当前位置:文档之家› ±800kV换流阀研制

±800kV换流阀研制

±800kV换流阀研制
±800kV换流阀研制

浮阀塔设计

化工原理课程设计Ⅱ ——浮阀塔的选型设计 专业班级: 姓名: 学号: 指导教师: 成绩:

目录 前言--------------------------------------------------------1设计任务书------------------------------------------------2 设计计算及验算------------------------------------------3 塔板工艺尺寸计算---------------------------------------------3 塔的流体力学验算---------------------------------------------7 塔板负荷性能图------------------------------------------------9 分析与讨论-----------------------------------------------13 结果列表--------------------------------------------------14

化工原理课程设计任务书 拟建一浮阀塔用以分离甲醇—水混合物,决定采用F1型浮阀(重阀),是根据以下条件做出浮阀塔的设计计算。已知条件: 要求: 1.进行塔的工艺计算和验算 2.绘制负荷性能图 3.绘制塔板的结构图 4.将结果列成汇总表

5.分析并讨论 前言 浮阀塔结构简单,有两种结构型式,即条状浮阀和盘式浮阀,它们的操作和性能基本是一致的,只是结构上有区别,其中以盘式浮阀应用最为普遍。盘式浮阀塔板结构,是在带降液装置的塔板上开有许多升气孔,每个孔的上方装有可浮动的盘式阀片。为了控制阀片的浮动范围,在阀片的上方有一个十字型或依靠阀片的三条支腿。前者称十字架型,后者称V型。目前因V型结构简单,因而被广泛使用,当上升蒸汽量变化时,阀片随之升降,使阀片的开度不同,所以塔的工作弹性较大。 浮阀塔总的原则是尽可能多地采用先进的技术,使生产达到技术先进、经济合理的要求,符合优质、高产、安全、低能耗的原则,具体考虑以下几点。 ⑴满足工艺和操作的要求所设计出来的流程和设备能保证得到质量稳定的产品。设计的流程与设备需要一定的操作弹性,可方便地进行流量和传热量的调节。设置必需的仪表并安装在适宜部位,以便能通过这些仪表来观测和控制生产过程。 ⑵满足经济上的要求要节省热能和电能的消耗,减少设备与基建的费用,回流比对操作费用和设备费用均有很大的影响,因此必须选择合适的回流比。设计时应全面考虑,力求总费用尽可能低一些。 ⑶保证生产安全生产中应防止物料的泄露,生产和使用易燃物料车间的电器均应为防爆产品。塔体大都安装在室外,为能抵抗大自然的破坏,塔设备应具有一定刚度和强度。

柔性直流换流阀在线监测技术研究

柔性直流换流阀在线监测技术研究 发表时间:2018-08-17T10:05:46.513Z 来源:《电力设备》2018年第14期作者:卓智伟[导读] 摘要:柔性直流输电是继交流输电、常规直流输电之后的新一代输电技术。换流阀是柔性直流换流站中的核心设备。换流阀设备一旦出现故障,不仅会导致直流输电的停运,甚至引发重大的安全事故。本文针对厦门柔性直流换流站的换流阀讨论了针对子模块的在线监测技术。 (福建省电力有限公司检修分公司福建厦门 361000)摘要:柔性直流输电是继交流输电、常规直流输电之后的新一代输电技术。换流阀是柔性直流换流站中的核心设备。换流阀设备一旦出现故障,不仅会导致直流输电的停运,甚至引发重大的安全事故。本文针对厦门柔性直流换流站的换流阀讨论了针对子模块的在线监测技术。 引言 柔性直流输电是继交流输电、常规直流输电之后的新一代输电技术,在控制传输电能的同时可独立调节无功功率。柔性直流输电不存在换相失败问题,无需配置滤波及无功补偿设备,易于构建多端直流网络,具备黑启动能力。可以解决目前交直流输电面临的诸多技术瓶颈,可以改善风电接入性能,大大提高低电压穿越能力和系统稳定性,是远距离海上风电并网的唯一技术手段。该技术的出现,为新能源发电并网、大型城市中心负荷供电、孤岛供电、多端直流联网提供了一个崭新的解决方案,是构建智能电网的重要技术手段。换流阀是柔性直流换流站中的核心设备。换流阀设备一旦出现故障,不仅会导致直流输电的停运,甚至引发重大的安全事故。引发换流阀设备出现故障有很多原因,在线监测技术能够及时发现并排除设备的安全隐患。因此,开展柔性直流输电换流阀在线监测技术研究,能够大大提高换流阀运行的安全可靠性,降低各种安全事故的风险。电力电子器件的结温严重影响着其工作可靠性,结温过高与结温波动过大都会对电力电子器件的性能造成影响,因此,获取电力电子器件的结温对其优化设计、可靠性分析、寿命预测等具有重要作用。对于金属化薄膜电容器,随着电容器的老化,容值会逐渐的衰减,造成子模块电压波动变大,甚至影响系统稳定运行。因此必须对电容进行容值的监测。 1、IGBT结温监测技术 1.1光纤测温原理 光纤光栅是利用掺有锗离子的光纤纤芯材料的光敏性,通过紫外激光将入射光的相干光场曝光到光纤的纤芯之中,使原本沿光纤纤芯轴向均匀分布的折射率发生永久性的周期性变化,此形成的一种光学结构被称为光纤光栅。光纤光栅具有高的反射特性、选频特性和色散特性,波长移动响应快,线性输出动态范围宽,能够实现被测参量的绝对测量,不受发光强度影响,对于背景光干扰不敏感、小巧紧凑、易于埋入材料内部,并能直接与光纤系统耦合。光纤光栅的反射波长与光栅周期及纤芯有效折射率有关,由于光纤Bragg 光栅(FBG)对外界环境敏感,当光纤光栅外部环境温度发生变化时,会产生热光效应和热膨胀效应,分别影响光纤光栅纤芯的有效折射率和栅格常数,导致FBG 的反射波长发生偏移,通过对反射波长偏移量的测定,可以间接测量外界物理量的变化。因此,基于光纤光栅的传感过程是通过外界参量对光纤光栅反射波长的调制来获得传感信息。下图是光纤光栅的工作原理图。 因此IGBT结温可使用光纤测温法测出。 1.2 IGBT 参数法测温原理 IGBT本质上是一个由MOSFET驱动的BJT管,因此结构与MOSFET十分相似,差别仅在于它是P+衬底,而MOSFET是N+衬底。 IGBT的饱和压降为在门极电压驱动下IGBT工作于饱和区时,IGBT集电极(C)与发射极(E)之间的电压。由IGBT的内部结构可知,IGBT的正向饱和压降由两部分组成,即二极管压降和MOS沟道压降。二极管的压降呈现负温度系数的电阻特性,而MOS沟道电阻随温度的升高而增大,因此沟道压降随温度的升高而升高。这使得IGBT的正向压降在不同的正向电流下呈现不同的温度特性。当电流较小时,沟道压降影响较小,IGBT的正向伏安特性与二极管相似,具有负温度系数,而当电流较大时,沟道压降起主要作用,IGBT的正向压降具有正温度系数。 实验测量结果证实在热稳态和热瞬态过程中,IGBT的正向饱和压降与温度的关系只与芯片内部结构和集电极电流有关,与封装结构等无关。故IGBT结温也可由测量IGBT运行过程中的电压及电流参数推算得出。 2、电容监测原理 由于子模块电容容值C 满足式2.1:

塔板结构

板式塔的结构: 板式塔的常见塔体由等直径、等壁厚的钢制圆筒及惰圆封头的顶盖构成。随着化工装置的大型化,为节省原材料,有用不等直径、不等壁厚的塔体。塔体的厚度除应满足工艺条件的强度外,还应校核风载荷、地震、偏心载荷等所引起的强度和刚度,同时还要考虑水压试验、吊装、运输、开停工等情况。 考虑到安装、检修的需要,塔体上还要设置人孔或手孔、平台、扶梯、吊柱、保温圈等,整个塔体由塔裙座支撑。塔体的裙座为塔体安放到基础上的连接部分,其高度由工艺条件的附属设备(如再沸器、泵)及管道的布置决定。裙座承受各种情况下的全塔重量,以及风力、地震等载荷,为此,它应具有足够的强度和刚度。可转动的吊柱设置在塔顶,用于安装和检修时运送塔内的构件。 板式塔内部除装有塔板、降液管及各种物料进出口接管外,还有许多附属装置,如除沫器等。除沫器用于捕集在气流中的液滴,使用高效的除沫器、对于提高分离效率,改善塔后设备的操作状况,回收昂贵的物料以及减少环境的污染等都是非常重要的。常用有丝网除沫器和折板除沫器。板式塔为逐板接触式的气液传质设备。 各类型塔板的结构及其特点: 按照塔内气、液流动方式,可将塔板分为错流塔板与逆流塔板两类。

错流塔板为塔内气、液两相成错流流动,即液体横向流过塔板,而气体垂直穿过液层,但对整个塔来说,两相基本上成逆流流动。错流塔板降液管的设置方式及堰高可以控制板上液体流径与液层厚度,以其获得较高的效率。但是降液管占去一部分塔板面积,影响塔的生产能力,而且,液体横过塔板时要克服各种阻力,因而使板上液层出现位差,此位差称为液面落差。液面落差大时,能引起板上气体分布不均,降低分离效率。错流塔板广泛用于蒸馏、吸收等传质操作中。 逆流塔板亦称穿流板,板上不设降液管,气、液两相同时由板上孔道逆向穿流而过。栅板、淋降筛板等都属于逆流塔板。这种塔板结构虽简单,板面利用率也高,但需要较高的气速才能维持板上液层,操作范围较小,分离效率也低,工业上应用较少。 泡罩塔板: 泡罩塔板的结构如图所示。塔板上开有若干个孔,孔上焊有短管作为上升气体的通道,称为升气管。短管上覆以泡罩,泡罩下部周边开有许多齿缝,齿缝一般有矩形,三角形及梯形三种,常用的是矩形;泡罩在塔板上依等边三角形排列。泡罩的尺寸有φ80mm、φ100mm、φ150mm三种, 操作时,液体横向流过塔板,靠溢流堰保持塔板上有一定厚度的流动液层,齿缝浸没于液层之中而形成液封。上升气体通过齿缝进入液层时,被分散成许多细小的气泡或流股,在板上形成了鼓泡层和泡沫层,为气液两相提供了大量的传质界面。 在泡罩塔板上由于有升气管,即使在很低的气速下操作,也不至于产生严重的漏液现象,当气液负荷有较大波动时,仍能保持稳定操作,塔板效率不变,即操作弹性较大;塔板不易堵塞,适用于处理各种物料。其缺点是结构复杂、造价高;气体流径曲折,塔板压降大,生产能力及板效率较低。

直流输电换流变压器基础知识

第一章换流变结构 一、换流变概述 通常,我们把用于直流输电的主变压器称为换流变压器。它在交流电网与直流线路之间起连接和协调作用,将电能由交流系统传输到直流系统或由直流系统传输到交流系统。换流变压器是超高压直流输电工程中至关重要的关键设备,是交、直流输电系统中换流、逆变两端接口的核心设备。 直流输电系统的接线方式有多种,目前常见的接线方式如图1-1所示。 图1-1 两个六脉冲换流桥构成一个单极十二脉动接线,这两个六脉冲换流桥分别由Yy与Yd联结的换流变压器供电。两个单极叠加在一起构成一个双极。每极所用的换流变压器可以由下述方式实现,两台三相双绕组变压器(一个Yy联结,一个Yd联结)或三台单相三绕

组变压器(一个网侧绕组和两个阀侧绕组,一个Y接,一个D接)或六台单相双绕组变压器(三个Yy 单相,三个Yd单相)。由建设规模的大小及直流电压等级可以确定换流变压器的大致型式。选择不同的型式主要受运输尺寸的限制,其次是考虑备用变容量的大小,当然,备用变容量越小越经济。 当直流输送容量较大时可采用每级两组基本换流单元的接线方式,此种接线方式有串联和并联两种方式。如目前在建的±800kv项目即采用了串联方式,其基本接线原理见图2。 800(HY) 600(HD) 400(L Y) 200(LD) 图1-2

图1-3 单相双绕组换流变压器外形 图1-4 单相三绕组换流变压器外形

图1-5 云广±800kV项目高端(800kV)换流变压器外形 二、绕组的常见类型 换流变中的绕组按照其连接的系统不同,通常可分为连接交流系统的网绕组及调压绕组;连接换流阀的阀绕组。绕组的排列方式通常有以下两种:铁心柱→阀绕组→网绕组→调压绕组;铁心柱→调压绕组→网绕组→阀绕组。 1.网绕组 目前,我公司的网绕组主要采用轴向纠结加连续式结构。与传统的纠结或内屏连续式不同,轴向纠结采用特殊的阶梯导线绕制n个双饼构成n/2个纠结单元。纠结绕制和换位示意见下图。

柔性直流输电系统换流器技术规范()

ICS 中国南方电网有限责任公司企业标准 Q/CSG XXXXX—2015 柔性直流输电换流器技术规范 Technical specification of converters for high-voltage direct current (HVDC) transmission using voltage sourced converters (VSC) (征求意见稿) XXXX-XX-XX发布XXXX-XX-XX实施 中国南方电网有限责任公司发布

目次 前言............................................................................... III 1 范围 (1) 2 规范性引用文件 (1) 3 术语和定义 (1) 3.1 额定直流电流 rated direct current (1) 3.2最大直流电流maximum direct current (2) 3.3 短时过载(过负荷)直流电流short time overload direct current (2) 3.4 额定直流电压rated direct voltage (2) 3.5 额定直流功率rated direct power (2) 4 文字符号和缩略语 (2) 4.1 文字符号 (2) 4.2 缩略语 (2) 5 使用条件 (2) 5.1 一般使用条件的规定 (3) 5.2 特殊使用条件的规定 (3) 6 技术参数和性能要求 (3) 6.1 总则 (3) 6.2 换流器电气结构 (4) 6.3 阀设计 (5) 6.4 机械性能 (6) 6.5 电气性能 (7) 6.6 冗余度 (7) 6.7 阀损耗的确定 (8) 6.8 阀冷却系统 (8) 6.9 防火防爆设计 (8) 6.10 阀控制保护设计 (8) 7 试验 (9) 7.1 试验总则 (9) 7.2 型式试验 (9) 7.3 例行试验 (11) 7.4 长期老化试验 (11) 7.5 现场试验 (12) 8 其它要求 (12) 8.1 质量及使用寿命 (12) 8.2 尺寸和重量 (12) 8.3 铭牌 (12) 8.4 包装和运输 (12)

换流变压器教学教材

换流变压器

精品文档 一、换流变压器 1、定义: 换流变压器(Converter Transformer) 接在换流桥与交流系统之间的电力变压器。采用换流变压器实现换流桥与交流母线的连接,并为换流桥提供一个中性点不接地的三相换相电压。换流变压器与换流桥是构成换流单元的主体。 2、换流变压器在直流输电系统中的作用: (1)、传送电力;(2)、把交流系统电压变换到换流器所需的换相电压;(3)、利用变压器绕组的不同接法,为串接的两个换流器提供两组幅值相等、相位相差30°(基波电角度)的三相对称的换相电压以实现十二脉动换流;(4)、将直流部分与交流系统相互绝缘隔离,以免交流系统中性点接地和直流部分中性点接地造成直接短接,使得换相无法进行;(5)、换流变压器的漏抗可起到限制故障电流的作用;(6)、对沿着交流线路侵入到换流站的雷电冲击过电压波起缓冲抑制的作用。 3、换流变压器的特点及要求: (1)漏抗 以往由于晶闸管的额定电流和过负荷能力有限,为了限制阀臂短路和直流母线短路的故障电流,换流变压器的漏抗一般比普通电力变压器的大,一般为15-20%, 有些工程甚至超过20%。随着晶闸管的额定电流及其承受浪涌电流能力的提高,换流变压器的漏抗可按对应的容量和绝缘水平合理选择,阻抗相应降低,通常为12-18%,因此,设备主参数、绝缘水平、换流器无功消耗及能耗等都可相应降低,同时,换流器的运行性能也有所改进。 为减少非特征谐波,换流变压器的三相漏抗平衡度要求比普通电力变压器高,通常漏抗公差不大于2%。如果运输条件允许,工程多采用单相三绕组换流变压器结构,进一步减少十二脉动换流单元中换流变压器六个阻抗值的差别。(2)绝缘 换流变压器阀侧绕组和套管是在交流和直流电压共同作用之下工作的,由于油、纸两种绝缘材质的电导系数与介电系数之比差别很大,油纸复合绝缘中直流场强按电导系数分布,交流场强则按介电系数分布。当直流电压极性迅速变化时,会使油隙绝缘受到很大的电应力。在套管与底座的连接部分,由于绝缘结构复杂,这一问题最为严重。越接近直流两极的阀侧绕组对地电压越高,在设计时必然增大绕组端部与铁芯轭部的距离,使绕组端部的辐向漏磁和局部损耗增加,因谐波漏磁而引起的损耗则增加更多。作为阀侧绕组外绝缘的套管,其爬电距离要考虑到直流电压的分量,为了避免雨天时在直流电压作用下,由于不均匀湿闪而造成的闪络故障,一般阀侧套管均伸入阀厅。干式合成套管已得到实际应用。为了抗震,套管法兰盘处一般装有振动阻尼装置。(3)谐波 换流变压器漏磁的谐波分量会使变压器的杂散损耗增大,有时可能使某些金属部件和油箱产生局部过热现象。在有较强漏磁通过的部件要用非磁性材料或采用磁屏蔽措施。谐波磁通所引起的磁致伸缩噪声处于听觉较为灵敏的频带,必要时要采取更有效的隔音措施。(4)直流偏磁 换流器触发时刻的间隔不等,交流母线正序二次谐波电压和与直流线路并行的交流线路的感应作用等将在换流变压器阀侧绕组电流中产生直流分量;接地极入地电流引起的地电位变化会在交流侧绕组电流中产生直流分量,二者共 收集于网络,如有侵权请联系管理员删除

柔性直流输电与高压直流输电的优缺点

柔性直流输电 一、常规直流输电技术 1. 常规直流输电系统换流站的主要设备。常规直流输电系统换流站的主要设备一般包括:三相桥式电路、整流变压器、交流滤波器、直流平波电抗器和控制保护以及辅助系统(水冷系统、站用电系统)等。 2. 常规直流输电技术的优点。 1)直流输送容量大,输送的电压高,最高已达到800kV,输送的电流大,最大电流已达到4 500A;所用单个晶闸管的耐受电压高,电流大。 2)光触发晶闸管直流输电,抗干扰性好。大电网之间通过直流输电互联(背靠背方式),换流阀损耗较小,输电运行的稳定性和可靠性高。 3)常规直流输电技术可将环流器进行闭锁,以消除直流侧电流故障。 3. 常规直流电路技术的缺点。常规直流输电由于采用大功率晶闸管,主要有如下缺点。 1)只能工作在有源逆变状态,不能接入无源系统。 2)对交流系统的强度较为敏感,一旦交流系统发生干扰,容易换相失败。 3)无功消耗大。输出电压、输出电流谐波含量高,需要安装滤波装置来消除谐波。 二、柔性直流输电技术

1. 柔性直流输电系统换流站的主要设备。柔性直流输电系统换流站的主要设备一般包括:电压源换流器、相电抗器、联结变压器、交流滤波器和控制保护以及辅助系统(水冷系统、站用系统)等。 2. 柔性直流输电技术的优点。柔性直流输电是在常规直流输电的基础上发展起来的,因此传统的直流输电技术具有的优点,柔性输电大都具有。此外,柔性输电还具有一些自身的优点。 1)潮流反转方便快捷,现有交流系统的输电能力强,交流电网的功角稳定性高。保持电压恒定,可调节有功潮流;保持有功不变,可调节无功功率。 2)事故后可快速恢复供电和黑启动,可以向无源电网供电,受端系统可以是无源网络,不需要滤波器开关。功率变化时,滤波器不需要提供无功功率。 3)设计具有紧凑化、模块化的特点,易于移动、安装、调试和维护,易于扩展和实现多端直流输电等优点。 4)采用双极运行,不需要接地极,没有注入地下的电流。 3. 柔性直流输电技术的缺点。系统损耗大(开关损耗较大),不能控制直流侧故障时的故障电流。在直流侧发生故障的情况下,由于柔性直流输电系统中的换流器中存在不可控的二极管通路,因此柔性直流输电系统不能闭锁直流侧短路故障时的故障电流,在故障发生后只能通过断开交流侧断路器来切除故障。可以使用的最佳解决方式是通过使用直流电缆来提高系统的可靠性和可用率。 三、常规直流输电技术和柔性直流输电技术的对比

高压直流输电换流阀性能分析研究

±800kV/5000A自主化换流阀性能分析 马元社,李侠,刘宁,娄彦涛,张雷 (西安西电电力系统有限公司,陕西省西安市 710075) 摘要:文中介绍了西电电力系统公司(XDPS)自主研制的±800kV/5000A换流阀主要参数。从换流阀的电压耐受能力、电流耐受能力和大角度运行能力详细分析了自主设计换流阀的主要性能。在国家高压电器检测检验中心通过的型式试验验证了所设计换流阀性能可靠,满足实际工程应用。 关键词:特高压直流;换流阀;电压应力;电流应力 1引言 特高压直流输电具有输送距离远、输送容量大、损耗低的优势,是实现我国能源资源优化配置的重要途径之一[1]。目前我国已经建成的特高压±800kV直流工程有云南-广东和向家坝-上海直流工程,在建的有锦屏-苏南直流工程,已经开始招标的有哈密-郑州直流工程,十二五期间我国还将有数条特高压直流工程开始建设,其社会经济效益显著。随着我国特高压直流工程技术的不断发展以及我国社会经济发展的需要,自主研制±800kV特高压直流输电工程换流阀对于我国打破国外技术垄断,提升我国特高压直流工程国产化水平具有重要意义。 2011年11月西安西电电力系统有限公司设计具有自主知识产权的特高压±800kV/5000A换流阀研制成功,在国家高压电器检测检验中心通过了全部型式试验,并于2012年1月通过了国家能源局组织的国家级鉴定,技术指标达到国际先进水平。文中对西安西电电力系统有限公司研制的±800kV/5000A换流阀进行了介绍,重点对换流阀的性能进行了分析。 2±800kV/5000A换流阀设计参数 (1)环境条件 表1 阀厅内使用条件 名称参数 全封闭户内,微正压,带通风和空调 长期运行温度范围+10~+50℃ 最高温度+60 ℃ 最低温度+5 ℃ 长期运行湿度50%RH 最大湿度60%RH 地面水平加速度0.2 g 海拔高度不超过1000m (2)电气参数 为了满足不同工程的不同技术要求,换流阀采用标准化设计,模块化设计是实现标准化的最好途径。工程运行表明,模块化设计具有良好的可用率、高的可靠性及最经济的工程造价[2]。自主设计±800kV/5000A换流阀采用模块化设计,模块示意图见图1。

厦门柔性直流换流阀子模块结构及功能简介

厦门柔性直流换流阀子模块结构及功能简介 发表时间:2018-10-17T10:32:57.787Z 来源:《电力设备》2018年第19期作者:卓智伟 [导读] 摘要:柔性直流输电在国家能源结构调整、区域能源互联发展中具有重要的作用,是一种具有广泛应用前景的先进输电技术。(福建省电力有限公司检修分公司福建厦门 361000) 摘要:柔性直流输电在国家能源结构调整、区域能源互联发展中具有重要的作用,是一种具有广泛应用前景的先进输电技术。换流阀是柔性直流换流站中的核心设备。目前常用的拓扑结构为模块化多电平换流器(MMC)的拓扑构造。其中构成换流阀的基本原件即子模块。本文针对厦门柔性直流换流阀子模块结构及功能做一个简要介绍。 引言 厦门柔直是世界首个采用对称双极接线方案的柔性直流工程,电压等级为±320kV,直流电流1600A,输送容量达1000MW。换流阀是其核心设备,常用的电压源换流器主要有两电平、三电平和模块化多电平三种。厦门柔直采用的是模块化多电平换流器,其制造难度和损耗较低,波形质量高。什么是模块化多电平换流器呢?就是将IGBT换流阀子模块一个一个串联起来,每一个子模块可以等效为一个电容,其额定运行电压为1.6kV,厦门柔直每个桥臂有200个子模块处于工作状态,通过控制投入和退出子模块的数量来实现阶梯正弦波。下面简单介绍构成厦门柔直工程换流阀的基本元件子模块的结构。 1、换流阀 换流阀是柔性直流输电工程中的核心设备,输电过程中的整流和逆变过程均通过换流阀完成。厦门工程换流阀采用模块化、积木式设计。每极换流阀A、B、C三相分上下桥臂共6桥臂18个阀塔构成,每个阀塔由12个阀模块构成,每个阀模块包含6个子模块。 2、子模块组成及结构 IGBT子模块是换流阀的最小电气单元,采用半桥结构,见下图2-1。由以下8个部分组成:旁路开关K、晶闸管T、直流电容器C、均压电阻R、直流取能电源、子模块控制器(CLC+GDU)、散热器和IGBT模块(IGBT-二极管反并联对:S1、S2)。 图2-1子模块电器结构示意图 3、旁路开关 3.1旁路开关结构:旁路开关主要由本体、操动机构、控制板三个部分组成。 3.2主要作用:由图2-1可以看到旁路开关与下管IGBT(S2)并联运行,其主要作用为隔离故障子模块,使其从主电路中完全隔离出来,而使故障子模块不影响整个系统的正常运行。 3.3技术参数:旁路开关额定电压设计为3.6kV,额定电流为1250A,合闸时间为≤3ms;顶部绝缘件为环氧树脂材料,其阻燃性为UL94-V0(UL94标准V-0:对样品进行两次10秒的燃烧测试后,火焰在30秒内熄灭,不能有燃烧物掉下)。 4、晶闸管 4.1晶闸管安装位置:由图2-1可以看到晶闸管T与旁路开关及下管IGBT(S2)并联安装。具 4.2主要作用:直流系统短路故障时,分流通过续流二极管的短路电流,有效避免续流二极管的热击穿。 4.3技术参数:全压接型普通晶闸管,断态重复峰值电压为3400V,通态平均电流为3200A;短路故障时晶闸管最大分流比达到91.5%,保证IGBT换流阀可耐受峰值不小于35kA。 4.4晶闸管功能测试:a、通态压降:25℃,通态压降≤1.8V。b、耐压:DC2.1kV外观:无变形。 5、直流电容器: 5.1直流电容器安装位置:由图2-1可以看到直流电容器并联在上下管IGBT两侧安装。 5.2主要作用:(1)与IGBT器件共同控制换流器交流侧和直流侧交换的功率;(2)抑制功率传输在换流器内部引起的电压波动。 5.3技术参数:无油干式电容器(阻燃、防爆),额定直流电压为2100V,设计电容值为10000uF。 6、直流均压电阻(直流放电电阻): 6.1直流电阻安装位置:由图2-1可以看到直流电阻并联在直流电容器两侧安装。 6.2主要作用:(1)在IGBT换流阀闭锁时,实现各子模块的静态均压;(2)在IGBT换流阀停运时,对各子模块直流电容器进行放电 6.3技术参数:电阻值为25kΩ,额定电压为3500V,额定功耗600W,换流阀闭锁后的自然放电时间常数为250s。 7、直流取能电源: 7.1直流取能电源安装位置及外形:直流取能电源安装在子模块正面底部,其后端通过探针从直流电容处取得工作电压。 7.2主要作用:(1)为子模块的中控板(CLC)和IGBT驱动板(GDU)提供15Vdc电源;(2)为旁路开关的储能电容提供400Vdc的电源 7.3技术参数: (1)输入电压由0上升至400Vdc时,取能电源板导通输出,在此之前闭锁输出 (2)取能电源板导通之后,在输入电压350Vdc~3000Vdc之间均能正常工作,否则闭锁输出(过压恢复电压2700Vdc) 7.4故障信号 取能电源故障类型主要有以下几种:1)输入过压、欠压保护;2)15Vdc输出过压、欠压保护;3)400Vdc输出过压、欠压保护;4)

浮阀塔泡罩塔筛板塔优缺点及结构原理

筛板塔、泡罩塔和浮阀塔的优缺点 筛板塔是扎板塔的一种,内装若干层水平塔板,板上有许多小孔,形状如筛;并装有溢流管或没有溢流管。操作时,液体由塔顶进入,经溢流管(一部分经筛孔)逐板下降,并在板上积存液层。气体(或蒸气)由塔底进入,经筛孔上升穿过液层,鼓泡而出,因而两相可以充分接触,并相互作用。泡沫式接触气液传质过程的一种形式,性能优于泡罩塔。为克服筛板安装水平要求过高的困难,发展了环流筛板;克服筛板在低负荷下出现漏液现象,设计了板下带盘的筛板;减轻筛板上雾沫夹带缩短板间距,制造出板上带挡的的筛板和突孔式筛板和用斜的增泡台代替进口堰,塔板上开设气体导向缝的林德筛板。筛板塔普遍用作H2S-H2O 双温交换过程的冷、热塔。应用于蒸馏、吸收和除尘等。# ~1 Y) h2 y- l, ?! d+ T5 G , '% k* {. a+ \1 }" A- p2 f 泡罩塔板是工业上应用最 早的塔板,它主要由升气管及泡罩构成。泡罩安装在升气管的顶部,分圆形和条形两种,以前者使用较广。泡罩有f80、f100、f150mm三种尺寸,可根据塔径的大小选择。泡罩的下部周边开有很多齿缝,齿缝一般为三角形、矩形或梯形。泡罩在塔板上为正三角形排列。操作时,液体横向流过塔板,靠溢流堰保持板上有一定厚度的液层,齿缝浸没于液层之中而形成液封。升气管的顶部应高于泡罩齿缝的上沿,以防止液体从中漏下。上升气体通过齿缝进入液层时,被分散成许多细小的气泡或流股,在板上形成鼓泡层,为气液两相的传热和传质提供大量的界面I0 Z8 b. G; p3 d 泡罩塔板的优点是操作弹性较大,塔板不易堵塞;缺点是结构复杂、造价高,板上液层厚,塔板压降大,生产能力及板效率较低。泡罩塔板已逐渐被筛板、浮阀塔板所取代,在新建塔设备中已很少采用。浮阀塔板具有泡罩塔板和筛孔塔板的优点,应用广泛。浮阀的类型很多,国内常用的有F1型、V-4型及T型等。浮阀塔板的优点是结构简单、造价低,生产能力大,操作弹性大,塔板效率较高。其缺点是处理易结焦、高粘度的物料时,阀片易与塔板粘结;在操作过程中有时会发生阀片脱落或卡死等现象,使塔板效率和操作弹性下降。 浮阀塔结构原理 浮阀塔F-型(国外通称V-型)是用钢板冲压而成的圆形阀片,浮阀塔F-型下面有三条阀腿,把三条阀腿装入塔板的阀孔之后,用工具将腿下的阀脚扭转90°,则浮 阀就被限制在浮孔内只能上下运动而不能脱离塔板。当气速较大时,浮阀塔F-型 浮阀被吹起,达到最大开度;当气速较小时,气体的动压头小于浮阀自重,于是 浮阀塔F-型浮阀下落,浮阀周边上三个朝下倾斜的定距片与塔板接触,此时幵度最小。定距片的 作用是保证最小气速时还有一定的幵度,使气体与浮阀塔F-型塔 板上液体能均匀地鼓泡,避免浮阀与塔板粘住。浮阀塔F-型浮阀的幵度随塔内气 相负荷大小自动调节,可以增大传质的效果,减少雾沫夹带。 结构原理如下图:

直流输电换流阀组分析

云广±800 kV直流输电系统串联双阀组换流 变分接开关125℃闭锁调整分析及处理 陈灿旭 (中国南方电网超高压输电公司广州局,广东广州 510663) 摘要:总结分析了云广±800 kV直流输电工程中换流变分接开关125℃闭锁调整的原因,对其存在的风险进行深入剖析,最后提出有效的处理措施,降低云广特高压直流输电系统闭锁的风险。 关键词:特高压直流工程;换流变分接开关;闭锁调整; 1引言 云广特高压直流系统是世界范围内第一个±800kV特高压直流输电系统,每极采用双12脉动阀组串联运行的结构形式[1][2],每个阀组都由阀组控制系统独立控制,双阀组由极控系统协调控制,当双阀组均处于解锁状态时,双阀组的运行工况基本相同,阀组两端的直流电压也基本相同。但当其中一个阀组的换流变分接开关控制故障时,原有的平衡运行工况就会被打破,若故障一直持续,就会加剧双阀组间的不平衡,严重时引起阀组跳闸。自2009年底投运以来,多次出现分接开关异常情况,较常见且风险较大的是分接开关125℃闭锁调整,本文首先介绍云广特高压直流输电系统换流变分接开关的工作过程,接着对换流变分接开关125℃闭锁调整功能回路进行详细分析,然后对其存在的风险进行深入剖析,最后提出有效处理措施,以降低云广特高压直流输电系统闭锁风险。 2真空分接开关结构及工作过程 云广直流输电系统换流变电气上均为单相双绕组换流变,而高端HY换流变为三主柱两旁轭的铁芯绕组结构,其网侧有三个并联的分绕组,而其他换流变是两柱两旁轭的铁芯绕组结构,相应网侧有两个并联分绕组。相应的,穗东站使用MR公司两种参数相似的真空分接开关,其包含若干熄弧用的主触头真空泡,相比依靠油来灭弧的油浸式分接开关,真空分接开关的维护量更少,灭弧性能更优,而且不会引起油的碳化。 真空分接开关结构主要包括电动机构、分接选择器和切换开关三部分。电动机构主要是由传动机构、控制结构和电气控制设备、箱体等组成。分接选择器是能承载电流,但不接通和开断电流的装置,它由级进选择器、触头系统和转换选择器组成。真空分接开关与油浸式分接开关最大的不同就在切换开关的结构上,图1为从HY高端换流变分接开关油室内部取出来的切换开关实物图。

柔性直流输电技术

柔性直流输电 一、柔性直流输电技术 1. 柔性直流输电系统换流站的主要设备。柔性直流输电系统换流站的主要设备一般包括:电压源换流器、相电抗器、联结变压器、交流滤波器和控制保护以及辅助系统(水冷系统、站用系统)等。 2. 柔性直流输电技术的优点。柔性直流输电是在常规直流输电的基础上发展起来的,因此传统的直流输电技术具有的优点,柔性输电大都具有。此外,柔性输电还具有一些自身的优点。 1)潮流反转方便快捷,现有交流系统的输电能力强,交流电网的功角稳定性高。保持电压恒定,可调节有功潮流;保持有功不变,可调节无功功率。 2)事故后可快速恢复供电和黑启动,可以向无源电网供电,受端系统可以是无源网络,不需要滤波器开关。功率变化时,滤波器不需要提供无功功率。 3)设计具有紧凑化、模块化的特点,易于移动、安装、调试和维护,易于扩展和实现多端直流输电等优点。 4)采用双极运行,不需要接地极,没有注入地下的电流。 3. 柔性直流输电技术的缺点。系统损耗大(开关损耗较大),不能控制直流侧故障时的故障电流。在直流侧发生故障的情况下,由于柔性直流输电系统中的换流器中存在不可控的二极管通路,因此柔性直流输电系统不能闭锁直流侧短路故障时的故障电流,在故障发生后只能通过断开交流侧断路器来切除故障。可以使用的最佳解决方式是通过使用直流电缆来提高系统的可靠性和可用率。 二、常规直流输电技术和柔性直流输电技术的对比 1. 换流器阀所用器件的对比。 1)常规直流输电采用大功率晶闸管,由于晶闸管是非可控关断器件,这使得在常规直流输电系统中只能控制晶闸管换流阀的开通而不能控制其关断,其关断必须借助于交流母线电压的过零,使阀电流减小至阀的维持电流以下才行。 2)柔性直流输电一般采用IGBT阀,由于IGBT是一种可自关断的全控器件,即可以根据门极的控制脉冲将器件开通或关断,不需要换相电流的参与。 2. 换流阀的对比。 1)常规直流输电系统中换流阀所用的器件是大功率晶闸管和饱和电抗器,

柔性直流输电

南京工程学院 远距离输电技术概论 班级:输电112 学号: 206110618 姓名:钱中华 2014年12月10日

目录 0.引言 (3) 1.研究与应用现状 (3) 2.原理 (4) 3.特点 (5) 4.关键技术 (6) 5.发展趋势 (7) 6.小结 (9)

柔性直流输电技术 0.引言 随着能源紧缺和环境污染等问题的日益严峻,国家将大力开发和利用可再生清洁能源,优化能源结构。然而,随着风能、太阳能等可再生能源利用规模的不断扩大,其固有的分散性、小型性、远离负荷中心等特点,使得采用交流输电技术或传统的直流输电技术联网显得很不经济。同时海上钻探平台、孤立小岛等无源负荷,目前采用昂贵的本地发电装置,既不经济,又污染环境。另外,城市用电负荷的快速增加,需要不断扩充电网的容量,但鉴于城市人口膨胀和城区合理规划,一方面要求利用有限的线路走廊输送更多的电能,另一方面要求大量的配电网转入地下。因此,迫切需要采用更加灵活、经济、环保的输电方式解决以上问题。 柔性直流输电技术即电压源换流器输电技术(VSC HVDC)采用可关断电力电子器件和PWM 技术,是一种新型直流输电技术,它能弥补传统直流输电的部分缺陷,其发展十分迅速。为了进一步推动柔性直流输电技术在我国的研究和应用,本文结合ABB 公司几个典型应用工程, 详细介绍了柔性直流输电的系统结构、基本工作原理和与传统直流输电相比的技术优势,并就我国的实际情况讨论了柔性直流输电在我国多个领域,尤其是风电场的应用前景。 1.研究与应用现状 自1954 年世界上第一个直流输电工程(瑞典本土至GotIand 岛的20MW、100kV 海底直流电缆输电)投入商业化运行至今,直流输电系统的换流元件经历了从汞弧阀到晶闸管阀的变革。然而由于晶闸管阀关断不可控,目前广泛应用的基于PCC的传统直流输电技术有以下固有缺陷:1只能工作在有源逆变状态,且受端系统必须有足够大的短路容量,否则容易发生换相失败;2换流器产生的谐波次数低、谐波干扰大;3换流器需吸收大量的无功功率,需要大量的滤波和无功补偿装置;4换流站占地面积大、投资大。因此,基于PCC的常规直流输电技术主要用于远距离大容量输电、海底电缆输电和交流电网的互联等领域。 其先研究主要发展有一下几项基本技术: 1.高压大容量电压源变流器技术 模块化多电平变流器可以有效降低交流电压变化率,其拓扑结构如图 1 所示。桥臂中的每个子模块可以独立控制,每相上、下两个桥臂的电压和等于直流母线电压。交流电压通过控制每相中两个桥臂的子模块旁路比例来叠加实现,桥臂中的子模块越多,交流电压的谐波越小。与两电平变流器相比,由于不需要每一相上的所有器件在较高频率下同时动作,模块化多电平大大降低了器件的开关损耗。

柔性直流输电对比

1. 柔性直流输电系统换流站的主要设备。柔性直流输电系统换流站的主要设备一般包括:电压源换流器、相电抗器、联结变压器、交流滤波器和控制保护以及辅助系统(水冷系统、站用系统)等。 2. 柔性直流输电技术的优点。柔性直流输电是在常规直流输电的基础上发展起来的,因此传统的直流输电技术具有的优点,柔性输电大都具有。此外,柔性输电还具有一些自身的优点。 (1)潮流反转方便快捷,现有交流系统的输电能力强,交流电网的功角稳定性高。保持电压恒定,可调节有功潮流;保持有功不变,可调节无功功率。 (2)事故后可快速恢复供电和黑启动,可以向无源电网供电,受端系统可以是无源网络,不需要滤波器开关。功率变化时,滤波器不需要提供无功功率。 (3)设计具有紧凑化、模块化的特点,易于移动、安装、调试和维护,易于扩展和实现多端直流输电等优点。 (4)采用双极运行,不需要接地极,没有注入地下的电流。 3. 柔性直流输电技术的缺点。系统损耗大(开关损耗较大), 不能控制直流侧故障时的故障电流。在直流侧发生故障的情况下,由于柔性直流输电系统中的换流器中存在不可控的二极管通路,因此柔性直流输电系统不能闭锁直流侧短路故障时的故障电流,在故障发生后只能通过断开交流侧断路器来切除故障。可以使用的最佳解决方式是通过使用直流电缆来提高系统的可靠性和可用率。 三、常规直流输电技术和柔性直流输电技术的对比

1. 换流器阀所用器件的对比。 (1)常规直流输电采用大功率晶闸管,由于晶闸管是非可控关断器件,这使得在常规直流输电系统中只能控制晶闸管换流阀的开通而不能控制其关断,其关断必须借助于交流母线电压的过零,使阀电流减小至阀的维持电流以下才行。 (2)柔性直流输电一般采用IGBT阀,由于IGBT是一种可自关断的全控器件,即可以根据门极的控制脉冲将器件开通或关断,不需要换相电流的参与。 2. 换流阀的对比。 (1)常规直流输电系统中换流阀所用的器件是大功率晶闸管和饱和电抗器,可以输送大功率。 (2)柔性直流输电系统中的换流阀采用了IGBT器件,可实现很高的开关速度,在触发控制上采用PWM技术,开关频率相对较高,换流站的输出电压谐波量较小,主要包含高次谐波。故相对于常规直流输电,柔性直流输电换流站安装的滤波装置的容量大大减小。(3)常规直流输电通过换流变压器连接交流电网,而柔性直流输电是串联电抗器加变压器,常规直流输电以平波电抗器和直流滤波器来平稳电流,而柔性直流输电则采用直流电容器。 3. 换流站控制方式的对比。 (1)常规直流输电系统的换流站之间必须进行通信,以传递系统参数并进行适当的控制,而柔性直流输电系统中各换流站之间的通信不是必需的。

【免费下载】浮阀塔盘原理及结构

催化车间浮阀塔盘原理及结构、介质流向 浮阀塔盘原理:在塔盘上开有许多孔,每个孔上都装有一个阀,当没有上 升汽相时,浮阀闭合于塔板上,当有汽相上升时,浮阀受汽流冲击而向上启开,开度随汽相的量增加而增加,上升汽相穿过阀孔,在浮阀片的作用下向水平方向分散,通过液体层鼓泡而出,使汽液两相充分接触,达到理想的传热传质效果。 浮阀塔盘结构:塔内件之浮阀塔盘的结构特点II 筛孔的孔间距要考虑塔板上气液两相接触的要求。孔间距过小,会加剧穿过相邻筛孔的气泡相互撞击和聚并,增加板压降和雾沫夹带。孔间距过大,会使鼓泡不均匀,孔间液层出现死区,影响气液接触传质,降低传质效率。一般孔间距为孔径的2.5~4倍。根据开孔率的要求,有时孔间距也可扩大到孔径的2~5倍。 筛孔的排列方式可以是正三角形、等腰三角形或矩形,设计中采用正三角形法最多,因为这种排列最为均匀。在设计时,为了调整开孔率,有时也采用等腰三角形排列。 (3)降液管和溢流方式 降液管是上下塔板间的液体通道。由于越过溢流堰进人降液管的是气含量较高的泡沫液,降液管要肩负气液分离的任务。因此,降液管必须具有足够的截面积和容积。降液管可为弓形、圆形,也可为矩形。根据液量和塔的直径大小,可以设置一根、两根或多根降液管。因为降液管的设置不同,液体在塔板上的溢流模式也就随之不同。如设置一根弓形降液管,则称为单溢流,即液体穿过整个塔截面,从一侧流向另一侧, 返混少,塔板效率较高,结构也最简单。但单溢流不能承受大液量,也不适用于大塔径。液体在塔板上是靠液面落差的重力流动,当流量大或流程长时,会造成液面梯度大,气体鼓泡不均匀。因此液量大或塔径大,应选用双溢流或多溢流。 在 , 备 设 气 电 卷 试 料 资 中 高 部 全 对

换流变压器与电力变压器的比较分析示范文本

换流变压器与电力变压器的比较分析示范文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

换流变压器与电力变压器的比较分析示 范文本 使用指引:此解决方案资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 换流变压器是超高压直流输电工程中至关重要的关键 设备,是交、直流输电系统中的换流、逆变两端接口的核 心设备。它的投入和安全运行是工程取得发电效益的关键 和重要保证。换流变压器的关键作用,要求其具有高可靠 性和高技术性能。因为有交、直流电场、磁场的共同作 用,所以换流变压器的结构特殊、复杂,关键技术高难, 对制造环境和加工质量要求严格。开展换流变压器设计制 造关键技术的研究、攻克和制造条件改造工作,不断提高 试验手段,将有利于全面掌握换流变压器的设计制造技 术,实现换流变压器国产化,填补国内空白。同时可促进 国内交、直流输电设备设计制造水平的进一步提高和发

展,为特高压交、直流输变电设备的发展打下基础,做好前期准备,实现换流变压器国产化。 换流变压器(Converter Transformer) 接在换流桥与交流系统之间的电力变压器。采用换流变压器实现换流桥与交流母线的连接,并为换流桥提供一个中性点不接地的三相换相电压。换流变压器与换流桥是构成换流单元的主体。换流变压器在直流输电系统中的作用有:?传送电力;?把交流系统电压变换到换流器所需的换相电压;?利用变压器绕组的不同接法,为串接的两个换流器提供两组幅值相等、相位相差30°(基波电角度)的三相对称的换相电压以实现十二脉动换流;?将直流部分与交流系统相互绝缘隔离,以免交流系统中性点接地和直流部分中性点接地造成直接短接,使得换相无法进行;?换流变压器的漏抗可起到限制故障电流的作用;?对沿着交流线路侵入到换流站的

相关主题
文本预览
相关文档 最新文档