当前位置:文档之家› 超声波探伤常见缺陷波形特征

超声波探伤常见缺陷波形特征

超声波探伤常见缺陷波形特征
超声波探伤常见缺陷波形特征

分析超声波探伤仪常见八大缺陷的波形特征

疏松

锻件中的疏松,在低灵敏度时伤波很低或无伤波,提高灵敏度后才呈现典型的疏松波形,中心疏松多出现心部,一般疏松出现始波与底波之间。疏松对底波有一定影响但影响不大,随着灵敏度提高,底波次数有明显增加。铸件中的疏松对声波有显著的吸收和散射作用,常使底波显著减少,甚至使底波消失,严重的疏松既无底波又无伤波,探头移动时会出现波峰很低的蠕动波形。

白点

缺陷波为林状波,波峰清晰,尖锐有力,伤波出现位置与缺陷分布相对应,探头移动时伤波切换,变化不快,降低超声波探伤灵敏度时,伤波下降较底波慢。白点对底波反射次数影响较大,底波1~2 次甚至消失。提高灵敏度时,底波次数无明显增加。圆周各处探伤波形均相类似。纵向探伤时,伤波不会延续到锻坯的端头。

内裂纹

1、横向内裂纹轴类工件中的横向内裂纹直探头探伤,声速平行于裂纹时,探伤仪既无底波又无伤波,提高灵敏度后出现一系列小伤波,当探头从裂纹处移开,则底波多次反射恢复正常。斜探头轴向移动探伤和直探头纵向贯穿入射,都出现典型的裂纹波形即波形反射强烈,波底较宽,波峰分枝,成束状。斜探头移向裂纹时伤波向始波移动,反之,向远离始波方向

移动。

2、中心锻造裂纹伤波为心部的强脉冲,圆周方向移动探头时伤波幅度变化较大,时强时

弱,底波次数很少或者底波消失。

3、纵向内裂纹轴类锻件中的纵向内裂,直探头圆周探伤,声束平行于裂纹时,既无底波

也无伤波,当探头转动90°时反射波最强,呈现裂纹波形,有时会出现裂纹的二次反射,一般无底波。底波与伤波出现特殊的变化规律

缩孔

伤波反射强烈,波底宽大,成束状,在主伤波附近常伴有小伤波,对底波影响严重,常使底波消失,圆周各处伤波基本类似,缩孔常出现在冒口端或热节处。

缩孔残余

伤波幅度强,出现在工件心部,沿轴向探伤时伤波具有连续性,由于缩孔锻造变形,圆周各处伤波幅度差别较大,缺陷使底波严重衰减,甚至消失。

夹杂物

1、单个夹渣单个夹渣伤波为单一脉冲或伴有小伤波的单个脉冲,波峰园钝不清晰,伤波幅度虽高,但对底波及其反射次数影响不大。

2、分散性夹杂物分散性夹杂物,伤波为多个,有时呈现林状波,但波顶园钝不清晰,波形分枝,伤波较高,但对底波及底波多次反射次数影响较小。移动探头时,伤波变化比白点为快。

偏析

1、锭型偏析锭型偏析在通常探伤灵敏度常常无伤波,提高灵敏度后才有环状分布的伤波出现,它对底波反射次数无明显影响,随着探伤灵敏度提高,底波次数明显增加。

2、点状偏析点状偏析的声学反射特性较好,波形界于草状之间,伤波出现位置与偏析点的分布有关。

晶粒粗大

晶粒粗大的波形是典型草状波伤波丛集,如密生草状,伤波模糊不清晰,波与波之间难于分辨,移动探头时伤波跳动迅速,通常探伤灵敏度,底波次数很少,一般1~2 次,无伤波,提高灵敏度后底波次数无明显增多,在一次底波前出现草状波,改换低频率探伤,底波次数明显增多或恢复正常,一般不再出现草状波。

超声波检测的波形分析

基桩声波透射法检测的波形分析探讨 张宏(长沙理工大学) 陈彦平(广州润索工程检测技术研究有限公司) 摘要本文从直达波、绕射波、折射波和反射波单一波形在基桩中传播规律的分析,探讨波形畸变及频谱变化与桩身混凝土缺陷的相关关系,认为掌握波形畸变及频谱变化的规律,不但能有效提高基桩声波透射法检测判定水平、而且能对透测盲区的混凝土质量进行初步评价。 关键词:基桩 声波透射法 检测 波形分析 换能器 基桩声波透射法检测采用的振源,是一种轴向有限长度、单一主频的柱面波,超声波在混凝土中的传播规律服从弹性波的持性,由直达波、绕射波、折射波和反射波构成。波形分析的基本物理量有:1.直达波到达时(波速);2.波幅(或衰减);3.接收信号频率变化;4.接收波形畸变。我们认为波速只反映透测中线为对象的混凝土性质,而波形和频谱变化不但反映透测对象的混凝土状态,而且也反映构件边界面及透测范围以外混凝土的状态。但由于以往换能器激振信号的余振周期太长,覆盖了绕射波、折射波、反射波的时程,使波形迭加后变化复杂,不易解读。所以基桩声波透射法检测判定,一般采用了声时和首波波幅两个参数,普遍对波形变化的分析不够深入。 下面从单一波形在基桩中的传播规律分析入手,探讨波形畸变及频谱变化与混凝土缺陷的关系。 一、直达波的形态和形式 1.发射换能器激振性能决定直达波的形态 不同的换能器由于采用的结构形式、材料等不同,激振机理也有所不同,所以有不同的发射主频、发射强度和余振长度,如下四种换能器在清水中透测的接收波形(直达波)就明显不同: (1).平面换能器,主频50kHz,首波比较低,余振长度20周期以上,见照片1。 (2).一种管环状径向换能器,主频60kHz,首波比较低,余振长度14周期以上,见照片2。 (3).一种增压式径向换能器,主频36kHz,余振长度7周期以上,见照片3。

超声波焊接常见缺陷及处理办法

超声波焊接常见缺陷及处理办法 一、强度无法达到欲求标准。 当然我们必须了解超音波熔接作业的强度绝不可能达到一体成型的强度,只能说接近于一体成型的强度,而其熔接强度的要求标准必须仰赖于多项的配合,这些配合是什么呢? ※塑料材质:ABS与ABS相互相熔接的结果肯定比ABS与PC相互熔接的强度来的强,因为两种不同的材质其熔点也不会相同,当然熔接的强度也不可能相同,虽然我们探讨ABS与PC这两种材质可否相互熔接?我们的答案是绝对可以熔接,但是否熔接后的强度就是我们所要的?那就不一定了!而从另一方面思考假使ABS与耐隆、PP、PE相熔的情形又如何呢?如果超音波HORN瞬间发出150度的热能,虽然ABS 材质己经熔化,但是耐隆、PVC、PP、PE只是软化而已。我们继续加温到270度以上,此时耐隆、PVC、PP、PE已经可达于超音波熔接温度,但ABS材质已解析为另外分子结构了!由以上论述即可归纳出三点结论: 1.相同熔点的塑料材质熔接强度愈强。

2.塑料材质熔点差距愈大,熔接强度愈小。 3.塑料材质的密度愈高(硬质)会比密度愈低(韧性高)的熔接强度高。 二、制品表面产生伤痕或裂痕。 在超音波熔接作业中,产品表面产生伤痕、结合处断裂或有裂痕是常见的。因为在超音波作业中会产生两种情形:1.高热能直接接触塑料产品表面 2.振动传导。所以超音波发振作用于塑料产品时,产品表面就容易发生烫伤,而1m/m以内肉厚较薄之塑料柱或孔,也极易产生破裂现象,这是超音波作业先决现象是无可避免的。而在另一方面,有因超音波输出能量的不足(分机台与HORN上模),在振动摩擦能量转换为热能时需要用长时间来熔接,以累积热能来弥补输出功率的不足。此种熔接方式,不是在瞬间达到的振动摩擦热能,而需靠熔接时间来累积热能,期使塑料产品之熔点到达成为熔接效果,如此将造成热能停留在产品表面过久,而所累积的温度与压力也将造成产品的烫伤、震断或破裂。是以此时必须考虑功率输出(段数)、熔接时间、动态压力等配合因素,来克服此种作业缺失。 解決方法:

5 超声检测“山形波”实战分析

超声检测“山形波”实战分析 一日晌午,我坐在工具房的试验台前,正专心地调校超声探伤仪器。此时,一位兄弟单位穿着连体服的小伙子,连体服许多部位沾上了红色的着色剂和黑黑的油渍,似乎从汽机房刚干完事回来。一手提着超声波探伤仪,另一手提着装有耦合剂的桶子,背上还背着工具包,风尘仆仆走到我跟前,向我说道:“哥们,向你请教个问题”,“请教不敢当,有什么事呢?”我回答道。 “刚才在做管道对接环焊缝的超声检测,管道厚度为60mm,扫查的时候发现在一次反射区域内存在深度为54mm的反射波,我觉得这应该是根部反射波,不是缺陷。”他继续说道:“但是在二次反射区域内也存在反射波,测量反射波深度大约在80mm,你说这是不是缺陷呢?” 我问他:“你有没有用直探头测量母材和热影响区的厚度?是不是母材厚度比热影响区和焊缝的厚度都大?”。 他说:“是的,母材厚度60mm,热影响区厚度大约52mm” 得到确切的回答后,心中有了初步的结论,然后继续回答他道:“80mm处的二次反射波很有可能不是缺陷,应该波形转换波。如果你用K1和K2的探头分别去扫查,会发现K1探头比K2探头扫查的回波更高,我暂且称它为“山形波”,因为他长得像“山”字,也像一座山。这种山形波在不等厚对接、错边、厚壁管道对接焊缝的超声检测中经常出现。” 20mm25mm 正好跟前的试验台上有一块不等厚对接模拟试块,如下图,用尺子量了薄的一侧厚度为20mm,厚的一侧为25mm。 为了让小伙子明白我的推论,并验证它是正确的。换上一个K1的探头,校准了声速、零偏和K值,节省时间未制作DAC曲线。在不等厚模拟试表面块滴上几滴机油,用食指在试块上轻轻的抹了抹,瞬间形成一道薄薄的油层。按了仪器的“波峰记忆”键后,前后推动着探头,找到最高波,此时固定探头不动,超声波探伤仪屏幕显示如下。

焊缝缺陷图片

Radiograph Interpretation - Welds In addition to producing high quality radiographs, the radiographer must also be skilled in radiographic interpretation. Interpretation of radiographs takes place in three basic steps which are (1) detection, (2) interpretation, and (3) evaluation. All of these steps make use of the radiographer's visual acuity. Visual acuity is the ability to resolve a spatial pattern in an image. The ability of an individual to detect discontinuities in radiography is also affected by the lighting condition in the place of viewing, and the experience level for recognizing various features in the image. The following material was developed to help students develop an understanding of the types of defects found in weldments and how they appear in a radiograph. Discontinuities Discontinuities are interruptions in the typical structure of a material. These interruptions may occur in the base metal, weld material or "heat affected" zones. Discontinuities, which do not meet the requirements of the codes or specification used to invoke and control an inspection, are referred to as defects. General Welding Discontinuities The following discontinuities are typical of all types of welding. Cold lap is a condition where the weld filler metal does not properly fuse with the base metal or the previous weld pass material (interpass cold lap). The arc does not melt the base metal sufficiently and causes the slightly molten puddle to flow into base material without bonding. Porosity is the result of gas entrapment in the solidifying metal. Porosity can take many shapes on a radiograph but often appears as dark

超声波桩基检测分析报告

桩基检测报告 产品名称:基桩(声波透射法) 委托单位:资质等级评审组 检测类别:委托检测 检测人:郭斌 工程质量检测有限公司 报告日期:2015年6月24日 工程质量检验有限公司 检测报告

报告编号:SXSY2012-ZJ001-001 产品名称基桩抽样地点交院实训地 受检单位四川交通职业技术学院商标/ 生产单位四川路桥产品号/ 委托单位四川宏博检测单位样品批次/ 规格型号600mm*600mm 样品等级/ 检测类别委托检测样品数量 1 检测依据JGJ106-2003 抽样基数/ 检测项目桩身完整性检测委托人/ 样品描述委托日期2015年6月22日 主要 仪器设备 非金属超声波检测 检测结论本次共对1根桩基完整性进行了检测,其中:桩身无明显缺陷,为Ⅰ类桩,合格率100%。 试验环境温度:25℃天气情况:阴转小雨 批准人李海2015年6月22日审核人孙海峰2015年6月22日 主检人2015年6月22日 备注/ 录入校对打印日期2015年6月25日1.工程及地质概况 该工程由四川路桥公司承建,位于四川交通职业技术学院桩基实验基地,桩基为人工挖孔桩,设计强度C25,设计桩径600mm,共计两根。 2.检测依据

建筑基桩检测技术规范JGJ106-2003 3.超声波检测仪器、检测方法及工作原理 3.1测试仪器 超声波检测采用RSM-SY7(W)型基桩多跨孔超声波自动循测仪。 3.2检测方法 超声波检测采用声波透射法。 3.3工作原理 在被测桩内预埋若干根竖向相互平行的声测管作为检测通道,将超声脉冲发射换能器与接收换能器置于声测管中,管中注满清水作为耦合剂,由仪器发射换能器发射超声脉冲,穿过待测的桩体混凝土,并经接收换能器被仪器所接收,判读出超声波穿过混凝土的声时、接收波首波的波幅以及接收波主频等参数。超声脉冲信号在混凝土的传播过程中因发生绕射、折射、多次反射及不同的吸收衰减,使接收信号在混凝土中传播的时间、振动幅度、波形及主频等发生变化,这样接收信号就携带 了有关传播介质(即被测桩身混凝土)的密实缺陷情况、完整程度等信息。由仪器的数据处理与判断分析软件对接收信号的各种声参量进行综合分析,即可对桩身混凝土的完整性、内部缺陷性质、位置以及桩混凝土总体均匀性等级等做出判断,完成检测工作。超声波检测的工作原理如下图。 Ho──桩身第一测点的相对标高(m) Lp──声测管外壁间的最小间距:即超声波测距(mm) Ln──测点间距(mm) 声波检测参数: 声时T——混凝土测距间声波传播时间(μs)

超声波法检测混凝土缺陷作业指导书

超声波法检测混凝土缺陷作业指导书 一、测试原理和方法 超声测缺陷的基本原理,是通过超声波(纵波)在混凝土中传播的不同参数反映混凝土的质量。即利用超声波在混凝土中传播的声时、振幅、波形这三个声学参数综合判断其内部的缺陷情况。 声时—即超声波在混凝土中传播所需要的时间,如超声波在传播路径中遇有缺陷时,则要绕过缺陷,声时就会变长。 振幅—即接收信号首波振幅。混凝土内部存在缺陷时,超声波在缺陷界面上声阻抗差异显著,产生发射、散射和吸收,使接收波振幅显著降低。振幅变化大小可通过增益和衰减器的调整进行测量。 波形—即接收到的波形。混凝土内部存在缺陷时,超声波在内部传播发生变化。直达波、绕射波、反射波等各类波相继被接收。由于这些波的相位不同,因此使正常波形发生畸变。主要观察前几个周期的波形。一般情况下,正常混凝土的前几个波形振幅大,无畸变,接收波的包络线呈半圆形

见图11-1(a)。有缺陷混凝土的前几个周期波形振幅低,可能发生波形畸变,接收波的包络线呈喇叭形,见图11-1(b)。 11-1 接受图形 常用的测试方法大致分为以下几种: 1平面测试(用厚度振动式换能器) (1)对测法:一对发射(T)和接收(R)换能器,分别置于被测结构相互平行的两个表面,且两个换能器的轴线位于同一直线上。 (2)斜测法:一对发射和接收换能器分别置于被测结构的两个表面,但两个换能器的轴线不在同一直线上。 (3)单面平测法:一对发射和接收换能器置于被测结构同一个表面上进行测试。

2钻孔测试(采用径向振动式换能器) (1)孔中对测:一对换能器分别置于两个对应钻孔中,位于同一高度进行测试。 (2)孔中斜测:一对换能器分别置于两个对应钻孔中,但不在同一高度而是在保持一定高程差的条件下进行测试。 (3)孔中平测:一对换能器置于同一钻孔中,以一定的高程差同步移动进行测试。 二、仪器设备 1.超声波仪 超声波仪应满足下列要求: (1)具有波形清晰、显示稳定的示波装置。 (2)声时最小分度为OAS,, (3)具有最小分度为 1dB的衰减系统。 (4)接收放大器频响范围10~500kHz,总增益不小于80dB,接收灵敏度(在信噪比为3:1时)不大于50μV。 (5)电源电压波动范围在标称值,10%的情况下能正常工作。

热轧带钢缺陷图谱

热轧带钢缺陷图谱

————————————————————————————————作者: ————————————————————————————————日期: ?

热轧带钢外观缺陷 Visual Defects inHot Rolled Strip 2.1 不规则表面夹杂(夹层)(IrregularShells) 【定义与特征】 板带钢表面的薄层折叠,缺陷常呈灰白色,其大小、形状不一,不规则分布于板带钢表面。【产生原因】 板坯表面或皮下有非金属夹杂,这些夹杂在轧制过程中被破碎或暴露而形成夹层状折叠。【预防与纠正】 优化炼钢、精炼工艺,提高钢质纯净度。 【鉴别与判定】 肉眼检查,钢板和钢带不得有夹层。 2.2 带状表面夹杂(夹层)(Seams)

【定义与特征】 板带钢表面的夹杂呈线状或带状不规则地沿轧向分布,有时以点状或舌状逐渐消失。【产生原因】 板坯皮下的夹杂在轧制出现剧烈延伸、破裂而造成。 【预防与纠正】 优化炼钢、精炼工艺,提高钢质纯净度。 【鉴别与判定】 肉眼检查,钢板和钢带不得有夹层。 2.3 气泡(Blisters)

【定义与特征】 板带钢表面凸起内有气体,分布无规律,有闭口气泡和开口气泡之分。 【产生原因】 板坯由于大量气体在凝固过程中不能逸出,被封闭在内部而形成气体夹杂。在热轧时,空洞与孔穴被拉长,并随着轧材厚度减薄,被带至产品的表面或边部。最终,高的气体压力使产品表面或边部出现圆顶状的凸起物或挤出物。 【预防与纠正】 优化精炼工艺,保证吹氩时间,使钢水搅拌均匀,避免气体残留;保证中间包烘烤时间;保护渣要符合工艺要求,避免受潮。 【鉴别与判定】 肉眼检查,钢板和钢带不得有气泡。 2.4 结疤(重皮)(Scabs)

射线检测-焊缝缺陷图谱

1.外部缺陷 在焊缝的表面,用肉眼或低倍放大镜就可看到,如咬边,焊瘤,弧坑,表面气孔和裂纹等。 2.内部缺陷 位于焊缝内部,必须通过各种无损检测方法或破坏性试验才能发现。内部缺陷有未焊透,未熔合,夹渣,气孔,裂纹等,这些缺陷是我们无损检测人员检查的主要对象。 焊缝缺陷的危害性: 1、由于缺陷的存在,减少了焊缝的承载截面积,削弱了静力拉伸强度。 2、由于缺陷形成缺口,缺口尖端会发生应力集中和脆化现象,容易产生裂纹并扩展。 3、缺陷可能穿透焊缝,发生泄漏,影响致密性。 焊缝纵向裂纹示意图 一、焊缝纵向裂纹X光底片 焊缝纵向裂纹1 焊缝纵向裂纹2 焊缝纵向裂纹3 焊缝纵向裂纹4

焊缝纵向裂纹5 焊缝纵向裂纹6 焊缝纵向裂纹7 焊缝纵向裂纹8 焊缝纵向裂纹9 焊缝纵向裂纹10 焊缝纵向裂纹11 焊缝纵向裂纹12 焊缝纵向裂纹13 焊缝纵向裂纹14

焊缝纵向裂纹15 焊缝纵向裂纹16 焊缝纵向裂纹17 焊缝纵向裂纹18 焊缝纵向裂纹19 焊缝纵向裂纹20 纵向裂纹的表面特征是沿焊缝长度方向出现的黑线,它既可以是连续线条,也可以是间断线条。纵向裂纹影像产生的原因是沿焊缝长度破裂而导致的不连续黑线。 二、热影响区纵向裂纹X光底片 热影响区纵裂1 热影响区纵裂2 热影响区撕裂呈线性黑色锯齿状,平行于熔合线,穿晶扩展,表面无明显氧化色彩,属脆性断口的延迟裂纹。

焊缝横向裂纹示意图 三、焊缝横向裂纹X光底片 焊缝横向裂纹1 焊缝横向裂纹2 5 焊缝横向裂纹3 焊缝横向裂纹4 焊缝横向裂纹的表征是横在焊接影像上的一根细小黑线(直线或曲线),它产生的原因是由焊缝上的金属破裂引起的。当焊接应力为拉应力并与氢的析集和淬火脆化同时发生时,极易产生冷裂纹。 四、母材裂纹X光底片

超声波检测中的波形识别

实践经验 超声检测中的波形识别与缺陷定性 吴德新,杨小林 (中国人民解放军空军第一航空学院,信阳 464000) IDENTIFICATION OF WAVEFORMS AN D DEFECTS IN U LTRASONIC INSPECTION WU De 2xin ,YANG Xiao 2lin (The First Aeronautical Institute of the Chinese PLA Air Force ,Xinyang 464000,China ) 中图分类号:TG 115.28 文献标识码:B 文章编号:100026656(2002)0720312203 超声检测技术中对缺陷评定的三大关键内容是缺陷的定位、定量和定性。缺陷定位与定量方法已较 成熟,而对缺陷定性仍存在许多实际困难。目前,在原位检测中应用最广泛的是A 型超声脉冲反射式检测仪,根据其示波屏显示的缺陷回波静态波形与动态波形,再结合具体产品或材料特点和制造工艺等来评估缺陷的性质。缺陷的超声波反射特性取决于缺陷的取向和几何形状、相对超声波传播方向的长度和厚度、缺陷的表面粗糙度、缺陷内含物以及缺陷性质等,还与所用超声检测系统特性有关,因此,超声检测中获得缺陷的超声响应是一个综合响应。如何观察波形并把反映缺陷性质的有用信息从综合响应中分离出来,这对缺陷的定性评定尤为重要。 1 脉冲干扰噪声的识别与波形分析 1.1 脉冲噪声的来源 在超声波探伤中,脉冲干扰噪声的来源很广泛。首先是检测仪器,质量较差的仪器工作时性能不稳定,自身会产生脉冲干扰噪声。在超声波探伤现场,如果电源的输出不稳定将会干扰检测仪器,引起脉冲噪声。多种仪器(如探伤仪、示波屏、频谱仪和计算机等)组合或同一地点多台不同检测仪器联机运行(如超声与涡流组合探伤)时,仪器之间也会互相干扰而产生脉冲噪声。此外,强烈的机械振动与冲击也会导致脉冲干扰噪声的产生[1]。1.2 脉冲噪声的特征分析 (1)偶然性 在超声波探伤中出现的脉冲噪声 收稿日期:2001201225 无规则可循,不可重复,具有强烈的偶然性。由于脉冲噪声的产生原因多种多样,因此其出现的时间间隔数量、幅度及频率等均随机变化且多种多样。 (2)满幅性 超声波探伤仪示波屏上的脉冲噪声幅度很大,常达饱和状态。图1为水浸法探伤中出现的电脉冲干扰噪声。其中S 为工件的界面回波,P 1~P 4为饱和脉冲噪声,n 1和n 2属脉冲噪声,但其来源可能与饱和脉冲噪声不同 。 图1 探伤仪示波屏上的脉冲干扰噪声 (3)单峰性 超声波探伤中的缺陷回波信号是 由多次反射波组成的。但在实践中发现,示波屏上 观察到的波形实质是这些反射波的包络,而脉冲噪声则是孤立的单峰。因此,各脉冲噪声之间不能形成缺陷波F 那样的包络(图2)。 (4)频率范围广 采用傅里叶变换方法,将超声波探伤信号进行离散化处理,可得到离散频谱 x (k )= ∑N -1 n =0 x (n )w kn N  0≤k ≤n -1 将上式用于图1所示的原始信号,可得图3所示的频谱。由此可见,脉冲噪声频率分布很广,不只 是一个中心频率,产生的机理不同,就有不同的中心 ? 213?第24卷第7期2002年7月 无损检测ND T Vol.24 No.7J uly 2002

超声波缺陷定性流程Word文档

有明显白点反射(白点) F (完好) 斜探头 夹杂 无明显白点反射(夹杂) F 放射白点 符合白点规律(白点) 分布规律 无规律(夹杂) F (粗晶) 多次反射变多(疏松、粗晶) 降低频率 白点 白点 符合林状分布(白点) 残余缩孔 内裂 内裂 疏松 分布一端 粗晶 提高灵敏度 白点 心部 残余缩孔 无明显增加 残余缩孔独立 内裂 宽脉冲 一个总结

实际探伤常常是根据经验结合工件的加工工艺、缺陷特征、缺陷波形和底波情况来分析估计缺陷的性质。 一、根据加工工艺分析缺陷性质 工件内所形成的各种

缺陷与加工工艺密切相关。例如焊接过程中可能产生气孔、夹渣、未熔合、未焊透和裂纹等缺陷。铸造过程中可能产生气孔、缩孔、疏松和裂纹等缺陷。锻造过程中可能产生夹层、折叠、白点和裂纹等缺陷。在探伤前应查阅有关工件的图纸和资料,了解工件的材料、结构特点、几何尺寸和加工工艺,这对于正确判定估计缺陷的性质是十分有益的。 二、根据缺陷特征分析缺陷性质 缺陷特性是指缺陷的形状、大小和密集程度。 对于平面形缺陷,在不同的方向上探测,其缺陷回波高度显著不同。在垂直于缺陷方向探测,缺陷回波高;在平行于缺陷方向探测,缺陷回波低,甚至无缺陷回波。一般的裂纹、夹层、折叠等缺陷就属于平面形缺陷。 对于点状缺陷,在不同的方向探测,缺陷回波无明显变化。一般的气孔、小夹渣等属于点状缺陷。 对于密集形缺陷,缺陷波密集相互彼连,在不同的方向上探测,缺陷回波情况类似。一般白点、疏松、密集气孔等属于密集形缺陷。 三、根据缺陷波形分析缺陷性质 缺陷内含物的声阻抗对缺陷回波高度有较大的影响。白点、气孔等内含物气体,声阻抗很小,反射回波高。非金属或金属夹渣声阻抗较大,反射回波低。另外,不同类型缺陷反射波的形状也有一定差异。例如气孔与夹渣、气孔表面较平滑,界面反射率高,波形陡直尖锐。夹渣表面粗糙,界面反射率低,同时还有部分声波透入夹渣层,形成多次反射,波形宽度大并带锯齿。 单个缺陷与密集缺陷的区分比较容易。一般单个缺陷回波是独立出现的,而密集缺陷则是杂乱出现,且互相彼连。 以上说的都是静态波形。 四、超声波入射到不同性质的缺陷上,其动态波形也是不同的。 不同性质的密集缺陷的动态波形对探头移动的敏感程度不同。白点对探头移动很敏感,只要探头稍一移动,缺陷波立刻此起彼伏,十分活跃。但夹渣对探头移动不太敏感,探头移动时,缺陷波变化迟缓。 五、根据底波分析缺陷的性质 工件内部存在缺陷时,超声波被缺陷反射使射达底面的声能减少,底波高度降低,甚至消失。不同性质的缺陷,反射面不同,底波高度也不一样,因此在某些情况下可以利用底波情况来分析估计缺陷的性质。 当缺陷波很强,底波消失时,可认为是大面积缺陷,如夹层、裂纹等。 当缺陷波与底波共存时,可认为是点状缺陷(如气孔、夹渣)或面积较小的其它缺陷。 当缺陷波为互相彼连高低不同的缺陷波,底波明显下降时,可认为是密集缺陷,如白点、疏松、密集气孔和夹渣等。 当

带钢常见缺陷及其图谱

结疤(重皮) 图1 图2 1.缺陷特征 附着在钢带表面,形状不规则翘起的金属薄片称结疤。呈现叶状、羽状、条状、鱼鳞状、舌端状等。结疤分为两种,一种是与钢的本体相连结,并折合到板面上不易脱落;另一种是与钢的本体没有连结,但粘合到板面上,易于脱落,脱落后形成较光滑的凹坑。 2.产生原因及危害 产生原因: ①板坯表面原有的结疤、重皮等缺陷未清理干净,轧后残留在钢带表面上;

②板坯表面留有火焰清理后的残渣,经轧制压入钢带表面。 危害:导致后序加工使用过程中出现金属剥离或产生孔洞。 3.预防及消除方法 加强板坯质量验收,发现板坯表面存在结疤和火焰清理后残渣应清理干净。气泡 图1 开口气泡 图2 开口气泡 1.缺陷特征

钢带表面无规律分布的圆形或椭圆形凸包缺陷称气泡。其外缘较光滑,气泡轧破后,钢带表面出现破裂或起皮。某些气泡不凸起,经平整后,表面光亮,剪切断面呈分层状。 2.产生原因及危害 产生原因: ①因脱氧不良、吹氮不当等导致板坯内部聚集过多气体; ②板坯在炉时间长,皮下气泡暴露或聚集长大。 危害:可能导致后序加工使用过程中产生分层或焊接不良。 3.预防及消除方法 ①加强板坯质量验收,不使用气泡缺陷暴露的板坯; ②严格按规程加热板坯,避免板坯在炉时间过长。

压入氧化铁皮 图1 一次(炉生)氧化铁皮(压入) 图2 二次氧化铁皮(轧制过程产生)

图3 二次氧化铁皮(轧辊氧化膜脱落) 1.缺陷特征 热轧过程中氧化铁皮压入钢带表面形成的一种表面缺陷称压入氧化铁皮。按其产生原因不同可分为炉生(一次)氧化铁皮、轧制过程中产生的(二次)氧化铁皮或轧辊氧化膜脱落压入带钢表面形成的(二次)氧化铁皮。 2.产生原因及危害 产生原因: ①钢坯表面存在严重纵裂纹; ②钢坯加热工艺或加热操作不当,导致炉生铁皮难以除尽; ③高压除鳞水压力低、喷嘴堵塞等导致轧制过程中产生的氧化铁皮压入带钢表面; ④轧制节奏过快、轧辊冷却不良等导致轧辊表面氧化膜脱落压入带钢表面。 危害:影响钢带表面质量和涂装效果。 3.预防及消除方法 ①加强钢坯质量验收,表面存在严重纵裂纹的板坯应清理合格后使用; ②合理制订钢坯加热工艺,按规程要求加热板坯; ③定期检查高压除鳞水系统设备,保证除鳞水压力,避免喷嘴堵塞;

超声波检测说明

声波透射法检测说明 一、检测仪器 NM-4A型非金属超声检测分析仪(半自动型测桩仪) 用途:用于混凝土强度检测、混凝土结构内部缺陷和裂缝深度检测、匀质性、损伤层厚度检测、混凝土基桩完整性检测及混凝土厚度检测等。 技术指标: 声时测读精度:士0.05 — 幅度测读范围:0 ?177dB 放大器带宽:5Hz?500kHz 接收灵敏度:<10 av 最大米样长度:詬4k 信号米集方式:连续信号、瞬态信号 扩展功能:可扩展为冲击回波混凝土厚度测试仪 通道数:双通道 正常混凝土或岩土最大穿透距离:8~10m; 声波透射法桩基检测时,手工连续提升换能器,自动记录和储存测 试数据; 测桩专用径向换能器:全不锈钢的探头,75米长电缆线,导电滑环 (集流环)接头,使电缆能随测随放(收),电 缆线缠绕在伸缩式的小车上,移动方便,电缆线 上的标记清晰耐久; 主机:专用微机系统 显示器:6"640 >480 DSTN 通用接口:串口、并口、USB 口 供电方式:1、AC:220\± 10%;DC:12V (交直流一用) 2、外置式大谷量铅酸电池,一次充电可连续工作

8-10小时; 工作温度:0 ?40C 工作湿度:< 80% 整机重量: 1.8kg 整机体积;245mr^ 300mr^ 85mm 、检测依据标准: 《超声回弹综合法检测强度技术规程》CECS 02:88 《超声法检测混凝土缺陷技术规程》CECS 21:2000 《公路工程基桩动测技术规程》JTG/T F81-01-2004 《超声法检测混凝土缺陷技术规程》CECS 21:2000 《建筑基桩检测技术规范》JGJ106-2003三、声波透射法检测基桩完整性的工作原理 混凝土灌注桩声波透射法检测的工作原理是:在被测桩内预埋若干根竖向相互平行的声测管作为检测通道,将超声脉冲发射换能器与接收换能器置于,声测管中,管中注满清 水作为耦合剂,由仪器的发射换能器发射超声脉冲,穿过待测的桩体混凝土,并经接收换能器被仪器所接收,判读出超声波穿过混凝土的声时、接收波首波的波幅以及接收波主频等参数。超声脉冲信号在混凝土的传播过程中因发生绕射、折射、多次反射及不同的吸收衰减,使接收信号在混凝土中传播的时间、振动幅度、波形及主频等发生变化,这样接收信号就携带了有关传播介质(即被测桩身混凝土)的密实缺陷情况、完整程度等信息。由仪器的数据处理与判断分析软件对接收信号的各种声参量进行综合分析,即可对桩身混凝土的完整性进行检测,判断桩基缺陷的程度并确定其位置。 四、检测方法及工作参数

射线检测常见缺陷图

射线检测常见缺陷图 The following discontinuities are typical of all types of welding. is a condition where the weld filler metal does not properly fuse with the base metal or the previous weld pass material (interpass cold lap). The arc does not melt the base metal sufficiently and causes the slightly molten puddle to flow into base material without bonding. is the result of gas entrapment in the solidifying metal. Porosity can take many shapes on a radiograph but often appears as dark round or irregular spots or specks appearing singularly, in clusters or rows. Sometimes porosity is elongated and may have the appearance of having a tail This is the result of gas attempting to escape while the metal is still in a liquid state and is called wormhole porosity. All porosity is a

超声波探伤常见缺陷波形特征

超声波探伤常见缺陷波 形特征 标准化管理部编码-[99968T-6889628-J68568-1689N]

分析超声波探伤仪常见八大缺陷的波形特征 疏松 锻件中的疏松,在低灵敏度时伤波很低或无伤波,提高灵敏度后才呈现典型的疏松波形,中心疏松多出现心部,一般疏松出现始波与底波之间。疏松对底波有一定影响但影响不大,随着灵敏度提高,底波次数有明显增加。铸件中的疏松对声波有显着的吸收和散射作用,常使底波显着减少,甚至使底波消失,严重的疏松既无底波又无伤波,探头移动时会出现波峰很低的蠕动波形。 白点 缺陷波为林状波,波峰清晰,尖锐有力,伤波出现位置与缺陷分布相对应,探头移动时伤波切换,变化不快,降低超声波探伤灵敏度时,伤波下降较底波慢。白点对底波反射次数影响较大,底波1~2次甚至消失。提高灵敏度时,底波次数无明显增加。圆周各处探伤波形均相类似。纵向探伤时,伤波不会延续到锻坯的端头。 内裂纹 1、横向内裂纹轴类工件中的横向内裂纹直探头探伤,声速平行于裂纹时,探伤仪既无底波又无伤波,提高灵敏度后出现一系列小伤波,当探头从裂纹处移开,则底波多次反射恢复正常。斜探头轴向移动探伤和直探头纵向贯穿入射,都出现典型的裂纹波形即波形反射强烈,波底较宽,波峰分枝,成束状。斜探头移向裂纹时伤波向始波移动,反之,向远离始波方向 移动。 2、中心锻造裂纹??伤波为心部的强脉冲,圆周方向移动探头时伤波幅度变化较大,时强时 弱,底波次数很少或者底波消失。 3、纵向内裂纹??轴类锻件中的纵向内裂,直探头圆周探伤,声束平行于裂纹时,既无底波 也无伤波,当探头转动90°时反射波最强,呈现裂纹波形,有时会出现裂纹的二次反射,一般无底波。底波与伤波出现特殊的变化规律 缩孔 伤波反射强烈,波底宽大,成束状,在主伤波附近常伴有小伤波,对底波影响严重,常使底波消失,圆周各处伤波基本类似,缩孔常出现在冒口端或热节处。 缩孔残余 伤波幅度强,出现在工件心部,沿轴向探伤时伤波具有连续性,由于缩孔锻造变形,圆周各处伤波幅度差别较大,缺陷使底波严重衰减,甚至消失。 夹杂物 1、单个夹渣????单个夹渣伤波为单一脉冲或伴有小伤波的单个脉冲,波峰园钝不清晰,伤波幅度虽高,但对底波及其反射次数影响不大。 2、分散性夹杂物????分散性夹杂物,伤波为多个,有时呈现林状波,但波顶园钝不清晰,波形分枝,伤波较高,但对底波及底波多次反射次数影响较小。移动探头时,伤波变化比白点为快。 偏析

超声波检测中对缺陷高度的测定

超声波测量缺陷高度的探讨 王云昌 内容摘要: 本文论述了压力容器不同程度地存在着裂纹类缺陷,断裂力学研究证明,带有尖锐边缘的平面缺陷(如裂纹)危险性最大。同时还证明受压部件中平面缺陷穿过壁厚的径向长度、缺陷距表面及与其它缺陷的距离等都是关键性的重要尺寸,而平行于部件表面的裂纹长度是次要的。据统计锅炉压力容器的损坏大部分是由于工件内部裂纹的扩展所引起的,英国曾对10万个容器进行调查,运行一年共发生132件破坏事故,按事故原因统计,由于裂纹扩展造成的破坏占总数的比例高达89.3%。因而对裂纹的检验和监控显得极为重要。 主题词: 超声波测量缺陷高度 正文: 缺陷高度的超声检测方法 6db法 6db法是超声测量长度的传统方法,通常是探头找到最大峰值后向相反的二个方向水平移动使回波峰值下降一半时的波束中心线距离即为长度,该长度称为指示长度但并非裂纹的真实长度。这种方法可以用来测高,但是误差较大。 表面波延时法 对表面开口的裂纹可采用表面波延时法来测量裂纹深度,该法主要是通过裂纹对表面波的延时作用来计算裂纹的深度。但当缺陷内含油或水等液体时,表面波有可能跨越缺陷开口,使测试误差大大增加。此外,缺陷的端部太尖锐接收到超声波信号很低甚至接收不到。缺陷表面过于粗糙也会造成误差增大。 端点衍射波法 超声波入射到裂纹面上时,根据惠更斯原理,在裂纹尖端会形成次波源而产生衍射称为衍射波,超声端点衍射法是通过测量裂纹端点衍射回波的延迟时间差值来求得裂纹高度的。但是衍射波的强度很弱难发现,所以用衍射波测量裂纹高度有较大的难度。 端点反射波法 入射波入射到裂纹的端点,有一部分将沿着原路反射,称为端点反射回波如图1所示。端点反射回波法是通过测量主声束入射到裂纹顶端时,所产生的端点回波声程计算裂纹的高度,从方法上说是比较正确较为可行的方法。 端点反射波法的应用现状 在模拟超声探伤仪上用端点反射法测量裂纹的高度,通常采用深度校准即利用回波声程在垂直方向上的投影长度进行定位。操作工艺的特点是要用试块进行深度线性校准,其实质是一种同高比较法因此其准确度与仪器线性、试块精度和操作工艺有很大的关系。 随着计算机技术的应用,将回波信号数字化能得到回波声程的精确量值。通过相应的数学模型能得到包括垂直高度在内的各种数值,这是本文研究的主题。 2.数字信号处理端点回波声程测量裂纹自身高度方法的研究 2.1 数字处理端点回波声程的原理和应用常规超声检测对回波声程的测定是通过屏幕上回波所处位置的水平量值来换算的,由于波形的跳动、波形峰值的判断误差、线性调节精度等原因,测定的声程值误差很大。数字信号处理端点回波声程(w)是通过计算机A/D转换,将回波的模拟信号转换为数字信号,根据声速和样点数精确计算得到的。

钢板常见缺陷图谱及检验处理方法20090331-1

钢板常见缺陷图谱及检验处理方法 一、结疤 1、缺陷特征: 钢板表面呈舌状、块状的金属片,有的与钢板本体相连,有的粘附在钢板表面与本体没有连结,后者在轧制过程中容易脱落,在板面上形成凹坑。 2、检查判断和处理: 用肉眼检查。钢板表面不允许存在结疤,一经发现必须清除。当缺陷深度在标准范围内允许修磨,否则切除或判为废品。 二、表面夹杂 1、缺陷特征: 在钢板表面呈现的明显点状、块状和带状的非金属夹杂物称夹杂,常呈现红棕色、淡黄色或灰白色。 2、检查判断和处理:

用肉眼检查。夹杂缺陷不允许存在,其清理深度不得超过标准规定,否则切除。 三、分层 1、缺陷特征: 钢板断面上呈现的明显金属分离现象称分层,缺陷处可见未焊合的缝隙,有时缝隙内还有肉眼可见的夹杂物。 2、检查判断和处理: 用肉眼检查。标准规定分层是不允许存在的缺陷,钢板分层部分必须切除。 四、爪裂 1、缺陷特征: 钢板表面呈现的深浅不等,类似于鸡爪形状的裂纹称为爪裂。 2、 检查判断和处理: 用肉眼检查。标准规定钢板表面裂纹不允许存在,缺陷部分必须切除或用砂轮修磨清理,但清理深度一定要符合标准规定。

五、纵裂 1、缺陷特征: 钢板表面沿轧制方向具有一定深度和长度的裂纹称为纵裂。 2、检查判断和处理: 用肉眼检查。标准规定钢板表面裂纹不允许存在,缺陷部分必须切除或用砂轮修磨清理,但清理深度一定要符合标准规定。 六、横向边裂 1、缺陷特征: 钢板边部呈现的形状不同,深浅不等,方向任意的裂纹称为横向边裂。 2、检查判断和处理: 用肉眼检查。标准规定钢板表面裂纹不允许存在,缺陷部分必须切除或用砂轮修磨清理,但清理深度一定要符合标准规定。 七、纵向边裂 1、缺陷特征:

中厚板生产中常见缺陷的类型及预防

中厚板生产中常见缺陷的类型及预防 中厚钢板是国民经济发展所依赖的重要材料,广泛用于高层建筑、桥梁、锅炉、容器、石油化工、工程机械、管线及国防建设等各个方面,中厚钢板的品种繁多,使用温度区域较广(-200℃~600℃),使用环境复杂,(耐候性、耐蚀性),使用要求高(强韧性、焊接性)。 目前,我国中厚板生产厚度为4~250mm, 宽度可达4000mm, 最长可达27m。在品种方面, 已能生产难度比较大的装甲、船身、不锈、高压锅炉容器、桥梁等专用中厚板。但是, 高档次板仍然比较少,专用板只占20%多一点, 大多数厂以生产大路货普碳板为主, 产量占70%~80%。 由于大部分企业炼钢缺少炉外精炼手段, 钢质纯净度差, 钢板夹杂、分层现象有时较为突出, 在轧制生产中, 钢板表面铁皮多, 麻点面积大且深, 修磨量大, 严重影响了钢板品种与质量的发展。另外国产中厚板尺寸偏差、表面质量、力学性能也存在很多问题,只是大多数厂生产以普碳钢为主,钢板质量问题还未完全暴露出来。(中厚板市场) 随着国民经济的发展, 各行各业对中厚板品种、规格、尺寸精度、内外部质量及性能提出了日益增高的要求。所以中厚钢板不仅要有好的机械性能,还要求有优良的表面质量和内部质量。 目前,国内中厚板存在的主要质量问题有: (1) 产品质量不能满足国际标准, 国际标准要求产品表面无缺陷

且无修磨痕迹, 厚度公差带较国内标准减少50%, 不平度长度测量单位增加一倍, 产品全部双定尺交货。 国内中厚板双定尺率只有65%左右。 (2) 产品品种单一, 不能满足国内和国际市场需求, 有订单不能接受。 大部分企业只生产普碳和低合金钢中的A、B级钢,C、D级不能保证性能。 (3) 钢板外观质量差,如断面有兰边, 锯齿、撕裂、错牙等缺陷,表面有划伤、铁皮、油污、麻点等缺陷,厚度偏差大、宽度大小头差大、对角线差值大等非矩形缺陷。 国内外中厚板外观质量对照表

UT缺陷定性方法

超声检测技术中的缺陷定性方法 夏纪真 南昌航空工业学院 内容提要:本文对目前超声检测技术中缺陷定性评定所应用的主要方法进行了综合介绍。 超声无损检测技术中的三大关键问题是缺陷的定位、定量和定性评定。迄今为止,广大的超声检测技术人员已作了大量实验研究工作,在对缺陷的定位和定量评定方面取得了很大进展,并逐步趋于成熟与完善。如在众多有关超声检验的技术规范中,对诸如确定缺陷埋藏深度及在探测面上的投影位置,评定缺陷的当量大小,延伸长度以及缺陷投影面积等都有明确的方法规定,对保证产品构件的质量和安全使用具有重大作用。然而,在对缺陷定性评定方面却存在相当大的困难,这主要是由于缺陷对超声波的反射特性取决于缺陷的取向、几何形状、相对超声波传播方向的长度和厚度、缺陷的表面粗糙度、缺陷内含物以及缺陷的种类和性质等等,并且还与所使用的超声检测系统特性及显示方式有关,因此,在超声检测时所获得的缺陷超声响应是一个综合响应。在目前常用的超声检测技术上还难以将上述各因素从综合响应中分离识别出来,给定性评定带来了困难。 在实际检测过程中,由于难以判明缺陷性质,往往会使一些含有对使用条件是非危险性的、或者在后续加工过程中可以被改善甚至消除的缺陷的产品被拒收,造成不必要的浪费,同时也可能忽视了一些含有危险性缺陷(如裂纹类缺陷)的产品,对产品的安全使用造成潜在威胁。 本文的目的是试图把迄今为止广大超声检测人员在缺陷定性评定方面进行的主要研究工作做一综合介绍,以期促进对缺陷定性评定方法研究的发展。 超声检测技术对缺陷定性评定的主要方法 一.波形判断法(经验法) 目前应用最广泛的是A扫描显示型超声脉冲反射式检测仪。经过长期的超声检测实践,许多超声检测人员对其大量接触的材料、产品及制造工艺有充分的了解,并通过大量的解剖分析验证,积累了丰富的经验,在检测时能通过A扫描显示型超声脉冲反射式探伤仪,根据示波屏上出现缺陷回波时的波形形状,例如视频显示或射频显示,起波速度,回波前沿的陡峭程度及回波后沿下降的速度(下降斜率),波尖形状,回波占宽以及移动探头时缺陷回波的变化情况(波幅、位置、数量、形状、动态包络等),还可以根据观察多次底波的次数,底波高度损失情况,再根据缺陷在被检件中的位置,分布情况,缺陷的当量大小(与反射率有关),延伸情况,结合具体产品、材料的特点和制造工艺作出综合判断,评估出缺陷的种类和性质。有时还可以通过改变发射超声波脉冲的频率、改变声束直径大小(采取聚焦或采用不同直径的探头等)来观察缺陷的回波变化特征,从而识别是材料中的冶金缺陷还是组织反射。 在这方面已经有不少经验总结和资料报道,例如判断钢锻件中的白点、夹杂物、残余缩孔、粗晶、中心疏松、方框形偏析,以及焊缝中的气孔、夹渣、未焊透、未熔合、裂纹等等。 必须指出,这种判断方法在很大程度上依赖超声检测人员的经验、技术水平和对特定产品、材料及制造工艺的充分了解,其局限性是很大的,难以推广成为通用的评定方法。此外,作为A扫描显示的缺陷回波所显示的缺陷信息也极其有限,主要显示的是波幅大小、位置和回波包络形状,而缺陷对超声响应的相位、频谱等重要信息则无法显示出来,但是后两者与缺陷性质和种类有着密切关系,这也正是目前广大超声检测人员致力研究探索的问题。下面举出一部分常见缺陷的回波特征: (1)钢锻件中的粗晶与疏松--多以杂波、丛状波形式或底波高度损失增大、底波反射次

相关主题
文本预览
相关文档 最新文档