当前位置:文档之家› Dynamics of the Electro-Optic response of Blue Bronze

Dynamics of the Electro-Optic response of Blue Bronze

Dynamics of the Electro-Optic response of Blue Bronze
Dynamics of the Electro-Optic response of Blue Bronze

Dynamics of the electro-optic response of blue bronze K0.3MoO3

L. Ladino, J.W. Brill, M. Freamat,a M. Uddin, and D. Dominko b Department of Physics and Astronomy, University of Kentucky, Lexington, KY 40506

(Dated: May 19, 2006)

Abstract

We have studied the charge density wave (CDW) repolarization dynamics in blue bronze by applying square-wave voltages of different frequencies to the sample and measuring the changes in infrared transmittance, proportional to CDW strain. The frequency dependence of the electro-transmittance was fit to a modified harmonic oscillator response and the evolution of the parameters as functions of voltage, position, and temperature are discussed. Resonant frequencies decrease with distance from the current contacts, indicating that the resulting delays are intrinsic to the CDW with the strain effectively flowing from the contact. For a fixed position, the average relaxation time has a voltage dependence given by τ0~V-p, with 1

PACS numbers:71.45 Lr, 78.20.Jq, 72.15.Nj

I. Introduction

Interest in quasi-one dimensional conductors with sliding charge-density-waves (CDW’s) has continued for three decades because of the variety of unusual properties they exhibit.1,2 In the CDW ground state, a periodic lattice distortion is accompanied by a modulated electron density: n = n0 + n1 cos[Qz + φ(z,t)], where z is the direction of the conducting chains and Q is the CDW wavevector, n1 its amplitude, and φ its local phase. Because CDW pinning results from the deformation of the CDW (i.e. variations of n1 and φ) due to its interaction energy with impurities, CDW’s are also model systems for studying the effects of quenched disorder on a deformable periodic medium.3 This competition results in the CDW responding to different stimuli at a very large array of time scales.3,4

When a voltage greater than its depinning threshold is applied, the CDW can slide through the sample, carrying current.1 At the same time, it becomes elastically strained, i.e. its phase varies throughout the sample so that the CDW is compressed near one current contact and rarefied at the other.3,5-8 The strain (Q-1?φ/?z) near a current contact is required to drive the phase-slip process needed for current conversion, i.e. to allow electrons to enter and leave the CDW condensate at the contacts.6,9 Strains near the center of the sample reflect shifts in the chemical potential due to imperfect screening by “normal” quasiparticles, i.e. those from non-condensing bands and/or those thermally excited out of the CDW.7 The spatial-temporal dependence of the strain in turn affects that of the CDW current.6,7

Consequently, the illumination of the spatial dependence of the CDW current and strain, through tunneling,10 transport,6,11,12 x-ray,7,13 and infrared measurements,8 has been

a major thrust area for the last several years. The Cornell group addressed this in an elegant series of conductivity experiments on NbSe3.6,12 By closely spacing non-perturbative contacts along the sample, they measured local electric fields and solved model transport equations to deduce the local strain as functions of position and time after reversing the direction of current flow. Their results indicated that strains near (~ 100 μm) the current contacts reversed quickly (~ 10 μs) whereas the smaller strains in the center took several times longer to change. Subsequently, spatially resolved x-ray diffraction measurements at Grenoble7 directly measured the CDW strains in NbSe3 and observed much larger contact deformations than those deduced by the Cornell group. The difference was attributed to the fact that in the Cornell model6 the quasiparticle conductivity was treated as a constant, whereas in the model of Reference [7] the uncondensed and thermally excited quasiparticles respond differently to CDW strains, resulting in local changes in their density, larger strains near the contacts, and more extended regions of current conversion. The strains near the center of the sample persisted even when the applied voltage was removed;5,7,13 these non-equilibrating strains were associated with pinning of CDW phase dislocations,7 discussed further below. Whereas NbSe3 remains metallic in the CDW state, in most other sliding CDW materials all conduction bands are gapped in the CDW state.1 The CDW’s in these semiconducting materials are much less coherent than in NbSe3, preventing x-ray measurements of the spatial dependence of the strain. Analysis of position dependent transport properties of these materials has also been complicated by the difficulty in preparing Ohmic but non-perturbative contacts.11 The absence of uncondensed electrons furthermore complicates the analysis of transport properties because as the density of

thermally excited quasiparticles falls at low temperatures, soliton-like defects can dominate even the low-field, Ohmic, conductance.11

Instead, our group has used measurements of infrared transmittance and reflectance to measure position and time dependent changes in the semiconducting CDW phase in TaS34 and K0.3MoO3 (blue bronze).8,14,15 The infrared changes occur primarily because, even at relatively high temperatures, the quasiparticle density is low enough that CDW strains can cause relatively large changes in their density, resulting in changes in intraband absorption.8,15,16 In addition, changes in phonon frequencies and widths have been observed.16-18 At any wavelength, the relative changes in transmittance, ?θ /θ, and reflectance, ?R /R are assumed to be essentially proportional to the local CDW strain.8,16 In our previous measurements on blue bronze, we found that ?θ /θ varied approximately linearly with position in the sample for small applied voltages.8 The onset voltage for the electro-optical effect, V on, typically occurred below the threshold, V T, for non-Ohmic resistance (i.e. non-linear current), as shown for a present sample in Figure 1. The difference, V T-V on, was associated with the “phase-slip voltage9” in our 2-probe measurements, for which the same contacts on the ends of the sample are used as current and voltage leads; that is, V on was associated with the onset of CDW depinning and strain in the sample bulk whereas V T was associated with depinning at the contacts, allowing CDW current to flow. For voltages above V T, additional small changes in transmittance, which we associated with the extra strains needed for phase-slip,6 were observed near (within ~ 100 μm of) the current contacts.8 As in Figure 1, most of these measurements were made with symmetric square-wave voltages applied to the sample, so that the local strain oscillated between opposite signs, and our ac measurements were sensitive to the

resulting oscillating transmitted IR signal. We also found that the signal associated with the “bulk”, linear strain decreased with increasing square wave frequency, with a characteristic frequency (~ 0.1 - 1 kHz) which decreased with decreasing temperature, while the strains near the contact were faster, but we did not do detailed measurements of the spatial/frequency dependence at that time.8,15

If unipolar square-waves, in which the voltage oscillated between zero and a voltage of one sign, were applied, no oscillating signal was generally observed in the center of the sample, and only small ac signals associated with the extra contact strains, were observed.14,17 That the contact strain oscillates with turning the voltage on and off again indicates its connection to current conversion and phase-slip. The bulk strain, on the other hand, was apparently frozen when the applied voltage was removed, consistent with the persistent strains observed with transport5 and x-ray7,13 measurements. An important difference between our blue bronze observations and the x-ray results on NbSe3,7 however, is that in our case the observed contact signal is much smaller than the persistent bulk signal. While this may be a consequence of the difficulty in preparing non-perturbative Ohmic contacts in blue bronze, as discussed below, it may also reflect the fact that the greater CDW incoherence in blue bronze, as compared to NbSe3, makes the bulk strain, associated with poor screening and possibly dislocation line pinning, more dominant.

In this paper, we report on detailed measurements of the frequency dependence of the electro-transmittance of blue bronze as functions of voltage, position, and temperature. We recently reported on similar measurements in TaS3,4 but for that material, the poor sample (and CDW) morphology made position dependent

measurements difficult to interpret. A short discussion of some of the present results was given in Reference [19].

II. Experimental details

Blue bronze is a quasi-one dimensional metal with a transition at T c = 180 K into a semiconducting CDW state.1,20,21 As grown blue bronze crystals were cleaved with tape to thicknesses of 5±2 μm for these transmittance measurements. Gold or copper contacts (~ 500 ?) were evaporated on the ends of the samples so that the resulting lengths between the contacts, in the high-conductivity direction, were 0.5 – 1.0 mm, while the sample widths were typically ~ 0.2 mm. Fine silver wires glued to the contacts with conducting paint acted as both flexible current leads and thermal grounds for the fragile samples which were mounted over ~ 1mm holes in sapphire substrates in our vacuum cryostats. The sample temperature was determined by a thermometer placed close to the sample, but the sample temperatures may have been a few degrees warmer because of the incident IR light and Joule heating from the applied currents.

Infrared light from a tunable infrared diode laser was focused on the sample using an infrared microscope. The light, polarized along the sample width and with multimode power ~ 0.1 mW, was incident (on the face of the sample containing the contacts) through a rectangular aperture into a spot 50 μm along the length of the sample and 80

μm perpendicular. The light position was measured between the closest edges of the light spot and a metal film contact (x=0), but the contact edges were not always sharp, so the absolute positions are uncertain by ~ 20 μm; in addition, the aperture image typically drifted with respect to the sample during a measurement by ~ 10 μm.

For relative changes in transmittance or reflectance, the infrared beam was chopped (at 390 Hz) and a square-wave voltage applied to the sample. The modulated transmitted or reflected signal was measured simultaneously at the square-wave (ω) and chopping frequencies; the ratio of the signals precisely gives ?θ/θ or ?R/R, even though the transmittance or reflectance were not separately measured precisely.17,18 Most measurements were made with symmetric bipolar square-waves, for which the changes in transmittance and reflectance are ?θ≡θ(+V) - θ(-V) and ?R≡R(+V) - R(-V). Some unipolar transmittance measurements, for which ?θ≡θ(V) - θ(0), were also made. In both cases, the responses both in-phase and in quadrature with the square-wave were measured; the frequency-dependent phase shift of the microscope detector electronics was determined with a precision of 2°, possibly slightly affecting results at the lowest frequencies, where the quadrature component becomes much smaller than the in-phase component.4

Thin samples were used to help insure uniform current flow through the sample cross-section. This was checked by comparing the dependence of the electro-transmittance and electro-reflectance on position, voltage, and frequency, as shown in Figure 2. As seen, only the absolute magnitudes of ?θ/θ and ?R/R differed, with ?θ/θ ~ 3 ?R/R, but they had the same spatial, voltage, and frequency dependences, indicating that the CDW phase gradient and current were uniform across the sample cross-section, at least on the scale of the penetration depth of the light, typically a few times smaller than the sample thickness.16,17 Detailed measurements were then made primarily on the transmittance, for which the microscope was less susceptible to mechanical noise than reflectance. For each sample, a wavelength was chosen for which the laser power and

electro-transmittance were large. (For a sample with αd > 1, where α is the absorption coefficient and d the sample thickness, the transmittance is given by θ ~ (1-R)2exp(-αd), making the electro-transmittance spectrum sample thickness dependent.) The photon energies used were between 775 and 890 cm-1, on a broad plateau in the ?θ/θ spectrum associated with quasiparticle absorption.17

Samples were also chosen for having fairly regular, linear variations of ?θ/θ with position when measured with bipolar square-waves. An example is shown in Figure 3. Samples with irregular spatial dependences presumably contained macroscopic defects (e.g. cracks, grain boundaries) that affected the CDW current flow but were not apparent from visible inspection. An interesting feature of Figure 3, that we observed in most samples, is that the zero crossing of ?θ/θ, i.e. the position of zero CDW strain, varies with voltage. As discussed further in Section VI, this suggests that the relative “quality” of the two contacts varies somewhat with voltage.

Also shown in Figure 3 is the spatial dependence when a unipolar square-wave is applied. (Note that the magnitude of the unipolar response is roughly consistent with the deviation from linear spatial dependence near the contact observed for the bipolar response at the same voltage.) As discussed above, the transmittance will only oscillate for applied unipolar voltages for strains which decay when the voltage is removed, and that these “non-pinned” strains were previously only observed to occur adjacent to the contact.14,17 Now, we observe that there are also small unipolar variations in the center of the sample; similar observations were made for other (but not all -- see Figure 12, below) samples. The unipolar spatial dependence shown in Figure 3 suggests that the non-pinned strain may “overshoot”, flowing into adjacent regions and leaving them with

strains of opposite sign during the “on” half cycle and/or strains of the same sign in the “off” half cycle.

All the present measurements are at temperatures a) well above the “CDW-glass” transition (23 K) where the dielectric time constant diverges22 and high enough that b) the low-field resistance has activation energy ~ half the gap, indicating that the Ohmic transport is dominated by thermally activated quasiparticles,11 and c) the non-Ohmic conductivity is dominated by thermal activation over pinning barriers and only exhibits a single threshold voltage without hysteretic switching.23

III. Frequency dependence of bipolar response at T = 80 K

We have measured in detail the voltage and position dependence of the frequency dependence (2 Hz < ω/2π < 4 kHz) of the electro-transmittance at T ~ 80 K for three samples, of lengths L = 550 μm (sample 1), L = 810 μm (sample 2) and L = 990 μm (sample 3), using bipolar square-waves. For bipolar square-waves, the response contains both the bulk, non-equilibrating portion of the strain which would stay pinned at V = 0 and the non-pinned, contact strain. For samples 1 and 2, however, the non-pinned component piece was extremely small (e.g. see Figure 3). It was relatively larger for sample 3, but as discussed in Section IV, still did not affect the fits significantly. We therefore assume that the dynamics of the bipolar response is always essentially that of the non-equilibrating, bulk strain.

Representative data sets at x = 0 (adjacent to a contact) and x = 200 μm for the three samples are shown in Figures 4, 5, and 6. The following features, all qualitatively similar to TaS3,4 can be seen: a) At x = 0, the response is essentially relaxational. There is a

peak in the quadrature response at the same frequency at which the in-phase response falls; the peak height is roughly half the magnitude of the low frequency in-phase response. b) The relaxation peak moves to lower frequencies with decreasing voltage.

c) At x = 200 μm, the response is smaller and slower than at x = 0 for each voltage. d) At high frequencies, the in-phase response becomes inverted, corresponding to a delay in the electro-optical response. This occurs at much lower frequencies for x = 200 μm than at x = 0. (It is most noticeable at x = 0 for sample 1; for sample 3 it is generally out of our frequency window.) e) For some voltages and positions, the quadrature signal becomes inverted at low frequencies. It is clearest for sample 1, where it occurs in some cases for frequencies > 50 Hz. For the other two samples, it only occurs for ω/2π < 10 Hz, where noise and the difficulty in determining the electronics phase shift makes this inversion less certain.

The relaxation and delay, and its strong position dependence, can also be seen in time-averaged oscilloscope traces of the transmitted signal (with the chopper turned off), as shown in Figure 4c, where for sample 1 a delay of ~ 70 μs is observed at x = 100 μm and V = 3.6 V on, but the delay is only ~ 20 μs for the same voltage at x =0. As for TaS3,4 the delayed reversal of transmittance seems to begin “abruptly”, especially at x =0. We do not observe the striking polarity dependence of the delay observed for TaS3, however. Also, the delay time increases much more rapidly as one moves away from the contacts for blue bronze than for TaS3, indicating that the delay is not, as we suggested in Reference [4], a contact effect, e.g. due to the formation of Schottky barriers at the contacts,11 but is intrinsic to the pinning and repolarization of the CDW.

As shown in Figures 4, 5, and 6, we have characterized the relaxation and delay by fitting the complex response to the modified harmonic-oscillator equation4

?θ/θ = ?θ/θ)0 / [1 – (ω/ω0)2 + (-iωτ0)γ]. (1)

Here the inertial term is used to parameterize the delays. The exponent γ allows for distributions in ω0 and τ0; in particular, for overdamped cases γ < 1 corresponds to a distribution of relaxation times.24 The low-frequency inverted quadrature signal for sample 1, discussed further below, is not included in these fits.

The voltage and position dependence of the fitting parameters are shown in Figure 7. For each sample, the relaxation times increase slightly as one moves away from the contact and for each sample/position, the relaxation time is seen to vary as τ0 ~ V-p, with p between 1 and 2, as for TaS3.4 (We note that while a similar value of τ ~ 1 ms at V T was deduced for the rate of polarization from an unpolarized state, it had a much stronger, exponential, voltage dependence.25) Note that the onset of CDW current at V T appears to have no effect on the relaxation time. The resonant frequencies tend to weakly (~ V1/2) increase with increasing voltage, but much more striking is the rapid increase in resonant frequency (i.e. decrease in inertia) as one approaches the contact, with the resonant frequency in some cases exceeding our frequency window. The amplitudes decrease rapidly as one approaches V on; away from the contacts, the amplitudes start decreasing again at high voltage whereas they approximately saturate at x =0.8 Finally, for samples 2 and 3 the exponent γ decreases at small voltages as the resonance becomes increasingly overdamped, indicating that the distribution of relaxation times is becoming broad. For example, γ ~ 0.9 corresponds to a distribution of τ’s approximately a half

decade wide while γ ~ 2/3 corresponds to a distribution over a decade wide.24 (This broadening may mask the expected dynamic critical slowing down expected at V on.26) At any given voltage, or depinning force (V–V on)/L or (V-V T)/L, sample 2 is much slower than samples 1 or 3; e.g. its relaxation times are over an order of magnitude larger and resonant frequencies an order of magnitude lower. (The time constants for samples 1 and 3 are close to those of TaS3.4) As we’ll discuss in Section IV, this suggests that sample 2 is effectively “colder” than the other samples so that the CDW current density is less for a given driving force. Our preliminary data on sample 2 suggests that this is so but, unfortunately, the sample broke before measurements could be made at different temperatures or larger currents. (Note that the threshold and onset electric fields for sample 2 are close to that of the shorter sample 1 but much greater than those of sample 3.)

The inverted quadrature signal observed at low frequencies, especially for sample 1, corresponds to a long-time decay of the electro-optic response. (The small magnitude of this decay and poor signal/noise ratio of low-frequency oscilloscope measurements prevented us from directly observing this decay in a time trace like that of Figure 4c.) Since γ~1 for sample 1, the response can be fit by including a term i?x2τ0/ω in the denominator of Eqtn. 1, where ?x is the frequency at which the quadrature signal changes sign. However, ?x had no clear position or voltage dependence, so the fits are not shown. Furthermore, the significance of the decay is not clear. It should be emphasized that this decay is observed for bipolar square waves, including cases for which |V| is always above threshold, so is not due to the slow decay of bulk strains at V=0.7 In the

Cornell model, the elastic force on the CDW (the gradient of the strain) does decay with time but no decay is expected for the strain itself.6

IV. Temperature dependence of time constants

The dynamics of many properties associated with CDW pinning/depinning are governed by the density of quasiparticles,3 and hence time constants are thermally activated for semiconducting materials. The dielectric constant, associated with small oscillations of the CDW about its pinning configuration, is a very prominent example.22,27 The magnitude of strain for a given voltage, since it depends on screening by quasiparticles, is also expected to be activated, and indeed the magnitude of the electro-transmittance was observed to be activated at low temperatures.15 On the other hand, in the Cornell model, the rate of change of strain, when reversing the current, is governed not only by the magnitude of the strain (near the contacts) but by the CDW current.6,12 It was therefore interesting to study the dynamics of the electro-transmittance at different temperatures to see how these different factors are manifested.

Measurements were made on sample 3 for temperatures between 45 K and 100 K. (The decreasing resistance prohibited measurements at voltages much above threshold at higher temperatures, while the decreasing magnitude of the electro-transmittance prevented frequency dependent measurements at lower temperatures.) To make comparisons of the response at different temperatures, we had to decide on an appropriate voltage criterion. Both the onset and threshold voltages14,21 decrease with decreasing temperature in this range, so temperature-dependent comparisons at a constant voltage are not appropriate. (V T/V on increases with decreasing temperature14 so that most of the

pinning becomes associated with the contacts, e.g. see Figure 1. However, V T-V on actually decreases from 8 mV to 3 mV with decreasing temperature for this sample, in striking contrast with suggested thermal activation of the phase-slip voltage.28) Figure 7 also shows that the relaxation time does not change as the voltage passes through V T (and hence must also have a weak dependence on CDW current here). Therefore, we chose as our criterion fixed values of V-V on, approximately proportional to the average driving force on the strain and CDW. (The pinning force, in fact, depends on the voltage and CDW current for small currents.6)

Figure 8 shows the temperature dependence of the parameters of Eqtn. 1 for two driving voltages, V = V on + 10 mV and V = V on + 20 mV, and two positions, x = 0 and x = 200 μm. Also shown is the temperature dependence of the low-field, quasi-particle resistance and conductance. For each position/voltage, the magnitude of the electro-transmittance varies roughly as the conductance for T < 70 K and saturates at higher temperature, as we previously observed.15 In contrast, for each data set the relaxation times and resonant frequencies have a weaker temperature dependence, with activation energies approximately half that of the conductance. However, the CDW current for each voltage, defined as I CDW≡ I TOTAL – V/R0, was observed to also have this smaller activation energy. We therefore plotted the relaxation times and frequencies vs. I CDW, as shown in Figure 9. (I CDW is plotted vs. voltage in the inset to Figure 9; for this sample,

I CDW ~ (V-V T)3/2.) For each voltage/position, τ0 and 1/ω0 scale roughly as 1/I CDW; that is, for a given driving force and position, the dynamical rates are proportional to the CDW current.

We should emphasize that this dependence on CDW current only occurs for a given driving voltage; the relaxation rates themselves are not simply functions of I CDW(T), even for large CDW currents. This is shown in Figure 10, where we plot the fit parameters of Eqtn. 1 for fixed I CDW = 100 μA. While the temperature dependence of the rates are weaker than for fixed driving voltage, they are still strongly temperature dependent.

To check this dependence of the dynamical rates on driving voltage and CDW current, we did temperature dependent measurements on an additional sample. For sample 4 (L ~ 960 μm), the fits to Eqtn. 1 were not as good as for the other samples, especially at the highest and lowest frequencies, but the fits at intermediate frequencies were sufficient to determine relaxation times. As shown in the inset to Figure 11, the relaxation times for this sample tended to saturate at low temperatures, very different behavior from sample 3. Nonetheless, as shown in Figure 11, there is still a linear dependence, for each voltage/position, between the relaxation rate and CDW current.

V. Frequency dependence of contact strains

For most samples, the contact strain measured with unipolar square-waves above threshold has been too small for frequency dependent measurements. An exception was sample 3, for which the spatial dependence of the unipolar (V = 2V T) and bipolar (V = 1.5 V T) responses at T = 101 K, ω/2π = 25 Hz are shown in the inset to Figure 12. For this sample, the unipolar response disappears away (> 200 μm) from the contacts.

Figure 12 shows the frequency dependence of the bipolar response and both the positive and negative unipolar responses at 101 K, 2V T, and x=0. The parameters for the

fits to Eqtn. 1 are listed in Table I. Note the following features: i) The negative unipolar response is larger than the positive, as we previously observed.14 Polarity dependent strains have also been observed in NbSe3 and are not understood.7,12 ii) Pronounced relaxation peaks in the quadrature response are not observed for unipolar excitation. In fact, the unipolar response can be fit to Cole-Cole relaxation,29 i.e. Eqtn. 1 without the resonance term, as shown in the Table, but with a very small γ=0.65, implying a decade wide distribution in relaxation times,24 which effectively washes out the relaxation peak. iii) Given this wide distribution in τ’s, the differences in relaxation times between the bipolar and unipolar responses is probably not significant. Indeed, it is striking that the “non-pinned”, contact unipolar response is not much faster than the (mostly non-equilibrating) bipolar response. This suggests that changes in the contact strains, as the CDW current is turned on and off, occur through a similar mechanism as oscillations in the bulk strain, as discussed below.

Also shown in Figure 12 is the bipolar response at x = 200 μm, where the unipolar response is zero. As usual, the striking difference between the response here and at the contact is that the resonant frequency has moved well into our window; in fact the resonance at x =200 μm is underdamped even though the relaxation time (see Table I) has also increased considerably.In Reference [8], we speculated that the faster bipolar response at the contact vs. the interior might be due to the fact that at the contact the bipolar response comes from both non-pinned and non-equilibrating strains, whereas the response in the interior only comes from non-equilibrating strains. However, the difference between the bipolar and two unipolar responses, also shown in Figure 12, gives the x=0 non-equilibrating response only. This difference was also fit to Eqtn. 1 and

its parameters listed in Table I. The difference response is only slightly slower (i.e. relaxation time is essentially the same and resonant frequency only slightly smaller) than that of the full bipolar response, showing that the dynamics of the bipolar response is essentially determined by that of the non-equilibrating part of the strain, even at points adjacent to the contact.

VI. Summary and discussion

We have used measurements of the changes in infrared transmittance when square-wave voltages are applied to the sample to determine the position, voltage, and frequency dependence of CDW strains (i.e. phase gradients) in blue bronze. This technique has the advantage of being able to probe the interior of the sample without placing multiple probes, which can perturb the CDW, on the sample, which has hindered transport measurements of the CDW strain in semiconducting CDW materials.11

Of course, it is still necessary to place contacts on the ends of the sample, and the largest changes in dynamical properties occur near (~ 100 μm) these contacts. Important questions, therefore, are to what extent these contacts are equipotentials with minimal band-bending, e.g. due to formation of Schottky barriers in the CDW state,11 and to what extent current enters the sample from the edges of the contacts and quickly distributes through the cross-section. The very small contact strains observed for some samples and the fact that the bulk strain, while varying approximately linearly with position in the sample, is not symmetric on the two sides of the sample with a voltage dependent asymmetry (e.g. see Figure 3) certainly suggest that our contacts are “imperfect”. Indeed, the longitudinal length-scale with which current is expected to spread through the sample

cross-section from surface contacts is11λ ~ d η1/2, where η is the ratio of longitudinal and transverse conductivities. For blue bronze, η ~ 1000,20 making λ comparable to the length scale of measured changes at the contacts.

However, the fact that the electro-transmittance (probing the whole sample cross-section) and the electro-reflectance (probing only the < 2 μm penetration depth16,17) have the same spatial and frequency dependence (Figure 2) suggests that current spreading is not a significant problem for our contacts. (Note that the spatial dependence of the electro-reflectance is different for thicker samples.18) Two possible reasons are that sample defects effectively distribute the current through the cross-section in a distance shorter than λ or that, because the contacts are over 100 μm long, the current actually spreads below them. The rapid variation of our measured relaxation times and resonant frequencies near the contacts suggests that the first effect is dominant. In fact, the expected length scale for the contact strain is determined by the single particle diffusion length and is expected to be ~ 100 μm,7 consistent with our measurements. We therefore assume that CDW current is approximately injected from the edges of our contacts so that the relatively small contact strains we measure are not artifacts of poor contacts but intrinsic, e.g. due to the incoherence of the CDW and/or strong pinning of dislocations, discussed below.

Most of our measurements were for the oscillating response to symmetric bipolar square-wave voltages, so that the CDW strain is oscillating between two opposite configurations. In this case, the oscillating strain has contributions from both the bulk polarization, which does not decay in zero field, and a non-pinned strain associated with

current conversion, but the latter is small and does not significantly affect the overall frequency dependence.

For large voltages, the electro-optic response can be fit as a damped harmonic oscillator, with the resonant frequency corresponding to a delay with respect to the applied square-wave voltage. The delay times increase rapidly between x = 0 (the contact) and x = 100 μm and then continue increasing (by 50-100% ) between x = 100 and 200 μm. This spatial variation indicates that the delays are intrinsic to the CDW (i.e. not associated with contact barriers4) and suggests that the signal driving the strain relaxation effectively flows out of the contacts. In this case, the delays we observe near the contacts may be a consequence of our finite spatial resolution. Similarly, in their measurements on NbSe3, the Cornell group found that there was a delay ~ 10 μs for changes in the electric field, and therefore the strain, in the center of the sample, but no delay at the contacts, and simulated these effects in terms of a strongly strain (and therefore position and voltage) dependent phase-slip rate, presumably reflecting the pinning and motion of dislocation lines.6 In our case, the resulting typical (T = 80 K) propagation velocity of ~ 100 μm/100 μs is comparable to that observed for voltage pulses30 but orders of magnitude larger than the drift velocity of the CDW,21 whose motion is limited by scattering with quasiparticles.1 If we model the CDW strain propagation as a wave on a stretched wire with tension (per electron) ~ e(V-V on)/L ~ 10 eV/m (consistent with the observed ω0 ~ V1/2 behavior at large voltages), then a velocity of 1 m/s corresponds to a reasonable effective mass density for the strain wave of ~ 1 QM F, where Q is the CDW wavevector and M F is the Fr?hlich mass (~ 300 m e31) associated with CDW motion.1 Of course, this simple result should only be considered

order of magnitude and needs to be qualified to account for the strong sample and temperature dependence of the delays.

The relaxation time also increases as one moves away from the current contact. For any position in the sample, the average relaxation time τ0 ~ V-p, with p between 1 and 2. No divergence or other structure is observed in τ0 near V T, where the CDW is depinned at the contacts and dc CDW current can flow. The dynamics are governed both by the force on the CDW (e.g. V-V on) and the CDW current. For a given force and position in the sample, both the relaxation and delay times are inversely proportional to the CDW current as temperature is varied. The temperature dependent screening of the quasiparticles directly affects the amplitude of the electro-optic response,15,16 but it only appears to affect the dynamics through its influence on the CDW current, so that while the response slows with decreasing temperature, it does not slow as much as expected from the quasiparticle density.

Near V T at T ~ 80K, the typical relaxation time is 1-10 ms, more than three orders of magnitude greater than the dielectric response time governing small amplitude oscillations of the pinned CDW,22,27 indicating that repolarization requires large scale rearrangements of the CDW and suggesting the strain relaxation involves the motion of extended defects in the CDW. In the model of Reference [6], CDW polarization occurs essentially through continuous and gradual changes in CDW phase. However, this may be a coarse-grained average of a more complicated phase landscape in which regions in which CDW has its equilibrium wavevector are separated by localized, soliton-like defects.3,32,33 These presumably accumulate on neighboring chains to form extended defects, such as CDW phase dislocation loops.32,33,34 As mentioned above, in Reference

尊重的素材

尊重的素材(为人处世) 思路 人与人之间只有互相尊重才能友好相处 要让别人尊重自己,首先自己得尊重自己 尊重能减少人与人之间的摩擦 尊重需要理解和宽容 尊重也应坚持原则 尊重能促进社会成员之间的沟通 尊重别人的劳动成果 尊重能巩固友谊 尊重会使合作更愉快 和谐的社会需要彼此间的尊重 名言 施与人,但不要使对方有受施的感觉。帮助人,但给予对方最高的尊重。这是助人的艺术,也是仁爱的情操。—刘墉 卑己而尊人是不好的,尊己而卑人也是不好的。———徐特立 知道他自己尊严的人,他就完全不能尊重别人的尊严。———席勒 真正伟大的人是不压制人也不受人压制的。———纪伯伦 草木是靠着上天的雨露滋长的,但是它们也敢仰望穹苍。———莎士比亚 尊重别人,才能让人尊敬。———笛卡尔 谁自尊,谁就会得到尊重。———巴尔扎克 人应尊敬他自己,并应自视能配得上最高尚的东西。———黑格尔 对人不尊敬,首先就是对自己的不尊敬。———惠特曼

每当人们不尊重我们时,我们总被深深激怒。然而在内心深处,没有一个人十分尊重自己。———马克·吐温 忍辱偷生的人,绝不会受人尊重。———高乃依 敬人者,人恒敬之。———《孟子》 人必自敬,然后人敬之;人必自侮,然后人侮之。———扬雄 不知自爱反是自害。———郑善夫 仁者必敬人。———《荀子》 君子贵人而贱己,先人而后己。———《礼记》 尊严是人类灵魂中不可糟蹋的东西。———古斯曼 对一个人的尊重要达到他所希望的程度,那是困难的。———沃夫格纳 经典素材 1元和200元 (尊重劳动成果) 香港大富豪李嘉诚在下车时不慎将一元钱掉入车下,随即屈身去拾,旁边一服务生看到了,上前帮他拾起了一元钱。李嘉诚收起一元钱后,给了服务生200元酬金。 这里面其实包含了钱以外的价值观念。李嘉诚虽然巨富,但生活俭朴,从不挥霍浪费。他深知亿万资产,都是一元一元挣来的。钱币在他眼中已抽象为一种劳动,而劳动已成为他最重要的生存方式,他的所有财富,都是靠每天20小时以上的劳动堆积起来的。200元酬金,实际上是对劳动的尊重和报答,是不能用金钱衡量的。 富兰克林借书解怨 (尊重别人赢得朋友)

那一刻我感受到了幸福_初中作文

那一刻我感受到了幸福 本文是关于初中作文的那一刻我感受到了幸福,感谢您的阅读! 每个人民的心中都有一粒幸福的种子,当它拥有了雨水的滋润和阳光的沐浴,它就会绽放出最美丽的姿态。那一刻,我们都能够闻到幸福的芬芳,我们都能够感受到幸福的存在。 在寒假期间,我偶然在授索电视频道,发现(百家讲坛)栏目中大学教授正在解密幸福,顿然引起我的好奇心,我放下了手中的遥控器,静静地坐在电视前,注视着频道上的每一个字,甚至用笔急速记在了笔记本上。我还记得,那位大学教授讲到了一个故事:一位母亲被公司升职到外国工作,这位母亲虽然十分高兴,但却又十分无奈,因为她的儿子马上要面临中考了,她不能撇下儿子迎接中考的挑战,于是她决定拒绝这了份高薪的工作,当有人问她为什么放弃这么好的机会时,她却毫无遗憾地说,纵然我能给予儿子最贵的礼物,优异的生活环境,但我却无当给予他关键时刻的那份呵护与关爱,或许以后的一切会证明我的选择是正确的。听完这样一段故事,我心中有种说不出的感觉,刹那间,我仿拂感觉那身边正在包饺子的妈妈,屋里正在睡觉的爸爸,桌前正在看小说的妹妹给我带来了一种温馨,幸福感觉。正如教授所说的那种解密幸福。就要选择一个明确的目标,确定自已追求的是什么,或许那时我还不能完全诠释幸福。 当幸福悄悄向我走来时,我已慢慢明白,懂得珍惜了。 那一天的那一刻对我来说太重要了,原本以为出差在外的父母早已忘了我的生日,只有妹妹整日算着日子。我在耳边唠叨个不停,没想到当日我失落地回到家中时,以为心中并不在乎生日,可是眼前的一切,让我心中涌现的喜悦,脸上露出的微笑证明我是在乎的。

爸爸唱的英文生日快乐歌虽然不是很动听,但爸爸对我的那份爱我听得很清楚,妈妈为我做的长寿面,我细细的品尝,吃出了爱的味道。妹妹急忙让我许下三个愿望,嘴里不停的唠叨:我知道你的三个愿望是什么?我问:为什么呀!我们是一家人,心连心呀!她高兴的说。 那一刻我才真正解开幸福的密码,感受到了真正的幸福,以前我无法理解幸福,即使身边有够多的幸福也不懂得欣赏,不懂得珍惜,只想拥有更好更贵的,其实幸福比物质更珍贵。 那一刻的幸福就是爱的升华,许多时候能让我们感悟幸福不是名利,物质。而是在血管里涌动着的,漫过心底的爱。 也许每一个人生的那一刻,就是我们幸运的降临在一个温馨的家庭中,而不是降临在孤独的角落里。 家的感觉就是幸福的感觉,幸福一直都存在于我们的身边!

关于我的幸福作文八篇汇总

关于我的幸福作文八篇汇总 幸福在每个人的心中都不一样。在饥饿者的心中,幸福就是一碗香喷喷的米饭;在果农的心中,幸福就是望着果实慢慢成熟;在旅行者的心中,幸福就是游遍世界上的好山好水。而在我的心中,幸福就是每天快快乐乐,无忧无虑;幸福就是朋友之间互相帮助,互相关心;幸福就是在我生病时,母亲彻夜细心的照顾我。 幸福在世间上的每个角落都可以发现,只是需要你用心去感受而已。 记得有一次,我早上出门走得太匆忙了,忘记带昨天晚上准备好的钢笔。老师说了:“今天有写字课,必须要用钢笔写字,不能用水笔。”我只好到学校向同学借了。当我来到学校向我同桌借时,他却说:“我已经借别人了,你向别人借吧!”我又向后面的同学借,可他们总是找各种借口说:“我只带了一枝。”问了三四个人,都没有借到,而且还碰了一鼻子灰。正当我急的像热锅上的蚂蚁团团转时,她递给了我一枝钢笔,微笑的对我说:“拿去用吧!”我顿时感到自己是多么幸福!在我最困难的时候,当别人都不愿意帮助我的时候,她向我伸出了援手。 幸福也是无时无刻都在身旁。 当我生病的时候,高烧持续不退时,是妈妈在旁边细心

的照顾我,喂我吃药,甚至一夜寸步不离的守在我的床边,直到我苏醒。当我看见妈妈的眼睛布满血丝时,我的眼眶在不知不觉地湿润了。这时我便明白我有一个最疼爱我的妈妈,我是幸福的! 幸福就是如此简单!不过,我们还是要珍惜眼前的幸福,还要给别人带来幸福,留心观察幸福。不要等幸福悄悄溜走了才发现,那就真的是后悔莫及了! 这就是我拥有的幸福,你呢? 悠扬的琴声从房间里飘出来,原来这是我在弹钢琴。优美的旋律加上我很强的音乐表现力让一旁姥爷听得如醉如痴。姥爷说我是幸福的,读了《建设幸福中国》我更加体会到了这一点。 儿时的姥爷很喜欢读书,但当时家里穷,据姥爷讲那时上学可不像现在。有点三天打鱼两天晒网,等地里农活忙了太姥爷就说:“别去念书了,干地里的活吧。”干活时都是牛马拉车,也没机器,效率特别低。还要给牲口拔草,喂草,拾柴火,看书都是抽空看。等农闲时才能背书包去学校,衣服更是老大穿了,打补丁老二再接着穿,只有盼到过年时才有能换上件粗布的新衣服。写字都是用石板,用一次擦一次,那时还没有电灯,爱学习的姥爷在昏暗的煤油灯下经常被灯火不是烧了眉毛就是燎了头发。没有电灯更没有电视,没有电视更没有见过钢琴,只知道钢琴是贵族家用的。

小学生作文《感悟幸福》范文五篇汇总

小学生作文《感悟幸福》范文五篇 小草说,幸福就是大地增添一份绿意;阳光说,幸福就是撒向人间的温暖;甘露说,幸福就是滋润每一个生命。下面是为大家带来的有关幸福650字优秀范文,希望大家喜欢。 感悟幸福650字1 生活就像一部壮丽的交响曲,它是由一篇一篇的乐章组成的,有喜、有怒、有哀、有乐。每一个人都有自己丰富多彩的生活,我也有自己的生活。我原本以为,吃可口的牛排,打电脑游戏,和朋友开心玩乐就是幸福。可是,我错了,幸福并不仅仅如此。 记得有一次,我放学回到家里放下书包就拿起一包饼干来吃。吃着吃着,突然我觉得牙齿痛了起来,而且越来越痛,痛得我连饼干也咬不动了。我放下饼干,连忙去拿了一面镜子来看。原来这又是那一颗虫牙在“作怪”。“哎哟哟,哎哟哟,痛死我了……”我不停地说着。渐渐地,那牙疼得越来越厉害,疼得我坐立不安,直打滚。后来在妈妈的陪伴下去了医院,治好了那颗虫牙。跨出医院大门时,我觉得心情出奇的好,天空格外的蓝,路边的樟树特别的绿,看什么都顺眼,才猛然一悟,幸福是简单而平凡的,身体健康就是一种幸福! 这学期我发现我的英语退步了,我决定要把这门功课学好,于是,我每天回

家做完作业后,都抽出半小时时间复习英语,在课上也听得特别认真,一遇到不懂的题目主动请教老师。经过一段时间的努力,终于,在上次考试的时候,我考了97分。妈妈表扬了我,我心里美滋滋的。我明白了经过自己的努力享受到成功的喜悦,这也是一种幸福。 …… 每个人都无一例外的渴望幸福。不同的人有不同的感受,其实,幸福就是那种能在平凡中寻找欢乐、能在困境中找到自信的一种心境。同学们,幸福其实很简单,就在我们的身边,触手可及。用心去认真地品味吧,它一直未曾离开我们身边! 感悟幸福650字2 有的人认为幸福就是腰缠万贯,有的人认为幸福就是找到意中人,“采菊东篱下,悠然见南山”是陶渊明对邪恶幸福,“从明天起做一个幸福人,喂马、劈柴、周游世界。从明天起,关心蔬菜和粮食,我有一所房子,面朝大海,春暖花开。”这是海子的幸福。一千种人就有一千种对幸福的理解。 我对幸福的理解就是幸福使简单而平凡的,是无处不在的! 我的牙疼得奇怪而顽强不是这颗牙疼就是那颗牙疼;不是吃冷的疼就是吃热

关于以幸福为话题的作文800字记叙文5篇

关于以幸福为话题的作文800字记叙文5篇 ----WORD文档,下载后可编辑修改---- 下面是作者为各位家长学生收集整理的作文(日记、观后感等)范本,欢迎借鉴参考阅读,您的努力学习和创新是为了更美好的未来,欢迎下载! 以幸福为话题的作文800字记叙文1: 那是我生病后的第三天,妈妈从早上五点就起来为我准备早点。她蹑手蹑脚地走着“针步”,下楼煮早点,“啪”的一声,妈妈打开了煤气。在拿肉丝,打鸡蛋的她全然不知我正躲在楼梯口“监视”着她的一举一动。不一会儿,蛋炒好了。 她开始切肉丝,一不小心,妈妈的手指切破皮了,鲜血正一滴一滴地流下来,为了不影响我的睡眠,她把手指放在嘴里吸了一下,坚持把剩下的肉丝切完。 此时的我,心中犹如打翻了五味瓶,眼里的泪像断了线的珍珠般掉了下来,我再也忍不住了,一个劲地冲到妈妈面前,她赶紧把手背了过去,生怕让我知道了什么。 她吃惊地问我:“妈妈太吵了,吵到你了?”“不,不,没有”她见我这么早起来就让我再回去补个觉。我关心地问:“妈,你的手没事吧?”她吱唔着说:“没事,擦破点皮,不碍事!”我仔细地帮她清洗了伤口,贴了一片创可贴。 吃饭时,妈妈一直地往我碗里夹肉,“孩子,病刚好,多吃点!”可是我见她始终都没吃一块肉。我也夹了两块放在她的碗里。“儿子懂事了,你自己快点吃吧!补身体要紧!”我冲她点点头笑了笑,“嗯。” 这就是幸福,一份简简单单的幸福!我祈祷这幸福能伴我成长。 以幸福为话题的作文800字记叙文2: 在我眼中,成长就是记录我们长大过程中一点一滴的小事情的,而幸福就在这点点滴滴中。 在我的成长记忆中,永不磨灭的是2017年11月的一天。妈妈要去云南,妈妈早上四点半要到指定地点集合,这么早,妈妈要两三点就起来,可是最近我咳嗽比较严重,所以天天给我煮萝卜汤喝。 “叮铃铃,叮铃铃”闹钟叫了起来,把我从睡梦中吵醒,一醒来,去找妈妈,

尊重议论文

谈如何尊重人尊重他人,我们赢得友谊;尊重他人,我们收获真诚;尊重他人,我们自己也 获得尊重;相互尊重,我们的社会才会更加和谐. ——题记 尊重是对他人的肯定,是对对方的友好与宽容。它是友谊的润滑剂,它是和谐的调节器, 它是我们须臾不可脱离的清新空气。“主席敬酒,岂敢岂敢?”“尊老敬贤,应该应该!”共和 国领袖对自己老师虚怀若谷,这是尊重;面对许光平女士,共和国总理大方的叫了一 声“婶婶”,这种和蔼可亲也是尊重。 尊重不仅会让人心情愉悦呼吸平顺,还可以改变陌生或尖锐的关系,廉颇和蔺相如便是 如此。将相和故事千古流芳:廉颇对蔺相如不满,处处使难,但蔺相如心怀大局,对廉颇相 当的尊重,最后也赢得了廉颇的真诚心,两人结为好友,共辅赵王,令强秦拿赵国一点办法 也没有。蔺相如与廉颇的互相尊重,令得将相和的故事千百年令无数后人膜拜。 现在,给大家举几个例子。在美国,一个颇有名望的富商在散步 时,遇到一个瘦弱的摆地摊卖旧书的年轻人,他缩着身子在寒风中啃着发霉的面包。富 商怜悯地将8美元塞到年轻人手中,头也不回地走了。没走多远,富商忽又返回,从地摊上 捡了两本旧书,并说:“对不起,我忘了取书。其实,您和我一样也是商人!”两年后,富商 应邀参加一个慈善募捐会时,一位年轻书商紧握着他的手,感激地说:“我一直以为我这一生 只有摆摊乞讨的命运,直到你亲口对我说,我和你一样都是商人,这才使我树立了自尊和自 信,从而创造了今天的业绩??”不难想像,没有那一 句尊重鼓励的话,这位富商当初即使给年轻人再多钱,年轻人也断不会出现人生的巨变, 这就是尊重的力量啊 可见尊重的量是多吗大。大家是不是觉得一个故事不精彩,不够明确尊重的力量,那再 来看下一个故事吧! 一家国际知名的大企业,在中国进行招聘,招聘的职位是该公司在中国的首席代表。经 过了异常激烈的竞争后,有五名年轻人,从几千名应聘者中脱颖而出。最后的胜出者,将是 这五个人中的一位。最后的考试是一场面试,考官们都 作文话题素材之为人处世篇:尊重 思路 人与人之间只有互相尊重才能友好相处 要让别人尊重自己,首先自己得尊重自己 尊重能减少人与人之间的摩擦 尊重需要理解和宽容 尊重也应坚持原则 尊重能促进社会成员之间的沟通 尊重别人的劳动成果 尊重能巩固友谊 尊重会使合作更愉快 和谐的社会需要彼此间的尊重 名言 施与人,但不要使对方有受施的感觉。帮助人,但给予对方最高的尊重。这是助人的艺 术,也是仁爱的情操。———刘墉 卑己而尊人是不好的,尊己而卑人也是不好的。———徐特立 知道他自己尊严的人,他就完全不能尊重别人的尊严。———席勒 真正伟大的人是不压制人也不受人压制的。———纪伯伦 草木是靠着上天的雨露滋长的,但是它们也敢仰望穹苍。———莎士比亚

最新整理高中关于幸福的议论文800字范文3篇

最新整理高中关于幸福的议论文800字范文3篇 范文一 什么是幸福?当我把一个棒棒糖递给六岁的邻居小妹妹时,她满足的笑容告诉我,这是她的幸福。当我轻轻地走过妹妹的写字台时,我瞥见埋在桌上的妹妹的僵硬的表情。我笑笑,走近,她抬头,水汪汪的眼睛望着我,似乎带着某种渴求。我说:出去玩吧!她笑了,蹦蹦跳跳地跑了出去。我诧异,这么真诚的笑。玩耍是她的幸福。 暑假到了,马上面临实习的哥哥回来了。可没过几天,就不见人影了,好容易盼他回来,暑假也结束了。他说他去了内蒙的好多地方。我关切的问他累吗?他说:累啊!随后又骄傲地说:“可是我学会了许多东西,我相信那对我以后的人生路是有帮助的。”我笑,大声地喊:哥,你是我的榜样。在他看来,他的暑假是充实的,他是幸福的! 夜幕降临,繁星点点。隔着一层帘,我看见常年劳作的父亲坐在那里,默默地吸着一支烟。灯光打在他的脸上,我看不清他的表情,只有那斑白的鬓角依稀可见。父亲真的老了,每天早出晚归来支撑这个家,他一定很累了。眼泪盈满了眼眶,最后还是不争气的流了下来……“咳、、咳、、”一阵剧烈的咳嗽声传来。我擦干眼泪,走到父亲旁边,父亲把那支烟熄灭,慈祥的笑笑,说:爸爸老了,不中用了。我说:没有啊!父女两开怀的笑了,笑声混着一个个烟圈飘向远方……我问父亲:爸,这么多年付出,这么多年劳作,你幸福吗?他坚定地告诉我,幸福!他说:“只要你们开开心心快快乐乐地成长,我做的一切都值得。”他又说:“霞,好好读书,爸爸赚钱供你上大学,我还没老呢,至少还能干XX年,20年……然后是一片寂静,我和父亲看着远方,那里有希望。 年迈的姥姥是家里的大长辈,他常常念叨:平安就是福。那也许是经历了人生的酸甜苦辣后的感悟吧!每逢新春,一大家人在姥姥家围着看电视时,那应该是她的幸福吧! 幸福是什么?它不是你一个人拥有一座豪宅,它是一家人在并不宽敞的屋子里谈笑风生。它不是你一个人有拥山珍海味,它是一家人和和乐乐的吃一些普通

感受幸福作文(15篇)

感受幸福作文(15篇) 感受幸福作文第1篇: 幸福是什么?这是许多同学要问的问题。 很小的时候,我就明白钱能够买来一大盒巧克力;钱能够买来玩具汽车;钱能够买许多的美丽的洋娃娃;钱能够买来一个大楼…… 我以为有钱就是幸福。 倡我错了,钱虽然能够买来一屋子巧克力,但买了甜蜜,钱虽然能买到房子,可是却买来家庭幸福;钱虽然能买来药,可是却买来健康,钱虽然能买来闹钟,可是买来时间……那时,我又明白了有钱必须幸福。 以前,我总是为了一条连衣裙而朝思暮想,盼望有一天能够穿上裙子,去放风筝。那时候,我以为拥有就是幸福。 最终有一天,妈妈给我买了这条连衣裙,我高兴的一宿都没有睡觉。可是几天的新鲜劲没有了,穿上裙子后,我并没有什么改变,依然是一个黄毛丫头。于是把它扔到箱子里。几个月后,我又把它翻出来,可是已经小了,穿下了。我又明白了,虽然裙子很美,但都是暂时的,完美的时光总是转瞬消失。 “幸福是什么?”我依然没有感受到。 几年后,我在街上看到了一对耄耋老人,他们虽然履蹒跚,可是互相搀扶,有时抬头看看天上的云卷云舒,有时望望西天如血的残阳,她们脸上洋溢着的是满足和幸福。 噢,我明白幸福就是真情。虽然他们很穷,可是他们很

相爱。他们彼此珍惜,从感叹世界对他们的公平。往往有的有钱人,他们虽然很有钱,可是他们并幸福,因为他们的心总是被金钱和权势所占据了,根本享受了这天伦之乐。 幸福其实很简单,就是和爸爸、妈妈吃一顿饭,和他在一齐聊聊天。 感受幸福作文第2篇: 夜,悄悄地打开了黑暗,散布着一如既往的宁静,天上的繁星披上了闪装,正对着我的眼,似乎害怕我听到它们之间的悄悄话。 知何时,甘寂寞的虫儿起劲地奏起了动听的乐曲,清凉的微风夹杂着泥土的芳香悄悄地将白天的烦闷与喧嚣赶跑。夜,显得更加宁静而诗意了。 静静的,左思,右想,就这样静静地坐在楼顶上,感受着夜馈赠我的美妙。就连天上偶尔飘过的云朵,也像是怕惊动了夜的宁静,如绒毛在平静水面滑过般,显得那么轻柔而迷人。 今夜独处在空旷的夜空下,感受着夜带给我的美妙,幸福惬意溢满于心。原先自我一向以来苦苦追寻的幸福其实就在自我的身边。 以往,有人努力打拼,渴望生活富裕来获得幸福,可一辈子的艰辛拼搏使自我逐渐沦为金钱的奴隶,苦苦追寻的幸福也越寻越远,最终留给自我的是岁月无情地染白的头发。其实,幸福并非是追寻能得到的,幸福是一种感受,仅有用心感受身边的一切,你就能发现,幸福无处在,譬如,管贫

尊重他人的写作素材

尊重他人的写作素材 导读:——学生最需要礼貌 著名数学家陈景润回厦门大学参加 60 周年校庆,向欢迎的人们说的第一句话是:“我非常高兴回到母校,我常常怀念老师。”被人誉为“懂得人的价值”的著名经济学家、厦门大学老校长王亚南,曾经给予陈景润无微不至的关心和帮助。陈景润重返母校,首先拜访这位老校长。校庆的第三天,陈景润又出现在向“哥德巴赫猜想”进军的启蒙老师李文清教授家中,陈景润非常尊重和感激他。他还把最新发表的数学论文敬送李教授审阅,并在论文扉页上工工整整写了以下的字:“非常感谢老师的长期指导和培养——您的学生陈景润。”陈景润还拜访了方德植教授,方教授望着成就斐然而有礼貌的学生,心里暖暖的。 ——最需要尊重的人是老师 周恩来少年时在沈阳东关模范学校读书期间 , 受到进步教师高盘之的较大影响。他常用的笔名“翔宇”就是高先生为他取的。周恩来参加革命后不忘师恩 , 曾在延安答外国记者问时说:“少年时代我在沈阳读书 , 得山东高盘之先生教诲与鼓励 , 对我是个很大的 促进。” 停奏抗议的反思 ——没有礼仪就没有尊重 孔祥东是著名的钢琴演奏家。 1998 年 6 月 6 日晚,他在汕头

举办个人钢琴独奏音乐会。演出之前,节目主持人再三强调,场内观众不要随意走动,关掉 BP 机、手提电话。然而,演出的过程中,这种令人遗憾的场面却屡屡发生:场内观众随意走动, BP 机、手提电话响声不绝,致使孔祥东情绪大受干扰。这种情况,在演奏舒曼作品时更甚。孔祥东只好停止演奏,静等剧场安静。然而,观众还误以为孔祥东是在渴望掌声,便报以雷鸣般的掌声。这件事,令孔祥东啼笑皆非。演出结束后,孔祥东说:有个 BP 机至少响了 8 次,观众在第一排来回走动,所以他只得以停奏抗议。 “礼遇”的动力 ——尊重可以让人奋发 日本的东芝公司是一家著名的大型企业,创业已经有 90 多年的历史,拥有员工 8 万多人。不过,东芝公司也曾一度陷入困境,土光敏夫就是在这个时候出任董事长的。他决心振兴企业,而秘密武器之一就是“礼遇”部属。身为偌大一个公司的董事长,他毫无架子,经常不带秘书,一个人步行到工厂车间与工人聊天,听取他们的意见。更妙的是,他常常提着酒瓶去慰劳职工,与他们共饮。对此,员工们开始都感到很吃惊,不知所措。渐渐地,员工们都愿意和他亲近,他赢得了公司上下的好评。他们认为,土光董事长和蔼可亲,有人情味,我们更应该努力,竭力效忠。因此,土光上任不久,公司的效益就大力提高,两年内就把亏损严重、日暮途穷的公司重新支撑起来,使东芝成为日本最优秀的公司之一。可见,礼,不仅是调节领导层之间关

感悟幸福(作文)(20篇)

感悟幸福(作文)(20篇) 篇一篇的乐章组成的,喜、怒、哀、乐。每一个人都自我丰富多彩的生活,我也自我的生活。我原本以为,吃可口的牛排,打电脑游戏,和朋友开心玩乐就是幸福。可是,我错了,幸福并不仅仅如此。 记得一次,我放学回到家里放下书包就拿起一包饼干来吃。吃着吃着,突然我觉得牙齿痛了起来,并且越来越痛,痛得我连饼干也咬不动了。我放下饼干,连忙去拿了一面镜子来看。原先这又是那一颗虫牙在“作怪”。“哎哟哟,哎哟哟,痛死我了”我不停地说着。渐渐地,那牙疼得越来越厉害,疼得我坐立不安,直打滚。之后在妈妈的陪伴下去了医院,治好了那颗虫牙。跨出医院大门时,我觉得心境出奇的好,天空格外的蓝,路边的樟树异常的绿,看什么都顺眼,才猛然一悟,幸福是简单而平凡的,身体健康就是一种幸福! 这学期我发现我的英语退步了,我决定要把这门功课学好,于是,我每一天回家做完作业后,都抽出半小时时间复习英语,在课上也听得异常认真,一遇到不懂的题目主动请教教师。经过一段时间的努力,最终,在上次考试的时候,我考了97分。妈妈表扬了我,我心里美滋滋的。我明白了经过自我的努力享受到成功的喜悦,这也是一种幸福。

每个人都无一例外的渴望幸福。不一样的人不一样的感受,其实,幸福就是那种能在平凡中寻找欢乐、能在困境中找到自信的一种心境。同学们,幸福其实很简单,就在我们的身边,触手可及。用心去认真地品味吧,它一向未曾离开我们身边! 感悟幸福(作文) 第8篇: 幸福无时没,幸福无处不在。儿时,你的幸福就是当你跌倒失声痛苦时,母亲抱起你,拍打着你背时的那句“别哭。”;成年时,你的幸福就是在你结婚时你身旁的那位拉起你的手问你的那句“你愿意吗”;老年时,你的幸福就是在椅子背后孙子的那句“奶奶我帮你敲背!”。家庭中,幸福是一家子的和乐融融;学校里,幸福是同学间的互相竞争;赛场上,幸福是队友间的默契配合。 然而,幸福不全然是唾手可得的,想不付出任何代价而得到幸福,那是神话。张志新说;“苦换来的是知识真理,坚持真理,就应自觉的欣然理解痛苦,那时,也仅那时,痛苦才将化为幸福。”仅心身遭受过痛苦的洗涤,幸福才会来到,痛得越深,苦得越彻,幸福得就越甜。鲁迅说:“穿掘到灵魂的深处,使人受了精神的苦刑而得到的创伤,又即从这得伤和养伤的愈合中,得到苦的涤除,而上了苏生的路。”从而得到了幸福的真谛。拉罗什夫科说过:“幸福后面是灾祸,灾祸后面是幸福。”你想成为幸福的人吗愿你首先吃得

尊重_议论文素材

尊重_议论文素材 "礼遇"的动力 --尊重可以让人奋发 日本的东芝公司是一家著名的大型企业,创业已经有90 多年的历史,拥有员工8 万多人。不过,东芝公司也曾一度陷入困境,土光敏夫就是在这个时候出任董事长的。他决心振兴企业,而秘密武器之一就是"礼遇"部属。身为偌大一个公司的董事长,他毫无架子,经常不带秘书,一个人步行到工厂车间与工人聊天,听取他们的意见。更妙的是,他常常提着酒瓶去慰劳职工,与他们共饮。对此,员工们开始都感到很吃惊,不知所措。渐渐地,员工们都愿意和他亲近,他赢得了公司上下的好评。他们认为,土光董事长和蔼可亲,有人情味,我们更应该努力,竭力效忠。因此,土光上任不久,公司的效益就大力提高,两年内就把亏损严重、日暮途穷的公司重新支撑起来,使东芝成为日本最优秀的公司之一。可见,礼,不仅是调节领导层之间关系的纽带,也是调节上下级之间关系,甚至和一线工人之间关系的纽带。世界知识产权日 --尊重知识 在2000 年10 月召开的世界知识产权组织第35 届成员国大会上,我国提议将 4 月26 日定为"世界知识产权日"。这个提案经世界知识产权组织成员国大会得到了确定。2001 年4 月26 日成为第一个"世界知识产权日"。这是我国尊重知识的具体表现。 屠格涅夫与乞丐 --尊重比金钱更重要 俄罗斯文豪屠格涅夫一日在镇上散步,路边有一个乞丐伸手向他讨钱。他很想有所施与,从口袋掏钱时才知道没有带钱袋。见乞丐的手伸得高高地等着,屠格涅夫面有愧色,只好握着乞丐的手说:"对不起,我忘了带钱出来。"乞丐笑了,含泪说:"不,我宁愿接受您的握手。" 孙中山尊重护士 --尊重不分社会地位 有一天,孙中山先生病了,住院治疗。当时,孙中山已是大总统、大元帅了。但是,他对医务人员很尊重,对他们讲话很谦逊。平时,无论是早晨或是晚间,每当接到护士送来的药品,他总是微笑着说声"谢谢您",敬诚之意溢于言辞。 1925 年孙中山患肝癌,弥留之际,当一位护理人员为他搬掉炕桌时,孙中山先生安详地望着她,慈祥地说:"谢谢您,您的工作太辛苦了,过后您应该好好休息休息,这阵子您太辛苦了! "听了这话,在场的人都泣不成声。 毛泽东敬酒 --敬老尊贤是一种美德 1959 年6 月25 日,毛泽东回到离别30 多年的故乡韶山后,请韶山老人毛禹珠来吃饭,并特地向他敬酒。毛禹珠老人说:"主席敬酒,岂敢岂敢! "毛泽东接着说:"敬老尊贤,应该应该。" 周恩来不穿拖鞋接待外宾 --衣着整齐体现对人的尊重 周恩来晚年病得很重,由于工作的需要,他还要经常接待外宾。后来,他病得连脚都肿起来了,原先的皮鞋、布鞋都不能穿,他只能穿着拖鞋走路,可是,有些重要的外事活动,他还是坚持参加。他身边的工作人员出于对总理的爱护和关心,对他说:"您就穿着拖鞋接待外

关于尊重的论点和论据素材

关于尊重的论点和论据素材 关于尊重的论点 1.尊重需要理解和宽容。 2.尊重也应该坚持原则。 3.尊重知识是社会进步的表现。 4.尊重别人就要尊重别人的劳动。 5.尊重人才是社会发展的需要。 6.人与人之间需要相互尊重。 7.只有尊重别人才会受到别人的尊重。 8.尊重能促进人与人之间的沟通。 9.我们应该养成尊重他人的习惯。 10.对人尊重,常会产生意想不到的善果。 关于尊重的名言 1.仁者必敬人。《荀子》 2.忍辱偷生的人决不会受人尊重。高乃依 3.尊重别人的人不应该谈自己。高尔基 4.尊重别人,才能让人尊敬。笛卡尔 5.谁自尊,谁就会得到尊重。巴尔扎克 6.君子贵人而贱己,先人而后己。《礼记》 7.卑己而尊人是不好的,尊己而卑人也是不好的。徐特立 8.对人不尊敬,首先就是对自己的不尊敬。惠特曼

9.为人粗鲁意味着忘记了自己的尊严。车尔尼雪夫斯基 10.对人不尊敬的人,首先就是对自己不尊重。陀思妥耶夫斯基 11.对于应尊重的事物,我们应当或是缄默不语,或是大加称颂。尼采 12.尊重老师是我们中华民族的传统美德,我们每一个人都不应该忘记。xx 13.尊重劳动、尊重知识、尊重人才、尊重创造。《xx 大报告》 14.对别人的意见要表示尊重。千万别说:你错了。卡耐基 15.尊重人才,培养人才,是通用电器长久不败的法宝。杰克韦尔奇 16.君子之于人也,当于有过中求无过,不当于无过中求有过。程颐 17.施与人,但不要使对方有受施的感觉。帮助人,但给予对方最高的尊重。这是助人的艺术,也是仁爱的情操。刘墉 18.要尊重每一个人,不论他是何等的卑微与可笑。要记住活在每个人身上的是和你我相同的性灵。叔本华 19.要喜欢我们所不尊重的人是很难的;但要喜欢

感受幸福作文范文5篇

感受幸福作文范文5篇 幸福是一种心灵的振颤。它像会倾听音乐的耳朵一样,需要不断地训练。下面给大家了感受幸福范文5篇,仅供参考。 我曾经填了一份读者反馈表,得了个二等奖,奖品是三百元钱。拿着那张三百元汇款单回家,我却不大开心。在路上,我想起了从前看过的一部电影,片名好像是《小鞋子》。 主人公小阿里在参加比赛时,一心只想跑第三名,以拿到梦寐以求的奖品——一双小鞋子。他想让妹妹穿着它,而不是光着脚去上学。 他被别人推倒了又爬起来再跑,情急之下,竟然冲到了第一名。 老师欣喜若狂地祝贺他,主办单位安排大官和他合影,阿里却难过地流下了眼泪。 尽管冠军有着很高的荣誉,能得到更为丰富的奖品,但那不是阿里最需要的,他需要那双并不漂亮的小鞋子。结果,他不仅没有得到,反而连仅有的一双鞋子也跑坏了。

在那个时候,我们或许可以这样解释幸福:幸福就是得到你急需的东西。 一个吃斋念佛的饥饿的人,面对着驰名中外的北京烤鸭,是不会有幸福感的,因为那不是他需要的,他急需的,可能只是两个馒头,一盘素炒豆芽而已;独自住在乡下的老人,总是能收到城里儿子寄来的钱物,很让乡亲们羡慕,但老人最想要的不是这些,而是儿孙膝下承欢的天伦之乐;在炎炎烈日下赶路的人,急需的是一片树阴,一阵凉风;一把扇子,一眼清凉的泉水,而不是一件名贵的貂皮大衣;大海是富饶的,它哺育了各种各样的生物,珍藏着无数的宝藏和财富。但在海上迷航的人,急需的却是普普通通的淡水。 聪明的你,可能已经猜到, ___不开心了。是的,我不需要三百元钱,钱我家里人会给我。我原本只想得个三等奖,三等奖的奖品是一百元钱。我想留为己用,不想让家里人知道。尽管这样做很不合理,但我还是想,因为我想。 幸福,是团聚;是分享快乐;是帮助他人;是朋友团结互助;是一个美梦;是……幸福无处不在,只要用心体会,就能感受到幸福的存在。

关于学会尊重的高中作文1000字以上_作文素材

关于学会尊重的高中作文1000字以上 尊重是一杯清茶,只有真正懂它的人才能忽略它的寡淡,品出它深处的热烈。下面橙子为大家搜集整理有关学会尊重的高中作文,希望可以帮助到大家! 高中作文学会尊重曾经听说这样一个故事: 一位商人看到一个衣衫破烂的铅笔推销员,顿生一股怜悯之情。他不假思索地将10元钱塞到卖铅笔人的手中,然后头也不回地走开了。走了没几步,他忽然觉得这样做不妥,于是连忙返回来,并抱歉地解释说自己忘了取笔,希望不要介意。最后,他郑重其事地说:“您和我一样,都是商人。” 一年之后,在一个商贾云集、热烈隆重的社交场合,一位西装革履、风度翩翩的推销商迎上这位商人,不无感激地自我介绍道:“您可能早已忘记我了,而我也不知道您的名字,但我永远不会忘记您。您就是那位重新给了我自尊和自信的人。我一直觉得自己是个推销铅笔的乞丐,直到您亲口对我说,我和您一样都是商人为止。” 没想到商人这么—句简简单单的话,竟使一个不无自卑的人顿然树立起自尊,使—个处境窘迫的人重新找回了自信。正是有了这种自尊与自信,才使他看到了自己的价值和优势,终于通过努力获得了成功。不难想象,倘若当初没有那么—句尊重鼓励的话,纵然给他几千元也无济于事,断不会出现从自认乞丐到自信自强的巨变,这就是尊1 / 7

重,这就是尊重的力量! 尊重,是—种修养,一种品格,一种对别人不卑不亢的平等相待,一种对他人人格与价值的的充分肯定。任何人都不可能尽善尽美,完美无缺,我们没有理由以高山仰止的目光审视别人,也没有资格用不屑一顾的神情去嘲笑他人。假如别人在某些方面不如自己,我们不能用傲慢和不敬去伤害别人的自尊;假如自己在有些地方不如他人,我们不必以自卑或嫉妒去代替理应有的尊重。一个真正懂得尊重别人的人,必然会以平等的心态、平常的心情、平静的心境,去面对所有事业上的强者与弱者、所有生活中的幸运者与不幸者。 尊重是一缕春风,一泓清泉,一颗给人温暖的舒心丸,一剂催人奋进的强心剂。它常常与真诚、谦逊、宽容、赞赏、善良、友爱相得益彰,与虚伪、狂妄、苛刻、嘲讽、凶恶、势利水火不容。给成功的人以尊重,表明了自己对别人成功的敬佩、赞美与追求;表明了自己对别人失败后的同情、安慰与鼓励。只有要尊重在,就有人间的真情在,就有未来的希望在,就有成功后的继续奋进,就有失败后的东山再起。 尊重不是盲目的崇拜,更不是肉麻的吹捧;不是没有原则的廉价逢迎,更不是没有自卑的低三下四。懂得了尊重别人的重要,并不等于学会了如何尊重别人,从这个意义上说,尊重他人也是一门学问,学会了尊重他人,就学会了尊重自己,也就学会和掌握了人生的一大要义。 2 / 7

感受幸福作文600字叙事 感受幸福作文600字初二

感受幸福作文600字叙事感受幸福作文600字初二 对于我们来说,什么是幸福?幸福就是一家人整整齐齐的坐在一起吃一顿饭,幸福就是自己在乎的人没病没痛,健健康康的.....今天小编和同学们分享几篇关于感受幸福的作文,希望帮到有需要的同学们。感受幸福作文600字【1】有人说,幸福是一种感觉,幸福是一种心境,幸福是一种体验,幸福,更是一种品格。忧伤时,贴心好友的一个拥抱是幸福;思乡时,电话那头响起的家人声音是幸福;听着音乐,啜着咖啡,悠然自在地写点感想是幸福……那么,朋友,你感受到了幸福了吗?幸福,有些人看来很渺远,有些人看来却近在咫尺。其实,世界并不缺少幸福,而是缺少发现幸福的眼睛。“猫吃鱼,狗吃肉,奥特曼打小怪兽”各求所需,心满意足,这,就是所谓的“幸福”。年轻的父母在逗弄牙牙学语的孩童;亲密爱人在携手漫步;父母端上热腾腾的饭菜;孩子熟睡后嘴角的微笑……这点点滴滴不都是幸福的剪影吗?幸福无处不在……有一次,妈妈烧了红烧鱼,刚要端上桌,我贪婪的目光就随着鱼的移动而移动。妈妈忙把好吃的鱼肚子夹给我,说:“来,吃吧!”“咦?你不是最爱吃这个吗?”我反问道。“现在不爱吃了,你吃吧!”妈妈说道。我拗不过妈妈,只好吃了。刹时间,幸福的感觉洋溢全身。只有在菜里放入了爱,才能让人感受到幸福。平凡的红烧鱼,不平凡的味道,不平凡的爱……幸福,往往是一个瞬间,只有有爱的人,才能发现幸福,感受幸福。朋友,感受你身边的幸福吧!幸福,无处不在……感受幸福作文600字【2】 人生若是一夜星空,幸福便是那耀眼的星星,琳琅满目。当你仔细观察时,你会发现,每一颗都独一无二。——题记 抬头仰望星空,看着那琳琅满目的星星,每一颗都独一无二。当我的眼神扫到最亮的那一颗时,我的思绪立马随着那颗星星穿越到过去。“神经病啊你,我都说过几百遍几千吧几万遍了,我的东西你别碰,你为什么就是讲不通听?好了,现在玻璃球打碎了,可以了吧?你舒服了吧?”扯着嗓子喊的是一个七岁的小女孩,她的对面站着一个五六岁的小女孩,那小女孩有着圆圆的脑袋,一头乌黑发亮的头发下有一双水灵灵的大眼睛,高挺的鼻梁下一张樱桃小嘴,模样甚是可爱。只是那眼眶湿润着,泪水如断了线的珍珠,不断地往外涌。她的小嘴蠕动了好几次,却始终没有说话,小女孩颤颤巍巍地向前走去,用颤抖的小手慢慢地拾起地下的玻璃碎片,转身离开。第二天清晨,当那个七岁的小女孩睁开眼时,就看到桌上有一个玻璃球和小纸条。纸条上写着歪歪扭扭的小字:姐姐对不起,我不是故意的,我只是觉得玻璃球很漂亮。现在我又帮你重新买了一个一模一样的玻璃球,希望姐姐不要生气了。童年的易满足心,那个小女孩果真没有生气了,她和那个小妹妹和好如初了。但偶然的一天,她却发现,玻璃球不是小妹妹打破的……原来是邻居的两岁小弟弟,看到那个玻璃球很漂亮,在伸手拿它时,因为太滑,玻璃球滚了下来……于是,她拿着自己最爱的零食和棒棒糖去和小妹妹道歉。没想到妹妹却如小大人一般说:“都过去了,你依旧是我的好姐姐,我永远是你的调皮妹妹……”回想到这里,我的眼眶早已红润。那个七岁的小女孩不就是我吗?那个小妹妹不就是自己的妹妹吗?顿时明白了妹妹的用意,顿时发现:幸福就像空气,无时无刻萦绕在我们身边,只是我们未曾发觉罢了。现在的我发觉了,也感受到了。人生若是一夜星空,幸福便是那耀眼的星星,琳琅满目。当你仔细观察时,你会发现,每一颗都独一无二。感受幸福作文600字【3】 什么是幸福?幸福是空气,它普遍的你随处都可以感受到它的存在;幸福是小鸟,它调皮的你怎么也抓不住它;幸福又是一杯水,平平淡淡才是真。幸福无时没有,幸福无处不在。儿时,你的幸福就是当你跌倒失声痛苦时,母亲抱起你,拍打着你背时的那句“别哭。”;成年时,你的幸福就是在你结婚时你身旁的那位拉起你的手问你的那句“你愿意吗?”;老年时,你的幸福就是在椅子背后孙子的那句“奶奶我帮你敲背!”。家庭中,幸福是一家子的和乐融融;学校里,幸福是同学间的互相竞争;赛场上,幸福是队友间的默契配合。然而,幸福不全然是唾手可得的,想不付出任何代价而得到幸福,那是神话。张x新说;“苦换来的是知识真理,坚持真理,就应自觉的欣然接受痛苦,那时,也只有那时,痛苦才将化为幸福。”

感悟幸福作文(精选10篇)

感悟幸福作文(精选10篇) 在日常生活或是工作学习中,大家都经常接触到作文吧,作文是由文字组成,经过人的思想考虑,通过语言组织来表达一个主题意义的文体。那么,怎么去写作文呢?以下是小编收集整理的感悟幸福作文(精选10篇),仅供参考,希望能够帮助到大家。 感悟幸福作文1 幸福是“临行密密缝,意恐迟迟归”的牵挂;幸福是“夜来风雨声,花落知多少”的恬谈;幸福是“先天下之忧而忧,后天下之乐而乐”的胸怀。 记得那是一个宁静的夜晚,家家户户家家户户都关了灯,可我家的灯却依旧工作着,因为我的作业还没有写完,懊恼的我使劲的捶打着桌子。妈妈听到了响声走了进来,亲切的说到:“怎么了乖女儿?”“都六点半了,我的作业还没有写完,我怎么不着急”,我气急败坏的回答。妈妈看到我无助的状态安慰到“孩子不要着急,妈妈会在这一直陪着你,直到你写完作业……”此刻我忽然感觉到,其实有母亲的陪伴就是我最大的幸福! 还有一次,我和同学们一起在小区的花园里玩,正当我们玩游戏玩的不亦乐乎的时候,我被重重的摔了一跤,腿被摔破了。当时情不自禁的哭了起来,同学们听到我的哭声纷纷赶来,大家纷纷帮忙把我搀扶回家里。那时我又深深的感觉到,来自朋友的关心其实也是一种幸福。 记得那是一个风雨交加的下午,由于我的粗心来学的时候忘记了带雨伞。放学后我只能站在教室的窗口默默的看着外面的漂泊大雨……忽然,一个高大而熟悉的身影出现在我的眼前,忽然感觉双眼酸涩:“爸爸……”我一下子扑倒了爸爸的怀里,父亲的爱是无言的,这也正是我幸福的源泉! 幸福就是有母亲的陪伴,朋友的关怀,父亲的关爱!每个人都向往幸福追求幸福,其实幸福就是一种感觉,是一种心态,它源于你对事与物的的追求与理解! 感悟幸福作文2 著名作家海伦凯勒曾说过:“我一直在哭,一直在哭,哭我没有鞋穿,直到有一天,我知道有人没有脚…我由此知道了幸福的真正内涵。”幸福是什么? 许多年前,当人们提出这个问题时,个个都两目相对,哑口无言。是啊,幸福是什么?幸福是那禾苗晃动稚嫩的身躯,昂首向天际发出的无声的诉说吗?幸福是蚕宝宝咀嚼着香脆的桑叶奏出的“沙沙沙沙”的乐曲吗?幸福是雏燕展翼穿过鹅黄的柳梢剪出的一片春色朝向母亲的回眸吗?幸福是梅花“已是

高考作文素材关于文明的作文素材

2015年高考作文素材:关于文明的作文素材 高考作文素材点拨及运用思路:文明 一、素材链接: 言语类 (一)名人名言 1.礼仪的目的与作用本在使得本来的顽梗变柔顺,使人们的气质变温和,使他尊重别人,和别人合得来。约翰?洛克 2.善气迎人,亲如弟兄;恶气迎人,害于戈兵。管仲 3.天下有大勇者,猝然临之而不惊,不故加之而不怒。苏轼 4.我们应该注意自己不用言语去伤害别的同志,但是,当别人用语言来伤害自己的时候,也应该受得起。刘少奇 5.礼貌使人类共处的金钥匙。松苏内吉 6.讲话气势汹汹,未必就是言之有理。萨迪 7.火气甚大,容易引起愤怒底烦扰,是一种恶习而使心灵向着那不正当的事情,那是一时冲动而没有理性的行动。彼得.阿柏拉德 8.青年人应当不伤人,应当把个人所得的给予各人,应当避免虚伪与欺骗,应当显得恳挚悦人,这样学着去行正直。夸美纽斯 9.礼貌是儿童与青年所应该特别小心地养成习惯的第一件大事。约翰.洛克 10.不论你是一个男子还是一个女人,待人温和宽大才配得上人的名称。一个人的真 11.正的英勇果断,决不等于用拳头制止别人发言。萨迪 12.礼貌使有礼貌的人喜悦,也使那些授人以礼貌相待的人们喜悦。孟德斯鸠 13.坏事情一学就会,早年沾染的恶习,从此以后就会在所有的行为和举动中显现出来,不论是说话或行动上的毛病,三岁至老,六十不改。克雷洛夫 14.礼貌经常可以替代最高贵的感情。梅里美 15.礼貌是最容易做到的事,也是最珍贵的东西。冈察尔 16.脾气暴躁是人类较为卑劣的天性之一,人要是发脾气就等于在人类进步的阶梯上倒退了一步。达尔文 17.蜜蜂从花中啜蜜,离开时营营的道谢。浮夸的蝴蝶却相信花是应该向他道谢的。泰戈尔

感受幸福作文650字

感受幸福作文650字 第1篇感受幸福作文650字 什么是幸福?幸福是各种各样的,不同的人对幸福的感受也各不相同。假如我们不会说话,那就不能表达自己内心的想法,不能向朋友倾诉自己的喜悦与烦恼,那是一种不幸,反之就是一种幸福。假如我们听不见,就不能感受到一切美妙的声音,如叮叮咚咚的琴声,哗哗的流水声,以及父母、老师、同学的说话声,那也是一种不幸,反之也是一种幸福。假如我们看不见,就不能欣赏到这个大千世界形形色色的样子,看不见斑斓的色彩,更看不见那美丽的太阳和月亮……这也是一种不幸,反之,,也是一种幸福。父母爱着我,就是一种幸福,别人帮助我,是一种幸福,能吃到美味的食物,也是一种幸福,快乐地生活着,更是一种幸福。被人信任是一种莫大的幸福。我平时有个坏习惯,不喜欢洗脸,一般都要妈妈督促着才勉强去洗。可有一次,妈妈回家比较晚。她到家时,我们都已经在吃晚饭了,正吃得津津有味时,妈妈回来了,她的第一句话就是“你今天有没有洗过脸?”,我赶紧回答:“我洗过了”。妈妈半信半疑:“你到底洗过没有?”,并盯着我,脸上的表情十分严肃。她这样做,其实是测试我有没有说谎。于是我更加坚定并大声地说:“我真的洗过了!”这次,她不再问了,并且笑了,我知道她相信了我的话,这时,我真的感受到了一种从未有过的幸福!其实,幸福还有很多很多,如爷爷奶奶的宠爱,父母亲的关怀,亲戚朋友们的赞美,老师们的期盼,同学们的友爱…。.都值得我们去好好珍惜,让我们常怀一颗感恩的心,时刻感受生活中的幸福吧! 第2篇感受幸福作文650字 欧文曾说过,“人类的一切努力的目的在于获得幸福。幸福是什么?幸福是一种感觉,感动就是一种幸福。幸福就像作家毕淑敏说的:世上有预报台风的,有预报蝗虫的,有预报瘟疫的,有预报地震的,但没有人预报幸福,其实幸福和世界万物一样,有它的征兆。清晨,旭日东升,温柔的阳光洒向人间,抚摸着我的脸,心,感觉暖暖的。这,就是幸福的征兆。当我们在写作业时,一边写,一边贪婪地记下知识的结晶。这时,笔尖沙沙的响声,就是幸福的征兆。走在小河边,两岸的杨柳随风摆动,鱼儿和鹅卵石正在编制着充满活力的动态画面。这时,小河潺潺的流水声就是幸福的征兆。幸福的感觉是美好的,幸福的味道是甜美的。只不过它比玫瑰更芬芳,比棒棒糖更甜蜜,比巧克力更浓郁,比咖啡更香醇......幸福是什么?“幸福是贫困中相濡以沫的一块糕饼,患难中心心相印的一个眼神,父亲一次粗糙的抚摸,女友一个温馨的字条......这像一粒粒缀在旧绸子上的红宝石,在凄凉中愈发熠熠生辉。”幸福在哪里?当我们与家人一起散步时,幸福就在那温馨的眼神里;当我们和朋友们一起玩耍时,幸福就在那灿烂的笑容里;当我们与同学在一起探讨难题时,幸福就在那激烈的争辩里;当我们想象着自己的未来时,幸福就在那美好的憧憬里。幸福有时不一定是甜的,快乐有时也不一定就是幸福。快乐只是表面的开心,而幸福是发自内心的快乐和欣慰。因此,只要你是幸福的,那你一定是快乐的。让我们一起追求幸福吧!在生活中快乐成长,在成长中感受幸福。 第3篇感受幸福作文650字 幸福是什么?幸福对于每个人,都是不一样的!其实幸福可以很小,很简单,它时刻陪伴在我们的身边,也许是因为人们平时没有去在意,身边的那些本可以让人暖心的普通点滴,只要我们好好的去感受幸福! 幸福就好比如这样:天悄悄拉下夜幕,同学们渐渐散了,不知什么时候,课室里只剩下我和她,她的画,也终于画好了。而我还是差一些才能搞定,她便开始收拾起来,时间更加紧迫,因此,我的心更加紧张,一滴晶莹的汗滴在了画纸上,我觉得实在画不下去了:小姨妈(外号),你觉得我的画还有有救吗!她凑过脑袋:来,我看看,当然有啦,快画吧!我看她望了望校门口,她一定是在找寻来接她回家的爸爸,我看看空空的课室:小姨妈,很晚

相关主题
文本预览
相关文档 最新文档