当前位置:文档之家› 利用导数研究函数的单调性专题

利用导数研究函数的单调性专题

利用导数研究函数的单调性专题
利用导数研究函数的单调性专题

利用导数研究函数的单调性

1.函数的单调性与导数的关系

函数y=f(x)在某个区间内可导,则:

(1)若f′(x)>0,则f(x)在这个区间内单调递增;

(2)若f′(x)<0,则f(x)在这个区间内单调递减;

(3)若f′(x)=0,则f(x)在这个区间内是常数函数.

2.函数的极值与导数

f′(x0)=0

x0附近的左侧f′(x)<0,右侧条件

x0附近的左侧f′(x)>0,右侧f′(x)<0

f′(x)>0

图象

形如山峰形如山谷

极值f(x0)为极大值f(x0)为极小值

极值点x0为极大值点x0为极小值点

3.函数的最值与导数

(1)函数f(x)在[a,b]上有最值的条件

如果在区间[a,b]上函数y=f(x)的图象是一条连续不断的曲线,那么它必有最大值和最小值.

(2)求y=f(x)在[a,b]上的最大(小)值的步骤

①求函数y=f(x)在(a,b)内的极值;

②将函数y=f(x)的各极值与端点处的函数值f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值.

1.判断下列结论正误(在括号内打“√”或“×”)

(1)若函数f(x)在(a,b)内单调递增,那么一定有f′(x)>0.( )

(2)如果函数f(x)在某个区间内恒有f′(x)=0,则f(x)在此区间内没有单调性.( )

(3)函数的极大值一定大于其极小值.( )

(4)对可导函数f(x),f′(x0)=0是x0为极值点的充要条件.( )

(5)函数的最大值不一定是极大值,函数的最小值也不一定是极小值.( )

2.(选修2-2P32A4 改编)如图是f(x)的导函数f′(x)的图象,则f(x)的极小值点的个数为( )

A.1

B.2

C.3

D.4

3.(选修2-2P32A5(4)改编)函数f(x)=2x-x ln x的极值是( )

A.1

e

B.

2

e

C.e

D.e2

4.(2019·青岛月考)函数f(x)=cos x-x在(0,π)上的单调性是( )

A.先增后减

B.先减后增

C.单调递增

D.单调递减

5.(2017·浙江卷)函数y=f(x)的导函数y=f′(x)的图象如图所示,则函数y=f(x)的图象可能是( )

6.(2019·豫南九校考评)若函数f(x)=x(x-c)2在x=2处有极小值,则常数c的值为( )

A.4

B.2或6

C.2

D.6

考点一 求函数的单调区间

【例1】 已知函数f (x )=ax 3+x 2

(a ∈R)在x =-43处取得极值.

(1)确定a 的值;

(2)若g (x )=f (x )e x

,求函数g (x )的单调减区间. 【规律方法】 1.求函数单调区间的步骤:

(1)确定函数f (x )的定义域;(2)求f ′(x );(3)在定义域内解不等式f ′(x )>0,得单调递增区间;(4)在定义域内解不等式f ′(x )<0,得单调递减区间.

2.若所求函数的单调区间不止一个时,用“,”与“和”连接. 【训练1】 (1)已知函数f (x )=x ln x ,则f (x )( ) A.在(0,+∞)上递增

B.在(0,+∞)上递减

C.在? ????0,1e 上递增

D.在? ??

??0,1e 上递减 (2)已知定义在区间(-π,π)上的函数f (x )=x sin x +cos x ,则f (x )的单调递增区间为________.

【例2】 (2017·全国Ⅰ卷改编)已知函数f (x )=e x

(e x

-a )-a 2

x ,其中参数a ≤0. (1)讨论f (x )的单调性; (2)若f (x )≥0,求a 的取值范围.

【训练2】 已知f (x )=x 2

2-a ln x ,a ∈R ,求f (x )的单调区间.

考点三 函数单调性的简单应用 角度1 比较大小或解不等式

【例3-1】 (1)已知函数y =f (x )对于任意的x ∈?

????0,π2满足f ′(x )cos x +f (x )sin x =1+ln x ,其中

f ′(x )是函数f (x )的导函数,则下列不等式成立的是( )

A.2f ? ????π3

??π4

B.2f ? ????π3>f ? ????π4

C.2f ? ????π6>3f ? ??

??π4

D.3f ? ????π3>f ? ??

??π6 (2)已知函数f ′(x )是函数f (x )的导函数,f (1)=1

e

,对任意实数都有f (x )-f ′(x )>0,设F (x )=

f (x )

e

x ,则不等式F (x )<1

e

2的解集为( )

A.(-∞,1)

B.(1,+∞)

C.(1,e)

D.(e ,+∞)

角度2 根据函数单调性求参数

【例3-2】 (2019·日照质检)已知函数f (x )=ln x ,g (x )=12ax 2

+2x .

(1)若函数h (x )=f (x )-g (x )存在单调递减区间,求实数a 的取值范围; (2)若函数h (x )=f (x )-g (x )在[1,4]上单调递减,求实数a 的取值范围.

【训练3】 (1)已知f (x )是定义在区间(0,+∞)内的函数,其导函数为f ′(x ),且不等式xf ′(x )<2f (x )恒成立,则( )

A.4f (1)

B.4f (1)>f (2)

C.f (1)<4f (2)

D.f (1)>4f ′(2) (2)(2019·淄博模拟)若函数f (x )=kx -ln x 在区间(2,+∞)上单调递增,则k 的取值范围是( ) A.(-∞,-2] B.??????12,+∞ C.[2,+∞) D.? ????-∞,12

【基础巩固题组】(建议用时:40分钟) 一、选择题

1.函数y =f (x )的图象如图所示,则y =f ′(x )的图象可能是( )

2.函数f (x )=x ·e x -e x +1

的单调递增区间是( )

A.(-∞,e)

B.(1,e)

C.(e ,+∞)

D.(e -1,+∞)

3.(2019·青岛二中调研)若函数f (x )=x 3

-12x 在区间(k -1,k +1)上不是单调函数,则实数k 的取值范围是( )

A.k ≤-3或-1≤k ≤1或k ≥3

B.不存在这样的实数k

C.-2

D.-3

4.已知f (x )=ln x

x

,则( )

A.f (2)>f (e)>f (3)

B.f (3)>f (e)>f (2)

C.f (3)>f (2)>f (e)

D.f (e)>f (3)>f (2)

5.(2019·济宁一中模拟)函数f (x )的定义域为R ,f (-1)=2,对任意x ∈R ,f ′(x )>2,则f (x )>2x +4的解集为( ) A.(-1,1) B.(-1,+∞) C.(-∞,-1)

D.(-∞,+∞)

二、填空题

6.已知函数f (x )=(-x 2

+2x )e x

(x ∈R ,e 为自然对数的底数),则函数f (x )的单调递增区间为________.

7.若函数f (x )=ax 3

+3x 2

-x 恰好有三个单调区间,则实数a 的取值范围是________.

8.若函数f (x )=-13x 3+12x 2+2ax 在??????23,+∞上存在单调递增区间,则a 的取值范围是________.

三、解答题

9.已知函数f (x )=x 4+a x -ln x -32,其中a ∈R ,且曲线y =f (x )在点(1,f (1))处的切线垂直于直线y =1

2

x .

(1)求a 的值;

(2)求函数f (x )的单调区间.

10.(2019·成都七中检测)设函数f (x )=ax 2

-a -ln x ,g (x )=1x -e e x ,其中a ∈R ,e =2.718…为自然对数

的底数.

(1)讨论f (x )的单调性; (2)证明:当x >1时,g (x )>0.

【能力提升题组】(建议用时:20分钟)

11.(2017·山东卷)若函数e x

f (x )(e =2.718 28…是自然对数的底数)在f (x )的定义域上单调递增,则称函数f (x )具有M 性质.下列函数中具有M 性质的是( ) A.f (x )=2-x

B.f (x )=x 2

C.f (x )=3-x

D.f (x )=cos x

12.(2019·上海静安区调研)已知函数f (x )=x sin x +cos x +x 2

,则不等式f (ln x )+f ?

??

??ln 1x <2f (1)的解

集为( )

A.(e ,+∞)

B.(0,e)

C.? ??

??0,1e ∪(1,e) D.? ??

??1e ,e

13.若函数f (x )=x -1

3sin 2x +a sin x 在(-∞,+∞)单调递增,则a 的取值范围是________.

14.已知函数f (x )=a ln x -ax -3(a ∈R). (1)求函数f (x )的单调区间;

(2)若函数y =f (x )的图象在点(2,f (2))处的切线的倾斜角为45°,对于任意的t ∈[1,2],函数g (x )=

x 3+x 2·????

??f ′(x )+m 2在区间(t ,3)上总不是单调函数,求m 的取值范围.

15.(多填题)已知函数f (x )=x 3

+mx 2

+nx -2的图象过点(-1,-6),函数g (x )=f ′(x )+6x 的图象关于y 轴对称.则m =________,f (x )的单调递减区间为________.

答案

1.判断下列结论正误(在括号内打“√”或“×”)

(1)若函数f(x)在(a,b)内单调递增,那么一定有f′(x)>0.( )

(2)如果函数f(x)在某个区间内恒有f′(x)=0,则f(x)在此区间内没有单调性.( )

(3)函数的极大值一定大于其极小值.( )

(4)对可导函数f(x),f′(x0)=0是x0为极值点的充要条件.( )

(5)函数的最大值不一定是极大值,函数的最小值也不一定是极小值.( )

【答案】(1)×(2)√(3)×(4)×(5)√

【解析】(1)f(x)在(a,b)内单调递增,则有f′(x)≥0.

(3)函数的极大值也可能小于极小值.

(4)x0为f(x)的极值点的充要条件是f′(x0)=0,且x0两侧导函数异号.

【教材衍化】

2.(选修2-2P32A4 改编)如图是f(x)的导函数f′(x)的图象,则f(x)的极小值点的个数为( )

A.1

B.2

C.3

D.4

【答案】 A

【解析】由题意知在x=-1处f′(-1)=0,且其两侧导数符号为左负右正.

3.(选修2-2P32A5(4)改编)函数f(x)=2x-x ln x的极值是( )

A.1

e

B.

2

e

C.e

D.e2

【答案】 C

【解析】因为f′(x)=2-(ln x+1)=1-ln x,令f′(x)=0,所以x=e,当f′(x)>0时,解得0e,所以x=e时,f(x)取到极大值,f(x)极大值=f(e)=e.

【真题体验】

4.(2019·青岛月考)函数f(x)=cos x-x在(0,π)上的单调性是( )

A.先增后减

B.先减后增

C.单调递增

D.单调递减

【答案】 D

【解析】 易知f ′(x )=-sin x -1,x ∈(0,π), 则f ′(x )<0,所以f (x )=cos x -x 在(0,π)上递减.

5.(2017·浙江卷)函数y =f (x )的导函数y =f ′(x )的图象如图所示,则函数y =f (x )的图象可能是( )

【答案】 D

【解析】 设导函数y =f ′(x )与x 轴交点的横坐标从左往右依次为x 1,x 2,x 3,由导函数y =f ′(x )的图象易得当x ∈(-∞,x 1)∪(x 2,x 3)时,f ′(x )<0;当x ∈(x 1,x 2)∪(x 3,+∞)时,f ′(x )>0(其中

x 1<0

察各选项,只有D 选项符合.

6.(2019·豫南九校考评)若函数f (x )=x (x -c )2

在x =2处有极小值,则常数c 的值为( ) A.4 B.2或6 C.2

D.6

【答案】 C

【解析】 函数f (x )=x (x -c )2

的导数为f ′(x )=3x 2

-4cx +c 2

, 由题意知,在x =2处的导数值为12-8c +c 2

=0,解得c =2或6,

又函数f (x )=x (x -c )2

在x =2处有极小值,故导数在x =2处左侧为负,右侧为正,而当e =6时,f (x )=

x (x -6)2在x =2处有极大值,故c =2.

【考点聚焦】

考点一 求函数的单调区间

【例1】 已知函数f (x )=ax 3+x 2

(a ∈R)在x =-43处取得极值.

(1)确定a 的值;

(2)若g (x )=f (x )e x

,求函数g (x )的单调减区间. 【答案】见解析

【解析】(1)对f (x )求导得f ′(x )=3ax 2

+2x , 因为f (x )在x =-43处取得极值,所以f ′? ????-43=0, 即3a ·? ????-432

+2·? ????-43=16a 3-8

3

=0,解得a =12.

(2)由(1)得g (x )=? ??

??12x 3+x 2e x

故g ′(x )=12x (x +1)(x +4)e x

.

令g ′(x )<0,即x (x +1)(x +4)<0, 解得-1

所以g (x )的单调减区间为(-1,0),(-∞,-4). 【规律方法】 1.求函数单调区间的步骤:

(1)确定函数f (x )的定义域;(2)求f ′(x );(3)在定义域内解不等式f ′(x )>0,得单调递增区间;(4)在定义域内解不等式f ′(x )<0,得单调递减区间.

2.若所求函数的单调区间不止一个时,用“,”与“和”连接. 【训练1】 (1)已知函数f (x )=x ln x ,则f (x )( ) A.在(0,+∞)上递增

B.在(0,+∞)上递减

C.在? ????0,1e 上递增

D.在? ??

??0,1e 上递减 (2)已知定义在区间(-π,π)上的函数f (x )=x sin x +cos x ,则f (x )的单调递增区间为________. 【答案】 (1)D (2)?

????-π,-π2,? ????0,π2 【解析】 (1)因为函数f (x )=x ln x ,定义域为(0,+∞),所以f ′(x )=ln x +1(x >0),当f ′(x )>0时,解得x >1e ,即函数的单调递增区间为? ??

??1e ,+∞;当f ′(x )<0时,解得0

? ??

??0,1e .

(2)f ′(x )=sin x +x cos x -sin x =x cos x .令f ′(x )=x cos x >0,则其在区间(-π,π)上的解集为

? ????-π,-π2和? ????0,π2,即f (x )的单调递增区间为? ????-π,-π2,? ??

??0,π2. 考点二 讨论函数的单调性

【例2】 (2017·全国Ⅰ卷改编)已知函数f (x )=e x

(e x

-a )-a 2

x ,其中参数a ≤0. (1)讨论f (x )的单调性;

(2)若f (x )≥0,求a 的取值范围. 【答案】见解析

【解析】(1)函数f (x )的定义域为(-∞,+∞),且a ≤0.

f ′(x )=2e 2x -a e x -a 2=(2e x +a )(e x -a ).

①若a =0,则f (x )=e 2x

,在(-∞,+∞)上单调递增. ②若a <0,则由f ′(x )=0,得x =ln ? ????

-a 2.

当x ∈? ?

???

-∞,ln ? ????-a 2时,f ′(x )<0;

当x ∈? ????

ln ? ????-a 2,+∞时,f ′(x )>0. 故f (x )在? ?

???-∞,ln ? ????-a 2上单调递减, 在区间? ????

ln ? ????

-a 2,+∞上单调递增. (2)①当a =0时,f (x )=e 2x ≥0恒成立.

②若a <0,则由(1)得,当x =ln ? ????-a 2时,f (x )取得最小值,最小值为f ? ????ln ? ????-a 2=a 2??????3

4-ln ? ????-a 2,

故当且仅当a 2??????3

4

-ln ? ????-a 2≥0,

即0>a ≥-2e 3

4时,f (x )≥0. 综上,a 的取值范围是[-2e 3

4,0].

【规律方法】 1.(1)研究含参数的函数的单调性,要依据参数对不等式解集的影响进行分类讨论. (2)划分函数的单调区间时,要在函数定义域内讨论,还要确定导数为0的点和函数的间断点.

2.个别导数为0的点不影响所在区间的单调性,如f (x )=x 3

,f ′(x )=3x 2

≥0(f ′(x )=0在x =0时取到),

f (x )在R 上是增函数.

【训练2】 已知f (x )=x 2

2-a ln x ,a ∈R ,求f (x )的单调区间.

【答案】见解析

【解析】因为f (x )=x 2

2

-a ln x ,x ∈(0,+∞),

所以f ′(x )=x -a x =x 2-a

x

.

(1)当a ≤0时,f ′(x )>0,所以f (x )在(0,+∞)上为单调递增函数. (2)当a >0时,f ′(x )=(x +a )(x -a )

x

,则有

①当x ∈(0,a )时,f ′(x )<0,所以f (x )的单调递减区间为(0,a ). ②当x ∈(a ,+∞)时,f ′(x )>0,所以f (x )的单调递增区间为(a ,+∞). 综上所述,当a ≤0时,f (x )的单调递增区间为(0,+∞),无单调递减区间. 当a >0时,函数f (x )的单调递减区间为(0,a ),单调递增区间为(a ,+∞). 考点三 函数单调性的简单应用 角度1 比较大小或解不等式

【例3-1】 (1)已知函数y =f (x )对于任意的x ∈?

??

??0,π2

满足f ′(x )cos x +f (x )sin x =1+ln x ,其中

f ′(x )是函数f (x )的导函数,则下列不等式成立的是( )

A.2f ? ????π3

??π4

B.2f ? ????π3>f ? ????π4

C.2f ? ????π6>3f ? ??

??π4

D.3f ? ????π3>f ? ??

??π6 (2)已知函数f ′(x )是函数f (x )的导函数,f (1)=1

e

,对任意实数都有f (x )-f ′(x )>0,设F (x )=

f (x )

e

x ,则不等式F (x )<1

e

2的解集为( )

A.(-∞,1)

B.(1,+∞)

C.(1,e)

D.(e ,+∞)

【答案】 (1)B (2)B

【解析】 (1)令g (x )=f (x )cos x ,则g ′(x )=f ′(x )cos x -f (x )(-sin x )cos 2x =1+ln x cos 2

x

.由?????00,

解得1e

π3>π4,所以g ? ????π3>g ? ??

??π4,所以f ? ????π3

cos π3>f ? ??

?

?

π4cos

π4

即2f ? ????π3>f ? ??

??π4. (2)F ′(x )=

f ′(x )e x -e x f (x )(e x )

2

f ′(x )-f (x )

e

x

又f (x )-f ′(x )>0,知F ′(x )<0, ∴F (x )在R 上单调递减. 由F (x )<1

e

2=F (1),得x >1,

所以不等式F (x )<1

e 2的解集为(1,+∞).

角度2 根据函数单调性求参数

【例3-2】 (2019·日照质检)已知函数f (x )=ln x ,g (x )=12ax 2

+2x .

(1)若函数h (x )=f (x )-g (x )存在单调递减区间,求实数a 的取值范围; (2)若函数h (x )=f (x )-g (x )在[1,4]上单调递减,求实数a 的取值范围. 【答案】见解析

【解析】h (x )=ln x -12ax 2

-2x ,x >0.

∴h ′(x )=1

x

-ax -2.

(1)若函数h (x )在(0,+∞)上存在单调减区间, 则当x >0时,1x -ax -2<0有解,即a >1x 2-2

x

有解.

设G (x )=1x 2-2

x

,所以只要a >G (x )min .

又G (x )=? ????1x -12-1,所以G (x )min =-1. 所以a >-1.即实数a 的取值范围是(-1,+∞). (2)由h (x )在[1,4]上单调递减,

∴当x ∈[1,4]时,h ′(x )=1

x

-ax -2≤0恒成立,

则a ≥1x 2-2x 恒成立,设G (x )=1x 2-2x

所以a ≥G (x )max .

又G (x )=? ????1x -12-1,x ∈[1,4], 因为x ∈[1,4],所以1x ∈????

??

14,1,

所以G (x )max =-716(此时x =4),所以a ≥-7

16

.

又当a =-716时,h ′(x )=1x +716x -2=(7x -4)(x -4)

16x ,

∵x ∈[1,4],∴h ′(x )=(7x -4)(x -4)

16x ≤0,

当且仅当x =4时等号成立. ∴h (x )在[1,4]上为减函数.

故实数a 的取值范围是????

?

?-

716,+∞.

【规律方法】 1.利用导数比较大小,其关键在于利用题目条件构造辅助函数,把比较大小的问题转化为先利用导数研究函数的单调性,进而根据单调性比较大小. 2.根据函数单调性求参数的一般思路

(1)利用集合间的包含关系处理:y =f (x )在(a ,b )上单调,则区间(a ,b )是相应单调区间的子集. (2)f (x )是单调递增的充要条件是对任意的x ∈(a ,b )都有f ′(x )≥0且在(a ,b )内的任一非空子区间上,

f ′(x )不恒为零,应注意此时式子中的等号不能省略,否则漏解.

(3)函数在某个区间存在单调区间可转化为不等式有解问题.

【训练3】 (1)已知f (x )是定义在区间(0,+∞)内的函数,其导函数为f ′(x ),且不等式xf ′(x )<2f (x )恒成立,则( ) A.4f (1)f (2) C.f (1)<4f (2)

D.f (1)>4f ′(2)

(2)(2019·淄博模拟)若函数f (x )=kx -ln x 在区间(2,+∞)上单调递增,则k 的取值范围是( ) A.(-∞,-2] B.????

??12,+∞

C.[2,+∞)

D.?

????-∞,12

【答案】 (1)B (2)B

【解析】 (1)设函数g (x )=f (x )x 2(x >0),则g ′(x )=x 2f ′(x )-2xf (x )x 4=xf ′(x )-2f (x )

x 3

<0,所以函数g (x )

在(0,+∞)内为减函数,所以g (1)>g (2),即

f (1)1

2

>

f (2)

2

2

,所以4f (1)>f (2).

(2)由于f ′(x )=k -1x ,f (x )=kx -ln x 在区间(2,+∞)上单调递增,等价于f ′(x )=k -1

x

≥0在(2,+

∞)上恒成立,由于k ≥1x ,而0<1x <12,所以k ≥12.即k 的取值范围是??????12,+∞. 【反思与感悟】

1.已知函数解析式求单调区间,实质上是求f ′(x )>0,f ′(x )<0的解区间,并注意函数f (x )的定义域.

2.含参函数的单调性要注意分类讨论,通过确定导数的符号判断函数的单调性.

3.已知函数单调性求参数可以利用给定的已知区间和函数单调区间的包含关系或转化为恒成立问题两种思路解决. 【易错防范】

1.求单调区间应遵循定义域优先的原则.

2.注意两种表述“函数f(x)在(a,b)上为减函数”与“函数f(x)的减区间为(a,b)”的区别.

3.在某区间内f′(x)>0(f′(x)<0)是函数f(x)在此区间上为增(减)函数的充分不必要条件.

4.可导函数f(x)在(a,b)上是增(减)函数的充要条件是:对?x∈(a,b),都有f′(x)≥0(f′(x)≤0),且f′(x)在(a,b)的任何子区间内都不恒为零.

【分层训练】

【基础巩固题组】(建议用时:40分钟)

一、选择题

1.函数y=f(x)的图象如图所示,则y=f′(x)的图象可能是( )

【答案】 D

【解析】由函数f(x)的图象可知,f(x)在(-∞,0)上单调递增,f(x)在(0,+∞)上单调递减,所以在(-∞,0)上,f′(x)>0;在(0,+∞)上,f′(x)<0,选项D满足.

2.函数f(x)=x·e x-e x+1的单调递增区间是( )

A.(-∞,e)

B.(1,e)

C.(e,+∞)

D.(e-1,+∞)

【答案】 D

【解析】由f(x)=x·e x-e x+1,

得f′(x)=(x+1-e)·e x,

令f′(x)>0,解得x>e-1,

所以函数f(x)的单调递增区间是(e-1,+∞).

3.(2019·青岛二中调研)若函数f(x)=x3-12x在区间(k-1,k+1)上不是单调函数,则实数k的取值范围是( )

A.k≤-3或-1≤k≤1或k≥3

B.不存在这样的实数k

C.-2

D.-3

【解析】 由f (x )=x 3

-12x ,得f ′(x )=3x 2

-12, 令f ′(x )=0,解得x =-2或x =2,

只要f ′(x )=0的解有一个在区间(k -1,k +1)内,函数f (x )在区间(k -1,k +1)上就不单调,则k -1<-2

x

,则( )

A.f (2)>f (e)>f (3)

B.f (3)>f (e)>f (2)

C.f (3)>f (2)>f (e)

D.f (e)>f (3)>f (2)

【答案】 D

【解析】 f (x )的定义域是(0,+∞),∵f ′(x )=1-ln x x

2

, ∴x ∈(0,e),f ′(x )>0,x ∈(e ,+∞),f ′(x )<0, 故x =e 时,f (x )max =f (e),

又f (2)=ln 22=ln 86,f (3)=ln 33=ln 96,

则f (e)>f (3)>f (2).

5.(2019·济宁一中模拟)函数f (x )的定义域为R ,f (-1)=2,对任意x ∈R ,f ′(x )>2,则f (x )>2x +4的解集为( ) A.(-1,1) B.(-1,+∞) C.(-∞,-1)

D.(-∞,+∞)

【答案】 B

【解析】 由f (x )>2x +4,得f (x )-2x -4>0,设F (x )=f (x )-2x -4,则F ′(x )=f ′(x )-2, 因为f ′(x )>2,所以F ′(x )>0在R 上恒成立,所以F (x )在R 上单调递增.

又F (-1)=f (-1)-2×(-1)-4=2+2-4=0,故不等式f (x )-2x -4>0等价于F (x )>F (-1),所以x >-1. 二、填空题

6.已知函数f (x )=(-x 2

+2x )e x

(x ∈R ,e 为自然对数的底数),则函数f (x )的单调递增区间为________. 【答案】 (-2,2)

【解析】 因为f (x )=(-x 2+2x )e x

所以f ′(x )=(-2x +2)e x +(-x 2+2x )e x =(-x 2+2)e x

. 令f ′(x )>0,即(-x 2

+2)e x

>0,

因为e x >0,所以-x 2

+2>0,解得-2

7.若函数f (x )=ax 3

+3x 2-x 恰好有三个单调区间,则实数a 的取值范围是________. 【答案】 (-3,0)∪(0,+∞)

【解析】 由题意知f ′(x )=3ax 2

+6x -1,由函数f (x )恰好有三个单调区间,得f ′(x )有两个不相等的零点.需满足a ≠0,且Δ=36+12a >0,解得a >-3, 所以实数a 的取值范围是(-3,0)∪(0,+∞).

8.若函数f (x )=-13x 3+12x 2+2ax 在????

??23,+∞上存在单调递增区间,则a 的取值范围是________. 【答案】 ? ??

??-19,+∞

【解析】 对f (x )求导,得f ′(x )=-x 2

+x +2a =-? ????x -122+14+2a .当x ∈????

??23,+∞时,f ′(x )的最大

值为f ′? ????23=29+2a .令29+2a >0,解得a >-19.所以a 的取值范围是? ????-19,+∞.

三、解答题

9.已知函数f (x )=x 4+a x -ln x -32,其中a ∈R ,且曲线y =f (x )在点(1,f (1))处的切线垂直于直线y =1

2

x .

(1)求a 的值;

(2)求函数f (x )的单调区间. 【答案】见解析

【解析】(1)对f (x )求导得f ′(x )=14-a x 2-1

x

由f (x )在点(1,f (1))处的切线垂直于直线y =12x 知f ′(1)=-34-a =-2,解得a =5

4

.

(2)由(1)知f (x )=x 4+54x -ln x -3

2(x >0).

则f ′(x )=x 2-4x -5

4x

2

. 令f ′(x )=0,且x >0, ∴x =5(x =-1舍去).

当x ∈(0,5)时,f ′(x )<0;当x >5时,f ′(x )>0.

所以函数f (x )的增区间为(5,+∞),减区间为(0,5).

10.(2019·成都七中检测)设函数f (x )=ax 2

-a -ln x ,g (x )=1x -e e x ,其中a ∈R ,e =2.718…为自然对数

的底数.

(1)讨论f (x )的单调性; (2)证明:当x >1时,g (x )>0. 【答案】见解析

【解析】(1)解:由题意得f ′(x )=2ax -1x =2ax 2

-1

x

(x >0).

当a ≤0时,f ′(x )<0,f (x )在(0,+∞)内单调递减. 当a >0时,由f ′(x )=0有x =12a ,

当x ∈?

?

???0,

12a 时,f ′(x )<0,f (x )单调递减; 当x ∈? ????12a ,+∞时,f ′(x )>0,f (x )单调递增.

(2)证明 令s (x )=e

x -1

-x ,则s ′(x )=e

x -1

-1. 当x >1时,s ′(x )>0,所以s (x )>s (1),即e x -1

>x ,

从而g (x )=1x -e e x =e (e x -1

-x )x e x >0.

【能力提升题组】(建议用时:20分钟)

11.(2017·山东卷)若函数e x

f (x )(e =2.718 28…是自然对数的底数)在f (x )的定义域上单调递增,则称函数f (x )具有M 性质.下列函数中具有M 性质的是( ) A.f (x )=2-x

B.f (x )=x 2

C.f (x )=3-x

D.f (x )=cos x

【答案】 A

【解析】 设函数g (x )=e x ·f (x ),对于A ,g (x )=e x ·2-x

=? ??

??e 2x

,在定义域R 上为增函数,A 正确.对于B ,

g (x )=e x ·x 2,则g ′(x )=x (x +2)e x ,由g ′(x )>0得x <-2或x >0,∴g (x )在定义域R 上不是增函数,B

不正确.对于C ,g (x )=e x ·3-x =? ????e 3x

在定义域R 上是减函数,C 不正确.对于D ,g (x )=e x

·cos x ,则g ′(x )

=2e x

cos ?

????x +π4,g ′(x )>0在定义域R 上不恒成立,D 不正确.

12.(2019·上海静安区调研)已知函数f (x )=x sin x +cos x +x 2

,则不等式f (ln x )+f ?

??

??ln 1x <2f (1)的解

集为( ) A.(e ,+∞)

B.(0,e)

C.? ??

??0,1e ∪(1,e) D.? ??

??1e ,e 【答案】 D

【解析】f (x )=x sin x +cos x +x 2

是偶函数,

所以f ? ??

??ln 1x =f(-ln x)=f(ln x). 则原不等式可变形为f(ln x)0,得x>0时,f′(x)>0. 所以f(x)在(0,+∞)上单调递增. ∴|ln x|<1?-1

e

13.若函数f (x )=x -1

3

sin 2x +a sin x 在(-∞,+∞)单调递增,则a 的取值范围是________.

【答案】 ????

??-13,13 【解析】 f ′(x )=1-23cos 2x +a cos x =1-23(2cos 2x -1)+a cos x =-43cos 2

x +a cos x +53,f (x )在R

上单调递增,则f ′(x )≥0在R 上恒成立.

令cos x =t ,t ∈[-1,1],则-43t 2+at +53≥0在[-1,1]上恒成立,即4t 2

-3at -5≤0在t ∈[-1,1]

上恒成立.

令g (t )=4t 2

-3at -5,

则?

????g (1)=4-3a -5≤0,g (-1)=4+3a -5≤0,解得-13≤a ≤1

3.

14.已知函数f (x )=a ln x -ax -3(a ∈R). (1)求函数f (x )的单调区间;

(2)若函数y =f (x )的图象在点(2,f (2))处的切线的倾斜角为45°,对于任意的t ∈[1,2],函数g (x )=

x 3+x 2·????

??f ′(x )+m 2在区间(t ,3)上总不是单调函数,求m 的取值范围.

【答案】见解析

【解析】(1)函数f (x )的定义域为(0,+∞),

且f ′(x )=

a (1-x )

x

, 当a >0时,f (x )的递增区间为(0,1), 递减区间为(1,+∞);

当a <0时,f (x )的递增区间为(1,+∞),递减区间为(0,1); 当a =0时,f (x )为常函数.

(2)由(1)及题意得f ′(2)=-a

2=1,即a =-2,

∴f (x )=-2ln x +2x -3,f ′(x )=2x -2

x

.

∴g (x )=x 3

+? ??

??m

2+2x 2-2x ,

∴g ′(x )=3x 2

+(m +4)x -2.

∵g (x )在区间(t ,3)上总不是单调函数, 即g ′(x )在区间(t ,3)上有变号零点.

由于g ′(0)=-2,∴?

????g ′(t )<0,

g ′(3)>0.

当g ′(t )<0时,

即3t 2

+(m +4)t -2<0对任意t ∈[1,2]恒成立, 由于g ′(0)<0,故只要g ′(1)<0且g ′(2)<0, 即m <-5且m <-9,即m <-9; 由g ′(3)>0,即m >-37

3.

∴-37

3

即实数m 的取值范围是? ??

??-373,-9. 【新高考创新预测】

15.(多填题)已知函数f (x )=x 3

+mx 2

+nx -2的图象过点(-1,-6),函数g (x )=f ′(x )+6x 的图象关于y 轴对称.则m =________,f (x )的单调递减区间为________. 【答案】 -3 (0,2)

【解析】 由函数f (x )的图象过点(-1,-6),得m -n =-3.① 由f (x )=x 3

+mx 2

+nx -2,得f ′(x )=3x 2

+2mx +n , 所以g (x )=f ′(x )+6x =3x 2

+(2m +6)x +n .

利用导数求函数的单调区间

利用导数求函数的单调区间 一学习目标: 1结合实例,找出函数的单调性与导数的关系; 2会利用导数研究函数的单调性,会求简单函数的单调区间。 二重点、难点: 重点:求函数的单调区间. 难点:求含参数函数的单调区间。. 三教材分析 本节课主要对函数单调性求法的学习; 它是在学习导数的概念的基础上进行学习的,同时又为导数的应用学习奠定了基础,所以他在教材中起着承前启后的重要作用;(可以看看这一课题的前后章节来写) 它是历年高考的热点、难点问题 四教学方法 开放式探究法、启发式引导法、小组合作讨论法、反馈式评价法 五教学过程 预习学案: 1.函数单调性的定义是什么?函数的单调区间怎样求? 2.讨论以下问题 (1)求函数y=x的导数,判断其导数的符号; (2)求函数y=x2的导数,判断其导数的符号. 3.根据上述问题,思考导数的符号与函数的单调性之间的关系,并加以总结: 设函数y=f(x)在区间(a,b)内可导: 如果在(a,b)内,______________,则f(x)在此区间是增函数; 如果在(a,b)内,______________,则f(x)在此区间是减函数. 4.根据上述总结,思考一下,函数在某个区间上是单调递增函数,是不是其导数就一定大于零呢?如果函数在某个区间上是单调递减函数,是不是其导数就一定小于零?能否举个例子说明一下?

小测验: 1.当0>x 时,()x x x f 4+ =的单调减区间 2.函数53 123++-=x x y 的单调增区间为_______________,单调减区间为______________. 利用导数求函数的单调区间(讲授学案)——冯秀转 题型:求函数的单调区间 例1、求下列函数的单调区间; (1)x x y 23+= (2)()221 ln x x x f -= 注意:求函数单调区间时必须先考虑函数的定义域. (小结)求函数单调区间的步骤: 练习:求()x e x x f 2=的单调区间。

1.3.1函数的单调性与导数教案

§1.3.1函数的单调性与导数 【教学目标】 1.正确理解利用导数判断函数的单调性的原理; 2.掌握利用导数判断函数单调性的方法。 【教学重点】利用导数判断函数单调性。 【教学难点】利用导数判断函数单调性。 【内容分析】 以前,我们用定义来判断函数的单调性. 对于任意的两个数x 1,x 2∈I ,且当x 1<x 2时,都有f (x 1)<f (x 2),那么函数f (x )就是区间I 上的增函数. 对于任意的两个数x 1,x 2∈I ,且当x 1<x 2时,都有f (x 1)>f (x 2),那么函数f (x )就是区间I 上的减函数。 在函数y=f(x)比较复杂的情况下,比较f(x 1)与f(x 2)的大小并不很容易. 如果利用导数来判断函数的单调性就比较简单。 【教学过程】 一、复习引入 1. 常见函数的导数公式: 0'=C ;1)'(-=n n nx x ;x x cos )'(sin =;x x sin )'(cos -=. 2.法则1 )()()]()([' ' ' x v x u x v x u ±=±. 法则2 [()()]'()()()'()u x v x u x v x u x v x '=+, [()]'()Cu x Cu x '=. 法则3 ' 2 '' (0)u u v uv v v v -??=≠ ??? . 3.复合函数的导数:设函数u =?(x )在点x 处有导数u ′x =?′(x ),函数y =f (u )在点x 的对应点u 处有导数y ′u =f ′(u ),则复合函数y =f (? (x ))在点x 处也有导数,且x u x u y y '''?= 或f ′x (? (x ))=f ′(u ) ?′(x ). 4.复合函数求导的基本步骤是:分解——求导——相乘——回代. 5.对数函数的导数: x x )'(ln = e x x a a log 1 )'(log =. 6.指数函数的导数:x x e e =)'(; a a a x x ln )'(=. 二、讲解新课 1. 函数的导数与函数的单调性的关系: 我们已经知道,曲线y=f(x)的切线的斜率就是函数y=f(x)的导数.从函数 342+-=x x y 的图像 可以看到: 在区间(2,∞+)内,切线的斜率为正,函数y=f(x) 的 y =f (x )=x 2-4x +3 切线的斜率 f ′(x ) (2,+∞) 增函数 正 >0 (-∞,2) 减函数 负 <0 3 2 1 f x () = x 2-4?x ()+3 x O y B A

用导数求函数的单调性

用导数求函数的单调性 南江县第四中学 何其孝 指导老师:范永德 一、第一段:点明课题、展示目标、自主学习 1、展示学习目标 (1)理解)0(0(x)f <>'时,f(x)在0x x =附近单调性; (2)掌握用导数求函数的单调区间。 2、板书课题:用导数求函数的单调性 3、学生围绕学习目标看教材第89-93页,进行自主学习。(约10分钟) 二、第二段:合作探究、启发点拨 1、探究1:怎样从导数的几何意义,判断)0(0(x)f <>'时,f(x)在0x x =附近单调性?点拨:以直代曲 探究2:用导数求函数单调性的步骤 点拨:(1)求定义域 (2)求导函数(x)f ' (3)求)0(0(x)f <>',判断函数的单调性 (4)写出f(x)的单调区间 2、应用举例 例 判断下列函数的单调性,写出f(x)区间 (1) )(0,x x,-sinx f(x)π∈= (2) 12432f(x)23+-+=x x x

解:f′(x)=6x2 + 6x -24 当f′(x)>0,解得:2 1712171+->--',判断函数的单调性 (4)写出f(x)的单调区间 作业:课本第98页 习题3.3A 组1、(3) (4) 2、(3) (4)

利用导数研究函数的单调性

利用导数研究函数的单调性 一、选择题 1.函数f (x )=x ln x ,则( ) A.在(0,+∞)上递增 B.在(0,+∞)上递减 C.在? ? ???0,1e 上递增 D.在? ? ???0,1e 上递减 解析 f (x )的定义域为(0,+∞),f ′(x )=ln x +1,令f ′(x )>0得x >1 e , 令f ′(x )<0得00. 答案 C 3.已知函数f (x )=1 2x 3+ax +4,则“a >0”是“f (x )在R 上单调递增”的 ( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 解析 f ′(x )=3 2x 2+a ,当a ≥0时,f ′(x )≥0恒成立,故“a >0”是“f (x ) 在R 上单调递增”的充分不必要条件. 答案 A 4.已知函数y =f (x )的图象是下列四个图象之一,且其导函数y =f ′(x )的图象如图所示,则该函数的图象是( )

解析由y=f′(x)的图象知,y=f(x)在[-1,1]上为增函数,且在区间(-1,0)上增长速度越来越快,而在区间(0,1)上增长速度越来越慢. 答案 B 5.设函数f(x)=1 2 x2-9ln x在区间[a-1,a+1]上单调递减,则实数a的取值 范围是( ) A.(1,2] B.(4,+∞] C.[-∞,2) D.(0,3] 解析∵f(x)=1 2 x2-9ln x,∴f′(x)=x- 9 x (x>0), 当x-9 x ≤0时,有00且a+1≤3,解得10得 x>1. 答案(1,+∞) 7.已知a≥0,函数f(x)=(x2-2ax)e x,若f(x)在[-1,1]上是单调减函数,则实数a的取值范围是________.

1.3.1函数的单调性与导数教案

1.3.1函数的单调性与导数教案 谷城一中杨超 教学目标 1.正确理解利用导数判断函数的单调性的原理; 2.掌握利用导数判断函数单调性的方法 教学重点:探索函数的单调性与导数的关系,求单调区间. 教学难点:利用导数判断函数的单调性 教学过程 一.回顾与思考 1、函数单调性的定义是什么? 2、判断函数的单调性有哪些方法?比如判断y=x2的单调性,如何进行?(分别用定义法、图像法完成) 3、函数x =怎么判断单调性呢?还有其他方法吗? 22+ x y ln 二.新知探究函数的单调性与导数之间的关系 【情景引入】函数是客观描述世界变化规律的重要数学模型,研究函数时,了解函数的增与减、增减的快与慢以及函数的最大值或最小值等性质是非常重要的.通过研究函数的这些性质,我们可以对数量的变化规律有一个Array基本的了解.函数的单调性与函数的导数一样都是反 映函数变化情况的,那么函数的单调性与函数的导数 是否有着某种内在的联系呢? 【思考】如图(1),它表示跳水运动中高度h随 时间t变化的函数2 =-++的图像,图 h t t t () 4.9 6.510 (2)表示高台跳水运动员的速度v随时间t变化的函 数' ==-+的图像.运动员从起跳到最 v t h t t ()()9.8 6.5 高点,以及从最高点到入水这两段时间的运动状态有什么区别? 【引导】随着时间的变化,运动员离水面的高度的变化有什么趋势?是逐渐增大还是逐步减小? 【探究】通过观察图像,我们可以发现: (1)运动员从起点到最高点,离水面的高度h随时间t的增加而增加,即() h t是增函数.相应地,' =>. v t h t ()()0 Array(2)从最高点到入水,运动员离水面的 高h随时间t的增加而减少,即() h t是减函 数.相应地' v t h t ()()0 =<, 【思考】导数的几何意义是函数在该点 处的切线的斜率,函数图象上每个点处的切 线的斜率都是变化的,那么函数的单调性与

知识点一-导数与函数的单调性

1.函数的单调性:在某个区间( a,b )内,如果f (x) . 0 ,那么函数y = f (x)在这个区间内单调递增;如果f (x) :::0,那么函数y = f(x)在这个区间内单调递减?如果f(x)=0,那么函数y = f(x)在这个区间上是常数函数? 注:函数y = f (x)在(a,b )内单调递增,贝U f (x)亠0,f (x) . 0是y = f (x)在(a,b )内单调递增的充分不必要条件? 2.函数的极值:曲线在极值点处切线的斜率为0,并且,曲线在极大值点左侧切线的斜率为正,右侧为 负;曲线在极小值点左侧切线的斜率为负,右侧为正. 一般地,当函数 y = f(x)在点沧处连续时,判断f(X。)是极大(小)值的方法是: (1)如果在X。附近的左侧f ' (x) 0 ,右侧f'(x)::: ,那么f(X0)是极大值. (2)如果在X o附近的左侧f '(X):::0 ,右侧f'(x) 0,那么f(X0)是极小值. 注:导数为0的点不一定是极值点 知识点一:导数与函数的单调性 方法归纳: 在某个区间(a,b )内,如果f (x) ?0,那么函数y = f (x)在这个区间内单调递增;如果「(x) :::0,那 么函数y二f(x)在这个区间内单调递减?如果f (x) =0,那么函数y二f(x)在这个区间上是常数函数?注:函数y = f (x)在(a,b )内单调递增,贝U f (x) _ 0 , f (x) 0是y = f (x)在(a,b )内单调递增的 充分不必要条件? 例1】(B类)已知函数f(x)=x3 bx2 cx d的图象过点P(0, 2),且在点M(-1, f(-1))处的切线方程为6x「y ?7 = 0 ? (I)求函数y = f(x)的解析式;(n)求函数y=f(x)的单调区间? 【解题思路】注意切点既在切线上,又原曲线上?函数f(x)在区间[a,b]上递增可得:f'(x)_0 ;函数 f (x)在区间[a,b]上递减可得:f'(x) E0. 3 【例2】(A类)若f(x)二ax x在区间[—1,1]上单调递增,求a的取值范围? 【解题思路】利用函数 f (x)在区间[a,b]上递增可得:f'(x)_0;函数f(x)在区间[a,b]上递减可得: f '(x)岂0.得出恒成立的条件,再利用处理不等式恒成立的方法获解 a 【例 3 】(B 类)已知函数f(x)=l nx,g(x) (a 0),设F(x^ f (x) - g(x). x (I)求函数F(x)的单调区间;

《3.3.1函数的单调性与导数》教学案

3.3.1《函数的单调性与导数》教学案 教学目标: 1.了解可导函数的单调性与其导数的关系; 2.能利用导数研究函数的单调性,会求函数的单调区间,对多项式函数一般不超过三次; 教学重点: 利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间 教学难点: 利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间 教学过程: 一.创设情景 函数是客观描述世界变化规律的重要数学模型,研究函数时,了解函数的赠与减、增减的快与慢以及函数的最大值或最小值等性质是非常重要的.通过研究函数的这些性质,我们可以对数量的变化规律有一个基本的了解.下面,我们运用导数研究函数的性质,从中体会导数在研究函数中的作用. 二.新课讲授 1.问题:图3.3-1(1),它表示跳水运动中高度h 随时间t 变化的函数2() 4.9 6.510h t t t =-++的图像,图3.3-1(2)表示高台跳水运动员的速度v 随时间t 变化的函数'()()9.8 6.5v t h t t ==-+的图像. 运动员从起跳到最高点,以及从最高点到入水这两段时间的运动状态有什么区别? 通过观察图像,我们可以发现: (1)运动员从起点到最高点,离水面的高度h 随时间t 的增加而增加,即()h t 是增函数.相应地,'()()0v t h t =>. (2) 从最高点到入水,运动员离水面的高度h 随时间t 的增加而减少,即()h t 是减 函数.相应地,'()()0v t h t =<. 2.函数的单调性与导数的关系 观察下面函数的图像,探讨函数的单调性与其导数正负的关系. 如图3.3-3,导数'0()f x 表示函数()f x 在 点00(,)x y 处的切线的斜率. 在0x x =处,'0()0f x >,切线是“左下右上”式的,

利用导数判断函数的单调性

高二(下)数学理科学案9、10、11:1.3.1利用导数判断函数的单调性 【知识目标】 (一)求函数)(x f 单调区间的方法: 1.如果在),(b a 内,0)(/ >x f ,则)(x f 在此区间是增函数,),(b a 为)(x f 的单调增区间; 2.如果在),(b a 内,0)(/x f ,则)(x f 在此区间是增函数,),(b a 为)(x f 的单调增区间; (2).如果在),(b a 内,0)(/

【典型例题】 例题1(1)确定函数422+-=x x y 的单调区间; (2)找出函数14)(23-+-=x x x x f 的单调区间; (3)求函数0(ln 1)(>=x x x x f 且1≠x )的单调区间. 例题2求下列函数的单调区间 (1)x e x f x -=)(;(2)x e x x f ln 2)(2-=; (3)x e x x x f -++=)1()(2 例题3 (1)求方程0=7+6x -2x 23在区间(0,2)上的根的个数. (2)证明方程x -12 sinx =0有惟一解.

导数与函数的单调性练习题

2.2.1导数与函数的单调性 基础巩固题: 1.函数f(x)= 21 ++x ax 在区间(-2,+∞)上为增函数,那么实数a 的取值范围为( ) A.021 C.a>2 1 D.a>-2 答案:C 解析:∵f(x)=a+221+-x a 在(-2,+∞)递增,∴1-2a<0,即a>2 1 . 2.已知函数f (x )=x 2+2x +a ln x ,若函数f (x )在(0,1)上单调,则实数a 的取值范围是( ) A .a ≥0 B .a <-4 C .a ≥0或a ≤-4 D .a >0或a <-4 答案:C 解析:∵f ′(x )=2x +2+a x ,f (x )在(0,1)上单调, ∴f ′(x )≥0或f ′(x )≤0在(0,1) 上恒成立,即2x 2+2x +a ≥0或2x 2+2x +a ≤0在(0,1)上恒成立, 所以a ≥-(2x 2+2x )或a ≤-(2x 2+2x )在(0,1)上恒成立.记g (x )=-(2x 2+2x ),02 [解析] 若y ′=x 2+2bx +b +2≥0恒成立,则Δ=4b 2-4(b +

利用导数判断单调性例题精讲

利用导数判断函数的单调性 【学习目标】会利用导数研究函数的单调性,掌握分类讨论思想的应用. 【重点、难点】利用导数研究函数的单调性. 【自主学习】 1、设函数()y f x =在区间(,)a b 内可导.(1)如果在(,)a b 内, ()0f x '> ,则()f x 在此区间是增函数;(2)如果在(,)a b 内, ()0f x '< ,则()f x 在此区间是减函数. 2、()/0f x <是()f x 为减函数的( A ) A .充分而不必要条件 B.必要而不充分条件 C .充分必要条件 D.既不充分也不必要条件 【自测】 求下列函数的单调区间: (1)3241y x x x =-+- (2)2()f x x x =+ 解:(1)函数的单调递增区间为:413413(,),(,)33 -+-∞+∞ 函数的单调递减区间为:413413(,)33 -+ (2)函数的单调递增区间为:(,2),(2,)-∞-+∞ 函数的单调递减区间为:(2,2)- 课内探究案 【精讲点拨】 例1、 求下列函数的单调区间: (1)()1x f x e x =-- (2)()ln f x x x =- 解:(1)函数的单调递增区间为:(0,)+∞ 函数的单调递减区间为:(,0)-∞ (2)函数的单调递增区间为:(1,)+∞

函数的单调递减区间为:(0,1) 例2、 证明:函数16()f x x x =+ 在()0,4上是减函数 证明:222 221616()1(0,4)16 160 0,4.x f x x x x x x -'=-=∈∴<∴-<∴ 函数在()上是减函数 例3、 若函数321y x x mx =+++在(),-∞+∞上是增函数,求实数m 的取值范围。 解:232y x x m '=++ 4120 1 3 R R m m '∴≥∴?=-≤∴≥ 2函数在上是增函数 y =3x +2x+m 0在上恒成立 【当堂检测】 函数11 y x =+的减区间是 (,1),(1,)-∞--∞ 利用导数判断函数的单调性教学案 课后拓展案 A 组 1、求函数32()15336f x x x x =--+的增区间。 解:函数的递增区间: ∞∞(-,-1),(11,+) 2、求函数2()2ln f x x x =-的减区间。 解:函数的定义域(0,)+∞

函数的单调性与导数教学设计

《函数的单调性与导数》教学设计 教材分析 1、内容分析 导数是微积分的核心概念之一,是高中数学教材新增知识,在研究函数性质时有独到之处,体现了现代数学思想.本节的教学内容属导数的应用,是在学习了导数的概念、运算和几何意义的基础上学习的内容.学好它既可加深对导数的理解,又为研究函数的极值和最值打下了基础. 由于学生在高一已经掌握了函数单调性的定义,并会用定义判定函数在给定区间上的单调性.通过本节课的学习应使学生体验到,用导数判断函数的单调性比用定义要简捷的多(尤其对于三次和三次以上的多项式函数,或图像难以画出的函数而言),充分展示了导数的优越性. 2、学情分析 在必修一中,学生学习了单调函数的定义,并会用定义判断或证明函数在给定区间上的单调性,在前几节,学生学习了导数的概念、几何意义及运算法则,已经掌握了利用导数研究函数单调性的必备知识. 用定义证明函数在给定区间的单调性的方法是作差、变形、判断符号.而对大部分函数而言,变形环节是非常繁琐,甚至是无法做到的,并且不清楚“给定区间”是如何给出的,这就要求同学们积极探索更好的方法来判断函数的单调性和探求函数的单调区间,以此来激发学生的学习兴趣. 教学目标 依据新课标纲要和学生已有的认知基础和本节的知识特点,我制定了以下教学目标: 1、知识与技能目标: 借助于函数的图象了解函数的单调性与导数的关系;培养学生的观察能力、归纳能力,增强数形结合的思维意识.

2、过程与方法目标: 会判断具体函数在给定区间上的单调性;会求具体函数的单调区间. 3、情感、态度与价值观目标: 通过在教学过程中让学生多动手、多观察、勤思考、善总结,引导学生养成自主学习的学习习惯。 教学重点、难点 教学重点:1、利用导数判断函数的单调性. 2、会求不超过三次的多项式的单调区间。 教学难点:1、函数的单调性与导数的关系 2、提高灵活应用导数法解决有关函数单调性问题的能力. 教学重难点的解决方法 通过问题激发学生求知欲,使学生主动参与教学实践活动,在教师的指导下发现、分析和解决问题;通过几何画板的动态演示,使抽象的知识直观化、形象化,以促进学生的理解. 教法设计: 1、自主探究法:让学生自己发现问题,自己归纳总结,自己评析解题对错,从而提高学生的参与意识和数学表达能力. 2、比较法:对同一个问题,采用不同的方法,从中体会导数法的优越性. 教学媒体 根据本节课的教学要求及学生学习的需要,我对本节课的教学媒体设计如下 1:多媒体辅助教学:制作直观,有效地多媒体课件,可以节省课堂时间,也给学生直观认识和感觉; 2:投影仪的辅助教学:利用投影把学生的解题过程及方法及时展示,可以提高学生学习数学的兴趣. 课型:新授课 教学过程 教学过程设计意图

(完整版)利用导数研究函数的单调性(超好复习题型)

利用导数研究函数的单调性 考点一 函数单调性的判断 知识点: 函数()f x 在某个区间(),a b 内的单调性与其导数的正负关系 (1)若 ,则()f x 在(),a b 上单调递增; (2)若 ,则()f x 在(),a b 上单调递减; (3)若 ,则()f x 在(),a b 是常数函数. 1、求下列函数的单调区间. (1)()ln f x x e x =+ (2)2 1()ln 2 f x x x =- (3)()()3x f x x e =- (4)()2x f x e x =- (5)()3ln f x x x =+ (6)ln ()x f x x = (7)2()(0)1 ax f x a x =>+ (8)32333()x x x x f x e +--=

2、讨论下列函数的单调性. (1)()ln (1),f x x a x a R =+-∈ (2)3(),f x x ax b a R =--∈ (3)2 ()ln ,2 x f x a x a R =-∈ (4)32(),,f x x ax b a b R =++∈ (5)2()(22),0x f x e ax x a =-+> (6)2 1()2ln (2),2 f x x a x a x a R =-+-∈ (7)2()1ln ,0f x x a x a x =-+-> (8)221 ()(ln ),x f x a x x a R x -=-+∈

3、已知函数32(),f x ax x a R =+∈在4 3 x =-处取得极值. (1)确定a 的值; (2)若()()x g x f x e =,讨论函数()g x 的单调性. 4、设2()(5)6ln ,f x a x x a R =-+∈,曲线()y f x =在点()1,(1)f 处的切线与y 轴相交于点()0,6. (1)确定a 的值; (2)求函数()f x 的单调区间. 5、(2016全国卷2节选)讨论2()2 x x f x e x -=+的单调性, 并证明当0x >时,(2)20x x e x -++>. 6、(2016年全国卷1节选)已知函数2()(2)(1)x f x x e a x =-+-.讨论()f x 的单调性.

专题一:导数与函数的单调性

专题一:导数与函数的单调性 题型一:求函数的单调区间 1.函数()2 ln f x x x =的减区间为( ) A. ( B. ?+∞???? C. ?-∞ ?? D. ? ?? 2.设()f x '是函数()f x 的导函数,()f x '的图象如图所示,则()y f x =的图象是( ) A B C D 3.设函数f (x )在R 上可导,其导函数为f ′(x ),且函数f (x )在x =-2处取得极小值,则函数y =xf ′(x )的图像可能是( ) A B C D 4. 判断函数2x y x e =-的单调性. 题型二: 含有参数的单调区间 1. 求函数()1x f x e ax =--的单调区

2. 求函数()21ln 2f x x ax =+的单调区间 3.讨论函数()()2112x f x x e ax =--的单调性 题型三:已知单调性求参数取值范围 1. 已知()1x f x e ax =--在区间[]-2,3为减函数,求a 的取值范围。 2. 已知()()3212+33 f x x bx b x =+++在R 上是单调递增函数,求b 的范围。若函数()f x 不是单调函数b 范围又是多少? 3.已知()2 1+x e f x ax =在R 是单调函数,求a 的取值范围 4.若函数()22ln f x x x =-在其定义域内的一个子区间()1,1k k -+内不是单调函数,求实数k 的取值范围 5.()()21ln 202 f x x ax x a =--≠存在单调递减区间,求a 的取值范围。

利用导数研究函数的单调性和极值(答案)

小题快练 1.(2013全国Ⅰ卷理)设曲线1 1 x y x +=-在点(32),处的切线与直线10ax y ++=垂直,则a =( D ) A .2 B .12 C .1 2 - D .2- 2.(2013全国Ⅰ卷改编)设函数2 )1()(x e x x f x --=,则函数()f x 的单调递增区间 为 ,单调递减区间为 . 【解析】(Ⅰ) 当1k =时, ()()21x f x x e x =--,()()()1222x x x x f x e x e x xe x x e '=+--=-=- 令()0f x '=,得10x =,2ln 2x = 当x 变化时,()(),f x f x '的变化如下表: 右表可知,函数f x 的递减区间为0,ln 2,递增区间为,0-∞,ln 2,+∞. 3.(2013湖北理)若f(x)=2 1ln(2)2 x b x - ++∞在(-1,+)上是减函数,则b 的取值范围是(C ) A.[-1,+∞] B.(-1,+∞) C.(-∞,-1) D.(-∞,-1) 4.已知函数x bx ax x f 3)(2 3 -+=在1±=x 处取得极值. (1)讨论)1(f 和)1(-f 是函数f (x )的极大值还是极小值; (2)过点)16,0(A 作曲线y= f (x )的切线,求此切线方程. (1)解:323)(2-+='bx ax x f ,依题意,0)1()1(=-'='f f ,即 ?? ?=--=-+. 0323, 0323b a b a 解得0,1==b a . ∴)1)(1(333)(,3)(2 3 -+=-='-=x x x x f x x x f . 令0)(='x f ,得1,1=-=x x . 若),1()1,(∞+--∞∈Y x ,则0)(>'x f ,故 f (x )在)1,(--∞上是增函数, f (x )在),1(∞+上是增函数. 若)1,1(-∈x ,则0)(<'x f ,故f (x )在)1,1(-上是减函数. 所以,2)1(=-f 是极大值;2)1(-=f 是极小值. (2)解:曲线方程为x x y 33 -=,点)16,0(A 不在曲线上. 设切点为),(00y x M ,则点M 的坐标满足03 003x x y -=. 因)1(3)(2 00-='x x f ,故切线的方程为))(1(3020 0x x x y y --=- 注意到点A (0,16)在切线上,有 )0)(1(3)3(16020030x x x x --=-- 化简得83 0-=x ,解得20-=x . 所以,切点为)2,2(--M ,切线方程为0169=+-y x .

利用导数研究函数的单调性问题

利用导数研究函数的单调性问题 浙江省湖州中学 李连方 一.学情分析 本人任教的两个班级均侧文,数学基础较薄弱.学生已基本掌握利用导数对常系数的单调区间求解,但是对含参数单调性问题常常一筹莫展,找不到分类的标准或者分类不合理、不完整. 二.教学目标 用导数讨论函数的单调性,是运用导数解决函数的极值、函数的最值的基础,所以本节复习课首先要让学生理解函数单调性和导数的关系,会用导数讨论含参函数的单调性,让学生理解含参函数单调性问题实质是解不等式问题,而解不等式问题实质是根的问题.其次,逐步使学生意识到要合理准确地分类讨论问题,体会到分类讨论思想就是当问题所给的对象不能进行统一研究时,就需要地对研究对象按某个标准分类,然后对每一类分别研究得出结论,然后综合各类结果得到整个问题的解答,其实质是“化整为零,各个击破,再积零为整”.在分类讨论时,时刻注意:一要分类对象确定,标准统一;二要不重复,不遗漏;三要分层次,不越级讨论. 三.教学重点和难点 本节课的教学重点是能使学生明确产生分类讨论的标准,能合理、准确和完整地进行分类讨论.本节课的教学难点是分类标准难以把握,本节课试图从方程的根的角度来突破难点. 四.教学设计 【例1】(《创计新设》第42页)已知函数2()ax f x x e -=?,a R ∈. (Ⅰ)当=1a 时,求函数()y f x =的图象在点()()1,1f --处的切线方程; (Ⅱ)讨论函数()y f x =的单调性. 分析:(Ⅰ)略;(Ⅱ)由题意得() 2()2ax f x x ax e -'=-?, 其中22=0x ax -根为0x =或2x a = ()0a ≠. ①当=0a 时,若0x <,则()0f x '<;若0x >,则()0f x '>. 所以当=0a 时,函数f (x )在区间()0-∞,上为减函数,在区间()0+∞,上为增函数. ②当0a >时,当0x <或2x a >时,()f x ';当20x a <<时,()f x '. 所以函数()y f x =在区间()0-∞,与2 +a ??∞ ???,上为减函数,在20a ?? ???,上为增函数. 【设计意图】1.让学会认识到函数的单调性、函数的单调区间和极值等问题,最终归结到判断()f x '的符号问题上,而()0f x '>或()0f x '<,最终可转化为解不等式问题.若含参数,则含参数的不等式的解法常常涉及到参数的讨论问题; 2.让学生体会解不等式实质在解不等式对应的方程的根. 【例2】(2008年浙江省高考试题改编)已知a 是实数,函数())f x x a = -. (Ⅰ)讨论函数()f x 的单调区间; 分析:函数的定义域为[0)+∞,,

专题2.13 利用导数求函数的单调性、极值、最值(解析版)

第十三讲 利用导数求函数的单调性、极值 、最值 【套路秘籍】 一.函数的单调性 在某个区间(a ,b )内,如果f ′(x )>0,那么函数y =f (x )在这个区间内单调递增;如果f ′(x )<0,那么函数y =f (x )在这个区间内单调递减. 二.函数的极值 (1)一般地,求函数y =f (x )的极值的方法 解方程f ′(x )=0,当f ′(x 0)=0时: ①如果在x 0附近的左侧f ′(x )>0,右侧f ′(x )<0,那么f (x 0)是极大值; ②如果在x 0附近的左侧f ′(x )<0,右侧f ′(x )>0,那么f (x 0)是极小值. (2)求可导函数极值的步骤 ①求f ′(x ); ②求方程f ′(x )=0的根; ③考查f ′(x )在方程f ′(x )=0的根附近的左右两侧导数值的符号.如果左正右负,那么f (x )在这个根处取得极大值;如果左负右正,那么f (x )在这个根处取得极小值. 三.函数的最值 (1)在闭区间[a ,b ]上连续的函数f (x )在[a ,b ]上必有最大值与最小值. (2)若函数f (x )在[a ,b ]上单调递增,则f (a )为函数的最小值,f (b )为函数的最大值;若函数f (x )在[a ,b ]上单调递减,则f (a )为函数的最大值,f (b )为函数的最小值. 【套路修炼】 考向一 单调区间 【例1】求下列函数的单调区间: (1)3 ()23f x x x =-; (2)2 ()ln f x x x =-. (3))f (x )=2x -x 2. 【答案】见解析 【解析】(1)由题意得2 ()63f x x '=-. 令2 ()630f x x '=->,解得2x <- 或2 x >. 当(,2x ∈-∞- 时,函数为增函数;当)2 x ∈+∞时,函数也为增函数. 令2 ()630f x x '=-<,解得22x - <<.当(22 x ∈-时,函数为减函数.

《导数在研究函数中的应用—函数的单调性与导数》说课稿

《导数在研究函数中的应用—函数的单调性与导数》说课稿 周国会 一、教材分析 1教材的地位和作用 “函数的单调性和导数”这节新知识是在教材选修1—1,第三章《导数及其应用》的函数的单调性与导数.本节计划两个课时完成。在练习解二次不等式、含参数二次不等式的问题后,结合导数的几何意义回忆函数的单调性与函数的关系。例题精讲强化函数单调性的判断方法,例题的选择有梯度,由无参数的一般问题转化为解关于导函数的不等式,再解关于含参数的问题,最后提出函数单调性与导数关系逆推成立。培养学生数形结合思想、转化思想、分类讨论的数学思想。能利用导数研究函数的单调性;会求函数的单调区间.在高考中常利用导数研究函数的单调性,并求单调区间、极值、最值、以及利用导数解决生活中的优化问题。其中利用导数判断单调性起着基础性的作用,形成初步的知识体系,培养学生掌握一定的分析问题和解决问题的能力。 (一)知识与技能目标: 1、能探索并应用函数的单调性与导数的关系求单调区间; 2、能解决含参数函数的单调性问题以及函数单调性与导数关系逆推。 (二)过程与方法目标: 1、通过本节的学习,掌握用导数研究函数单调性的方法。 2、培养学生的观察、比较、分析、概括的能力,数形结合思想、转化思想、分类讨论的数学思想。 (三)情感、态度与价值观目标: 1、通过在教学过程中让学生多动手、多观察、勤思考、善总结, 2、培养学生的探索精神,渗透辩证唯物主义的方法论和认识论教育。激发学生独立思考和创新的意识,让学生有创新的机会,充分体验成功的喜悦,开发了学生的自我潜能。(四)教学重点,难点 教学重点:利用导数研究函数的单调性、求函数的单调区间。 教学难点:探求含参数函数的单调性的问题。 二、教法分析 针对本知识点在高考中的地位、作用,以及学生前期预备基础,应注重理解函数单调性与导数的关系,进行合理的推理,引导学生明确求可导函数单调区间的一般步骤和方法,无参数的一般问题转化为解关于导函数的不等式。解关于含参数的问题,注意分类讨论点的确认,灵活应用已知函数的单调性求参数的取值范围。采用启发式教学,强调数形结合思想、转化思想、分类讨论的数学思想的应用,培养学生的探究精神,提高语言表达和概括能力,

《函数的单调性与导数》-教学设计

《函数的单调性与导数》-教学设计

《函数的单调性与导数》教学设计 一、设计理念 基于新课标提出的教学要面向全体学生、提倡探究性学习,我倡导“主动参与,乐于探究,交流合作与联系实际”的教学理念,借助多媒体的简洁性、直观性和交互性,注重与现实生活的紧密性,充分调动每位学生的学习热情,建立以“学为主体、教为主导、疑为主轴、动为主线”的教学模式。 二、教学分析 (一)教学内容分析 《函数的单调性与导数》是人教版《普通高中课程标准实验教科书数学》选修2-2第一章《导数及其应用》的内容.本节课主要学习函数的单调性和导数的关系;能利用导数研究函数的单调性;会求函数的单调区间.本节的教学内容属于导数的应用,是在学生学习了导数的概念、计算、几何意义的基础上学习的内容,学好它既可加深对导数的理解,又可为后面研究函数的极值和最值打好基础. (二)教学对象分析 学生在高一时已经掌握了函数单调性的定义,并会用定义、图像的方法解决函数单调性问题。高二的学生对高中的数学体系已经有了一定的认识,具有了较强的分析问题、解决问题的能力. (三)教学环境分析 针对学生面临的问题和本课的重难点,我决定运用文字、视频、几何画板等多媒体资源进行辅助教学,多媒体教学具有信息量大、直

观性强的特点,能提高教学效率,取得更好的教学效果,因此在多媒体教室授课. 三、教学目标 根据新课标要求和对教材的分析,并结合学生的认知特点,确定如下几个方面为本课的教学目标: (一)知识与技能 1.探索函数的单调性与导数的关系; 2.会利用导数判断函数的单调性并会求函数的单调区间; 3.探索三次函数的单调性与系数之间的关系. (二)过程与方法 1.通过对函数单调性与导数关系的探究,让学生经历从具体到抽象,从感性到理性,从特殊到一般的认知过程; 2.培养学生观察、分析、归纳、抽象的能力和语言的表达能力,领会由特殊到一般,一般到特殊的数学方法,渗透数形结合思想和化归的思想. (三)情感态度价值观 1.通过创设情境,激发学生学习数学的情感,培养其严谨治学的态度; 2.通过在教学过程中让学生多动手、细观察、勤思考、善总结,培养学生的探究精神. 四、教学重难点 对于函数的单调性与导数的关系,学生的认知困难主要体现在:

(完整版)利用导数求函数单调性题型全归纳

利用导数求函数单调性题型全归纳 一.求单调区间 二.函数单调性的判定与逆用 三.利用单调性求字母取值范围 四.比较大小 五.证明不等式 六.求极值 七.求最值 八.解不等式 九.函数零点个数(方程根的个数) 十.探究函数图像 一.求单调区间 例1. 已知函数2()ln (0,1)x f x a x x a a a =+->≠,求函数)(x f 的单调区间 解: ()ln 2ln 2(1)ln x x f x a a x a x a a '=-=-++. 则令()()g x f x '=,因为当0,1a a >≠,所以2 ()2ln 0x g x a a '=+> 所以()f x '在R 上是增函数,又(0)0f '=,所以不等式()0f x '>的解集为(0,)∞+, 故函数()f x 的单调增区间为(0,)∞+ 减区间为:(0)-∞, 变式:已知()x f x e ax =-,求()f x 的单调区间 解:' ()x f x e a =-,当0a ≤时,' ()0f x >,()f x 单调递增 当0a >时,由' ()0x f x e a =->得:ln x a >,()f x 在(ln ,)a +∞单调递增 由' ()0x f x e a =-<得:ln x a <,()f x 在(ln )a -∞,单调递增 综上所述:当0a ≤时,()f x 的单调递增区间为:-∞+∞(,),无单调递减区间 当0a >时,()f x 的单调递增区间为:(ln ,)a +∞,递减区间为:(ln )a -∞, 二.函数单调性的判定与逆用 例2.已知函数32 ()25f x x ax x =+-+在1132 (,)上既不是单调递增函数,也不是单调递减 函数,求正整数a 的取值集合 解:2 ()322f x x ax '=+-

相关主题
文本预览
相关文档 最新文档