当前位置:文档之家› 长江口沉积物重金属元素地球化学特征及其底质环境评价

长江口沉积物重金属元素地球化学特征及其底质环境评价

长江口沉积物重金属元素地球化学特征及其底质环境评价
长江口沉积物重金属元素地球化学特征及其底质环境评价

长江口沉积物重金属元素地球化学特征

及其底质环境评价

孟 翊,刘苍字,程 江

(华东师范大学河口海岸国家重点实验室,上海200062)

摘要:通过对长江口区32个表层沉积样品中Cu、Cr、Zn、Pb等重金属元素及Al等常量元素的含量分布进行定量研究,揭示水动力和沉积作用是研究区元素分布的主要控制因素,进而采用聚类分析将研究区划分为4个沉积地球化学分区。此外,本次研究采用模糊数学方法,以Cu、Cr、Zn、Pb重金属元素作为评价因子对长江口区进行底质环境的多因子评价,结果发现研究区的底质环境都受到了不同程度的污染,从而为探讨研究区沉积地球化学过程和环境保护提供了科学依据。

关键词:沉积地球化学;重金属元素;环境评价;长江口

中图分类号:P736.4 文献标识码:A 文章编号:025621492(2003)0320037207

长江口是一个水丰沙多的中潮河口,它的年径流量和年输沙量分别达9240亿m3和4186亿t。在复杂的水动力因子,如径流、潮流、河口余环流和波浪等的相互作用下,大量流域来沙在河口区沉积,建造了庞大的水下三角洲。由于多种水动力因子的相互消长,加之生物地球化学作用的影响,使得进入该区水体中的重金属元素具有复杂的沉积地球化学特征[1—3]。因此,研究重金属元素在沉积物中的含量和分布,不仅可以揭示重金属元素在河口地区迁移富集的规律[4,5],进而探讨水动力和沉积条件的变化,而且对于水资源保护与开发利用、区域环境评价[6]及经济发展都具有重要意义。

1 研究区域及方法

本次研究样品主要采集于1988—1992年的长江河口锋调查[2],共计32个表层沉积样品。研究范围西起长江口南北分叉处,东至长江水下三角洲前缘,可达123°E附近(图1)。

样品处理方法:用取泥器取出表层沉积物,放入聚乙烯瓶中,取50g沉积物,经风干、烘干后保存于干燥箱中,取一定量样品用HCl2HNO32HClO42HF 消化,经HNO3重溶后制成5%的溶液,采用美国产Jarrell Ash1000ICP光谱仪,测定重金属元素Cu、Cr、Zn、Pb和常量元素Al、Fe等元素的总量,结果表

基金项目:国家自然科学基金资助项目(40206013)

作者简介:孟 翊(1967—),女,助理研究员,主要从事海洋沉积与沉积地球化学研究,E2mail:ymeng@https://www.doczj.com/doc/ee18703554.html,

收稿日期:2003201210;改回日期:2003204223. 文凤英编辑明绝大多数分析元素的相对误差小于5%。与此同时还采用COUL TER L S100Q激光粒度仪做了沉积物的粒度分析。

2 结果与讨论

2.1 重金属元素含量及分布趋势

河口沉积物中的重金属元素不仅蕴含许多有价值的地质和环境信息,而且能较好地显示该地区的污染情况,是开展地球化学研究和进行环境评价的基础资料[7,8]。

表层沉积物中重金属元素的平面分布趋势显示,Cu、Cr、Zn、Pb等的高值区均位于30150°~31150°N、122°~122192°E的范围,即高值区主要分布在南支口外的长江水下三角洲地区(图2)。

表层沉积物中重金属元素的分布,在东西纵向上表现为从口内到口外含量增加,达到一高值后又呈下降趋势,且下降幅度较大(图3a)。南北横向的变化趋势与东西纵向的有些相似,即从南向北重金属元素的含量呈先低后高、再有所降低的变化趋势(图3b)。因此,重金属元素的含量分布总体上在东西纵向上呈两侧低、中间高,而南北横向上则显示南高北低的格局。

2.2 元素的相关性

对几种重金属元素所做的相关分析表明,Cu、Cr、Zn、Pb与Al2O3具有极好的正相关性,相关系数分别为0191、0191、0188、0167(图4)。Al2O3是大

2003年8月 海洋地质与第四纪地质 Vol.23,No.3第23卷第3期 MARIN E GEOLO GY&QUA TERNAR Y GEOLO GY Aug.,2003

图1 研究区表层样品站位

Fig.1 Location of the

surface samples in the study area

图2 长江口表层沉积物中Cu 、Cr 、Zn 、Pb 含量的平面分布(单位:mg/L )

Fig.2 Distribution of Cu ,Cr ,Zn ,and Pb contents in the surface sediments of the Y angtze River mouth

陆风化产物,在地壳中较稳定,又是粘土矿物的主要成分,说明这些重金属元素与粘土矿物关系密切[3,9],且随粘土的增加而增加。4种重金属元素在不同类型沉积物中的含量也表明,沉积物粒度越细

其含量越高(表2),如Cu 在粘土中的含量是砂和粉砂中含量的216倍和115倍,粘土中Zn 的含量是砂的119倍,Cr 、Pb 在粘土中的含量也是它们在砂中含量的116倍。

83 海洋地质与第四纪地质2003年 

图3 长江口沉积物重金属元素的东西纵向(a )和南北横向(b )变化

Fig.3 East 2west and south 2north changes in the contents of heavy metal elements

of the Y angtze River mouth sediments

图4 长江口沉积物中Cu 、Cr 、Zn 、Pb 与Al 2O 3的关系

Fig.4 Relationships between Cu ,Cr ,Zn ,Pb ,and Al 2O 3in the Y angtze River mouth sediments

9

3 第3期 孟 翊,等:长江口沉积物重金属元素地球化学特征及其底质环境评价

表1 长江口不同类型沉积物中

重金属元素的平均含量

Table 1.Average contents of Cu ,Cr ,Zn ,and Pb in different sediments of the

Y angtze River mouth

mg/L

Cu

Cr Zn Pb 砂13.648.1154.7918.60粉砂23.9971.7778.3625.39粘土

35.79

75.51

102.56

29.56

2.3 沉积地球化学分区

长江口区元素的分布格局是河口区海陆相互作用的结果,与该区水动力过程和沉积过程相关。对32个表层沉积样进行的Q 型聚类分析将研究区域

划分为4个沉积地球化学区(图5)。

其中A 区主要分布在口外,沉积物以泥质粉砂和粉砂质泥为主,平均粒径(Mz )为7.3 左右,Cu 、Cr 、Zn 、Pb 在此处含量最高,分别达7214、3310、3411、10511mg/L 。这里的沉积物粒度较细,一般

沉积物越细,比表面积越大,越易吸附重金属元素[1,5]。该区也是长江口最大浑浊带活动区[4],频繁的盐淡水交汇、较强的絮凝作用,使得水体中高含量的细颗粒物质特别是粘土矿物沉降下来,并吸附某些金属元素;同时,适宜的水化学条件利于多种无

机和有机胶体,如Fe 2Mn 水合物、絮状物的形成[5,10],这些无机和有机胶体悬浮物通过絮凝、络合等作用,吸附了大量的金属元素。

B 区分布于研究区东部,位于陆架残留砂和混

合沉积区。这里的沉积物粒度最粗,为中细砂和混合砂,且含有较多的生物碎屑,重金属元素含量很低,属生物源区。

C 区大致位于长江河口锋与羽状锋[4]之间,其

沉积物平均粒径在410 左右,属现代长江三角洲

向陆架的过渡带,Cu 、Cr 、Zn 、Pb 的含量介于A 区与B 区之间。

D 区位于南北支拦门沙以内,这里长江径流作

用较强,陆源重矿物如闪石类、帘石类和斜长石类等的含量较高,而重金属元素的含量相对较低。长江径流携带的陆源风化产物控制着该区的沉积物组成。

2.4 底质环境评价2.4.1 现状

参照长江口区4种重金属元素的背景值[11],研究区32个底质样品中有25个样品的Pb 含量高于背景值,超标率达7811%,Zn 有16个样品的含量超过背景值,超标率达5010%,Cu 和Cr 超标率分别达3414%和1516%(表2)

图5 长江口沉积地球化学分区

Fig.5 Sedimentary geochemical provinces of the Y angtze River mouth area

4 海洋地质与第四纪地质2003年 

表2 长江口底质沉积物中重金属元素的评估

Table2.Assessment of heavy metal elements in the bottom sediments of the Y angtze River mouth

项目Pb Zn Cu Cr

底质评价标准/(mg/L)20803080

最大浓度/(mg/L)38.112256.988.8

最小浓度/(mg/L)13.240.6 6.733.7

样品数32323232

超标数2516115

超标率/%78.150.034.415.6

2.4.2 污染因子权重计算方法

以底质污染因子重金属元素Pb、Zn、Cu和Cr 构造A2U判断矩阵:

 Pb Zn Cu Cr

p=

1234

1/2123

1/31/212

1/41/31/21

Pb

Zn

Cu

Cr

根据A2U判断矩阵,采用方根法求出最大特征根所对应的特征向量W,所得特征向量即为各个评价因素的重要性排序,也就是各评价因子的权重分配。

经计算得: W1=0146685, W2=0.27759, W3 =0.16027, W4=0.095295,

于是所求判断矩阵的特征向量为:

W=(0.4668,0.2766,0.1603,0.0953)

以上得到的特征向量即为所求权重。权重分配是否合理,需要对判断矩阵进行一致性检验。检验使用公式:CR=CI/R I,其中CR为判断矩阵的随机一致性比率;CI为判断矩阵的一般一致性指标,

它由下式给出:CI=1

n-1

(λmax-n);R I为判断矩阵的平均随机一致性指标,对于1—9阶判断矩阵, R I见表3。

表3 平均随机一致性指标RI值

Table3.RI values of average random coincidence indicator

n123456789

RI0.000.000.580.90 1.12 1.24 1.32 1.41 1.45

当CR<0110时,即认为判断矩阵具有满意的一致性[12],说明权重的分配是合理的;否则,就要调整判断矩阵,直到取得符合的一致性的要求为止。判断矩阵的最大特征根λmax=7119468[12],经检验:

CI=

λ

max

-4

4-1

=

417411-4

3

=01010373,R I= 0190

CR=

CI

R I

=

01010373

0190

=010115<0110,表明判断矩阵具有满意的一致性,因此特征向量W= (014668,012766,0.1603,0.0953)可以作为权重向量。

上述计算结果显示,用模糊数学方法分析长江口区底质污染因子重金属元素Pb、Zn、Cu和Cr,其权重分别为014668、012766、011603和010953,可以作为评价因子用来评价研究区的底质环境。

2.4.3 污染状况

根据所测样品中4种重金属元素Cu、Cr、Zn、Pb 的数据,对各沉积地球化学分区进行底质环境的多因子评价。多因子评价采用加权评价模式,即把各污染因子的质量分指数乘以各因子的权重值,再综合成底质的环境总指数进行评价。其计算式为: SQJ=ΣW i P i

其中SQJ为底质的环境质量总指数,W i为第i个因子的权重值,P i=(1/K i)/(Σ1/K i),代表污染因子对环境质量影响程度的比重分配,K i为第i个污染因子的环境可容纳量,可由评价标准(Si)和背景值(Coi)[3,11]来计算:K i=(Si2Coi)/Coi,由上述公式计算得下表(表4)。

表4 长江口4个沉积地球化学分区

多因子评价的环境质量总指数

Table4.Index of environmental quality

assessed with multiple factors in the four

sedimentary geochemical provinces

分区A B C D

SQJ0183015401680171

分级轻污染清洁微污染微污染

参阅SQJ分级标准[11],可看出4个沉积地球化学分区中,除B区外,皆受到不同程度的污染,尤以A区相对较为严重。

A区为轻污染区,这与此区沉积物颗粒较细、絮凝作用强烈有关。长江口河口环流和底质再悬浮过程使该区具有较高的悬浮物质,从而形成一个具有较高吸附能力的吸附过滤障[10],加之有机物的络合及各种水合物的形成,使得一些溶解相的重金属也转移到颗粒相[5,9],进一步增加了这些污染元素的含量。这种过滤效应对系统水质起到了净化作用,

14

 第3期 孟 翊,等:长江口沉积物重金属元素地球化学特征及其底质环境评价

而底质却被污染了。

B区是4个区中惟一清洁的区。此区海洋作用显著,重金属元素在高盐度和p H值下被解析[5,7],加上潮汐和波浪的筛选,造成该区沉积物粒度较粗。口外流系和长江冲淡水的扩散趋势[4],也是导致B 区清洁的原因之一。

C区和D区均为微污染区。很明显C区得益于A区的吸附过滤障,使得重金属元素含量相对减少。D区正是长江径流作用强烈的地带,沉积物粒度也较粗,理应所受污染小,但是由于上海市几个排污口和崇明某些乡镇企业的大量倾泄污物,造成D 区目前这种状况。因此整个环境状况不容乐观,应高度重视保护环境,控制人为排放污染物。

3 结论

(1)长江口区重金属元素主要来源于长江径流带来的大量陆源物质,其分布主要受长江口的水动力条件和沉积作用的控制。根据这些重金属元素的含量变化,可以将长江口区划分为4个不同的沉积地球化学分区。

(2)沉积物粒度和盐淡水交汇导致的絮凝作用也控制着重金属元素的分布及其化学行为,一般重金属元素在细颗粒沉积物中相对富集。

(3)长江口底质环境评价结果表明,本区底质环境皆受到不同程度的污染,尤以南支口外相对较为严重。

参 考 文 献

[1] Schubel R J.The estuary as a filter for fine grained suspended

sediments in the estuarine environment[J].Teconical report Reld,1983(14):310—313.

[2] 孟翊,刘苍字.长江口区沉积地球化学特征的定量研究[J].

华东师范大学学报(自然科学版),1996(1):73—83.

[3] 赵一阳.中国海大陆架沉积物地球化学的若干模式[J].地质

科学,1983(4):307—314.

[4] 沈焕庭,郭成涛,朱慧芳,等.长江河口最大浑浊带的变化规

律及其成因[A].海岸河口区动力、地貌、沉积过程论文集

[C].北京:科学出版社,1995.78—79.

[5] 陈敏,陈邦林,夏福兴,等.长江口最大浑浊带悬移质、底质

微量金属形态分布[J].华东师范大学学报(自然科学版), 1996(1):38—44.

[6] Tretey J H.History of heavy metal input to Mississipi Delta sedi2

ments[J].Estuaries,1985,12(2):231—23.

[7] Zwolsman J J.Spatial and temporal distribution of trace metals in

sediments from the Scheldt Estuary,South2West Netherlands[J].

Estuary Coastal and Shelf Science,1996(43):55—79.

[8] Widdows J,Nasci C,Fossato V U.Effects of pollution on the

scope for growth of mussels from the Venice Lagoon,Italy[J].

Marine Environmental Research,1997,43:69—79.

[9] Singh A K,Benerjee D K.Grain size and geochemical partitioning

of heavy metals in sediments of Damodar River—a tributary of the lower G anga,India[J].Environmental G eology,1999,39(1): 91—98.

[10] Tian R,Chen J,Zhou J.Dual filtration effects of geochemical

and biogeochemical processes in the Changjiang Eatuary[J].

China J.Oceanol.Limnol.,1991,9(1):33—43.

[11] 吴国元.长江河口南支南岸潮滩底质重金属污染与评价[J].

海洋环境科学,1994(2):48—51.

[12] 荩垆.实用模糊数学[M].北京:科学技术文献出版社,

1989.191—206.

24

海洋地质与第四纪地质2003年 

GEOCHEMICAL CHARACTERISTICS OF HEAV Y METAL E L EMENTS IN THE SURFACE SEDIMENTS IN THE YANGTZE RIVER ESTUARINE

AREA AN D EVAL UATIONS OF THE BED MATERIALS

M EN G Y i ,L IU Cang 2zi ,CHEN G Jiang

(State Key Laboratory of Coastal and Estuarine Research ,East China Normal University ,Shanghai 200062,China )

Abstract :During the consecutive cruises between 1988and 1992,32surface sediment samples were collected from the Yangtze River mouth region ,and the common element Al and four heavy metal elements Cu ,Cr ,Zn ,and Pb have been analyzed in order to reveal their geochemical properties and the relationships between the sedi 2mentary environment and the chemical elements.Based on the quantitative analysis of the four heavy metal ele 2ments and the common element Al ,the hydrographic dynamics and the sedimentation are found to be the main controlling factors on the distribution of the elements.According to this result ,the study area is divided into four sedimentary geochemical provinces by Q 2mode cluster analysis.In addition ,fussy set theory is applied to this study for evaluating the environmental quality.It has been revealed that almost the whole study area has been polluted to different degrees ,and the region has a potential danger of being more seriously polluted.K ey w ords :geochemistry ;heavy metal elements ;environmental evaluation ;the Yangtze River mouth

第五届亚洲海洋地质国际会议第2号通知

2004年1月13—18日,第五届亚洲海洋地质国际会议将在泰国曼谷Chulalongkorn 大学举行。本届国际会议由泰国矿产资源部、泰国地下水资源部、泰国矿物燃料部、CCOP 、IOC/WESTPAC 、IGCP 2475(DeltaMAP )、IGCP 2476、APN (MegaDelta )项目组共同主办,泰国Chulalongkorn

大学地质系承办。组织委员会主席为Veerote DAORER K 先生,国际科学委员会主席是中国科学院院士汪品先教授。1 会议主题:本届国际会议DeltaMAP 、MegaDelta 项目组将共同参与并组织地质旅行,共设11个讨论主题,它们是:

(1)亚洲海洋地质发展方向;(2)亚洲大陆边缘的深海钻探;(3)亚洲海域的地质与构造;

(4)青藏高原的隆升与季风气候;(5)边缘海的演化;

(6)太平洋和印度洋间的通道;

(7)边缘海的海陆相互作用和古海洋;(8)气候与海洋环境;

(9)沉积作用与海洋沉积动力;

(10)东南亚海域的油气和天然气水合物;(11)人类对海岸带的影响及可持续发展。以及“亚洲三角洲:演化和近期的变化(IGCP/APN )”。2 工作语言:英语3 论文摘要:大会秘书处接收摘要(MS Word 格式)的时间截止到2003年12月1日。4 地质旅行:会后组织2天的地质旅行(仅限40人),内容为Chao Phraya 河三角洲的海岸侵蚀和一个完整的全新世三角洲沉积序列的考察,并参观一个古老的牡蛎塔寺院等。5 下榻宾馆:Miracle Grand Convention 宾馆6 会议费用:注册费70美元/人;地质旅行100美元;住宿费:40美元/天/人(单人间);45美元/天/人(双人间)。7 联系地址:

Secretariats of ICAM G 2V

Department of G eology Faculty of Science

Chulalongkorn University Bangkok 10330,Thailand

E 2mail :thanawat @sc.chula.ac.th Tel :662(0)222185442Fax :662(0)222185464

(本刊)

3

4 第3期 孟 翊,等:长江口沉积物重金属元素地球化学特征及其底质环境评价

地球化学期末考试总结

第一章绪论 1.地球化学的定义:地球化学是研究地球及子系统(含部分宇宙体)的化学组成、化学作用和化学演化的科学(涂光炽)。 2.地球化学研究的基本问题 第一: 元素(同位素)在地球及各子系统中的组成(量) 第二: 元素的共生组合和存在形式(质) 第三: 研究元素的迁移(动) 第四: 研究元素(同位素)的行为 第五: 元素的地球化学演化 第二章自然体系中元素的共生结合规律 1.元素地球化学亲和性的定义:在自然体系中元素形成阳离子的能力和所显示出的有选择地与某种阴离子结合的特性称为元素的地球化学亲和性。 2.亲氧元素、亲硫元素与亲铁元素的特点 (1)亲氧元素:能与氧以离子键形式结合的金属(半金属)元素称为亲氧元素。 特点:惰性气体结构;电负性小;离子键为主;生成热>FeO;主要集中在岩石圈。(2)亲硫元素:能与硫结合形成高度共价键的金属(半金属)元素称为亲硫元素特点:铜型离子;电负性较大;共价键为主;生成热

元素地球化学背景特征

一、元素地球化学背景特征 工区对Au、Ag、Cu、Pb、Zn、As、Sb、Bi、W、Sn、Mo等十一种元素的含量进行了统计分析,其地球化学特征参数见表3-1。 1、全区内背景值对比特征, (1)从1∶5万水系沉积物测量—土壤测量—岩石测量,背景值逐渐增高的有Sb、Pb、Ag、Cu、Zn等元素,其中以Pb、Ag、Zn变化最为显著,Pb在1∶5万水系沉积物测量中最低为17.36×10-6,到1∶1万土壤地球化学测量中增加到40.64×10-6,在岩石中最高为85.45×10-6;Ag在1∶5万水系沉积物测量中最低为0.06×10-6,到1∶1万土壤地球化学测量中增加到0.10×10-6,在岩石中最高为0.13×10-6,增加了一个数量级;Zn在1∶5万水系沉积物测量中最低为72.78×10-6,到1:1万土壤地球化学测量中增加到96.38×10-6,在岩石中最高为537.88×10-6, 增加了一个数量级,是正常的成矿序列,反映了是区内的主成矿元素,从岩石中迁移进入土壤经次生变化后迁移到水系中进一步的贫化。 (2)区内从岩石测量或土壤测量—1∶5万水系沉积物测量,背景值逐渐增高的有Sn、Au等元素,Sn在岩石中最低为1.72×10-6; 到1:1万土壤地球化学测量中增加到 2.21×10-6,在1∶5万水系沉积物测量中最高为2.51×10-6,是一个反正常的变化序列,但同处一个数量级;Au在岩石中为0.97×10-9; 到1:1万土壤地球化学测量中减少到0.54×10-9,在1∶5万水系沉积物测量中最高为1.22×10-9,反映出Sn、Au元素从岩石中迁移进入土壤经次生变化后,迁移到水系中富集。 (3)区内从土壤测量—1∶5万水系沉积物测量—岩石测量,背景值逐渐增高的有Bi、W、Mo等元素,这类均是高温元素,其中Bi在土壤中最低0.36×10-6,在1∶5万水系沉积物测量中为0.46×10-6, 在岩石中最高为0.50×10-6; W在土壤中最低2.19×10-6,在1∶5万水系沉积物测量中为2.29×10-6, 在岩石中最高为3.18×10-6; Mo在土壤中最低0.51×10-6,在1∶5万水

东华理工大学水文地球化学试卷

2006-2007第一学期《水文地球化学》期末试卷(B)-参考答案班级()学号()姓名() 一、名词解释(每题3分,共21分) 1、盐效应:矿物在纯水中的溶解度低于矿物在高含盐量水中的溶解度,这种含盐量升高而使矿物溶解度增大的现象。 2、阳离子交替吸附作用:在一定条件下,岩石颗粒吸附地下水中的某些阳离子,而将其原来吸附的某些阳离子转入水中,从而改变了地下水的化学成分,这一作用即为阳离子交替吸附作用。 3、氧化垒:在还原条件被氧化条件激烈交替的地段上所形成的地球化学垒。 4、侵蚀性CO2:当水中游离CO2大于平衡CO2时,水中剩余部分的CO2对碳酸盐和金属构件等具有侵蚀性,这部分即为侵蚀性CO2。 5、TDS:指水中溶解组分的总量,它包括溶于水中的离子、分子及络合物,但不包括悬浮物和溶解的气体。 6、硅质水与硅酸水:SiO2含量大于50mg/L的水称为硅质水(1.5分);在阴离子中,HSiO3-占阴离子首位(按mol%计算)的水称为硅酸水(1.5分)。 7、硬度:是以水中Ca2+和Mg2+来量度,其计算方法是以Ca2+和Mg2+的毫克当量总数乘以50,以CaCO3表示,其单位为mg/L。 二、填空(每题1分,共14分) 1、Fe2+在(酸)性中迁移强,而在(碱)性中迁移弱。 2、地球化学垒按成因可分为(机械)垒、(物理化学)垒、(生物)垒和(复合)垒。 3、碱度主要决定于水中的(HCO-3,CO2-3)的含量。硬度是以(Ca2+,Mg2+)的毫克当量总数乘以50,而暂时硬度是以(HCO-3,CO2-3)的毫克当量总数乘以 50。 4.大气CO2的δ13C平均值是(-7‰),而土壤CO2的δ13C平均值是( -25‰)。5.标型元素的标型程度取决于(元素的克拉克值)和(它的迁移能力)。 6.弥散作用包括(分子扩散),(对流扩散迁移)和(渗透分散)。 7、SiO2和Na/K地热温度计适用的温度范围分别为(0~250℃)和(150~350℃)。8.近代火山型浅部地下热水的水化学类型为(SO2-4SO2-4 -Cl),而深部地下热水的水化学类型为(Cl-HCO-3)。 9.海水的水化学类型为(Cl-Na),而海成存封水的水化学类型为(Cl-Na -Ca)。 10、水对离子化合物具有较强的溶解作用,是由于水分子具有较强的(介电)效应所致,水的沸点较高,是由于水分子间(氢键)的破坏需要较大的能量。 11、在35℃下,pH=7的地下水是(碱)性。在天然水化学成分的综合指标中,体现水的质量指标的有(TDS,硬度,含盐量或含盐度,电导率),而表征水体系氧化还原环境状态的指标有(COD,BOD,TOC,Eh)。 12、迪拜—休克尔公式的使用条件是离子强度小于(0.1mol/L),而戴维斯方程的使用条件是离子强度小于(0.5mol/L)。 13、空气迁移的标型元素主要决定环境的(氧化还原)条件,而水迁移的标型元素主要决定环境的(酸碱)条件 14、在氮的化合物中,(NO-2,NH4+)可作为地下水近期受到污染的标志,而(NO-3)可作为地下水很早以前受到污染的标志。

地球化学模型在土壤重金属形态研究中的应用进展

地球化学模型在土壤重金属形态研究中的应用进展 摘要:重金属进入自然环境中之后会在土壤、沉积物和地表水体中经历吸附-解吸、沉淀-溶解和氧化-还原等各种迁移转化过程,导致其赋存形态多样,进而影 响其化学活性、迁移性和生物有效性等,因此重金属的形态研究对其风险评估和环境质量标准的制定有着重要意义。 关键词:地球化学形态模型;土壤;重金属形态;研究;应用进展 一、地球化学形态模型的发展 地球化学形态模型即基于所研究体系中各组分全部化学反应的热力学平衡常数,考虑反应过程中的物料平衡、质量平衡和电荷平衡,通过计算获得各物质形态浓度的方法。虽然人们很早就认识到可用此方法计算物质的形态浓度,但由于环境体系中涉及反应众多,直到计算机出现,大规模的形态计算才成为可能。 20世纪60—70年代,以MICROQL为代表的地球化学平衡计算程序被开发使用,形态计算开始应用于水环境领域。到了80—90年代,描述离子在矿物表面 吸附行为的表面络合模型快速发展;90年代以后,一些代表性SCM模型,如双 电层模型、广义双电层模型、电荷分配-多点位表面配合模型等逐渐完善;同时也出现了WHAM、SHM等一批优秀的描述离子在天然有机质表面吸附行为的热力学模型。这些表面络合模型极大地充实了地球化学形态模型。 同时,一些热力学数据库也逐渐形成和完善,如国际纯粹及应用化学协会的关键数据库、美国国家标准技术局的标准数据库、联合专家形态系统的热力学数据库等,这些数据库包含化学形态变化涉及的化学计量关系、平衡常数、反应焓变等相关参数,可以编入形态计算软件。在此基础上,一批涵盖了水相络合、吸附-解吸、沉淀-溶解、溶解-挥发、氧化-还原等众多过程的计算程序被相继开发应用,如MINETEQ、ECOSAT、CHEAQS等。进入21世纪之后,一方面,借助现代 表征技术手段,如EXAFS等,表面络合模型的参数和结构更趋细化;另一方面,结合了多介质多界面的综合模型数据库逐渐充实,使用地球化学模型预测复杂环境体系中离子的形态成为可能。 二、地球化学模型在土壤重金属形态研究中应用进展 (一)多表面形态模型 地球化学形态模型最初主要应用于水环境中离子的形态计算,但随着重金属在各固相胶体表面SCM模型的发展和完善,吸附常数的不断充实,现逐渐开始应用于预测复杂体系(如土壤环境)中重金属形态。Weng等最早采用“多表面模型”来描述Cu、Cd、Pb、Zn、Ni在砂性土壤中的吸附行为。该模型将重金属在土壤 中的吸持视为其在各个固相胶体组分上吸附作用的加和,同时考虑溶液相中发生的有机/无机络合作用,以及矿物溶解平衡过程等,以此来描述重金属在土壤中的形态分布。 在对重金属的固-液相间分配行为研究过程中,相较于传统的经验式多元回归模型,多表面模型基于化学热力学平衡计算,模型参数不受Ph、离子强度和其他竞争离子等条件影响,因此更具有普适性。Groenenberg等比较了经验回归模型 和多表面形态模型对As、Ba、Cd、Co、Ni、Pb、Sb和Zn多种元素在土壤环境中溶解性的预测效果,结果表明经验回归模型只有在获得回归方程的土壤类型和环境条件范围中才会有较好的表现,而多表面模型则可以将应用范围推广至更宽泛的环境条件下。 目前常用的可进行多表面模型计算的化学形态软件包括Keizer的ECOSAT,

地球化学稀土元素配分分析()

《地球化学》实习测验 REE图表处理及参数计算 一、实习目的 1、掌握稀土元素组成模式图的制作方法。 2、掌握表征稀土元素组成的基本参数。 3、培养独立查阅文献及处理数据的能力。 二、基本原理 1、稀土元素组成模式图 1、原子序数为横坐标 2、标准化数据为纵坐标 3、对数刻度 2、表征稀土元素组成的基本参数 3、稀土总量 4、轻重稀土比值 5、轻稀土分异指数 6、重稀土分异指数 7、铕、铈异常 三、实习测验内容 1、绘制各类侵入岩的稀土元素组成模式图; 2、计算各类侵入岩稀土元素组成的基本参数; 3、对已绘制的图表和计算出的数据进行解释。 4、在以上实习内容掌握之后,自行查阅文献一篇,并进行以上3项操作。

四、实习测验步骤 1、根据查阅文献数据,找到自己想要的数据 表1 蒙库铁矿床岩石、矿石、矿物稀土元素成分分析(ppm) 2、选出自己要的数据建立表格 表2 稀土元素组成模式图(ppm) 3、对数据进行球粒陨石标准化 表3球粒陨石标准化后稀土元素组成模式图(ppm) 图1 蒙库铁矿床稀土元素配分图 5、计算稀土元素基本参数 表4 表征稀土元素组成的基本参数 6、数据及图表的解析 (1)绿帘石:∑REE=266.49ppm,表明稀土元素含量较高;LR/HR=4.98,表明轻重稀土元素间发生了较大的分异,轻稀土元素相对富集;(La/Sm)N=2.26,(Gd/Lu)N=1.47,显示轻重稀土元素内部都发生了分异作用,轻稀土元素分异更明显。Eu异常值=1.23,为强正异常;Ce异常值=0.95,表明Ce基本无异常;稀土元素配分模式为轻稀土富集,重稀土相对亏损的右倾型,图像具有左陡右缓特点,Eu正异常明显特征。 (2)磁铁矿矿石:∑REE=10.75ppm,表明稀土元素含量较低;LR/HR=3.15,表明轻重稀土元素间发生了较大的分异,轻稀土元素相对富集;(La/Sm)N=1.47, (Gd/Lu)N=0.88,显示轻重稀土元素内部都发生了分异作用,轻稀土元素分异更明显。 Eu异常值=1.8,为强正异常;Ce异常值=0.84,位弱Ce异常;稀土元素配分模式为轻稀土富集,重稀土相对亏损的右倾型,图像具有左陡右缓特点,Eu正异常明显特征。

甘肃省白银市土壤重金属污染地球化学特征及其表生地球化学成因

甘肃省白银市土壤重金属污染地球化学特征 收稿日期:2009 08 04 编辑:刘江霞 基金项目:中国地质调查局项目 甘肃省兰州-白银地区多目标区域地球化学调查 (GZT R20060112);甘肃省自然科学基金项目 (096RJZA116) 作者简介:张祥年(1982! ),男,现正攻读地球化学专业硕士学位,主要从事地球化学、勘查地球化学方向的研究。 及其表生地球化学成因 张祥年1 ,辛存林 2,3 ,李春亮 1 (1.甘肃省地质矿产勘查开发局甘肃省地质调查院,兰州730000; 2.西北师范大学地理与环境科学学院,兰州730070; 3.兰州大学资源环境学院,兰州730000) 摘 要:基于以土壤为主的多介质地球化学测量,对生态环境问题严重的白银市进行土壤环境质量评价,得出研究区重金属元 素在全区呈综合表生富集性污染、中度以上农田生态化学污染及潜在生态风险,重金属元素的表生富集是农田生态化学污染及潜在生态风险的主要原因。污染性重金属元素输入源及污染方式为:白银市区工矿企业、机动车辆产生的废气和烟雾形成的干湿沉降;矿渣及岩矿石水岩反应产生重金属物质的水化学迁移分散;工矿企业污水在渠系径流中的重金属元素沉淀。重金属元素经历氧化还原、水解、络合(螯合)、吸附-解吸、溶胶聚沉等土壤和水化学反应,主要经水化学迁移和大气飘移等空间分散过程,并经沉淀、吸附等表生作用而在区内土壤局部集中形成污染。 关键词:重金属污染;土壤环境质量;潜在生态风险;表生地球化学;白银市中图分类号:X142 文献标志码: A 文章编号: 1000 7849(2010)04 0124 08 近现代工农业经济发展以来,工矿业、交通及农药化肥等排污和岩矿石风化等自然地质作用中重金属元素大量进入农田土壤生态系统,并通过表生地球化学作用局部富集而形成各类污染。目前,土壤重金属污染已经危及生态系统及人类生存安全。土壤污染地球化学特征是指区域土壤重金属元素表生富集性污染、农田生态化学污染和潜在生态风险等的空间分异及相互关系,以及污染物在表生地球化学体系中赋存的化学形态及其迁移、转化等特征,是区域土壤体系化学演化研究、生态地球化学评价和预警的重要内容[1 2],并对在特定地球化学背景条件及物理化学环境下重金属元素物质的表生地球化学研究有重要意义。 目前,土壤重金属元素污染评价技术路线可分为直接的参比值比对评价[包括全量-全量参比值比对评价(环境因子污染指数)]和偏提取量-偏提取量毒性标准比对评价(污染环境实验模拟);环境因子污染指数的二次建模分析评价。评价方法包括 环境因子指数法[3]、T 值分级法[4] 、模糊数学综合判别法[5]、多种灰色聚类法[6]、主成分分析法[7]、TCLP 法[8] 等。环境因子指数法所采用的环境评价因子可按评价侧重点分为污染指数、背景值富集指数和潜在生态风险指数3类[9],或按评价指标分为 单因子污染指数和综合污染指数2类[10] 。单因子 污染指数反映表层土壤单一重金属元素对于土壤环境的污染强度,而综合污染指数则反映多种污染重金属元素的综合污染效应。环境因子指数因为参比值选取的不同而代表不同的环境地球化学意义,选取农田土壤环境质量标准指示表层土壤重金属元素绝对含量的农作物毒性、生态化学危害强度,如农田生态化学污染指数;选取深层土壤背景值则指示表层土壤重金属元素含量相对于土壤第一环境背景值的表生富集强度,如表生富集性污染指数和地积累指数[11]。此外,还有在环境因子指数基础上因评价目的或实地特征进一步校正计算所形成的因子,例 如潜在生态风险指数[12] 和地积累指数。在重金属元素等化学污染不断加强、农业土壤环境质量问题日渐凸显的背景下,土壤环境质量评价技术方法也在不断发展中。 甘肃省白银市是典型资源枯竭型城市,在长期工矿业排污及基岩区岩矿石风化等表生地球化学作用下重金属元素等各类污染性化学物质大量进入农田生态系统,市区近年各类污染物年均排放量较大,其中工业污水1693万t,二氧化硫2.897万t,烟尘及粉尘1.25万t [13] 。表层土壤体系重金属元素强烈富集,使区内农作物中的Cr 、H g 、Cd 、Pb 、As 和 第29卷 第4期2010年 7月 地质科技情报 Geolog ical Science and Technolog y Information Vol.29 No.4Jul. 2010

环境地球化学知识点

概念题 绪论(1/6) 环境问题由于人类活动或自然活动作用于人们周围的环境所引起的环境质量变化,以及这种变化反过来对人类生产、生活和健康产生的影响。 环境容量人类生存和自然环境在不致受害的前提下,环境可能容纳污染物质的最大负荷量。 环境要素构成人类环境整体的各个独立的、性质不同的而又服从整体演化规律的基本因素。 环境背景值在未受人类活动干扰的情况下,各环境要素(大气、水、土壤、生物、光、热等)的物质组成或能量分布的正常值。 环境质量在一具体环境内,环境的某些要素或总体对人类或社会经济发展的适宜程度。 环境质量评价按照一定的评价标准和评价方法对一定区域范围内的环境质量进行说明、评定和预测。 第一章岩石圈环境地球化学(0/0) 第二章土壤环境地球化学(1/9) 土壤覆盖在地球陆地表面和浅水水域底部,具有肥力,能够生长植物的疏松物质表层。 土壤圈覆盖于地球陆地表面和浅水域底部土壤所构成的一种连续体或覆盖层及其相关的生态环境系统。 成土过程地壳表面的岩石风化体及其搬运的沉积体,受其所处环境因素的作用,形成具有一定剖面形态和肥力特征的土壤的历程。 土壤酸度土壤酸性表现的强弱程度,以pH表示。 植物营养植物体从外界环境中吸取其生长发育所需的养分,用以维持其生命活动。 土壤污染进入土壤的污染物积累到一定程度,引起土壤质量下降、性质恶化的现象。 土壤净化污染物在土壤中,通过挥发、扩散、吸附、分解等作用,使土壤污染物浓度逐渐降低,毒性减少的过程。 土壤质量评价单一环境要素的环境现状评价,是根据一定目的和原则,按照一定的方法和标准,对土壤是否污染及污染程度进行调查、评估的工作。

土壤中微量元素动植物体内含量很少、需要量很少的必需元素。 第三章水圈环境地球化学(2/11) 水圈地球表面或接近地球表面各类水体的总称。 水资源世界上一切水体,包括海洋、河流、湖泊、沼泽、冰川、土壤水、地下水及大气中的水分,都是人类宝贵的财富,即水资源。(广义)在一定时期内,能被人类直接或间接开发利用的那一部分动态水体。(狭义) 水矿化度天然水中各种元素的离子、分子与化合物(不包括游离状态的气体)的总量。 水硬度水中钙和镁含量。 化学需氧量(COD)水样在一定条件下,氧化1L水样中还原性物质所消耗的氧化剂的量,以氧的mg/L表示。 高锰酸钾指数法(COD Mn)在一定条件下,以高锰酸钾为氧化剂,氧化水样中的还原性物质,所消耗的量以氧的mg/L来表示。 重铬酸钾指数法(COD Cr)在一定条件下,以重铬酸钾为氧化剂,氧化水样中的还原性物质,所消耗的量以氧的mg/L来表示。 生化需氧量(BOD)在有溶解氧的条件下,好氧微生物在分解水中有机物的生物化学氧化过程中所消耗的溶解氧量。 水体污染进入水体中的污染物含量超过了水体的自净能力,就会导致水体的物理、化学及生物特性的改变和水质的恶化,从而影响水的有效利用,危害人类健康的现象。 水体自净污染物质进入天然水体后,通过一系列物理、化学和生物因素的共同作用,使水中污染物质的浓度降低的现象。 水环境质量评价按照评价目标,选择相应的水质参数、水质标准和评价方法,对水体的质量利用价值及水的处理要求作出评定。 第四章大气圈环境地球化学(1/11) 大气圈包围在地球最外面的圈层,是由气体和气溶胶颗粒物组成的复杂的流体系统。 同温层从对流层顶以上到25km以下气温不变或微有上升的圈层。 逆温层从25km以上到50-55km,温度随高度升高而升高的圈层。 臭氧层地球上空10-50km臭氧比较集中的大气层, 其最高浓度在20-25km处。

勘探地球化学复习资料

化探复习 1、勘查地球化学的概念; 在地质与地球化学的理论指导下,在各种介质(包括岩石、土壤、水、水系沉积物、生物、气体等)中系统地在不同比例尺与规模上采集地球化学样品,经测试分析与数据处理,发现地球化学异常与其它地球化学指标,据此作为找矿的线索与依据,进而寻找矿床;同时用以解决一些地质等其它问题。 2、勘查地球化学的分类; 丰度(Abundance):泛指元素在一定的自然体系中的平均含量,也叫克拉克值。 浓集系数:它就是某元素在矿体中的含量(通常以最低可采平均品位作标准)与其地壳丰度的比值。 浓集系数反映了元素在地壳中局部集中(成矿)的能力。 浓集系数较大的元素在矿体周围呈现的地球化学异常强度较大。 对于某些伴生的微量元素,如果其浓集系数较主要成矿元素明显地大,则这些伴生元素便就是寻找该矿床的良好指示元素。Hg、Sb、Bi、As成为金矿床的指示元素便就是这个原因。浓度克拉克值:即地质体中某元素的平均含量与其克拉克值的比值。浓度克拉克值>1,说明元素富集,反之则分散。 化学元素在不同成分岩浆岩中的丰度变化,反映了岩浆成因与物质来源的差异,以及结晶分异与地球化学演化过程中元素的分配;同时也体现出造岩元素对微量元素含量变化的制约作用。 研究岩浆岩中化学元素的丰度变化具有重大找矿意义。 2、化学元素在各类沉积岩中的分布 (1)碱金属元素(2)碱土金属(3)亲氧元素 元素在地质体内的分布形态一般有五种情况:

①结合在多种矿物中的元素一般服从正态分布; ②集中在一、二种矿物内的元素呈对数正态分布; ③多次地化作用迭加形成的含量呈正态分布;单一作用呈正态分布。 ④扩散作用形成的含量呈对数正态分布;对流混匀作用呈正态分布。 ⑤两次不同地质作用,可引起两种类型相同而参数不同的分布形式。 研究分布类型的目的就是:正确选择背景值、背景上限以及各种数据处理方法。 通过对分布形式检验直接得到某些地化信息。 地壳中元素的存在形式与元素的迁移 地球化学环境就是使元素所在的地球化学系统得以保持平衡的各种物理化学条件的总合 原生环境,就是指从天然降水循环面以下直到能够形成正常岩石的最深水平的环境; 次生环境,就是地表天然水、大气所能够影响范围的环境 丰度研究的意义 1.判断特殊地球化学过程 2.衡量研究区化学元素富集或贫化的程度 3.作为选择分析方法灵敏度的依据 4.作为矿产资源评价预测的依据 地球化学系统中元素的总量称为地球化学储量。 在地球化学储量中,能被人类开采利用的部分叫作资源,资源中被探明的部分叫作矿产储量。资源量占地球化学储量的百分比叫作矿化度。 短吨= 907、18474 公斤=0、91吨 岩石的酸度,就是指岩石中含有SiO2 的重量百分数。 岩石的碱度即指岩石中碱的饱与程度 通常把Na2O+K2O的重量百分比之与,称为全碱含量 各岩类的标型元素组合为: 1、超基性岩元素,典型代表就是Cr、Ni、Co、Mg及Pt族。 2、基性岩元素,Cu、Fe、V、Ti、P、Mn、Ca、Sc、Sb等。 3、亲中性岩元素,Al、Ga、Zr、Sr等。 4、亲酸性岩元素,种类最多,以Li、Be、Ta、U、Th、K、Rb、Cs、F、B为代表。 5、碱性岩以富含Nb、Ta、Be及REE(稀土元素)为特征。 沉积岩可以分为碎屑岩、泥质岩与化学沉积岩三个类型 二、元素的赋存形式 1、矿物形式:独立矿物(主要造岩矿物)、副矿物、主矿物中的机械包裹体、固熔体分解物、液相包裹体中的子矿物; 2、非矿物形式:类质同象混入物,元素呈离子、分子、胶体被矿物表面吸附,超显微非结构混入物,有机结合物。 三、元素迁移 元素迁移的方式 1、化学及物理化学迁移 2、机械迁移 3、生物及生物地球化学迁移 地球化学异常:就是指某些天然物质(岩石、土壤、水系沉积物、生物等)中某一特征元素的含量偏离正常含量或某些化学性质明显的发生变化的现象。 地球化学背景及背景区: 在化探中将无矿或未受矿化影响的天然物质(岩石、土壤、水系沉积物、生物等)中某一特征元素的正常含量(一般含量)称为背景。 而将那些具有正常含量的地区称为背景区或正常区。

水文地球化学

水文地球化学研究现状、基本模型与进展 摘要:1938 年, “水文地球化学”术语提出, 至今水文地球化学作为一门 独立的学科得到长足的发展, 其服务领域不断扩大。当今水文地球化学研究的理论已经广泛地应用在油田水、海洋水、地热水、地下水质与地方病以及地下水微生物等诸多领域的研究。其研究方法也日臻完善。随着化学热力学和化学动力学方法及同位素方法的深入研究, 以及人类开发资源和保护生态的需要, 水文地球化学必将在多学科的交叉和渗透中拓展研究领域, 并在基础理论及定量化研究方面取得新的进展。 早期的水文地球化学工作主要围绕查明区域水文地质条件而展开, 在地下水的勘探开发利用方面取得了可喜的成果( 沈照理, 1985) 。水文地球化学在利用地下水化学成分资料, 特别是在查明地下水 的补给、迳流与排泄条件及阐明地下水成因与资源的性质上卓有成效。20 世纪60 年代后, 水文地球化学向更深更广的领域延伸, 更多地是注重地下水在地壳层中所起的地球化学作用( 任福弘, 1993) 。 1981 年, Stumm W 等出版了5水化学) ) ) 天然水化学平衡导论6 专著, 较系统地提供了定量处理天然水环境中各种化学过程的方法。1992 年, C P 克拉依诺夫等著5水文地球化学6分为理论水文地球化学及应用水文地球化学两部分, 全面论述了地下水地球化学成分的形成、迁移及化学热力学引入水文地球化学研究的理论问题, 以及水文地球化学在饮用水、矿水、地下热水、工业原料水、找矿、地震预报、防止地下水污染、水文地球化学预测及模拟中的应用等, 概括了20 世纪80 年代末期水文地球化学的研究水平。特别是近二十年来计算机科学的飞速发展使得水文地球化学研究中的一些非线性问题得到解答( 谭凯旋, 1998) , 逐渐构架起更为严密的科学体系。 1 应用水文地球化学学科的研究现状 1. 1 油田水研究 水文地球化学的研究在对油气资源的勘查和预测以及提高勘探成效和采收率等方面作出了重要的贡献。早期油田水地球化学的研究只是对单个盆地或单个坳陷, 甚至单个凹陷进行研究, 并且对于找油标志存在不同见解。此时油田水化学成分分类主要沿用B A 苏林于1946 年形成的分类。1965 年, E C加费里连科在其所著5根据地下水化学组分和同位素成分确定含油气性的水文地球化学指标6中系统论述了油气田水文地球化学特征及寻找油气田的水文地球化学方法。1975 年, A G Collins 在其5油田水地球化学6中论述了油田水中有机及无机组分形成的地球化学作用( 汪蕴璞, 1987) 。1994 年, 汪蕴璞等对中国典型盆地油田水进行了系统和完整的研究, 总结了中国油田水化学成分的形成分布和成藏规律性, 特别是总结了陆相油田水地球化学理论, 对油田水中宏量组分、微量组分、同位素等开展了研究, 并对油田水成分进行种类计算, 从水化学的整体上研究其聚散、共生规律和综合评价找油标志和形成机理。同时还开展了模拟实验、化学动力学和热力学计算, 从定量上探索油田水化学组分的地球化学行为和形成机理。 1. 2 洋底矿藏研究

地球化学考试资料

1、环境地球化学:研究化学元素和微量物质在人类赖以生存的周围环境 中含量、分布和迁移过程中与人类健康关系的科学。 2、环境要素特点: 最小限制律:即环境诸要素中处于最劣状态的那个环境要素控制环境质量的高低,而不是由环境诸要素的平均状态决定,也不能采用处于优良状态的环境要素去代替和弥补。 等值性:等值性说明环境要素对环境质量的作用。各个环境要素无论在规模上或数量上存在什么差异,只要它们是处于最劣状态,那么对于环境质量的限制作用没有本质的区别,就具有等值性。 环境整体性:环境诸要素之间产生的整体环境效应不是组成该环境各个要素性质的简单叠加,而是在个体效应基础上有着质的变化。 环境诸要素相互制约:环境要素相互影响,相互制约 3、全球性环境问题:气候变暖、臭氧层空洞、酸雨 水污染资源短缺大气污染耕地减少固体废弃物污染生物多样性丧失酸雨臭氧层损耗荒漠化全球气候变化 森林锐减持久性有机物污染 4、土壤形成过程 5、全球变化学 定义:全球变化学是研究地球系统整体行为的一门科学,主要是了解地球系统是如何工作、如何运转的,研究地球系统过去、现在和未来的变化规律和控制这些变化的原因和机制,从而建立全球变化预测的科学基础,并为地球系统的管理提供科学的依据。全球变化研究计划,它由三个个相对独立、相辅相成的计划组成:世界气候研究汁划(WCRP)、国际地圈—生物圈计划(IGBP)和全球环境变化中的人类因素计划(HDP)。

6、第四纪: 新生代最新的一个纪,包括更新世和全新世。其下限年代多采用距今260万年。第四纪期间生物界已进化到现代面貌。灵长目中完成了从猿到人的进化。冰期:地球表面覆盖有大规模冰川的地质时期。又称为冰川时期。两次冰期之间唯一相对温暖时期,称为间冰期。地球历史上曾发生过多次冰期,最近一次是第四纪冰期。 7、黄土: 黄土【loess】指的是在干燥气候条件下形成的多孔性具有柱状节理的黄色粉性土,湿陷性黄土受水浸湿后会产生较大的沉陷。 黄土成分: 黄土的矿物成分有碎屑矿物、粘土矿物及自生矿物3类。 碎屑矿物主要是石英、长石和云母,占碎屑矿物的80%,其次有辉石、角闪石、绿帘石、绿泥石、磁铁矿等;此外,黄土中碳酸盐矿物含量较多,主要是方解石。 粘土矿物主要是伊利石、蒙脱石、高岭石、针铁矿、含水赤铁矿等。 黄土的化学成分以SiO2占优势,其次为Al2O3 、CaO,再次为Fe2O3、MgO、K2O 、Na2O、FeO、ΤiO2和MnO等。 黄土是指原生黄土,即主要由风力作用形成的均一土体;黄土状沉积是指经过流水改造的---次生黄土。 8、米兰科维奇理论 20世纪20-30年代,南斯拉夫米兰科维奇提出,地球轨道形态变化导致北半球高纬度地区夏半年日射率发生周期性的变化,是引起冰期-间冰期变化的主要因素。 9、新仙女木事件 这一事件大约发生在距今12800年时,在此之前地球处于温暖的间冰期。新仙女木事件发生非常突然,但是至今仍未有足够的证据证明其发生的原因。比较流行的假说是彗星撞击地球导致温度下降。“仙女木”是寒冷气候的标志植物,因此,用来命名北欧地区出现的寒冷事件,“新仙女木”的“新”表示末次冰期的最后一次寒冷事件,约出现于12.5kaBP—11.5kaBP。“新仙女木”事件是一个气候寒冷时期,持续约千年。开始时气温迅速下降,结束时气温又迅速上升,而降温及升温的时间只有几十年甚至十年,因此称为气候突变。 10.厄尔尼诺 主要指太平洋东部和中部的热带海洋的海水温度异常地持续变暖,使整个世

环境地球化学

长江三角洲第一硬黏土与古环境 摘要:硬黏土形成在沿海和陆架相互作用的地带,受陆海交互作用的影响, 对气候及海平面变化尤为敏感,包含了复杂的古环境信息。本文从土壤形态和土壤剖面两个方面对硬黏土进行了描述,并进一步说明硬黏土是一种古土壤,同时以长江三角洲第一硬黏土为例,说明了它所蕴含的古气候信息及其与海平面的关系。 关键词:硬黏土古环境 硬黏土形成在沿海和陆架相互作用的地带,受陆海交互作用的影响, 对气候及海平面变化尤为敏感,包含了复杂的古环境信息。长江三角洲晚第四纪地层中普遍发育若干层厚度不等的暗绿色、黄绿色或黄褐色的硬质黏土层,在工程地质上俗称“硬质黏土”或“老黏土”。按其年代由新到老依次为第一、第二、第三……硬质黏土层。目前对第一硬黏土层研究较详。第一硬黏土是古土壤。 1硬黏土概述 1.1土壤形态 从颜色上看,硬黏土大致可以分为两类,一类是分上、下两层的暗绿色硬黏土层和黄褐色硬质黏土层;另一类为单一的黄褐色硬质黏土层。这跟海水的影响程度有关;硬黏土质地以细粉砂为主,其次是粗粉砂和黏土;呈块状构造;土壤中含有新生体。 1.2土壤剖面 第一硬黏土层分布在长江三角洲南北两翼,埋深3-25m,西部浅,东部深,总体上具有自西向东的自然坡度。西部硬黏土层的厚度最大,平均7.2 m,向东变薄,至上海市区平均为2.9 m。——这可能和暴露时间长短有关系。 上部含较多植物根屑, 具团粒结构, 中、下部淀积层内黏粒胶膜及铁锰质结核发育, 底部逐渐过渡到保留有原生沉积构造的母质层。 硬黏土与上下地层的关系:三角洲前缘古土壤层上覆滨浅海泥质沉积, 后缘上覆湖沼相泥质沉积,与上覆层呈突变接触关系。下伏黄色滨海、河流相粉细砂或黏土质粉砂, 呈渐变接触关系。 1.3硬黏土是古土壤 古土壤指过去气候与地貌环境相对稳定环境下形成的土壤,其发育或由于形成土壤的气候或地形环境的变化而中断,或在后来的地质过程中被其他沉积物掩埋。探讨并证明硬黏土是古土壤主要看硬黏土是否是经历了明显的成土改造。古土壤特征比较明显的层位在硬土层的上部:

煤中稀土元素地球化学的研究进展

煤中稀土元素地球化学的研究进展 刘文中,肖建辉,陈 萍 (安徽理工大学地球与环境学院安徽省矿山地质灾害防治重点实验室,安徽淮南 232001) 摘 要:对国内外有关煤中稀土元素丰度的资料做了最新的统计分析,并讨论了煤中稀土元素的丰度、来源和赋存形式及地质成因。研究结果表明,稀土元素在煤中主要与硅酸盐矿物结合,其来源主要是陆源碎屑或溶液,同时也不排除煤中有机质在吸附稀土元素时起的重要作用;煤中稀土元素的分布特征继承了陆源物质铕(Eu)负异常的地球化学特征;煤中稀土元素的分布特征不受煤变质程度的影响,煤中稀土元素含量主要取决于煤的无机组分含量。 关键词:稀土元素;地球化学;煤 中图分类号:P595 文献标志码:B 文章编号:0253-2336(2007)11-0106-03 R esearch progress on geochem istry of rare earth elem ent i n coal LIU W en zhong ,X I A O Jian hu,i C HEN P i n g (Anhui P rov i n ci a lK ey L ab of m i ne g eolog ic a l d isaste r pre v e n ti on and con t rol ,School o f Ea rt h and E nvironm e n t , Anhui Universit y o f S cie n ce and Tec hn ology,Hua i nan 232001,C hina ) 基金项目:安徽省教育厅高校省级自然科学重点研究资助项目(KJ2007A006) 稀土元素有特殊的地球化学性能,如化学性质稳定、均一化程度高、不易受变质作用干扰,一经 纪录 在含煤岩系中,容易被保存下来,是研究煤地质成因的地球化学指示剂。稀土元素在自然界分布广泛,虽然煤中稀土元素含量不高,但在煤灰中稀土元素可以富集,并可望得到综合利用。因此,对煤中稀土元素的研究已成为煤地质学、环境科学以及材料科学的重要内容。 1 煤中稀土元素的丰度 国外研究煤中稀土元素起步较早,一些学者在 实验基础上得出了可靠的数据,如Sw a i n 报道了世界多数煤中稀土元素含量大致范围[1] ;世界煤中 稀土元素总量的平均值为46 3 g /g [2] ;美国煤中稀土元素总量的平均值为62 1 g /g [3];加拿大悉 尼盆地煤中稀土元素总量的平均值为30 g /g [4] 。 国内开展煤中稀土元素研究始于20世纪90年代,近年来取得了一些重要的研究成果。赵志根等人对中国110个煤样中稀土元素的含量分布进行了分析与总结[5] ,由于煤中稀土元素的赋存受多方面因素影响,稀土元素在煤中的含量分布范围相当宽,中间值段80%样品的分析数据可较为客观地 反映中国多数煤中稀土元素的丰度。研究者们还发现,在La ,Ce ,N d ,Sm,Eu ,Tb ,Yb,Lu 这8个稀土元素中,除Eu 外其余7个元素在煤中的平均值含量明显高于世界煤。华南二叠纪煤中稀土元素总量的平均值最大,其次是华北石炭、二叠纪煤,中新生代煤最小 [6] 。淮北煤田二叠纪煤中稀 土元素明显富集,稀土元素总量平均值为141 2 g /g ,高于中国及世界其他地区的煤 [7] 。华南地 区晚二叠世和晚三叠世的煤中,不同煤层的稀土元素含量平均值变化较大,在32~456 g /g [8] 。虽然不同地区、不同数量煤样的分析结果丰富了煤中 稀土元素丰度的数据,但就样品数量和代表性而言,研究中国煤中稀土元素的丰度仍具有很大的局限性。 2 煤中稀土元素的来源和赋存形式 近年来,国内外陆续报道了有关煤中稀土元素来源和赋存形式的研究成果:!保加利亚Piri n 煤中稀土元素主要与硅酸盐矿物相结合,煤中稀土元素的含量随灰分的增高而增加;与灰分及灰分的主要成分(S,i A ,l Fe ,Na )具有较好的正相关关系,而与低灰分中的典型组分钙缺少相关性,煤和岩石夹层的稀土元素标准化分布模式相似;与典型的陆源灰分的微量元素(T ,i Pb ,C r ,Th ,Ta , 106

环境水文地球化学 第一篇 第一次作业

1.地下水的主要组成成分是什么? 答:地下水是组成成分复杂的溶液,近八十种天然元素以离子、原子、分子、络合物和化合物等形式存在于地下水中,有些已溶解和活动于地下水中的有机质、气体、微生物和元素同位素的形式存在。这些可溶物质主要是岩石风化过程中,经过水文地球化学和生物地球化学的迁移、搬运到水中的地壳矿物质。 地下水中溶解的无机物主要组分(即浓度>5mg/L)为:HCO3-、Cl-、SO42-、Na+、K+、Ca+、Mg2+、SiO2。占地下水中无机物成分含量的90-95%,决定着地下水的化学类型。 地下水中有机组分种类繁多,主要有:氨基酸、蛋白质、糖(碳水化合物)、葡萄糖、有机酸、烃类、醇类、醚类、羧酸、苯酚衍生物、胺等。各种不同形式的有机物主要由C、H、O组成,这三种元素占全部有机物的98.5%,另外还存在有少量的N、P、K、Ca等元素。 地下水中常见溶解气体有:O2、CO2、CH4、N2、H2以及惰性气体Ar、Kr、He、Ne、Xe等。 微生物成分主要有三种类型:细菌、真菌和藻类。微生物在地下水化学成分的形成和演变过程中起着重要的作用。地下水中存在各种不同的细菌。有在氧化环境中的硝化菌、硫细菌、铁细菌等喜氧细菌;有在还原环境的脱氮菌、脱硫菌、甲烷生成菌、氨生成菌等。这些微生物活动可以发生脱硝酸作用、脱硫酸作用、甲烷生成作用和氨生成作用等还原作用,也可以发生硫酸根生成、硝酸根生成和铁的氧化等作用等,从而导致地下水化学成分的相应变化。 2.举例论述络合作用有何环境意义? 答:地下水中大多数金属能与配体形成各种各样的络合物,这些络合物可能是电中性的,也可能是带正电或者带负电。金属络合作用对环境的意义在于:络合物的溶解度是影响金属形态迁移的重要因素;重金属离子与不同配体的配位作用,改变其化学形态和生化毒性,如铝离子(毒性很强)、有机铝络合物(毒性很弱)的生物毒性相差很大;络合作用影响络合剂的性质,如配位体的氧化还原性、脱羧及水解等;有些络合物可以通过化学絮凝、活性炭吸附或离子交换等方法容易地从水中去除。但有些重金属形成螯合物后很难用常规办法去除,影响水处理中对重金属的排除效率;络合作用会加速金属的腐蚀,比如氯离子和氨的作用。 3.胶体的稳定性和ζ电位有什么关系?研究胶体的ζ电位有何环境意义? 答:ζ电位是胶体稳定性的一个重要指标,因为胶体稳定是与离子键的经典排斥力密切相关的。ζ电势的降低会使静电排斥力减小,致使粒子之间范德华力占优势,从而引起胶体的聚沉难和破坏。故研究ζ电势的变化规律是十分重要的。 4.地球化学垒和水文地球化学分带形成的原因是什么? 答:地球化学垒是正在表生带内,因为短间隔内化学元素迁徙环境显然变迁,迁徙强度突然削弱而招致某些化学元素浓集的地段;水文地球化学分带是地下水化学成分和水中总溶解固体沿着水平或者垂直方向呈现有规律的带状分布和变化的现象。故它们共同形成成因都是地下

微量元素地球化学期末作业培训课件

西藏阿里多龙地区中侏罗统碎屑沉积岩的地球 化学特征及其构造环境分析 学号:120110100 姓名:胡维云专业:构造地质学 前言 班公湖—怒江成矿带西段位于西藏自治区西北部的阿里地区境内,跨班公湖—怒江缝合带南北两侧,由于仅开展过 1∶25 万区域地质调查、1∶20万区域化探等少量基础地质工作,是西藏地质工作程度最低的地区之一。近年来该成矿带内资源评价工作取得了突出的进展,多龙超大型斑岩铜金矿床和嘎尔穷、嘎拉勒、弗野、材玛等大型矽卡岩型铜铁多金属矿床的相继发现与评价,揭示出班公湖—怒江成矿带成矿条件优越,找矿潜力巨大。关于班公湖—怒江结合带所代表的特提斯洋盆的性质,打开、闭合的时限和多龙大型矿集区的构造背景、成矿作用,不同的学者存在很大的争议。目前,己有许多资料证明了该带代表了一个已消失的具有一定规模的洋壳盆地。王恒忠等(2005)认为班公湖--怒江缝合带内的早白奎世OIB型火山岩是班公湖—怒江洋盆演化晚期的洋岛(塔仁本区早白垩世OIB型玄武岩(主要依据于上覆灰岩中化石时代));而张玉修等(2004)研究认为该套玄武岩是早白垩世冈底斯弧弧后盆地的产物。 一、研究目的及意义 拟通过研究多龙地区中侏罗统地层的岩石类型及组合特征和岩石地球化学特征,分析该地区中侏罗统地层形成的大地构造环境,为正确认识多龙超大型斑岩铜金矿床的成矿地质背景和结合带的演化提供了新的线索。 二、研究区地质背景 构造位置上,多龙地区处于班公湖—怒江缝合带北侧, 羌塘地块的南缘;地理位置上处于西藏自治区阿里地区。该区构造以断裂为主,呈近东西向带状断续展布。断裂构造主要表现为一系列走向近东西向且大致平行的北倾逆冲断层,并控制着地层和岩浆岩的分布。沿构造-岩浆带,大规模的岛弧火山活动发生在中—晚侏罗世,形成燕山早期陆缘火山弧,为一套含大量火山碎屑岩的以安山质为主的玄武—安山—流纹岩组合,火山作用晚期岩浆成分向碱性演化,以陆相中心式喷发为主,兼具熔岩溢流(西藏自治区区域地质志,2000)。岩浆的深成侵入作用发生在早白垩世至晚白垩世早期,以中酸性幕式侵入为特点,岩体一般呈岩珠或小岩基沿东西向呈带状分布,岩性主要有石英闪长岩、花岗闪长岩、二长花岗岩、似斑状花岗岩及花岗斑岩,年龄在70—140Ma之间(西藏自治区区域地质志,2000)。研究区地层主要为晚三叠统的日干配错组、中侏罗统的曲色组一段、色哇组、,早白垩统的美日切组,新近系中新统的康托组、更新统和全新统。地层属羌塘—昌都地层区内的羌南地层分区之多码分区,出露宽度大于10km。 三、研究依据 据现有资料研究表明:砂岩的TFe2O3+MgO、TiO2含量,以及Al2O3/SiO2、K2O/Na2O 和A12O3/(CaO+Na2O)等比值具有显著的构造背景差异,因而成为其形成的大地构造环境判别的重要参数(Bhatia,1983)。Roser等人(1986)认为,K2O/Na2O值与SiO2值可有效地示踪砂岩形成构造环境,并编制了构造判断图解。在Bhatia(1983)提出的TiO2-TFe2O3+MgO图解,Roser和Korsch(1988)提出了区分物源区是铁镁质的、中性的或长英质火成岩和石英沉积

相关主题
文本预览
相关文档 最新文档