当前位置:文档之家› 第六章 万有引力定律

第六章 万有引力定律

第六章 万有引力定律
第六章 万有引力定律

第三节万有引力定律

第六章 曲线运动 第3节 万有引力定律 【学习目标】 编写:温敬霞 审核: 1.了解万有引力定律发现的思路和过程 2.理解万有引力定律,知道它的适用范围 3.会用万有引力定律解决简单的引力计算问题,知道公式中r 的物理意义 4. 引力常量G 的物理意义及万有引力定律发现的意义 【课堂探究】 一. 万有引力定律提出的背景 通过上节的学习,我们知道:行星绕太阳匀速圆周运动所需的向心力由太阳与行星间的引力 来提供的,从而使得行星不能飞离太阳; 那么现在我们来进一步思考: ⑴. 地面上的物体,如苹果,被抛出后总要落回地面,是什么力使得苹果不离开地球呢? ————是否也是由于地球对苹果的引力造成的? ————地球对苹果的引力和太阳对行星的引力是否根本就是同一种力呢? ⑵. 进一步设想: 如果物体延伸到月球那么远,物体是否也会向月球那样围绕地球运动? 太阳吸引行星的力; 地球吸引月球的力; 是否是同一性质的力?遵循相同的规律? 地球吸引苹果的力; 这个想法的正确性要由事实来检验 二. 万有引力的检验 思考:“月 地检验”基本思路是怎样的? 假设维持月球绕地球运动的力与使苹果下落的力是同一种力,同样遵循F =G 2r Mm 因为 r 月 = r 地 所以 F 月= F 地 根据牛顿第二定律 所以a 月= g 地

已知:月球与地球之间的距离r=3.8×108m ,月 T=27.3天,重力加速度28.9s m g 求: 三. 万有引力定律 1.定律内容: 2. 公式 3. 万有引力定律的适用条件 【典型例题】 例题1. 既然任何物体间都存在着引力,为什么当两个人接近时他们不会吸在一起?我们通常分析物体的受力时是否考虑物体间的万有引力? 例题2. 大麦哲伦云和小麦哲伦云是银河系外离地球最近的星系。大麦哲伦云的质量是太阳质量的1010倍,即2.0×1040㎏,小麦哲伦云的质量是太阳质量的109倍,两者相距5×104 光年,求它们之间的引力。 g a 月

第五章万有引力定律会考练习

第五章 万有引力定律 一.选择题 1.假设行星绕恒星的运动轨道是圆,则其运行周期T 的平方与其运行轨道半径R 的三次方之比为常数,那么该常数的大小( ) A.只与行星的质量有关 B.只与恒星的质量有关 C.与行星及恒星的质量都有关 D.与恒星的质量及行星的速率有关 2.把太阳系各行星的运动都近似看做匀速圆周运动,则对离太阳越远的行星说法错误.. 的是( ) A .周期越小 B .线速度越小 C .角速度越小 D .加速度越小 3.若地球表面处的重力加速度为g ,而物体在距地球表面3R (R 为地球半径)处,由于地球作用而产生的加速度为g',则g'/g 为 ( ) A .1 B . 1/9 C .1/4 D . 1/16 4.人造卫星绕地球做匀速圆周运动,其绕行速率( ) A .一定等于7.9km/s B .等于或小于7.9km/s C .一定大于7.9km/s D .介于7.9km/s ~11.2km/s 之间 5.一个半径是地球的3倍,质量是地球的36倍的行星,它表面的重力加速度是地球表面的重力加速度的( ) A .6倍 B .18倍 C .4倍 D.135倍 6.已知地球绕太阳公转周期 及公转轨道半径分别为T 和R ,月球绕地球公转周期及公转轨道半径分别为t 和r ,则太阳质量与地球质量之比为( ) A .R 3t 2/r 3T 2 B .R 3T 2/r 3t 2 C .R 2t 3/r 2T 3 D . R 2T 3/r 2t 3 7.地球表面重力加速度为g ,地球半径为R ,引力常量为G ,下列关于地球密度的估算式正确的是( ) A .RG g πρ43= B .G R g 243πρ= C .RG g =ρ D .2 GR g =ρ 8.两个行星质量分别为M 1.M 2,绕太阳运行轨道的半径之比为R 1.R 2,那么它们绕太阳公转的周期之比T 1:T 2为( )

第五章万有引力

第五章万有引力 第一节行星的运动 专题1:开普勒三定律 专题2:万有引力定律公式的推导 第二节万有引力定律及应用 专题1:重力的产生 专题2:近地卫星和同步卫星 第三节天体运动 专题1:宇宙速度 专题2:变轨 专题3:双星和三星问题 专题4:拉格朗日点 一:高考统一考试大纲(2019) 万有引力定律:万有引力定律及其应用Ⅱ 环绕速度Ⅱ 第二宇宙速度和第三宇宙速度Ⅰ 航天技术的发展和宇宙航行Ⅰ

二:思维导图 第一节行星的运动 专题一:开普勒三定律 一、基本内容 1.开普勒第一定律:所有行星绕太阳运行的轨道都是_______,太阳处在所有椭圆的_______上. 2.开普勒第二定律:对于每一个行星,太阳和行星的连线在相等的时间内扫过的_______相等. 3.开普勒第三定律:所有行星的半长轴的_____次方跟公转周期的______的比值都相等。 注意:对同一星系中的所有行星,k值____等;对不同星系间的两颗行星,k值____等.也就是说,只有对于同一个中心天体,其k值才是相同的。 课堂习题 【题1】证明:由开普勒第二定律可知v1R1=v2R2,

【题2】把火星和地球绕太阳运行的轨道视为圆周。由火星和地球绕太阳的周期之比可求得( ) A.火星和地球的质量之比B.火星和太阳的质量之比 C. 火星和地球到太阳的距离之比 D.火星和地球绕太阳运行速度大小之比 【题3】如图所示,一颗卫星绕地球做椭圆运动,运动周期为T,图中虚线为卫星的运行轨迹,A、B、C、D是轨迹上的四个位置,其中A距离地球最近,C距离地球最远。B和D点是弧线ABC和ADC 的中点,下列说法正确的是() A.卫星在C点的速度最大 B.卫星在C点的加速度最大 C.卫星从A 经D到C点的运动时间为T/2 D.卫星从B经A到D点的运动时间为T/2 【题4】已知木星的公转半径大约是地球公转半径的5倍,求木星的周期大约是多少? 专题二:万有引力定律公式的推导 开普勒发现,所有行星绕太阳运动的轨道的半长轴的三次方跟它的公转周期的二次方的比值都 相等,这个比值叫做开普勒常数,此常数与中心天体的质量成正比,即。理论证明,开普勒定律不仅适用于行星绕太阳的运动,也适用于卫星绕行星的运动。如图所示,研究问题时可将地球 认为是质量分布均匀的正球体,已知地球质量为M,半径为R: (1)若卫星一围绕地球做匀速圆周运动,距离地心为r,周期为T,请推导万有引力定律,并写出 万有引力常量G的表达式。 (2)若卫星二绕地球运动的轨迹为椭圆,已知其距地表最近点距离为r1,距地 表最远点距离为r2,求卫星二绕地球运行的周期T0. (3)若在距离地球表面高度为L的位置静止释放一个小物体m,忽略大气层阻 力,且L比R大很多,推测此物体落到地球的时间。

万有引力定律的建立过程及意义

万有引力定律的建立过程及意义 万有引力定律的发现,是17世纪自然科学最伟大的成果之一。苹果的落地引起了牛顿科学的遐想,在通过大量数学计算后推导出了著名万有引力定律。 然而万有引力定律的确立,却并非牛顿一个人的功劳。在牛顿研究万有引力之前,已有不少人从事这个问题的研究,如第谷、开普勒。此外和牛顿同时代的科学家,如胡克、哈雷、惠更斯、伦恩等,对万有引力定律的建立也有贡献。正如牛顿本人所说:“我之所以有这样的成就,因为我是站在巨人们的肩膀上的。” 丹麦天文学家第谷花费多年时间进行观测行星,编制了篇幅庞大、高度精确的星表。而后德国数学家、天文学家、物理学家开普勒对第谷的星表进行整理研究,最终提出了行星运动三定律。这些对于牛顿提出万有引力定律具有至关重要的作用。此外,惠更斯的向心力公式,胡克、哈雷、伦恩重力问题的研究都给予了牛顿不少启发。 1665-1666年,因为瘟疫流行,牛顿从剑桥大学回到家乡。而看到苹果偶然落地引发了牛顿思考引力问题。之后1684年,牛顿做了《论运动》的演讲,明确叙述了向心力定律,证明了椭圆轨道运动的平方反比关系。此后不久,又在一篇关于物体在均匀介质中的运动的论文中定义了质量概念,并探讨了引力与质量的关系。这些将牛顿引向了万有引力定律的发现。 牛顿设想了从高山上平抛一个铅球的理想实验,他认为当发射速度足够大时,铅球将可能绕地球运动而不再落回地面,指出月球也可以由于重力或者其他力的作用使其偏离直线形成围绕地球的运转。牛顿通过一个靠近地面的“小月球”的运动的思想实验,论证了“使月球保持在它轨道上的力就是我们通常称的为‘重力’的那个力。” 接着,牛顿根据向心力公式和开普勒三定律推导了平方反比关系。牛顿证明,由面积速度定律可以得出物体受中心力的作用,由轨道定律可以得出物体这个中心力是吸引力,由周期定律可以得出这个吸引力与半径的平方成反比。并且通过同磁力的类比,得出“这些指向物体的力应与这些物体的性

万有引力定律的发现与探究过程分析

万有引力定律的发现与探究过程分析 ——兼论如何在教学中展示知识形成过程 北京教育学院吴剑平 引言 物理学的发端始于人类对理解星体运行的追求。三百多年前,万有引力定律的发现堪称人类文明与理性探索进程中最壮丽的诗篇,其所体现出的科学智慧的震撼力,至今仍为世人所叹服。李政道先生在回答是什么使他走上献身物理学研究的道路时曾说过,是物理学中那些具有普适性的物理法则和概念深深打动了他,激发了他深入探究的兴趣。万有引力定律就是这样一条具有简约性和普适性的自然法则,它第一次把看似毫不相关的地上与天上运动统一起来,第一次揭示大自然的对称和谐与物理规律表达简洁而含蓄的内在美,并作为牛顿的“从运动现象研究自然力”的又一个科学思辨范例,而不断为历代科学家所效仿。因此万有引力定律的教学绝不能仅限于具体知识的讲解、记忆与实际的(习题)应用,更应强调人类对天体运动的认识以及建立万有引力定律的探究过程,把教学重点放在“引导学生体会万有引力定律发现过程中的思路和方法”上。然而,除了教材与教参已有的介绍外,我们对物理学史上这段辉煌史实真正了解多少?我们能否把握整个发现过程中的探索脉络,并将从中领悟到的思想精髓介绍给学生?由此看来,要教好新教材中的万有引力定律一章,适当扩展相应的知识背景,了解有关牛顿引力理论的现代评述,就显得十分必要了。 本专题将着重探讨以下几个问题:(1)如何正确评价“地心说”与“日心说”的作用?(2)开普勒是如何导出行星三定律的?(3)牛顿如何从开普勒三定律推导出引力的平方反比定律(圆轨道、椭圆轨道)?(4)牛顿是如何解决引力定律的普适性的? 一、行星视运动及其天文观测常识 讨论开普勒三定律与万有引力定律离不开人类对行星运动的天文观测,这其中涉及我们不十分熟悉的天文知识。 1.天球及其坐标系 研究天体位置和运动而引进的假想圆球。由于天体与观察者距离远大于地球的移动距离,可将其视作散布于以观察者(地球)为中心的一个圆球面上。实际应上是将天体投影到半径任取(可视作无穷大)的天球面上。为定量表示天体投影在天球上位置和运动,需要建立以地球为中心的参考系,常用的坐标系有: (1)赤道坐标系:地球赤道平面延伸后与天球相交的大圆称作天赤道,地轴(自转轴)延伸线与天球相交两点称作北南天极,过天极的大圆称为赤经圈,与天赤道平行小圆称作赤纬圈。 (2)黄道坐标系:以地球绕太阳公转的轨道平面称为黄道面,其与天球相交的大圆称作黄道,地球轨道面的法线与天球交点称为北南黄极,该坐标系同样划分有黄经圈与黄纬圈。 赤道面与黄道面有23027/的交角,两者相交的两点称作春分点与秋分点。如图1所示。 黄极 黄道 图 1

2021高考总复习物理(创新版)Word文档第5章第21讲 万有引力定律及其应用

第五章天体运动 [研读考纲明方向] [重读教材定方法] 1.P31哪位科学家把天空中的现象与地面上的现象统一起来,成功解释了天体运行的规律? 提示:牛顿。 2.P32开普勒行星运动定律的表述。 提示:(1)所有行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。 (2)对任意一个行星来说,它与太阳的连线在相等的时间内扫过相等的面积。 (3)所有行星的轨道的半长轴的三次方跟它的公转周期的二次方的比值都相等。 3.P33对行星运动轨道简化为圆周后的开普勒三个定律的表述。 提示:(1)行星绕太阳运动的轨道十分接近圆,太阳处在圆心。 (2)对某一行星来说,它绕太阳做圆周运动的角速度(或线速度)大小不变,即

行星做匀速圆周运动。 (3)所有行星轨道半径的三次方跟它的公转周期的二次方的比值都相等,即r3 T2 =k。 4.P36[问题与练习]T2。 提示:近地点的速度较大。 5.P37“太阳对行星的引力”一段,太阳对行星的引力公式依据什么推导出来的? 提示:依据开普勒行星运动定律和圆周运动向心力公式推导出来。 6.P39[问题与练习]T2。 提示:通过开普勒第三定律得到的。 7.P40万有引力定律的适用范围是什么? 提示:自然界中的任何两个物体。 8.P41万有引力理论的成就有哪些? 提示:计算天体的质量、发现未知天体。 9.P42笔尖下发现的是哪一颗行星? 提示:海王星。 10.P43[问题与练习]T3。 提示:由GMm r2=mω2r,ω=2π T ,得M=4π2r3 GT2 ,代入数据得:M≈5.93×1024 kg。 11.P44“宇宙速度”一段,发射地球卫星的最小速度是多少? 提示:7.9 km/s。 12.P46[科学漫步]黑洞的特点是什么? 提示:黑洞是引力非常大的天体,光以3×108 m/s的速度都不能从其表面逃逸。 第21讲万有引力定律及其应用

对万有引力定律及引力理论的几点思考_刘莉华

收稿日期:2005—09—07作者简介:刘莉华(1957—),女,山东胶州人,中学一级教师。 对万有引力定律及引力理论的几点思考 刘莉华1 ,苑 闻2 ,孙任德 1 (1.山东胶州第六中学, 山东 胶州 266300;2.山东教育学院数理系, 山东 济南 250013) 摘要:本文讨论了万有引力定律对库仑定律建立的影响,并论述了万有引力的特殊性;探讨了现代引力理论的发展方向。 关键词:万有引力定律;牛顿经典宇宙观;库仑定律;现代引力理论 中图分类号:O314 文献标识码:A 文章编号:1008—2816(2006)01—0133—02 牛顿万有引力定律的发现距今已有三百多年,纵观物理学的发展,万有引力定律不仅极大地推动了天文学的发 展,奠定了天体力学的基础;也为经典物理,特别是牛顿力学树立了成功的范例;开启了现代引力理论的先河。 一、万有引力定律对静电学的启示———库仑定律18世纪中叶,牛顿力学已经取得辉煌胜利,人们受到万有引力定律的启发,对电力和磁力作了种种猜测。比如,德国柏林科学院院士爱皮努斯(F .U .T .Aepin us ,1724—1802)假设电荷之间的斥力和吸力随带电物体的距离的减少而增大,对静电感应现象作出了更完善的解释。1760年,D .伯努利也作了电力可能遵从平方反比的关系的富兰克林的空罐实验;苏格兰的罗比逊(John Robison )和卡文迪许(Henry Cavendish )曾经作过定量的实验研究,都没有得到明确的结论。英国的化学家普利斯特利(Joseph Priestley ,1733—1804)明确提出了电的引力和万有引力一样,即力的大小与距离的平方成反比。根据这种猜测18年后,库仑发明了扭秤,并用扭秤精确地测量电力和磁力,提出了库仑定律。如果不是万有引力定律的发现,单靠实验具体数据的积累,还不知道到何年才能得到严格的库仑定律的表达式呢!其实,整个静电学都是借鉴和利用了引力理论的已有成果发展起来的。 二、万有引力定律的局限与现代引力理论的发展 万有引力定律虽然为以后的天体力学提供了理论基础,但是当牛顿根据他的万有引力定律提出了他的宇宙模型时却遇到了不可克服的困难。这就是众所周知的奥伯斯佯谬和引力佯谬。问题出在牛顿的时空观和引力定律的超距作用。关于时间,牛顿写道:“对的真正的数学的时间在流逝着而且由其本性而在均匀地与任何外界事物无关地流 逝着”。关于空间牛顿写道:“绝对的空间就其本性而言是与外界无关静止和永远相同的[1]。在物理发展过程中,超 距观点在以后二百多年间一直是物理界的主导观点,直到19世纪由法拉第提出并由麦克斯威在电磁理论中确立了近距观点之后,超距观点才逐步被人们所否定。20世纪初爱因斯坦创立了狭义相对论,但是他认识到“在狭义相对论的框子里,是不可能有令人满意的引力理论的。”于是1915年他提出了广义相对论。广义相对论是人类的智慧奇葩,它有独立而完整的体系。爱因斯坦依据人们熟视无睹的事实即牛顿第二定律中的惯性质量与万有引力定律中的引力质量相等提出了等效原理:惯性力场与重力场的动力学效应是局部不可分辨的。这样在逻辑上就顺理成章地取消了惯性系的特殊地位,爱因斯坦把相对性原理推广到非惯性系,得到了广义相对论性原理:一切参考系都是平权的,客观的真实物理定律应该在任意坐标变换下形式不变———广义协变性。为了用数学表达式描述这个原理,爱因斯坦在格罗斯曼的帮助下用黎曼几何和普遍的张量运算得到了广义相对论的场方程,并把原有的引力定律纳入了新理论中,使万有引力定律成为在弱引力情况下场方程解的一种数学近似。这一新理论不仅成功地解释了在牛顿引力理论看来是反常的水星轨道近日点的进动而且预言了新现象听凭物理实践来检查。广义相对论与牛顿的引力理论相比至少有以下不同: (1)广义相对论取消了惯性系的特殊地位,所有标系都是平权的。引力是物质和能量的一种动力学效应;狭义相对论只不过是没有引力的一种特殊情况。广义相对论是真正的时空几何统一的理论,牛顿的引力理论不过是广义相对论在弱引力情况下的一种数学近似。 2006年第1期 山东教育学院学报 总第113期

第五章 万有引力与航天(A)(解析版)

优创卷·一轮复习单元测评卷 第五章 万有引力与航天 A 卷 名校原创基础卷 一、选择题(本题共8小题,每小题4分.在每小题给出的四个选项中,第1~6题只有一项符合题目要求,第7~10题有多项符合题目要求.全部选对的得4分,选对但不全的得2分,有选错的得0分.) 1.(2020·江苏省宜兴期末)观看科幻电影《流浪地球》后,某同学设想地球仅在木星引力作用下沿椭圆轨道通过木星的情景,如图所示,轨道上P 点距木星最近(距木星表面的高度可忽略)。则( ) A.地球靠近木星的过程中运行速度减小 B.地球远离木星的过程中加速度增大 C.地球远离木星的过程中角速度增大 D.地球在P 点的运行速度大于木星第一宇宙速度 【答案】D 【解析】 A.地球靠近木星时所受的万有引力与速度成锐角,做加速曲线运动,则运行速度变大,A 错误; B.地球远离木星的过程,其距离r 变大,则可知万有引力增大,由牛顿第二定律: 2 GMm ma r = 则加速度逐渐减小,B 错误; C.地球远离木星的过程线速度逐渐减小,而轨道半径逐渐增大,根据圆周运动的角速度关系v r ω=,可知运行的角速度逐渐减小,C 错误; D.木星的第一宇宙速度指贴着木星表面做匀速圆周的线速度,设木星的半径为R ,满足1GM v R 过P 点后做离心运动,则万有引力小于需要的向心力,可得 22P v Mm G m R R <

可推得: 1P GM v v R > = 即地球在P 点的运行速度大于木星第一宇宙速度,D 正确; 故选D 。 2.(2020·江西省南康月考)如图所示为一卫星绕地球运行的轨道示意图,O 点为地球球心,已知地球表面重力加速度为g ,地球半径为R ,OA=R ,OB=4R ,下列说法正确的是( ) A.卫星在A 点的速率v gR > B.卫星在A 点的加速度>a g C.卫星在B 点的速率gR v = D.卫星在B 点的加速度2 16B GM a R < 【答案】A 【解析】A.在A 处,若为圆轨道,万有引力提供向心力 22Mm v G m R R = 解得 GM v R = 结合 2Mm G mg R = 解得 v gR =在椭圆轨道上,卫星在A gR A 正确; B.万有引力提供加速度

万有引力定律公开课教案

第二节万有引力定律 【教材分析】 本节课内容主要讲述了万有引力发现的过程及牛顿在前人工作的基础上,凭借他超凡的数学能力推证了万有引力的一般规律的思路与方法. 这节课的主要思路是:由圆周运动和开普勒运动定律的知识,得出行星和太阳之间的引力跟行星的质量成正比,跟行星到太阳的距离的平方成反比,并由引力的相互性得出引力也应与太阳的质量成正比.这个定律的发现把地面上的运动与天体运动统一起来,对人类文明的发展具有重要意义。本节内容包括:发现万有引力的思路及过程、万有引力定律的推导. 【三维目标】 一、知识与技能 1.了解万有引力定律得出的思路和过程. 2.理解万有引力定律的含义并会推导万有引力定律,记住引力常量G并理解其内涵. 3.知道任何物体间都存在着万有引力,且遵循相同的规律. 二、过程与方法 1.培养学生在处理问题时,要抓住主要矛盾,简化问题,建立模型的能力与方法. 2.培养学生的科学推理能力. 三、情感态度与价值观 通过牛顿在前人的基础上发现万有引力的思想过程,说明科学研究的长期性、连续性及艰巨性. 【教学重点】 1.万有引力定律的推导. 2.万有引力定律的内容及表达公式. 【教学难点】 1.对万有引力定律的理解. 2.使学生能把地面上的物体所受的重力与其他星球与地球之间存在的引力是同性质的力联系起来. 【教学方法】 1.对万有引力定律的推理——采用分析推理、归纳总结的方法. 2.对疑难问题的处理——采用讲授法、例证法. 【教学用具】 多媒体课件 【课时安排】 1课时 【教学设计】 导入 本节课主要以启发式教学为主。首先通过前面知识 的回顾和提出问题使学生产生对引力是否同一性质的探 究兴趣。 问题设置:师提问:太阳对行星的引力使得行星围绕太阳运动,月球围绕地球运动,是否能说明地球对月球有引力作用?抛出的物体总要落回地面,是否说明地球对物体有引力作用? 【新课教学】 课件展示:画面1:八大行星围绕太阳运动 画面2:月球围绕地球运动 演示3:地面上的人向上抛出物体,物体总落回地面

万有引力定律讲解

6.3 万有引力定律 班级: 组别: 姓名: 【课前预习】 1.万有引力定律: (1)内容:自然界中任何两个物体都相互吸引,引力的方向在它们的连线上,引力的大小与物体的质量m 1和m 2的乘积成正比,与它们之间距离r 的二次方成反比。 (2)表达式: F =G m 1m 2 r 2 。 2.引力常量 (1)引力常量通常取G = ×10 -11 N·m 2/kg 2 ,它是由英国物理学家卡文迪许在实验室里测得的。 (2)意义:引力常量在数值上等于两个质量都是1kg 的质点,相距1m 时的相互吸引力。 【新课教学】 一、牛顿的“月——地”检验 1.检验的目的:地球对月亮的力,地球对地面上物体的力,太阳对行星的力,是否是同一种力。 2.基本思路 (理论计算):如果是同一种力,则地面上物体的重力G ∝ 21R ,月球受到地球的力21r f ∝。 又因为地面上物体的重力m g G =产生的加速度为g ,地球对月球的力提供月球作圆周运动的向心力,产生的向心加速度,有向ma F =。 所以可得到:2 2 R r F G a g = =向 又知月心到地心的距离是地球半径的60倍,即r=60R ,则有:322107.23600 -?== ?=g g r R a 向m/s 2。 3.检验的过程(观测计算): 牛顿时代已测得月球到地球的距离r 月地 = ×10 8 m ,月球的公转周期T = 天,地球表面的重力加速度g = m /s 2 ,则月球绕地球运动的向心加速度: = 向a (字母表达式) =向a ( (数字表达式) =向a ×10-3m/s 2 (结果)。 4.检验的结果:理论计算与观测计算相吻合。表明:地球上物体所受地球的引力、月球所受地球的引力,与太阳、行星间的引力遵从相同的规律。 二、万有引力定律 1.内容:自然界中任何两个物体都相互吸引,引力的大小与物体的质量m 1和m 2的乘积成正比,与它们之间的距离r 的二次方成反比,引力的方向在它们的连线上。

万有引力定律

高一物理万有引力定律说课稿 https://www.doczj.com/doc/f017210609.html, 2007-11-6 17:09:39 浏览人次:1980 A.教材分析 一、在教材中的地位 本节内容在《2004年高考考试大纲理科综合》中属Ⅰ级要求,本节和前一节波的衍射共同讲解波的特有现象,为后面电磁波及光波的教学打下基础。 二、教材设计流程 波的干涉是波的一种特殊的叠加现象,所以对波的叠加现象的理解是认识波的干涉现象的基础。教材首先讲了波的叠加现象,即两列波相遇而发生叠加时,对某一质点而言,它每一时刻振动的总位移,都等于该时刻两列波在该质点引起的位移的矢量和。 在学生理解波的叠加的基础上,再进一步说明在特殊情况下,即当两列波的频率相同时,叠加的结果就会出现稳定的特殊图样,即某些点两列波引起的振动始终加强,某些点两列波引起的振动始终减弱,并且加强点与减弱点相互间隔,这就是干涉现象。 由于对干涉现象的理解,需要一定的空间想象能力,可借助图片、计算机模拟,尽可能使学生形象、直观地理解干涉现象。 三、教学目标 1、知识目标 (1)知道波的叠加原理。 (2)知道什么是波的干涉现象和干涉图样。 (3)理解干涉现象的形成原理。 (4)知道干涉现象是波所特有的现象。 2、能力目标 (1)培养观察、分析、归纳和空间想象能力。 (2)学习将三维空间运动转化为二维平面运动进行分析的思维方法 (3)学习在动态变化中抓住瞬间状态进行分析的思维方法 3、德育目标 培养学生辩证唯物主义的思想和实事求是的精神。 四、教学重点 干涉条件和干涉图样 五、教学难点 干涉现象形成的原理

B.教法分析 一、理论依据 为充分体现学生的学习主体地位,准备采用前苏联教育家马赫穆托夫、列尔涅尔、斯卡特金等人所倡导的问题教学法。其基本程序是:提出问题——引导学生观察实验——启发学生分析和解决问题。解决问题一般要经过四个阶段:即教师提出问题→学生独立思考、观察、讨论分析→教师根据学生交流的情况进行点拨引导→总结得出结论、进行论证。 二、主要目的 充分体现学生的主体地位和作用,让学生在问题中激发兴趣,在问题的争论中辨清问题,在问题的解决中提升能力。 三、主要设想 1、为了形象直观,打算在课堂中采用播放录相、实验演示、电脑动画模拟辅助手段,帮助学生建立形象直观的认识,降低难度。 2、在引导学生分析清楚不连续的脉冲波的叠加情形之后,顺势通过提问让学生思考连续波的叠加情况。引入波的干涉现象。 3、通过对波的干涉现象的观察与分析,分析波的干涉形成的原理,得出波的干涉条件。 四、突破重难点的方法 1、为了能让学生更好的理解波的干涉形成原理,可以采取变“静”为“动”,“动”中取“静”的分析方法。 波的干涉现象是一种动态中的稳态,要分析这种现象,应该采用对某一瞬间状态进行分析的思维方法,并且将立体转化为平面进行形象的分析,充分利用计算机动画化动为静、化快为慢的特点,能有效地化解难点. 具体操作流程如下:首先做演示实验,让学生观察叙述实验现象,然后将水波的干涉图样用三维动画模拟在计算机上,让学生先看三维图的俯视图,再看三维图侧视剖视图,在边缘上放上质点,与上面讲到的波的叠加实验联系起来,让学生从感观上和知识上清楚的意识到,波的干涉实际上是一种特殊的叠加现象。在这个过程中,还可以使学生将三维空间运动转化为二维平面运动进行分析的思维方法得到提高. 2、在讨论波的干涉图样和干涉条件时,可以提出以下的问题4和5,请学生看课本上的干涉图样,引导学生思考与讨论,然后大面积提问,最后,由教师在黑坂上画图分析总结。在师生的互动中,将重点难点一一化解 C.学法分析 一、问题展示 1.什么是波的衍射?产生明显衍射现象的条件是什么?

万有引力定律知识点总结

《第六章万有引力和航天》知识点、规律总结一、开普勒行星运动定律 定律内容图示 第一定律(轨道定律)所有行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。 第二定律(面积定律)对任意一个行星来说,他与太阳的连线在相等的时间内扫过相等的面积。 第三定律(周期定律)所有行星的轨道半径的半长轴的三次方跟它的公转周期的平方的比值都相等,a3/T2=k。 注意: 1. 开普勒行星运动定律不仅适用于行星绕太阳运转,对于卫星绕行星运转,也遵循类似的运动规律。 2.比例系数k与中心天体质量有关,与行星或卫星质量无关,是个常量,但不是恒量,在不同的星系中,k值不相同。 3. T为公转周期,不是自转周期。 二、万有引力定律 1.内容:宇宙间的一切物体都是互相吸引的,两个物体间的引力大小,跟它们的质量的乘积成正比,跟它们的距离的平方成反比。 2.表达式:F=G 22 1 r m m 其中G=×10-11Nm2/kg2,称为为有引力恒量。 3.适用条件:用于计算引力大小的万有引力公式严格地说只适用于两质点间引力大小的计算,如果相互吸引的双方是质量分布均匀的球体,则可将其视为质量集中于球心的质点,此时r是两球心间的距离。 4.对万有引力定律的理解 (1)普遍性:万有引力是普遍存在于宇宙中任何有质量物体之间的相互吸引力,它是自然界中物体之间的基本的相互作用之一,任何客观存在的两部分有质量的物体之间都存在着这种相互作用。 (2)相互性:两个物体相互作用的引力是一对作用力与反作用力.它们大小相等,方向相反,分别作用在两个物体上。 (3)宏观性:通常情况下,万有引力非常小,它的存在可由卡文迪许扭秤来观察,只有在质量巨大的天体间,它的存在才有宏观物理意义。 二、重力加速度 重力是万有引力产生的,由于地球的自转,因而地球表面的物体随地球自转时需要向心力.重力实际上是万有引力的一个分力.另一个分力就是物体随地球自转时需要的向心力,如图所示,由于纬度的变化,物体做圆周运动的向心力F向不断变化,因而表面物体的重力随纬度的变化而变化,即重力加速度g随纬度变化而变化,从赤道到两极逐渐增大. 1.若不计地球自转的影响,则物体在地球表面的重力等于地球对物体的万有引力,即 2 GMm mg R =, 则星球表面的 重力加速度为: 2 GM g R = 2.同理,若不计地球自转的影响,在距地球表面高h处的 重力加速度为: 2 () h GM g R h = + 3.若考虑地球自转的影响, (1)在赤道处,物体的万有引力分解为两个分力F向和mg刚好在一条直线上,则有 F=F向+mg, 所以mg=F一F向= 2 GMm R -mRω自2 则赤道处重力加速度为:g= 2 GM R -Rω自2 (而地球赤道处的向心加速度a n= Rω自2 =s2,因此一般不计其自转的影响;注意:当题目中出现地球自转时需要考虑此问题。) (2)在两极处,由于物体做圆周运动半径r为零,向心力 为零。因此重力等于万有引力,即 2 GMm mg R =,此时重 力加速度达到最大值,即 2 GM g R = 三、星球瓦解问题 假设地球自转加快,即ω自变大,赤道上物体的重力由mg = 2 GMm R -m2Rω自2知,物体的重力将变小。当 2 GMm R =mR ω自2时,mg=0,此时地球赤道上的物体无重力,要开始“飘”起来了,若自转继续加快,星球即将要瓦解。 星球瓦解的临界角速度ω自= 3 GM R = g R

新教材2021春高中物理粤教版必修第二册学案-第三章-第二节-认识万有引力定律含解析

第二节认识万有引力定律 学 习目标STSE情境导学 1.了解万有引力定律的发现历程. 2.理解万有引力定律,记住其表达式和适用条件.(重点、难点) 3.了解引力常量G. 4.会用万有引力定律求解相关问题(重点) 宇航员在其他星球 上也受到万有引力 的作用 牛顿思考月亮绕地球运行的原因时,苹果偶然落地引起了他的遐想 知识点一行星绕日运动原因的探索和万有引力定律的发现 1.雷恩和哈雷的推导. 英国天文学家雷恩(C.Wren,1632-1723)和哈雷(E.Halley,1656-1742)按照圆形轨道,对行星与太阳间的引力问题进行了如下

推导. 设行星质量为m ,绕太阳公转的周期为T .把行星沿椭圆轨道的运动简化为匀速圆周运动,行星的轨道半径为r ,太阳对行星的引力就是行星绕太阳运动的向心力,即 F 引=m v 2r =m 4π2 T 2r . 根据开普勒第三定律,把r 3 T 2=k 代入上式,得到太阳对行星的引力 F 引=4π2 k m r 2,即F 引∝m r 2. 上式表明,作用于行星的引力与它到太阳的距离的平方成反比. 2.牛顿的推导. (1)根据牛顿第三定律,行星间的引力是相互的,即太阳吸引行星,行星也同时吸引太阳.根据F 引∝m r 2可知,太阳受到行星的引力F ′ 应与太阳自身的质量M 成正比,即 F 引′∝M r 2.F 引与F 引′大小相等,因此有F 引=F 引′∝Mm r 2. (2)研究表明,使月球绕地球运动的引力与重力是同一性质的力. 以上述证明为基础,牛顿把引力推广到所有行星,乃至所有物体之间,由此发现了万有引力定律. 知识点二 万有引力定律的表达式 1.万有引力定律的内容. 宇宙间的一切物体都是互相吸引的.两个物体间引力的方向在它们的连线上.引力的大小与它们质量的乘积成正比,与它们之间距离的二次方成反比. 2.万有引力定律的表达式:F =G m 1m 2 r 2.

第七章第三 万有引力定律

第七章第三节 万有引力定律 理解领悟 本节在前一节得出太阳与行星间引力规律的基础上,进一步将“天上”的力与“人间”的力统一起来,得出了万有引力定律。要了解万有引力定律得出的思路和过程,了解万有引力定律的含义,并会初步应用万有引力定律进行分析与求解。 1. 猜想Ⅰ:“天上”的力与“人间”的力可能出于同一个本源 通过上节的分析,我们对于行星的运动规律可以理解了。但是,太阳与行星间的引力使得行星不能飞离太阳;而地面上的物体,如苹果被抛出后总要落回地面,是什么力使得苹果不离开地球呢? 牛顿设想:苹果不离开地球,是否也是由于地球对苹果的引力造成的?地球对苹果的引力和太阳对行星的引力是否根本就是同一种力呢?若真是这样,物体离地面越远,其受到地球的引力就应该越小。可是地面上的物体距地面很远时,如在高山上,似乎重力没有明显地减弱,是物体离地面还不够远吗?这样的高度比起天体之间的距离来,真的不算远!再往远处设想,如果物体延伸到月球那么远,物体是否也会像月球那样围绕地球运动?地球对月球的力、地球对地面上物体的力、太阳对行星的力,也许真是同一种力! 2. 验证:月—地检验 假定上述猜想成立,即维持月球绕地球运动的力与使得苹果下落的力是同一种力,同样遵从“平方反比”律,那么,由于月球轨道半径约为地球半径(苹果到地心的距离)的60倍,所以月球轨道上一个物体受到的引力,比它在地面附近时受到的引力要小,前者只有后者的1/602。根据牛顿第二定律,物体在月球轨道上运动时的加速度(月球公转的向心加速度)也就应该是它在地面附近下落时的加速度(自由落体加速度)的1/602。 在牛顿的时代,重力加速度、月—地距离、月球的公转周期都已能较精确地测定,从而能够算出月球运动的向心加速度。计算结果表明,月球运动的向心加速度确实等于地面重力加速度的1/602,这说明地面物体所受地球的引力,与月球所受地球的引力,真的是同一种力!至此,“平方反比”律已经扩展到太阳与行星间、地球与月球间、地球与地面物体间。 3. 猜想Ⅱ:推广到宇宙中的一切物体 牛顿在上述推断的基础上,作了更大胆的猜想:任意两个物体之间都存在着这样的引力,它与两个物体的质量成正比,与它们之间距离的二次方成反比。只是由于一般物体的质量比天体的质量小得多,我们不易觉察。于是,上述结论被推广到宇宙中的一切物体之间。 牛顿当时的魄力、胆识和惊人的想象力实在让我们敬佩!物理学的许多重大理论的发现,不是简单的实验结果的总结,它需要直觉和想象力、大胆的猜想和假设,再引入合理的模型,需要深刻的洞察力、严谨的数学处理和逻辑思维,常常是一个充满曲折和艰辛的过程。 4. 万有引力定律 经过上述第Ⅱ步猜想,牛顿的结论是: 自然界中任何两个物体都相互吸引,引力的大小与物体的质量m 1和m 2的乘积成正比,与它们之间距离r 的二次方成反比,即 221r m m G F 。 需要指出的是,上述结论至此还只是一种猜想,尽管这个推广是十分自然的,但仍要接受事实的直接或间接的检验。在下一节“万有引力理论的成就”中讨论的问题表明,由此得

浙江省高中物理 第五章 课时训练1 万有引力定律(含解析)

课时训练1 万有引力定律 基础巩固 1.经国际小行星命名委员会批准,紫金山天文台发现的一颗绕太阳运行的小行星被命名为“南大仙林星”。如图所示,轨道上a,b,c,d四个位置中,该行星受太阳引力最大的是( A ) A.a B.b C.c D.d 2.根据牛顿运动理论,地球绕着太阳旋转所需的向心力来自( B ) A.地球本身的重力 B.太阳与地球之间的引力 C.太阳与月球吸引地球的力的合力 D.太阳及其他行星对地球引力的合力 3.万有引力定律的发现让人们认识到天上物体的运动规律也是可以认知的,对解放人们的思想起到了积极的作用。物理学家狄拉克为此写下了美丽的诗句:“在地球上摘朵花,你就移动了最远的星球!”关于万有引力,以下说法中正确的是( A ) A.太阳对地球有引力 B.太阳对地球的大气层没有引力 C.地球对着陆于火星的“勇气号”探测器没有引力的作用 D.宇宙飞船内处于失重状态的宇航员没有受到地球的引力 4.发现万有引力定律和测出引力常量的科学家分别是( A ) A.牛顿、卡文迪许 B.伽利略、卡文迪许 C.开普勒、牛顿 D.牛顿、伽利略 解析:万有引力定律的发现者是牛顿,测出引力常量的科学家是卡文迪许,选项A正确。 5.关于行星运动的规律,下列说法符合史实的是( B ) A.开普勒在牛顿运动定律的基础上,导出了行星运动的规律 B.开普勒在天文观测数据的基础上,总结出了行星运动的规律 C.开普勒总结出了行星运动的规律,找出了行星按照这些规律运动的原因 D.开普勒总结出了行星运动的规律,发现了万有引力定律 解析:开普勒在大量研究前人常年观测的天文数据基础上,总结出了行星运动的规律。牛顿发现了万有引力定律,选项A,C,D错误,B正确。 6.对于万有引力定律的表达式F=G,下列说法正确的是( D ) A.公式中G为引力常量,它是由牛顿通过实验测得的 B.当r趋于零时,万有引力趋于无穷大 C.质量为m1,m2的物体之间的引力是一对平衡力 D.质量为m1,m2的物体之间的引力总是大小相等的 解析:万有引力常量是卡文迪许通过扭秤实验测出的,故A错误;当物体之间的距离r趋于零时,物体不能简化为质点,万有引力公式不再适用,故B错误;质量为m1,m2的物体之间的引力是一对作用力与反作用力,大小总是相等,故C错误,D正确。 7.我国首颗人造月球卫星“嫦娥一号”的发射具有里程碑意义,如图所示为“嫦娥一号”卫星

人教版高中物理必修二第二节 万有引力定律优质教案

第二节万有引力定律 ●本节教材分析 这节课主要讲述了万有引力发现的过程及牛顿在前人工作的基础上,凭借他超凡的数学能力证明万有引力的一般规律的思路与方法. 这节课的主要思路是:由圆周运动和开普勒运动定律的知识,得出行星和太阳之间的引力跟行星的质量成正比,跟行星到太阳的距离的平方成反比,并由引力的相互性得出引力也应与太阳的质量成正比.这个定律的发现把地面上的运动与天体运动统一起来,对人类文明的发展具有重要意义。并为高中阶段无法证明椭圆轨道的情况而只能近似以圆轨道来处理的一种“近似”的物理思路.这是一种极好的研究物理的方法. 本节内容包括:发现万有引力的思路及过程、万有引力定律的推导. ●教学目标 一、知识目标 1.了解万有引力定律得出的思路和过程. 2.理解万有引力定律的含义并会推导万有引力定律. 3.知道任何物体间都存在着万有引力,且遵循相同的规律. 二、能力目标 1.培养学生在处理问题时,要抓住主要矛盾,简化问题,建立模型的能力与方法. 2.培养学生的科学推理能力. 三、德育目标 通过牛顿在前人的基础上发现万有引力的思想过程,说明科学研究的长期性、连续性及艰巨性. ●教学重点 1.万有引力定律的推导. 2.万有引力定律的内容及表达公式. ●教学难点 1.对万有引力定律的理解. 2.使学生能把地面上的物体所受的重力与其他星球与地球之间存在的引力是同性质的力联系起来. ●教学方法 1.对万有引力定律的推理——采用分析推理、归纳总结的方法. 2.对疑难问题的处理——采用讲授法、例证法. ●教学用具 投影仪、投影片 ●教学步骤 一、导入新课 请同学们回忆一下上节课的内容,回答如下问题: 1.行星的运动规律是什么? 2.开普勒第一定律、第三定律的内容? 同学们回答完以后,老师评价、归纳总结. 同学们回答得很好,行星绕太阳运转的轨道是椭圆,太阳处在这个椭圆的一个焦点上,那么行星为什么要这样运动?而且还有一定的规律?这类问题从17世纪就有人思考过,请阅读课本,这个问题的答案在不同的时代有不同的结论,可见,我们科学的研究要经过一个相当长的艰巨的过程. 二、新课教学

第六章 第三节 万有引力定律

第六章万有引力与航天 第3节万有引力定律 本节是在学习了太阳与行星间的引力之后,探究地球与月球、地球与地面上的物体之间的作用力是否与太阳与行星间的作用力是同一性质的力,从而得出了万有引力定律.根据万有引力定律而得到的一系列科学发现,不仅验证了万有引力定律的正确性,而且表明了自然界和自然规律是可以被认识的.万有引力定律是所有有质量的物体之间普遍遵循的规律,引力常量的测定不仅验证了万有引力定律的正确性,而且使得万有引力定律能进行定量计算,显示出真正的实用价值. 教学过程中的关键是对万有引力定律公式的理解,知道公式的适用条件.教师可灵活采用教学方法以便加深对知识的理解,比如讲授法、讨论法. 教学重点 万有引力定律的理解及应用. 教学难点 万有引力定律的推导过程. 课时安排 1课时 三维目标 知识与技能 1.了解万有引力定律得出的思路和过程. 2.理解万有引力定律的含义并掌握用万有引力定律计算引力的方法. 3.记住引力常量G并理解其内涵. 过程与方法 1.了解并体会科学研究方法对人们认识自然的重要作用. 2.认识卡文迪许实验的重要性,了解将直接测量转化为间接测量这一科学研究中普遍采用的重要方法. 情感态度与价值观 通过牛顿在前人的基础上发现万有引力的思想过程,说明科学研究的长期性、连续性及艰巨性. 教学过程 导入新课 故事导入 1666年夏末一个温暖的傍晚,在英格兰林肯郡乌尔斯索普,一个腋下夹着一本书的年轻人走进他母亲家的花园里,坐在一颗树下,开始埋头读他的书.当他翻动书页时,他头顶的树枝中有样东西晃动起来,一只历史上最著名的苹果落了下来,打在23岁的伊萨克·牛顿的头上.恰巧在那天,牛顿正苦苦思索着一个问题:是什么力量使月球保持在环绕地球运行的轨道上,以及使行星保持在其环绕太阳运行的轨道上?为什么这只打中他脑袋的苹果会坠落到地上?(如下图所示)正是从思考这一问题开始,他找到了这些问题的答案——万有引力定律.

万有引力定律的理解和应用讲述

万有引力定律的理解和应用(一) 1.(多选)在星球表面发射探测器,当发射速度为v 时,探测器可绕星球表面做匀速圆周运动;当发射速度达到 2v 时,可摆脱星球引力束缚脱离该星球.已知地球、火星两星球的质量比约为10∶1,半径比约为2∶1,下列说法正确的有( ) A .探测器的质量越大,脱离星球所需要的发射速度越大 B .探测器在地球表面受到的引力比在火星表面的大 C .探测器分别脱离两星球所需要的发射速度相等 D .探测器脱离星球的过程中,势能逐渐增大 2.宇航员王亚平在“天宫1号”飞船内进行了我国首次太空授课,演示了一些完全失重状态下的物理现象.若飞船质量为m ,距地面高度为h ,地球质量为M ,半径为R ,引力常量为G ,则飞船所在处的重力加速度大小为( ) A .0 B.GM (R +h )2 C.GMm (R +h )2 D.GM h 2 3.如图,若两颗人造卫星a 和b 均绕地球做匀速圆周运动,a 、b 到地心O 的距离分别为r 1、r 2,线速度大小分别为v 1、v 2,则( ) A.v 1v 2=r 2r 1 B.v 1v 2=r 1r 2 C.v 1v 2=(r 2r 1)2 D.v 1v 2=(r 1r 2 )2 4.已知一质量为m 的物体静止在北极与赤道对地面的压力差为ΔF N ,假设地球是质量分布均匀的球体,半径为R .则地球的自转周期为( ) A .T =2π mR ΔF N B .T =2π ΔF N mR C .T =2π m ΔF N R D .T =2π R m ΔF N 5.某星球直径为d ,宇航员在该星球表面以初速度v 0竖直上抛一个物体,物体上升的最大高度为h ,若物体只受该星球引力作用,则该星球的第一宇宙速度为( ) A.v 02 B .2v 0d h C.v 02h d D.v 02d h 6.观察“神州十号”在圆轨道上的运动,发现每经过时间2t 通过的弧长为L ,该弧长对应的圆心角为θ(弧度),如图2所示,已知引力常量为G ,由此可推导出地球的质量为( ) A.L 34Gθt 2 B.2L 3θGt 2 C.L 4Gθt 2 D.2L 2Gθt 2 7.(多选)探月工程三期飞行试验器于2014年10月24日2时在中国西昌卫星发射中心发射升空,最终进入距月球表面高为h 的圆形工作轨道.设月球半径为R ,月球表面的重力加速度为g ,万有引力常量为G ,则下列说法正确的是( ) A .飞行试验器在工作轨道上的加速度为??? ?R R +h 2g B .飞行试验器绕月球运行的周期为2πR g C .飞行试验器在工作轨道上的绕行速度为g ()R +h D .月球的平均密度为3g 4πGR 8.已知某半径为r 0的质量分布均匀的天体,测得它的一个卫星的圆轨道的半径为r ,卫星运行的周期为T .假设在该天体表面沿竖直方向以初速度v 0向上抛出一个物体,不计阻力,求它可以到达的最大高度h 是( ) A.v 20T 2(r -r 0)24π2r 3 B.v 20T 2(r -r 0)28π2r 3 C.v 20T 2r 204π2r 3 D.v 20T 2r 208π2r 3 变轨和能量结合问题(二) 1.(多选)如图1所示,月球探测器首先被送到距离月球表面高度为H 的近月轨道做匀速圆周运动,之后在轨道上的A 点实施变轨,使探测器绕月球做椭圆运动,当运动到B 点时继续变轨,使探测器靠近月球表面,当其距离月球表面附近高度为h (h <5 m)时开始做自由落体运动,探测器携带的传感器测得自由落体运动时间为t ,已知月球半径为R ,万有引力常量为G .则下列说法正确的是( ) A .“嫦娥三号”的发射速度必须大于第一宇宙速度 B .探测器在近月圆轨道和椭圆轨道上的周期相等 C .“嫦娥三号”在A 点变轨时,需减速才能从近月圆轨道进入椭圆轨道 D .月球的平均密度为3h 2πGRt 2

相关主题
文本预览
相关文档 最新文档