近存在高速旋转的灰环(含尘浓度极高的气流),易产生细粉尘向出气口泄漏;由于出入口距离太近,易产生细粉尘的的短路。故分离效率不高。常规型旋风除尘器的另一个缺点是操作稳定

旋风除尘器的结构与工作原理

一、旋风除尘器的结构与工作原理 浏览字体设置:10pt 放入我的网络收藏夹 一、旋风除尘器的结构与工作原理 1.结构 旋风除尘器的结构由进气口、圆筒体、圆锥体、排气管和排尘装置组成,如图5-4-1所示。 图5-4-1 旋风除尘器组成结构图 2.工作原理 旋风除尘器的工作原理见动画f5-4-1所示。当含尘气流由切线进口进入除尘器后,气流在除尘器内作旋转运动,气流中的尘粒在离心力作用下向外壁移动,到达壁面,并在气流和重力作用下沿壁落入灰斗而达到分离的目的。

动画f5-4-1 3.旋风除尘器内的流场分析 (1)流场组成 外涡旋——沿外壁由上向下旋转运动的气流。 内涡旋——沿轴心向上旋转运动的气流。 涡流——由轴向速度与径向速度相互作用形成的涡流。 包括上涡流——旋风除尘器顶盖,排气管外面与筒体内壁之间形成的局部涡流,它可降低除尘效率; 下涡流——在除尘器纵向,外层及底部形成的局部涡流。 (2)旋风除尘器内气流与尘粒的运动 含尘气流由切线进口进入除尘器,沿外壁由上向下作螺旋形旋转运动,这股向下旋转的气流即为外涡旋。外涡旋到达锥体底部后,转而向上,沿轴心向上旋转,最后经排出管排出。这股向上旋转的气流即为内涡旋。向下的外涡旋和向上的内涡旋,两者的旋转方向是相同的。气流作旋转运动时,尘粒在惯性离心力的推动下,要向外壁移动。到达外壁的尘粒在气流和重力的共同作用下,沿壁面落入灰斗。 气流从除尘器顶部向下高速旋转时,顶部的压力发生下降,一部分气流会带着细小的尘粒沿外壁旋转向上,到达顶部后,再沿排出管外壁旋转向下,从排出管排出。这股旋转气流即为上涡旋。如果除尘器进口和顶盖之间保持一定距离,没有进口气流干扰,上涡旋表现比较明显。 对旋风除尘器内气流运动的测定发现,实际的气流运动是很复杂的。除切向和轴向运动外还有径向运动。特·林顿(T.Linden)在测定中发现,外涡旋的径向速度是向心的,内涡旋的径向速度是向外的,速度分布呈对称型。

轴流式旋风除尘器危险分析正式样本

文件编号:TP-AR-L7697 In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives. (示范文本) 编制:_______________ 审核:_______________ 单位:_______________ 轴流式旋风除尘器危险 分析正式样本

轴流式旋风除尘器危险分析正式样 本 使用注意:该解决方案资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。材料内容可根据实际情况作相应修改,请在使用时认真阅读。 其主要危险有害因素如下: (1)粉尘 a.在除尘器除尘过程中,会产生大量高浓度粉 尘,当作业人员长期进行除尘器操作时,吸入这些粉 尘,将引起尘肺等职业病。 b.在处理除尘器灰仓时,如果防护措施不当,可 能对作业人员健康造成危害,甚至可能发生窒息事 故。 c.在除尘机风机检查、维修过程中,高浓度粉尘 可能对人体造成危害。

(2)机械伤害 a.在卸灰过程中,操作工人由于误操作,可能被绞叶卡伤。 b. 在除尘机风机检查、维修过程中,由于机械分离导致伤人事故。 c.在操作除尘风机电机液压器时,操作工人误入旋转部位,导致绞伤。 (3)触电 a. 除尘机风机检查、维修、卸灰等作业中,由于电气断路、短路、裸露,而工人在没有防护措施的情况下,用手触摸运行电机、电缆时,可能发生触电事故。 b.在高压转换开关时,带电操作,可能导致触电事故。 (4)高空坠落

相关主题
文本预览
相关文档 最新文档