当前位置:文档之家› CAP方法反演震源机制的误差分析_以胶东半岛两次显著中等地震为例

CAP方法反演震源机制的误差分析_以胶东半岛两次显著中等地震为例

CAP方法反演震源机制的误差分析_以胶东半岛两次显著中等地震为例
CAP方法反演震源机制的误差分析_以胶东半岛两次显著中等地震为例

第58卷第2期2015年2月

地 球 物 理 学 报

CHI

NESE JOURNAL OF GEOPHYSICSVol.58,No.2

Feb.,201

5郑建常,林眉,王鹏等.2015.CAP方法反演震源机制的误差分析:以胶东半岛两次显著中等地震为例.地球物理学报,58(2):453-462,doi:10.6038/cjg

20150209.Zheng J C,Lin M,Wang P,et al.2015.Error analysis for focal mechanisms from CAP method inversion:An example of 2moderate earthquakes in Jiaodong 

Peninsula.Chinese J.Geophys.(in Chinese),58(2):453-462,doi:10.6038/cjg20150209.CAP方法反演震源机制的误差分析:

以胶东半岛两次显著中等地震为例

郑建常,林眉,王鹏,徐长朋

山东省地震局,济南 250

014摘要 利用区域波形数据使用CAP方法反演中强地震的震源机制正逐渐得到广泛应用.本文以胶东半岛近期发生的两次显著中等地震为例,讨论了使用CAP方法反演震源机制时的误差估计,展示了反演结果的不确定性分析过程.2013年11月23日和2014年1月7日在山东莱州和乳山分别发生了M4.6和M4.3级中等地震,两次事件均造成了较大影响.我们基于CAP方法,使用自助抽样(bootstrap)技术多次重复反演过程,得到大样本量的震源机制解数据;

基于这些数据,使用粒子群算法和聚类分析技术给出了优化解,估计了震源机制解的误差范围,并利用震源机制解的P、T轴给出了震源球上的概率密度分布.关键词 莱州地震;乳山地震;波形反演;聚类分析;不确定性doi:10.6038/cjg

20150209中图分类号 P31

5收稿日期2014-02-27,2014-07-

24收修定稿基金项目 国家科技支撑计划项目(2012BAK19B04-01-

05)、山东省自然科学基金(ZR2012DQ006)及中国地震局监测预报司震情跟踪工作专项(2014020103

)资助.作者简介 郑建常,1978年生,山东临清人,副研,201

1年于中国地震局地球物理研究所获博士学位,主要从事地震活动性及数字地震学研究.E-mail:zj

cmail@yeah.netError analy

sis for focal mechanisms from CAP method inversion:An example of 2moderate earthquakes in Jiaodong 

PeninsulaZHENG Jian-Chang,LIN Mei,WANG Peng,XU Chang

-PengEarthquake Administration of Shandong 

Province,Ji′nan 250014,ChinaAbstract As an effective focal mechanism inversion method for regional earthquakes,CAP(Cutand Paste)is widely used in China in recent years.Its quality and error level need to be evaluatedfor such solutions are increasingly retrieved.On the other hand,when using 

the CAP method,those phases which fitted well are usually chosen for inversion,and the other phases which arethought‘bad’or fitted not so good are ig

nored.It has been found that different stationcombinations will lead to varied results with unneglectable discrepancies.Objectively speaking,ina scientific perspective,this artificially 

selected process will increase uncertainties in finalinversion results,especially under the present instrument status in China.Furthermore,becausethe grid search scheme used in the CAP method which is not evenly distributed on focal sphere,we can not give a convincing proof to illustrate that whether the cause of badly-fitted waveformscomes from data error or from un-sufficient searched 

solutions.Two earthquakes of M4.6and M4.3occurred in Shandong 

Peninsula on 23November 2013

地球物理学报(Chinese J.Geophys.)58卷 

and 7January 2014,respectively.The former is the largest event in the Shandong area since

1995.For convenience,we label the former event as the Laizhou earthquake,and the latter as the

Rushan earthquake,according to their epicenters.Taking these two events for example,this

paper discusses error estimation for focal mechanism inversion using the CAP method.The paper

also presents an uncertainty analysis process for the inversion results.

Briefly,a bootstrap technique is adopted,waveforms are randomly sampled with equal

probability from origin dataset,and then used as data for a repeating inversion procedure.After a

large number of inversions,e.g.,1000times,we finally get bootstrap results consisting of 1000

focal mechanisms.

Based on these focal mechanisms,we conduct the following work.

(1)We employ a PSO(particle swarm optimization)algorithm to search a solution,of which

the Kagan angle is minimal to all the double couple models,and use its standard deviation as the

inversion results uncertainty range.The uncertainty of solutions for the Laizhou event is±23.7°;for

Rushan event,is±6.4°.These two solutions can be evaluated as‘A’level according to the

Hardebeck′s indicator of mechanisms quality.

(2)A clustering analysis is used for bootstrap results.For the Rushan event,the clustering

center is coincident to the PSO optimized solution;for the Laizhou event,several centers are

found in clustering,despite isolate solutions.There are two clustering centers,of which the

corresponding data proportion is about 98.7percent.

(3)Projecting Pand Taxes of bootstrap results onto a focal sphere,calculating its

probability density,we get the probability density distribution of focal mechanisms on the focal

sphere.Then we can give the confidence interval on different levels for mechanism solutions.The method demonstrated in this paper is not confined to achieving more accurate focal

mechanism and obtaining rational inversion error,while it can also be used to exclude isolate and

incorrect solutions effectively,and avoid the effect of data from stations with larger disturbances.

Therefore,this method can be used to invert focal mechanisms automatically immediately after

moderate earthquakes occur.Sustaining by powerful computational capabilities,we can get more

accurate and reliable focal mechanism results without manual work.

Keywords Laizhou earthquake;Rushan earthquake;Waveform inversion;Clustering analysis;

Uncertainty

1 引言

据山东台网测定,2013年11月23日13时44分在山东省莱州市(37.10°N,120.02°E)发生M4.6级地震,这次地震是山东陆地地区自1995年苍山5.2级地震后发生的最大地震,影响范围广,山东东部市地普遍有感;2014年1月7日22时24分在山东乳山(36.80°N,121.70°E)发生M4.3级地震,这次地震也造成胶东地区大面积有感.这两次事件是1970年以来胶东半岛陆地及近海地区发生的最强烈的地震活动,其中莱州地震震中区在1970年以来的小震目录上属于典型的少震、弱震区,活动水平不高,很少有ML≥3.0地震发生,仅在1991年2月以及2012年7月分别发生最大ML3.8级小震序列各一次;乳山地震震中区历史上曾发生公元1046年岠嵎山51/2级和1939年乳山下初51/2级地震.虽然这两次地震的震中区历史上没有强烈地震活动,但胶东半岛北部近海曾发生多次6、7级强震,如1548年渤海海峡7.0、1948年威海近海6.0以及1969年渤海7.4级等.因此确定这两次显著中等地震的震源机制对于研究区域地质构造的活动特征,以及研判该地区的地震危险性等具有重要的科学价值.

我们使用近年来在国内得到广泛使用的CAP(Cut and Paste)方法反演这两次地震的震源机制.为了得到更准确的解,并且合理地估计反演结果的

454

 2期郑建常等:CAP方法反演震源机制的误差分析:

以胶东半岛两次显著中等地震为例不确定性,我们使用自助抽样法(bootstrap)对反演过程随机重复,在大样本量的反演结果基础上,使用粒子群算法搜索优化解,利用动态聚类技术对结果进行聚类分析,从而得到了更加稳定可靠的断层面解,给出了可能的误差范围,并进一步给出了震源球上P、T轴的概率密度分布.

2 理论与方法

2.1 CAP方法反演震源机制

震源机制和传播效应决定了观测波形的变化.如果地壳模型已知,可以准确地计算波形传播过程中的效应,因此我们可以通过理论波形s(t)和观测波形u(t

)的拟合来估计震源的断层面参数.双力偶震源产生的理论位移s(t)可以表示为(Zhu and Helmberg

er,1996):s(t)=M0∑3

i=1

Ai(

φ-θ,δ,λ)Gi(t),(1

)其中,i=1,2,3对应三种基本断层响应,即:垂直走滑、垂直倾滑以及倾角为45°的倾滑;Gi为格林函数,Ai是辐射系数,φ是台站方位角,M0为标量地震矩.θ,δ,λ分别为断层的走向、

倾角、滑动角.系数Ai由6个矩张量分量和台站方位角表示如下(

Jostand 

Herrmann,1989):A1=

12

(Myy-Mxx)cos2φ+M12sin2φ,A2=Mxzcosφ+Myzsinφ,

A3=-

12

(Mxx+Myy)

,A4=1

(Mxx-Myy)sin2φ-Mxycos2φ,A5=-Myzcosφ+Mxzsinφ.

(2

) 走向θ、

倾角δ、滑动角λ,以及标量地震矩M0等可以通过求解以下方程进行估计:

u(t)=s(t).(3

) 波形反演可以使用全波形数据,

也可以单独使用体波或面波震相进行拟合.CAP方法是一种联合使用体波和面波进行反演的方法,近年来在国内得到了广泛的应用(吕坚等,2008;黄建平等,2009;郑勇等,2009;龙锋等,2010;韩立波等,2012),由于该方法分别截取波形的Pnl部分和面波部分分别拟合(Zhao and Helmberger,1994;Zhu and Helmberger,1996

),并在反演的过程中允许它们在适当的时间变化范围内相对移动,在一定程度上避免了因为地壳模型不准确而引起的震相到时的误差因素,对速度

模型和地壳横向变化的依赖性较小,因此在实际的区域地震震源机制求解中有明显的优势.CAP方法使用频率F-波数K法(Zhu and Rivera,2002)计算格林函数,使用网格搜索方法搜寻最优震源机制参数和震源深度.考虑到波形随震中距的衰减,方法定义误差函数如下:

e=

‖r

r(

)0

‖·‖u-s‖,

(4

)式中,r为台站震中距,r0为选定的参考震中距,p为指数因子.参考有关研究,对体波p=1,面波p=0.

5(韩立波和蒋长胜,2012).2.2 CAP方法的优化解及其不确定性估计

地球内部的任意震源可以表示为6个独立分量的矩张量,由于CAP方法限制震源为双力偶模型,并且无需发震时刻的对齐,因此只需对震源模型的三个角度,即走向θ、倾角δ、滑动角λ,以及标量地

震矩M0进行搜索,理论上而言,仅需要2个台站的三分向波形就可以求解;虽然研究显示,对于大多数3个三分向台的组合,使用波形反演就可以得到相对准确的震源机制,但实际情况也显示,不同的台站组合波形反演得到的解之间仍然存在一定的差异(Godano et 

al.,2009;郑建常和陈运泰,2012).目前国内台网密度已经达到相当水平,在东部地区,一个中等地震通常有数十甚至上百个宽频带台能够记录到清晰的波形,以此次莱州地震为例,通过对原始波形进行去均值、去趋势、积分等简单变换后,根据直观的观察,震中距300k

m范围内,采样率100Hz的宽频带三分向波形有近40个台站的资料可用.在使用CAP方法求解震源机制时,一般的做法是选择部分波形拟合较好的台进行反演,删去拟合不好的台或者震相;有些情况下,甚至仅使用面波部分而删除体波震相,需知面波尤其是径向和切向分量,很容易受到台站下方浅层地壳结构的影响.由于CAP方法是采用网格搜索的方法,因而这种人为的选择,必然会为反演结果增加主观的不确定性因素.我们无法令人信服地说明,拟合不好的波形究竟是数据本身确实存在干扰,还是说搜索到的解无法满足该条数据.另外,CAP方法虽然可以在最后的输出结果中给出断层面参数的不确定性,但该估计值只是面向所使用的台站数据的结果,在上述的人为选择下,该不确定性估计能够在多大程度上客观地反映最终解的整体不确定性,是无法说明的.

为了求得更加稳定可靠的解并且合理客观地给出解的误差估计,我们在相对丰富的观测数据基础

54

地球物理学报(Chinese J.Geophys.)58卷 

上,采用自助抽样统计方法进行分析.具体方法是在可用的观测台站中可重复地随机抽取一定数量的台站组成新的台站组合,使用该台站组合的观测数据重复反演过程.在大量的重复计算后(例如,超过1000次),可以有效地排除观测质量不高或存在较大干扰误差的数据的影响,从而得到更加接近真实解的结果,并且可以有效地给出解的不确定性.另外,由于CAP方法在搜索断层面解时采用的是网格搜索的方法,然后通过插值计算误差函数e的最小值,并且由于固定步长的走向、倾角、滑动角的尝试位置在震源球上的分布是不均匀的(许向彤等,1995),因此在最终解中可能会有空缺(gap)的存在.为了求解优化解,我们进一步使用Kagan(1991)定义的双力偶模型最小空间旋转角,对上面自助抽样得到的大量满足条件的震源机制结果进行分析,定义与所有解的空间偏转角度和为目标函数,使用粒子群非线性优化方法搜索该目标函数最小的结果,视为最优解.

2.3 聚类分析

在震源机制求解中,常见的情况是在震源球上存在几簇相对集中分布的解,对这些可能的解直接取数学平均是不甚合理的,并且在数据存在较大误差或干扰的情况下,满足条件的可能解的分布范围也许会相当大.因此针对这一现象,刁桂苓等(1992)、俞春泉等(2009)分别使用系统聚类和动态聚类技术,对所有的可能解进行聚类分析,求取聚类中心作为反演的优化解,数值试验和实际应用都有很好的效果.聚类分析可以很好地排除孤立解和错误解,从而在大量的数据中获取更加接近真实解的结果.本文在使用不同台站组合重复进行波形反演后,同样得到了大量的震源机制解数据,受台站布局和数据误差的影响,这些解或多或少存在差别,因此对这些结果进行聚类分析是很有必要的.

3 数据与资料

本文使用了山东台网提供的波形资料,其中还包括了邻省如辽宁、河北、江苏等省交换资料的部分台站.图1给出了本项研究使用的台站分布,其中个别台如JIM、ZSL、HUD等为短周期台,在波形反演中没有使用.本文研究中,首先由观测记录直接读取初动符号,用于约束波形反演;然后将观测数据扣除仪器响应,经过去均值、零漂等预处理后积分至位移记录,旋转到Z-R-T坐标系,对观测波形和理论

图1 本文研究的两次地震震中及山东台网台站分布图Fig.1 Map of stations in Shandong Network

and two earthquakes studied in this paper.

Red circles denote epicenter,triangles are

stations,and solid black lines are faults.

形同样进行带通滤波,然后用于反演.

使用Chang等(2006)给出的朝鲜半岛南部至黄海地区的中上地壳速度结构模型用于本文的震源机制反演.相关地质资料显示,胶东半岛、南黄海以及朝鲜半岛南部在大地构造分区上都属于下扬子地块,地质构造属性相对较为一致(Ree et al.,1996).

4 结果与分析

4.1 乳山M4.3震源机制

选择震中距在250km以内的15个台站的宽频带波形记录进行反演,Pnl和面波的反演波段分别选择0.05~0.15Hz和0.033~0.067Hz频段.图2给出了不同深度的最佳双力偶解,及拟合误差随不同深度变化的关系,由图可见,震源深度在4km时观测波形和理论波形的错配值最小,说明事件的震源深度较浅.

由CAP方法反演得到的最佳震源机制:节面A的参数为:走向202°、倾角75°、滑动角153°;节面B的参数为:走向299.5°、倾角64°、滑动角16.7°;参考乳山序列的双差定位结果(李冬梅和郑建常,2014)分析认为,节面B可能是乳山地震的发震断层;震源机制显示为左旋走滑型,反演得到此次地震的矩震级MW=4.2.

654

 2期郑建常等:CAP方法反演震源机制的误差分析:

以胶东半岛两次显著中等地震为例图2 2014年1月7日乳山M4.3级地震不同震源深度的波形拟合误差及最佳震源机制解

Fig

.2 Waveform fit errors and best focal mechanisms asfunction of dep

th for Jan.7,2014Rushan M4.3event 图3给出了对应最优解的理论波形和观测波形

的拟合情况.15个台一共75个震相,其中理论波形与观测波形相关系数大于0.9的有39个,超过50%;相关系数大于0.6(相关性较好)的有67个,

约占89.3%;最佳解的方差减少(variance reduction)为70.3%,说明理论波形很好地拟合了观测波形,反演结果是可靠的.个别台(如WEH)平均相关系

数较差,可能与台站位于震源机制解的节面线附近,振幅相对较小所致;另外如CHD台的拟合程度不好,可能与该台处于海域、噪声干扰较大有关.

使用自助抽样的统计方法,对乳山地震震源机制解的不确定性进行估计.选用震中距在300km以内的采样率为100Hz的22个三分向宽频带台的观测波形组成原始数据集,为了保证用于反演的数据的样本量,设用于反演的台站数为20个,对原始数据集进行每个台站等概率、可重复地随机抽取,抽取出的台站波形组成新的数据集,然后用于CAP方法的波形反演.对上述的抽取台站反演过程重复100

0次,将反演得到的震源机制的断层节面解和P、T轴绘制在一个震源球上,见图4.可以看出,反演中除去个别反演过程的断层面解出现一定程度的偏离外,其余结果集中分布,均显示为近走滑的机制;图4中的P、T轴位置和断层节面线集中成丛,大致显示出断层面解的误差范围.

使用粒子群非线性优化方法,以与自助抽样给出的1000个机制解(图4)的Kagan角之和为目标函数,搜索最优解.结果显示最优解为,节面A:走向208.4°,倾角89.7°,滑动角154.

3°;节面B:走向298.5°,倾角64.3°,滑动角0.3

°;最优解与图4所示表1 波形反演乳山M4.3地震震源机制解结果

Table 1 Parameters of focal mechanism results from 

waveforminversion for Jan.7,2014Rushan 

M4.3event方法

节面A

节面B走向

(°)倾角

(°)滑动角

(°)走向

(°

)倾角

(°

)滑动角

(°

)CAP 202 

75 

153 

299.5 64.0 1

6.7粒子群优化208.4 89.7 154.3 298.5 64.3 0.3聚类分析

208.0 89.3 154.1 298.4 64.1 1.

81000个解的平均夹角4.37°,以其与所有解Kag

an角的2倍标准差为震源机制解的误差范围,结果显示不确定性为6.4

4°(图5).对自助抽样结果进行动态聚类分析,结果显示最优解为:节面A:走向208.0°,倾角89.3°,滑动角154.1°,节面B:走向298.4°,倾角64.1°,滑动角1.8

°,与粒子群优化解非常一致(见表1).

将自助抽样结果中的P、T轴投影到震源球上(图4),对其进行概率密度统计分析,结果见图6.4.2 莱州M4.

6震源机制使用CAP方法对2013年11月23日莱州M4.6地震进行反演(郑建常等,2015),同样进行CAP反演情况的自助抽样统计分析.选用震中距在270km以内的采样率为100Hz的22个三分向宽频带台的观测波形组成原始数据集,采用全样本随机抽取方法,自助抽样反演1000次,图7给出了反演得到的震源机制的断层节面解和P、T轴在震源球上的分布情况.结果显示,莱州地震的自助抽样结果同样很好地显示出了反演得到震源机制解的误差范围,相对于乳山地震,出现了极个别反演过程的结果偏离较大的情况.

使用粒子群非线性优化方法,搜索与自助抽样结果的旋转角最小的解.结果显示最优解为,节面A:走向236.9°,倾角76.2°,滑动角-16

9.3°;节面B:走向144.3°,倾角79.6°,滑动角-14.0°;与所有自助抽样解的平均偏转角17.4°(图8),以其与所有解Kagan角的2倍标准差(图8红色虚线所示)为误差范围,结果显示震源机制解的不确定性为23.

7°.从自助抽样得到的所有机制解在震源球上的分布情况(图7)可以直观地看出,断层节面线尤其是北西向节面呈现出两组集中.由于我们定义的粒子群优化的目标函数是搜索与所有自助抽样解的空间旋转最小,因此从图7可以看出,最优解的节面位置处于其中一组的边缘位置,在此情况下,对自助抽样结果进行聚类分析是有意义的.

54

地球物理学报(Chinese J.Geophys.)58卷

 

图3 2014年1月7日乳山M

4.3地震最优解的理论波形(红)与观测波形(黑)波形图下方第一行数字为各段理论地震波形相对实际观测波形的移动时间,正值表示理论波形相对观测波形超前.

第二行数字为理论波形与观测波形的相关系数(百分比).波形图左侧字母为台站,其下数字分别为台站震中距(km)和方位角(°).

图左侧的震源球上红色区域代表压缩区,白色代表拉张区,震源球采用下半球投影.震源球上标注的“+”和“-”表示反演使用台站的P波初动.Fig

.3 Comparison between synthetics(red)and observed(black)seismograms of Jan.7,2014Rushan M4.3eventThe numbers on the lower left side of each seismogram are the time shifts(upper)and cross-correlation coefficient in p

ercent(lower).Positive time shifts mean that the observed data have been delay

ed.The letters on the left side are stations,the numbers below it areepicentral distance(in km)and azimuth(degree).The red color in beach-ball denotes comp

ression area,while white is extension.The‘+’and‘-’signs on beach-ball indicate polarities on inversion used stations.Lower hemisphere proj

ection is used.8

54

 2期郑建常等:CAP方法反演震源机制的误差分析:

以胶东半岛两次显著中等地震为例图4 自助抽样得到的1000次乳山地震震源机制解

及粒子群最优解(下半球极射投影)

震源球上黑色细线条表示自助抽样结果的断层节面线,

红色线条表示粒子群优化解的节面线.

Fig

.4 1000focal mechanisms of Rushan M4.3eventretrieved by a bootstrapping process,all nodal lines(black)and P,Taxes(blue and red points,respectively)arep

lotted on one beach-ball.The red lines on the beach-ballshow the optimized solution given by a Particle SwarmOptimization method.Its corresponding P,Taxes are alsodisplayed on the beach-ball(yellow and green point,respectively).Lower hemisphere proj

ection is used

.图5 乳山地震自助抽样结果与粒子群优化解的

Kag

an角分布Fig.5 Kagan angles of bootstrap 

results tothe PSO solution for Rushan 

event 以两个震源机制解之间的最小空间旋转角(

即Kagan角)为距离的定义,对1000次自助抽样结果进行聚类分析,图9给出了聚类谱系图(由于完整的聚类树过于密集和庞大,因此我们只显示了Kagan>7

°的部分),以50°为阈值,可以将结果分为5类.图10给出了聚类分析的结果,属于Ⅰ类的数据占32.1%,Ⅱ类6

6.6%,其余三类数据合计仅有1.3%.

由图6 乳山地震自助抽样结果的震源球概率

密度分布俯视图(未进行极射投影)

色标中正值表示T轴的概率密度分布,

负值表示P轴的概率密度分布.

Fig.6 Probability density distribution of solutions onbeach-ball(top 

view of lower hemisphere,without projection)Positive values on the color scale(corresponding to the red areaon beach-ball)indicate probability of T axis,while negativevalues(corresponding to blue area)mean probability 

of Paxis

.图7 自助抽样得到的莱州地震震源机制解及

粒子群最优解(

下半球极射投影)黑色节面线为自助抽样得到的震源机制解;

红色节面线为粒子群最优解.

Fig

.7 1000Focal mechanisms of Laizhou M4.6eventretrieved by a bootstrapping 

process,all nodal lines(black)and P,Taxes(blue and red points,respectively)are plotted on one beach-ball.The red lines on the beach-ball show the optimized solution given by 

a PSO method.Its corresponding P,Taxes are also displayed on thebeach-ball(cyan and yellow point,respectively).Lowerhemisphere proj

ection is used.图10可以看出,其余三类的断层节面线和P、T轴位置明显偏离集中区且机制解类型与绝大部分结果(走滑型)不一致,是典型的孤立解.孤立解(或错误解)的出现,可能说明我们使用的数据中个别台站(或分向)存在较大干扰.使用俞春泉等(2009)的方法求取了四类解的聚类中心,其中I类解的聚类中

54

地球物理学报(Chinese J.Geophys.)58卷

 

图8 莱州地震自助抽样结果与粒子群优化解的Kag

an角分布Fig.8 Kagan angles of bootstrap 

resultsto the PSO solution for Laizhou 

even

t图9 莱州地震自助抽样结果的聚类谱系图Fig

.9 Dendrogram plot of the hierarchicalbinary 

cluster tree for Laizhou even

t图10 莱州地震自助抽样结果的聚类分析

(a)断层节面线的分类显示;(b)机制解P(+)、T(⊙)

轴位置的分类显示.断层节面线和P、T轴颜色表示分类,与图9分类颜色一致.Fig.10 Clustering 

results of focal mechanisms from a bootstrap process for Laizhou eventThe different colors of nodal lines and P(“+”sign in right panel),T(“⊙”in right p

anel)axesdenote different classes,which are corresponding 

to colors shown in Fig.9心的断层面参数(设北东向节面为发震断层面)为:走向231.6°,倾角88.7°,滑动角-168.2°;Ⅱ类解的聚类中心为:走向238.5°,倾角74.1°,滑动角-16

4.8°.将自助抽样结果中的P、T轴投影到震源球上,对其进行概率密度统计分析,结果见图11.可见,同聚类分析的结果一致,P轴位置的概率密度在震源球上出现了两个极值区,分别对应Ⅰ类和Ⅱ类两个聚类中心.

5 讨论与结论

基于山东省宽频带数字地震波形资料,本文首先使用CAP方法反演了近期胶东半岛地区发生的两次显著中等地震活动的震源机制,讨论了如何合理地估计CAP方法反演震源机制的误差范围以及

如何确定优化解的问题.我们首先使用自助抽样方法,对原始数据进行等概率随机抽样,多次重复波形反演过程,排除了人为选择数据的干扰,得到大样本量的震源机制解数据;在此基础上,我们

(1

)使用了粒子群优化算法从中搜索与这些机制解空间偏转角最小的解当作优化解,以Kagan角的二倍标准差作为反演结果的不确定性范围,结果显示:乳山地震的粒子群优化解为:走向298.5°,倾角64.3°,滑动角0.3°,不确定性为±6.4°;莱州地震的优化解为:走向236.9°、倾角76.2°、滑动角-169.3°,不确定性为±23.

7°.(2

)对自助抽样结果进行聚类分析,其中:乳山地震结果的聚类中心与粒子群优化解基本一致;莱州地震结果存在多个聚类,排除孤立解后,有两个聚类中心,其对应两类数据合计占结果的98.

7%,说0

64

 2期郑建常等:CAP方法反演震源机制的误差分析:

以胶东半岛两次显著中等地震为例图11 莱州地震自助抽样结果的震源球概率密度分布

(a)下半球俯视图(未进行极射投影);(b)东南方向,45°

三维侧视图.色标说明同图6.Fig.11 Probability 

density distribution of solutions on beach-ball(a)Top view of lower hemisphere,without any projection;(b)Side view of whole beach-ball,from south-east 45°position.Positive valueson the color scale(corresponding 

to the red area on beach-ball)indicate probability of Taxis,while negative values(correspondingto blue area)mean probability 

of Paxis.明此次地震的真实解在这两类数据范围内.(3

)将自助抽样结果中的P、T轴投影到震源球,对其进行概率密度统计,给出了机制解在震源球上的概率密度分布图.

本文方法不单可以得到更准确的震源机制优化解、给出科学合理的误差估计,而且可以有效地排除孤立解和错误解,克服存在较大干扰台站的数据的影响,因此在震后应急的震源机制自动化求解中可以发挥作用.在强大计算能力的支持下,无须人工干预即可得到准确可靠的震源机制结果,从而为震害评估、趋势分析等提供重要的科学依据.

自助抽样结果显示乳山地震震源机制解的不确定性要小于莱州地震,笔者推测可能有莱州地震使用的台站中个别台的干扰较大的原因,另外也无法排除莱州地震的震源破裂过程可能更加复杂的可能.CAP方法中用于计算格林函数的F-K方法使用狄拉克-Delta函数作为震源时间函数(Zhu andRivera,2002

),对于小震级的事件该简化方案更为适用,莱州地震(M4.6)与乳山地震(M4.3)震级相差不大,但莱州地震的自助抽样结果出现了两个概率较高的聚类中心,在使用大部分相同台站的情况下,这可能意味着莱州地震的震源破裂随时间的变化可能与狄拉克-Delta函数存在一定的偏离.Rodríg

uez-Lozoya等(2008)的研究显示,区域中等地震也可能有复杂的震源破裂过程,在该问题上的深入研究需

要更进一步的工作.

致谢 感谢两位匿名审稿专家提出的宝贵意见.聚类分析中使用了俞春泉等(2009)提供的部分开放代码,粒子群搜索使用了S 

Chen给出的Matlab软件包,在此一并表示感谢!

References

Chang S J,Baag 

C E.2006.Crustal structure in Southern Koreafrom joint analysis of regional broadband waveforms and traveltimes.Bull.Seism.Soc.Amer.,96(3):856-

870.Diao G L,Yu L M,Li Q Z.1992.Hierarchical clustering 

analysisof the focal mechanism solution-Taking 

the Haicheng EarthquakeSequences for example.Earthq

uake Research in China(inChinese),8(3):86-

92.Godano M,Regnier M,Deschamp

s A,et al.2009.Focalmechanisms from sparse observations by nonlinear inversion ofamplitudes:method and tests on synthetic and real data.Bull.Seism.Soc.Amer.,99(4):2243-

2264.Han L B,Jiang 

C S,Bao F.2010.Source parameter determinationof 2010Taikang MS4.6earthquake sequences.Chinese J.Geophys.(in Chinese),55(9):2973-2981,doi:10.6038/j.issn.0001-

5733.2012.09.016.Han L B,Jiang 

C S.2012.Focal mechanism inversion of 8Jun 2011Toksun MS5.3earthquake.Acta Seismologica Sinica(in Chinese),34(3):415-

422.Huang 

J P,Ni S D,Fu R S,et al.2009.Source mechanism of the2006 MW5.1Wen′an earthquake determined from a j

oint inversion of1

64

地球物理学报(Chinese J.Geophys.)58卷 

local and teleseismic broadband waveform data.Chinese J.Geophys.(in Chinese),52(1):120-130.

Jost M L,Hermann R B.1989.A student′s guide to and review ofmoment tensors.Seism.Res.Lett.,60(2):37-57.

Kagan Y Y.1991.3-D rotation of double-couple earthquakesources.Geophys.J.Int.,106(3):709-716.

Li D M,Zheng J C.2014.Relocation analysis of Oct.1,2013Rushan swarms.Qilu Earthquake Sciences(in Chinese),10(1):26-28.

Long F,Zhang Y J,Wen X Z,et al.2010.Focal mechanismsolutions of ML≥4.0events in the MS6.1Panzhihua-Huiliearthquake sequence of Aug 30,2008.Chinese J.Geophys.(in Chinese),53(12):2852-2860,doi:10.3969/j.issn.0001-5733.2010.12.008.

LüJ,Zheng Y,Ni S D,et al.2008.Focal mechanisms andseismogenic structures of the MS5.7and MS4.8Jiujiang-Ruichang earthquakes of Nov.26,2005.Chinese J.Geophys.(in Chinese),51(1):158-164,doi:10.3321/j.issn:0001-5733.2008.01.020.

Ree J-H,Cho M,Kwon S-T,et al.1996.Possible eastwardextension of Chinese collision belt in South Korea:TheImjingang belt.Geology,24(12):1071-1074.

Rodríguez-Lozoya H E,Quintanar L,Ortega R,et al.2008.Rupture process of four medium-sized earthquakes thatoccurred in the Gulf of California.J.Geophys.Res.,113(B10301),doi:10.1029/2007JB005323.

Xu X T,Xu Z H,Zhang D N.1995.A probabilistic grid testmethod of determining earthquake focal mechanisms using P-wave onset polarity data.Seismological and GeomagneticObservation and Research(in Chinese),16(4):34-42.

Yu C Q,Tao K,Cui X F,et al.2009.P-wave first-motion focalmechanism solutions and their quality evaluation.Chinese J.Geophys.(in Chinese),52(5):1402-1411,doi:10.3969/j.issn.0001-5733.2009.05.030.

Zhao L S,Helmberger D V.1994.Source estimation from broadbandregional seismograms.Bull.Seism.Soc.Amer.,84(1):91-104.Zheng J C,Li D M,Wang P,et al.2015.Focal mechanisms andseismic tectonic features of the 2013Laizhou M4.6earthquakesequence.Seismology and Geology(in Chinese),in press.

Zheng J C,Chen Y T.2012.Stability of sparse station datainversion for deviatoric moment tensor solution of regionalearthquakes.Acta Seismologica Sinica(in Chinese),34(1):31-43.Zheng Y,Ma H S,LüJ,et al.2009.Source mechanism of strongaftershocks(Ms≥5.6)of the 2008/05/12Wenchuan earthquake andthe implication for seismotectonics.ScienceinChinaSeriesD:Earth Sciences,52(6):739-753.

Zhu L P,Helmberger D V.1996.Advancement in source estimationtechniques using broadband regional seismograms.Bull.Seism.Soc.Amer.,86(5):1634-1641.

Zhu L P,Rivera L A.2002.A note on the dynamic and staticdisplacements from a point source in multilayered media.Geophys.J.Int.,148(3):619-627.

附中文参考文献

刁桂苓,于利民,李钦祖.1992.震源机制解的系统聚类分析———以海城地震序列为例.中国地震,8(3):86-92.

韩立波,蒋长胜,包丰.2012.2010年河南太康MS4.6地震序列震源参数的精确确定.地球物理学报,55(9):2973-2981,doi:10.6038/j.issn.0001-5733.2012.09.016.

韩立波,蒋长胜.2012.2011年6月8日新疆托克逊MS5.3地震震源机制解反演.地震学报,34(3):415-422.

黄建平,倪四道,傅容珊等.2009.综合近震及远震波形反演2006文安地震(MW5.1)的震源机制解.地球物理学报,52(1):120-130.

李冬梅,郑建常.2014.2013年10月1日乳山震群重新定位结果分析.齐鲁地震科学,10(1):26-28.

龙锋,张永久,闻学泽等.2010.2008年8月30日攀枝花—会理6.1级地震序列ML≥4.0事件的震源机制解.地球物理学报,53(12):2852-2860,doi:10.3969/j.issn.0001-5733.2010.12.008.

吕坚,郑勇,倪四道等.2008.2005年11月26日九江-瑞昌MS5.7,MS4.8地震的震源机制解与发震构造研究.地球物理学报,51(1):158-164,doi:10.3321/j.issn:0001-5733.2008.01.020.许向彤,许忠淮,张东宁.1995.求震源机制P波初动解的格点尝试概率法.地震地磁观测与研究,16(4):34-42.

俞春泉,陶开,崔效锋等.2009.用格点尝试法求解P波初动震源机制解及解的质量评价.地球物理学报,52(5):1402-1411,doi:10.3969/j.issn.0001-5733.2009.05.030.

郑建常,王鹏,李冬梅等.2015.2013年莱州M4.6地震序列震源机制与发震构造初探.地震地质,待刊.

郑建常,陈运泰.2012.稀疏台网反演区域地震偏量矩张量解的稳定性.地震学报,34(1):31-43.

郑勇,马宏生,吕坚等.2009.汶川地震强余震(Ms≥5.6)的震源机制解及其与发震构造的关系.中国科学D辑:地球科学,39(4):413-426.

(本文编辑 何燕)

264

周仕勇,K ojiro Irikura.近震源地震波波形资料反演震源破裂过程的可靠性分析.地球物理学报,2005,48(1):124~131 Zhou S Y,Irikura K.Analysis on the reliability of the earthquake rupture process in ferred from near s ource waveforms.Chinese J .G eophys .(in Chinese ),2005,48(1):124~131 近震源地震波波形资料反演震源破裂 过程的可靠性分析 周仕勇1 ,K ojiro Irikura 2 1北京大学地球与空间科学学院,北京 1008712日本京都大学防灾研究所,京都宇冶 61120011 摘 要 用近震源波形资料拟合反演地震的震源破裂过程,所包含的一些不确定因素将对反演结果的精度及可 靠性产生影响.文中的数值实验分析了所假定的反演断层模型参数的某些不确定性对反演结果的影响程度,并对观测波形的截取长度对反演精度的影响进行了讨论.结果表明:(1)近震源地震波形资料能较好地分辨断层浅部的破裂过程.然而对断层深部的位错分布的约束和反演能力较差.联合使用近、远场地震波资料进行反演,能反演出一个更为完全的整个断层破裂过程的图像.(2)用近震源地震波资料反演时,反演结果对所假定的反演断层的走向和倾角非常敏感.断层走向偏离真实值2°或倾角偏离真实值5°都会导致一个虚假的反演结果.(3)反演中所使用的介质速度结构模型的不确定性,也会对反演结果产生影响. 关键词 地球物理观测 震源破裂 反演 近震源地震波 文章编号 0001-5733(2005)01-0124-08 中图分类号 P315 收稿日期 2003-12-26,2004-07-24收修定稿 Analysis on the reliability of the earthquake rupture process inferred from near source w aveforms ZHOU Shi 2Y ong ,K ojiro Irikura 1Department o f G eophysics ,P eking Univer sity ,Beijing 100871,China 2Disaster Prevention Research Institute ,K yoto Univer sity ,Uji ,K yoto 61120011,Japan Abstract Several numerical tests have been analyzed in this paper to discuss the in fluences from the uncertain parameters of the presumed inversion fault m odel.The in fluence from the data on the res olution of the inversion results has been als o analyzed.We have discussed the in fluence from the time length of the data and distribution of observational stations.Our research indicates :(1)The near 2field waveform data can well reveal the s ource rupture process of the shallow part of the fault ,however ,it poorly constrains the slip distribution on the deep part of the fault.Jointly using near 2and far 2field waveform data can provide m ore com plete message of the rupture process of the whole fault.(2)The near 2field inversion result on the s ource is very sensitive to the strike and dip parameters of the presumed fault m odel.2°deviated for the presumed strike and 5°deviated for the presumed dip angle from that of the true fault will lead to a distorted inversion result.(3)The uncertainty of the media m odel will als o in fluence the inversion results in s ome degree. K eyw ords G eophysical observation ,Earthquake rupture process ,Inversion ,Near 2s ource seismic waveforms. 基金项目 国家自然科学基金项目(40174015)资助. 作者简介 周仕勇,男,1962年生,理学博士,副教授,主要从事震源破裂过程、地震定位及地震活动性模拟研究.E 2mail :zsy @https://www.doczj.com/doc/e918465163.html, 第48卷第1期2005年1月 地 球 物 理 学 报 CHI NESE JOURNA L OF GE OPHY SICS V ol.48,N o.1 Jan.,2005

第21卷 第4期地 震 学 报Vol.21,No.4 1999年7月 (354~360)ACT A SEISM OLOGICA SIN ICA Jul.,1999  由震源机制解反演中国大陆 现代构造应力场 杜兴信 邵辉成 (中国西安710068陕西省地震局) 摘要 使用1920~1996年的震源机制资料,分区反演了中国现代构造应力场.结果表明,最 大主压应力e1轴在西藏高原和中国西部成近南北向,华北成近东西向.在中国中部,e1轴在 北段成北北东-南南西向,中部成近东西向,南部成北北西-南南东向.最小主压应力e3轴水 平投影除在中国西部与e1轴为斜交外,大多数地方为正交.中等主应力e2相对大小R值在 西藏高原最低,为0.10~0.30,并很快地向东北过渡到0.60~0.90高值区.实测和反演的断 层破裂面多分成共轭的两组.结合主应力方向和R值,把中国构造运动特征分为7类.断裂 类型大多数为具有中等R值的走滑型,主要分布在华北和中国东部以及西藏高原内部; 少数为逆断型,分布在中国西部和西藏高原北缘.正断层分布在西藏高原的南缘, 相应R值也较小. 关键词 震源机制 平均应力场 应力方向 构造运动特征 引言 近一二十年发展起来的区域应力场反演,提供了研究区域平均应力场的重要方法(Ang elier,1979;Ellswo rth,1981;许忠淮,戈树谟,1984).由于它使用的是多个断层面而不是单个断层作反演资料,因而能去除局部介质的不均匀性,突出区域应力场信息,较单个地震更能代表应力分析结果.此外,这种方法还能计算出中等主应力相对大小R值[(e2-e1)/(e3-e1)],在一定程度上给出了应力的量值.这里,e1,e2和e3分别为最大、中等和最小主应力. 最初的区域应力场反演使用的是滑动矢量法(Ellsw o rth,1981),利用的资料仅限于野外的地质断层面和断层面上的擦痕,多数地震资料因不知哪个震源机制解节面是断层面而不能作为原始数据使用.为充分利用地震资料,一些学者通过定义断层面,使得可以利用任意震源机制解确定平均应力场.如Gephar t和Forsyth(1984)定义:当两个节面围绕任一轴旋转,以达到对某一给定应力理论剪应力方向与滑动方向一致时,转角较小的节面为断层面.换言之,由该方法可同时确定平均应力场和理论断层面. 本文首先利用具有已知断层面的地震资料研究中国平均应力场,然后利用震源机制资 中国地震局95-04-04-02-03课题资助. 1998-10-19收到初稿,1999-02-02收到修改稿并决定采用.

中国科学: 地球科学 2013年 第43卷 第6期: 1064 ~ 1072 https://www.doczj.com/doc/e918465163.html, https://www.doczj.com/doc/e918465163.html, 中文引用格式: 陈运泰, 杨智娴, 张勇, 等. 从汶川地震到芦山地震. 中国科学: 地球科学, 2013, 43: 1064–1072 英文引用格式: Chen Y T, Yang Z X, Zhang Y, et al. From 2008 Wenchuan earthquake to 2013 Lushan earthquake (in Chinese). Scientia Sinica Terrae, 2013, 43: 1064–1072 《中国科学》杂志社 SCIENCE CHINA PRESS 论 文 从汶川地震到芦山地震 陈运泰*, 杨智娴, 张勇, 刘超 中国地震局地球物理研究所, 北京 100081 * E-mail: chenyt@https://www.doczj.com/doc/e918465163.html, 收稿日期: 2013-05-14; 接受日期: 2013-05-22; 网络版发表日期: 2013-06-05 国家自然科学基金项目(批准号: 41090291)资助 摘要 本文概述作者在龙门山断裂带中、小地震精确定位、地震活动性以及2008年汶川M W 7.9(M S 8.0)地震和2013年芦山M W 6.7(M S 7.0)地震破裂过程等方面所做的研究工作. 这些工作表明, 青藏高原东缘的龙门山断裂带不但是一条规模宏大的断裂带, 也是一条非常活跃的地震带. 通过对地震构造、地震活动性、地震矩释放“亏空”区以及余震活动规律的分析, 作者在汶川地震后提出了龙门山断裂带西南段宝兴-小金一带存在发生M W 6.7~7.3地震的潜在危险性的地震趋势估计. 芦山地震的发生初步验证了这一估计. 芦山地震发生后作者进一步做的分析结果表明, 芦山地震的发生并没有显著地缓解龙门山断裂带西南段的地震危险性, 该地段整体上仍存在发生M W 7.2~7.3地震的潜在危险性; 特别是, 其北段(即邛崃大邑西-宝兴 北-汶川南一带)存在发生M W 6.8地震的潜在危险性; 其南段(即天全-荥经-泸定-康定一带)存在发生M W 7.2地震的潜在危险性. 作者认为, 应当强化对上述具有潜在地震危险性区域的监测与多学科综合研究. 关键词 芦山地震 汶川地震 地震精确定位 地震破裂过程 地震危险性 据中国地震台网中心测定, 2013年4月20日北京时间上午08时02分46秒, 四川省雅安市芦山县境内发生了面波震级M S 7.0地震, 震中位置: 30.3°N, 103.0°E, 震源深度: 13.0 km. 另据美国地质调查局国家地震信息中心(USGS/NEIC)报道, 发震时刻: 00时02分47.5秒UTC (协调世界时); 震中位置: 30.308°N, 102.888°E; 震源深度: 14.0 km; 矩震级M W 6.6. 截止至05月17日16时00分, 共记录到余震9294次, 其中M ≥3.0余震132次, 包括3.0≤M <3.9地震106次, 4.0≤M <4.9地震22次, 5.0≤M <5.9地震4次. 芦山地震是继2008年5月12日汶川M W 7.9地震以来在青藏高原东缘的龙门山断裂带上发生的又一次 灾害性地震事件. 截止至24日14时30分, 芦山强烈地震已造成196人死亡, 失踪21人, 11470人受伤. 芦山地震发生于龙门山断裂带上的西南段, 该段是汶川地震时龙门山断裂带没有发生破裂的特殊地段. 为什么会发生芦山地震? 芦山地震是如何发生的? 它的发生对于龙门山断裂带及其周边地区的地震活动性究竟有何影响? 等等, 都是亟待研究解决的问题. 为此, 本文通过概述作者自2003年以来开展的与龙门山断裂带地震精确定位、地震活动性以及汶川地震和芦山地震的破裂过程有关的研究工作, 对芦山地震的发生及其可能的影响做一初步分析与探讨.

地震波阻抗反演方法综述 一、地震反演技术研究现状 地震反演方法是一门综合运用数学、物理、计算机科学等学科发展起来的新技术新方法,每当数学方法、物理理论有了新的认识和发展时,就会有新的地震反演技术、方法的提出。随着计算机技术的不断发展、硬件设施的不断升级,这些方法技术得到了实践验证和提升,反过来地震反演技术运用中出现的新问题、新思路又不断促使数学方法、地球物理学理论的再次发展。时至今日,地震反演技术仍然是一个不断发展、不断成熟、不断丰富着的领域。 反演是正演的逆过程,在地震勘探中正演是已知地下的地质构造情况、岩性物性分布情况,根据地震波传播规律和适当的数学计算方法模拟地震波在地下传播以及接收地震波传输到地表信息的过程。地球物理反演就是使用已知的地震波传播规律和计算方法,将地表接收到的地震数据通过逆向运算,预测地下构造情况、岩性物性分布情况的过程。地震波阻抗正演是对反演的理论基础和实现手段。 1959年美国人Edwin Laurentine Drake在宾夕法尼亚州开凿的第一口钻井揭开了世界石油工业的序幕。从刚开始的查看地质露头、寻找构造高点寻找石油,到通过地震剖面的亮点技术寻找石油,再到现在运用多种科学技术手段进行油气资源的预测,石油勘探经历了一个飞速的发展历程。 声波阻抗(AI)是介质密度和波在介质中传播速度的乘积,它能够反映地下地质的岩性信息。声波阻抗反演技术是20世纪70年代加拿大Roy Lindseth博士提出的,通过反演能够将反映地层界面信息的地震数据变为反映岩性变化的波阻抗(或速度)信息。由于波阻抗与地下岩石的密度、速度等信息紧密联系,又可以直接与已知地质、钻井测井信息对比,因此广泛应用于储层的预测和油藏描述中,深受石油工作者的喜爱。70年代后期,从地震道提取声波资料的合成声波技术得到了快速发展,以此为基础发展的基于模型的一维有井波阻抗反演技术,提高了反演结果的可靠性。进入80年代,Cooke等人将数学中的广义线性方法运用于地震资料反演,提出了广义线性地震反演。此后Seymour等人又提出了测井声波资料和地震数据正反演相结合求取地下声波阻抗的测井约束反演,大大拓宽了反演结果的纵向分辨能力。 90年代,在基于前人对地质统计学研究的基础上Bortoli和Haas提出了地质统计学反演,Dubrule等人对该方法进行了改进和推广。在国内随着油田对地震反演技术的广泛应用,以周竹生为主提出的地震、地质和测井资料联合反演方法,将地质信息引入地震反演中,提高的反演结果与地质认识的联系,克服了线性反演存在的缺陷。1996年,李宏兵等人将宽频带约束方法应用于递推反演并对其进行改进,减弱了噪音对反演结果的影响。 1999年,任职于英国石油公司的Connolly在《弹性波阻抗》一文中介绍了弹性波阻抗(EI)的概念和计算方法,阐述了不同入射角度(偏移距)地震道集部分叠加反演波阻抗随入射角之间的关系,但是该方法求取的弹性阻抗随入射角变化很大,无法与常规叠后反演波阻抗直接比较,因此推广应用较为困难。2002年,Whitcombe通过修正Patrick Connolly的计算公式,得到了弹性波阻抗的归一化求取方法,消除了弹性阻抗随入射角变化大的难题。2003年,西北大学马劲风教授从Zoeppritz方程简化出发提出了广义弹性波阻抗的概念,克服了以往波阻抗反演要求地震波垂直入射到地表的假设条件,推导出了任意入射角下纵波反射系数的递推公式,提高了中等入射角度下弹性波阻抗反演的精度。

中国科学D辑:地球科学 2008年 第38卷 第10期: 1186~1194 https://www.doczj.com/doc/e918465163.html, https://www.doczj.com/doc/e918465163.html, 1186 《中国科学》杂志社SCIENCE IN CHINA PRESS 2008年汶川大地震的时空破裂过程 张勇①②,冯万鹏②,许力生②*, 周成虎③,陈运泰①②? ①北京大学地球与空间科学学院, 北京 100871; ②中国地震局地球物理研究所, 北京100081; ③中国科学院地理科学与资源研究所, 北京 100101 * 联系人, E-mail: xuls@https://www.doczj.com/doc/e918465163.html, ? 责任作者, E-mail: chenyt@https://www.doczj.com/doc/e918465163.html, 收稿日期: 2008-07-25; 接受日期: 2008-08-13 国家基础研究发展计划(编号: 2004CB418404-4, 2001CB711005)和国家自然科学基金(批准号: 40574025, 40474018)资助 摘要利用全球地震台网(GSN)记录的长周期数字地震资料反演了2008年5月12日四川汶川M S8.0地震的震源机制和动态破裂过程, 并在反演所得结果的基础上定量分析了汶川大地震同震位移场的特征, 探讨了汶川大地震近断层地震灾害的致灾机理. 反演中采用了单一机制的有限断层模型, 使用了从全球范围内挑选的、方位覆盖较均匀的21个长周期地震台垂直向记录的P波波形资料. 通过反演得出: 汶川大地震的发震断层走向为225°、倾角为39°、滑动角为120°, 是一次以逆冲为主、兼具小量右旋走滑分量的断层; 这次地震所释放的标量地震矩为9.4×1020 ~2.0×1021 Nm, 相当于矩震级M W7.9~8.1. 汶川大地震是在破裂长度超过300 km的发震断层上发生的、破裂持续时间长达90 s的一次复杂的震源破裂过程. 整个断层面上的平均滑动量约2.4 m, 但断层面上滑动量(位错)的分布很不均匀. 有4个滑动量集中且破裂贯穿到地表的区域, 其中最大的两个, 一个在汶川-映秀一带下方, 最大滑动量(也是本次地震的最大滑动量)所在处在震源(初始破裂点)附近, 达7.3 m; 另一个位于北川一带下方, 一直延伸到平武境内下方, 其最大滑动量所在处在北川地面上, 达5.6 m. 其余2个滑动量集中的区域规模较小, 一个在康定以北下方, 最大滑动量达 1.8 m; 另一个位于青川东北下方, 最大滑动量达0.7 m. 汶川地震整个断层面上的平均应力降约18 MPa, 最大应力降约53 MPa. 由反演得到的断层面上滑动量分布计算得出的汶川大地震震中区地表同震位移场表明, 汶川大地震地表同震位移场的分布特征与该地震烈度分布的特征非常一致, 表明了汶川大地震的大面积、大幅度、贯穿到地表的、以逆冲为主的断层错动是致使近断层地带严重地震灾害在震源方面的主要原因. 关键词 汶川大地震地震破裂过程同震位移 根据中国国家地震台网测定, 2008年5月12日14时28分4秒(北京时间), 在我国四川省汶川县境内的映秀镇附近(31.0°N, 103.4°E, 震源深度15 km)发生了面波震级M S8.0地震. 地震引发大规模的山体滑坡和泥石流, 造成了多处河流淤塞, 形成了3000个以上的堰塞湖(卫星影像图1(b)和(c)); 汶川大地震使位于龙门山断裂带附近的上百座城镇遭受严重破坏, 大量房屋损毁, 公路桥梁坍塌(卫星影像图1(d)和(e)), 造成了近9万人死亡或失踪. 汶川大地震震中位于青藏高原东缘的龙门山断裂带上. 龙门山断裂带是一条长约500 km、宽约30~50 km 沿NE-SW方向展布的巨大断裂带, 其断

No.13,2010 现代商贸工业 Modern Bus iness Trade Industry2010年第13期 地震波层析成像反演方法及其研究综述 冯 微 (长江大学物理科学与技术学院,湖北荆州434025) 摘 要:通过研究利用初至波走时的层析反演方法建立近地表速度模型,提供近地表地下介质的速度信息,进一步为静校正或浅层工程勘探服务。 关键词:速度建模;层析成像;初至波 中图分类号:TB 文献标识码:A 文章编号:1672 3198(2010)13 0368 01 地震勘探是利用人工在地表激发和接收地震波,再对地震波作分析处理以及解释而得到地下构造信息和岩性信息的一种方法。在整个地震勘探过程中,精确的求取地震波在地下介质中的传播速度,一直是地震勘探的核心问题之一。尤其在地表条件较复杂的区域,地表速度的横向剧烈变化会严重影响中深层目的层的成像效果。近地表速度不准确,将会直接影响到速度分析、偏移成像的质量以及静校正的精度等地震勘探的各个环节和最终的勘探成果。 1 地震面波及波形反演 利用面波进行结构反演一直是了解地球介质结构的重要途径。近几年来,在面波理论和面波反演方面做了大量工作。陈蔚天和陈晓非(2001)提出了一种求解水平层状海洋-地球模型中面波振型问题的新算法,它简洁、高效,彻底消除了高频情况下数值计算的精度失真问题。张碧星等(2000,2002)对瑞利波勘探中 之字形频散曲线形成的物理机理和多模性问题进行了理论分析,研究了诸波模的传播特性及相互关系,以及地表下低速层介质的位置、厚度及其它参数对 之字形频散曲线的相互影响.在面波反演理论方面,朱良保等(2001)通过保角变换,把面波群速度的反演变成了球谐系数的线性化反演,使其计算速度快,等值线光滑,构造界限清晰。众多研究者根据从面波资料求出的频散曲线,对不同地区的地下速度结构作了反演,揭示了横向结构差异的广泛存在。 根据走时反演地下结构是获取结构信息的经典做法。刘伊克等(2001)根据三维地震观测的初至走时数据,利用最小平方与QR分解相结合的算法,在三维空间重建近地表低降速带速度模型。同时,采用分形算法克服了初至波波形差异以及折射波相位反转导致的拾取误差,实现了三维初至拾取的大规模全自动化运算。李录明等(2000)针对地震勘探中的复杂地表问题,提出了一套地震初至波表层模型层析反演方法.它利用地震直达波、回折波、折射波以及三者组合的初至波和层析反演方法具有的纵、横向变速优势,实现适应速度任意变化的复杂表层模型反演。 在利用远震体波接收函数反演地下结构方面。钱辉等(2001)对接收函数反演地壳结构速度的算法作了分析,使之适应正演参数的变化,并利用天然地震接收函数揭示了青藏高原东部地壳结构。 近年来,非线性反演越来越受到重视,许多研究者把新的最优化理论引入地震学反演中。孟洪鹰和刘贵忠(1999)提出了多尺度地震波形反演的小波变换方法。对于一维非线性地震波形反演问题,此方法和已有的简单迭代法及多重网格法比较表明,此方法更为有效。杨峰和聂在平(2000)提出了用于二维轴对称非均匀介质结构的反演和成像的一种新的反演迭代方法变分玻恩迭代方法.与传统的玻恩迭代方法相比,其收敛速度和成像质量均有较大改善。 2 地震勘探、测井问题中的地震波研究及其它 在地震勘探和测井方面,许多研究者针对实际问题,提出了新的方法。沈建国和张海澜(2000)计算了井内靠近井壁的偏心声源激发的声场,得到了在井壁不同位置的接收波形,分析了直达波、井壁反射波、纵波、横波和面波在这些波形中的反映。为了处理横向强变速介质中的深度成像问题,程玖兵等(2001)提出一种基于共炮道集的优化系数的傍轴近似方程叠前深度偏移算子,在基于反射系数估算的成像条件下,可实现叠前深度偏移成像。陈生昌等(2001)实现了一种基于拟线性Born近似的叠张海明等:地震波研究前深度偏移方法,扩大了拟线性Born近似的应用范围,使其能够适应更强的横向速度变化。张美根和王妙月(2001)利用有限元法和最小走时射线追踪的界面点法,实现了各向异性弹性波的叠前逆时偏移.陈志德等(2002)利用叠前深度域地震成像对速度模型变化的敏感性,采用偏移迭代逐次逼近最佳成像速度,研究开发了一套快捷有效的三维叠前深度偏移深度域速度模型建立技术。顾汉明等(2002)在频率-波数域中采用解析法,解出多层条件下海底实测的多分量地震数据分解成上行和下行P波和S波的算法,导出海底各层地震反射系数随入射角变化(简称RVA)的递推计算公式。金胜汶等(2002)给出了一种高效率、高精度的炮检距域叠前深度偏移方法,并得到各个不同照射角下的成像结果。 3 讨论和结论 地震波理论是固体地球物理学研究的重要基础.地震波研究领域的任何实质性进展都会促进固体地球物理学的发展.在过去的4年里,中国地球物理学家在该领域做了很多有意义的研究工作,其中不乏创新性的理论工作.当前地震波研究领域的重要课题包括: (1)复杂地球介质中地震波激发与传播理论; (2)高效计算三维介质中地震波传播的数值方法; (3)利用先进的地震波数值模拟方法,开展设定地震与强地面运动的数值模拟研究,为精细的地震危险分析与预测奠定基础。 参考文献 [1]周庆凡.我国天然气发展前景广阔[J].中国石化,2009. [2]刘英祥.我国天然气价格与天然气发展问题研究[J].企业经济, 2009. [3]牛建娣.我国天然气市场供需状况及发展对策分析[D].对外经济 贸易大学,2007. ! 368 !

第一章反演理论 第一节基本概念 一.反演和正演 1.反演 反演是一个很广的概念,根据地震波场、地球自由振荡、交变电磁场、重力场以及热学等地球物理观测数据去推测地球内部的结构形态及物质成分,来定量计算各种有关的物理参数,这些都可以归结为反演问题。在地震勘探中,反演的一个重要应用就是由地震记录得到波阻抗。 有反演,还有正演。要正确理解反演问题,还要知道正演的概念。 2.正演 正演和反演相反,它是对一个假设的地质模型,给定某些参数(如速度、层数、厚度)用理论关系式(数学模型)推导出某种可测量的量(如地震波)。在地震勘探中,正演的一个重要应用就是制作合成地震记录。 3.例子 考虑地球内部的温度分布,假定地球内部的温度随深度线性增加,其关系式可表示成:T(z)=a+bz 正演:给定a和b,求不同深度z的对应温度T(z) 反演:已经在不同点z测得T(z),求a和b。 二.反演问题描述和公式表达的几个重要问题 1.应用哪种参数化方式——离散的还是连续的? 2.地球物理数据的性质是什么?观测中的误差是什么? 3.问题能不能作为数学问题提出,如果能够,它是不是适定的? 4.对问题有无物理约束? 5.能获得什么类型的解,达到什么精度?要求得到近似解、解的范围、还是精确解? 6.问题是线性的还是非线性的? 7.问题是欠定的、超定的、还是适定的? 8.什么是问题的最好解法? 9.解的置信界限是什么?能否用其它方法来评价? 第二节反演的数学基础

一.解超定线性反问题 1.简单线性回归 可利用最小平方法确定参数a 、b 使误差的平方和最小。 ??? ? ???∑-∑∑∑-∑=-=∑∑-=2 2)()(x x n y x xy n b x b y n x b y a (1-2-1) 拟合公式为: bx a y +=? (1-2-2) 该方法的公式原来只适用于解超定问题,但同样适用于欠定问题,当我们有多个参数时,称为多元回归,在地球物理领域广泛采用这种方法。此过程用矩阵形式表示,则称为广义最小平方法矩阵方演。 2.非约束最小平方法反演——广义矩阵方法 由前面讨论可知,参数估计的最小平方方法用矩阵公式表示,所得到的算法等价于一个或多个模型参数的一个或多个数据集反演,步骤为: 问题定义→矩阵公式→最小平方解 线性问题采用广义矩阵形式 d=Gm (1-2-3) 对于精确的数据模型,参数m 为 m=G -1d (1-2-4) 但是由于试验误差,实际数据将不能精确拟合获得,故采用最小平方法求解。解的矩阵表示式为 d G G G m T T 1][?-= (1-2-5) 上式具体计算时可用奇异值分解方法 G=U ∧V T 最后,得 m ?=(G T G )-1G T d=V ∧-1U T d (1-2-6)

地震反演的类型 1.1 反演的分类 1)从所利用的地震资料来分可分两类:叠前反演和叠后反演; 2)从测井资料在其中所起作用大小可分为四类:地震直接反演,测井控制下的地震反演,测井—地震联合反演和地震控制下的测井内插外推; 3)从实现方法上可分三类:直接反演、基于模型反演和地震属性反演。 4)从反演模型参数来分主要有:储层特性(如:孔隙度、渗透率、饱和度等)反演、岩石物性反演、地质结构反演、各向异性参数反演、阻抗反演以及速度反演等; 5)从使用的数学方法可分为:最优化拟合反演、遗传算法反演、蒙特卡罗反演、Born近似反演、统计随机反演以及基于神经网络的反演等。 1.2几种主要反演方法的概述 叠前反演尚处于研究试验阶段,而叠后地震反演近年来快速发展,形成了多种技术。下面简要介绍几种主要反演方法:直接反演(递推反演和道积分反演)、基于模型反演、地震属性反演、测井约束反演和叠前AVO反演。 1.2.1直接反演 两种基本做法:递推反演和道积分反演。 1)递推反演:递推反演是一种基于反射系数递推计算地层波阻抗的直接地震反演方法。它完全依赖于地震资料本身的品质,地震资料噪音对反演结果敏感,影响大,地震带宽窄会导致分辨率相对较低,难以满足储层描述的要求。典型的有Seislog,Glog,稀疏脉冲反演(实现方法又有MED,AR,MLD,BED方法等)等;Seislog,CLOG等使用测井信息后,只获得剖面上关键点的低频分量,整个剖面上的低频信息要靠内插来求得。 优点:计算简单,递推列累计误差小。其结果直接反映岩层的速度变化,可以以岩层为单元进行地质解释。缺点:由于受地震固有频率的限制,分辨率低,无法适应薄层解释的需要;其次,无法求得地层的绝对波阻抗和绝对速度,不能用于定量计算储层参数。这种方法在处理过程中不能用地质或测井资料对其进行约束控制,因而其结果比较粗略。 2)道积分反演:是以反褶积为基础的地震直接反演法。道积分是利用叠后地震资料计算相对波阻抗的直接反演方法,它无需测井资料控制,计算简单,其结果直接反映了岩层的速度变化,但受地震资料固有频宽的限制,分辨率低,无法适应薄层解释的需要,无法求得地层的绝对波阻抗和绝对速度,不能用于定量计算储层参数。 优点:能比较完整地保留地震反射的基本特征(断层、产状),不存在基于模型方法的多解性问题,能够明显地反映岩相、岩性的空间变化,在岩性相对稳定的条件下,能较好地反映储层的物性变化。 缺点:由于受地震频带宽度的限制,递推反演资料的分辨率相对较低,不能满足薄储层的研究需要。 1.2.2基于模型的反演 1)基于模型的反演:就是从地质模型出发,采用模型优选迭代扰动算法(广义线性或非线性最优化算法),通过不断修改更新模型,使模型正演合成地震资料与实际地震数据最佳吻合,最终的模型数据便是反演结果。 实现方法有广义线性反演(GLI)(Cooke,1983);宽带约束反演(BCI)(Martinez,1988);地震岩性模拟(SLIM)(Ge lfand,1984);具有全局优化特点的遗传算法、模拟退火法(Smith等1992:Sen和Stoffa,1995);蒙特卡罗搜索法(Cary和Chapman,19 98)以及人工神经网络法(Ca lderron-Macias 等,1998)等。 目前,以模型为基础的反演方法一般都是依据测井及地质资料建立初始模型,通过广义线性反

震源机制解综述 1、引言 地震学是一门以观测资料为基础的研究地震的成因及其规律已成为地震预报的一种重要手段,它的发展奠定了地震预报的物理基础。地震震源和地震波传播介质的各种参数在强震前的变化早就被当作地震预测的地震学前兆指标,随着地震预测的深入研究,以及我国“十五”台站数字化改造的完成,我们在进一步研究地震时空强分布特征的同时,加强对地震波的运动学和动力学特征的研究,从中提取震源,我们意识到加强对地震波的运动学和动力学的研究,从中提取震源信息,对增强地震预测的物理基础,提高地震预测的水平是十分必要的。 地震是地球内部物质运动的结果,这种运动反映在地壳上,使得地壳产生破裂,促成了断层的生成、发育和活动。地震前后的地形变测量和地震波的观测研究等结果确认,天然构造地震是地下岩层的突然错动引起的。发生错动的岩层可称为地震断层。断层活动诱发了地震,地震发生又促成了断层的生成与发育,因此地震与断层有密切联系。地壳中的断层密如织网。实际地震断层的几何形状可能很复杂,但对多数地震,特别是小地震,作为初级近似,总体上可将地震看成是沿一个平面断层发生的突然错动引起的。 2、前人对震源机制解的研究历程 地震震源处地球介质的运动方式。通常所说的震源机制是狭义的,即专指研究构造地震的机制而言。构造地震的机制是震源处介质的破裂和错动。震源机制研究的内容包括,确定地震断层面的方位和岩体的错动方向,研究震源处岩体的破裂和运动特征,以及这些特征和震源所辐射的地震波之间的关系。对地震震源的研究开始于20世纪初叶。1910年提出的弹性回跳理论,首次明确表述了地震断层成因的概念。在地震学的早期研究中,人们就已注意到P波到达时地面的初始振动有时是向上的,有时是向下的。20世纪的10~20年代,许多地震学者在日本和欧洲的部分地区几乎同时发现,同一次地震在不同地点的台站记录,所得的P波初动方向具有四象限分布。日本的中野广最早提出了震源的单力偶力系,第一次把断层的弹性回跳理论和P波初动的四象限分布联系起来。此后,本多弘吉又提出双力偶力系,事实证明它比单力偶力系更接近实际。美国的拜尔利(P.Byerly)发展了最初的震源机制求解法,1938年第一次利用P波初动求出完整的地震断层面解。 3、断层及断层面参数 3.1、断层参数及分类 地震断层通常用断层的走向φS、倾角δ和滑动角λ三个参数来描述(图2.1)。按目前国际上常用的描述方法,这些参数的定义是: 走向φS:断层面与水平面交线的方向,但此交线有两个方向,为唯一确定起见,按以下原则确定其中之一为断层的走向:人沿走向看去,断层上盘在右。走向用从正北顺时针量至走向方向的角度φS来表示,0o≤φS<360°。 倾角δ:断层面与水平面的夹角。0o<δ≤90°。 滑动角λ:在断层面上量度,从走向方向逆时针量至滑动方向的角度为正,顺时针量至滑动方向的角度为负。滑动方向指断层上盘相对于下盘的运动方向。-180<λ≤180°。 (仰角:力轴与水平面的夹角(小于90度) 方位角:力轴在水平面上的投影线与北方向之间的夹角 倾向:节面的上表面的法线在水平面上的投影线与北方向之间的夹角,顺时针量取。)走向φS和倾角δ是断层的几何参数,二者规定了断层的产状;滑动角λ是断层的运动参数,由这一参数的具体数值,即可描述断层的各种运动类型(图2.2)。

地震反演方法概述 地震反演:由地震信息得到地质信息的过程。 地震反射波法勘探的基础在于:地下不同地层存在波阻抗差异,当地震波传播有波阻抗差异的地层分界面时,会发生反射从而形成地震反射波。地震反射波等于反射系数与地震子波的褶积,而某界面的法向入射发射系数就等于该界面上下介质的波阻抗差与波阻抗和之比。也就是说,如果已知地下地层的波阻抗分布,我们可以得到地震反射波的分布,即地震反射剖面。即由地层波阻抗剖面得到地震反射波剖面的过程称为地震波阻抗正演,反之,由地震反射剖面得到地层波阻抗剖面的过程称为地震波阻抗反演。 叠前反演主要是指AVO反演,通过AVO反演,可以获得全部的岩石参数,如:岩石密度、纵横波速度、纵横波阻抗、泊松比等。叠前反演与叠后反演的根本区别在于叠前反演使用了未经叠加的地震资料。多道叠加虽然能够改善资料的品质,提高信噪比,但是另一方面,叠加技术是以东校正后的地震反射振幅、波形等特征不随炮检距变化的假设为基础的。实际上,来自同一反射点的地震反射振幅在不同炮检距上是不同的,并且反射波形也随炮检距的变化而发生变化。这种地震反射振幅、波形特征随炮检距的变化关系很复杂,主要原因就在于不同炮检距的地震波经过的地层结构、弹性性质、岩性组合等许多方面都是不同的。叠加破坏了真实的振幅关系,同时损失了横波信息。叠前反演通过叠前地震信息随炮检距的变化特征,来揭示岩性和油气的关系。叠前反演的理论基础是地震波的反射和透射理论。理论上讲,利用反射振幅随入射角的变化规律可以实现全部岩性参数的反演,提取纵波速度、横波速度、纵横波速度比、岩石密度、泊松比、体积模量、剪切模量等参数。 叠后地震剖面相当于零炮检距的自激自收记录。与叠前反演不同,叠后反演只能得到纵波阻抗。虽然叠后反演与叠前反演想必有很多不足之处,但由于其技术方法成熟完备,到目前为止,叠后反演仍然是主流的反演类型,是储层预测的核心技术。 介绍几种叠后反演方法: 1)道积分:利用叠后地震资料计算地层相对波阻抗(速度)的直接反演方法。因为它是在地层波阻抗随深度连续可微的条件下推导出来的,因而又称为连续反演。 原理简述: 上述公式表示,反射系数的积分正比于波阻抗Z的自然对数,这是一种简单的相对波阻抗概念。 适用条件及优缺点 与绝对波阻抗反演相比,道积分的优点:1.递推时累积误差较小;2.计算简单,不需要反射系数标定;3.无需钻井控制,在勘探储气即可推广使用。 缺点:1.由于这种方法受到地震固有频宽的限制,分辨率低,无法适用于薄层解释的需要;2.需要地震记录经过子波零相位化处理;3.无法求得地层的绝对波阻抗和绝对速度,不能用于定量计算储层参数;4.这种方法在处理过程中不能用地质或测井资料对其进行约束控制,因而结果比较粗略。 2)递推反演方法:根据反射系数进行递推计算地层波阻抗或层速度,其关键在于由原始地震记录估算反射系数和波阻抗,测井资料不直接参入反演,只起到标定和质量控制的作用。因此又称为直接反演。 原理简述: 利用以上公式,可以从声波时差曲线及密度曲线上(没有密度曲线时可以利用Gardnar 公式进行换算)选择标准层波阻抗作为基准波阻抗,将反褶积得到的反射系数转为波阻抗。

其实反演,确切的应该叫做“反演预测”。很多人忽略了这个“预测”的真正含义。利用已知少数井点,通过地震资料,提取与钻井揭示的地质特征相对最吻合的信息,来对大片无井空白区的属性做预测,最终反应的是对地质特征的一个预测。既然是一门技术,就有它的可适用性和不可靠性。这就需要反演人员有软件操作的技术,更重要的是要有足够的地质思维!!!如果没有后者,那就需要地质人员来指导!不同的反演人员,即使针对相同的资料,反演出来的结果也不完全一样。换句话说,往往是按照熟悉区块地质特征的地质人员的要求来做出反演预测。不然反演的不确定性就会被放大。真正的地质人员,是不会否定地震反演。 概括一下,只不过有两点: 1、反演一般是在没有足够的井资料控制整个区块的时候采用(那非均质性强的地方呢?)。 2、反演结果的好坏,需要操作人员的技术,更需要地质人员的把握。 对于反演有2点感性认识: 第一点:井越多(测录井数据越全面),反演结果越准确。在井控制范围内,预测精度高,井控制范围以

外,随着距离的增大,精度降低。 第二点:反演人员的地质概念和经验,对反演结果有很大的影像。相同的数据与流程,不同人员作出来的差别还是很大,而且都是在加载了相同解释成果的前提下。 反演分为三种,一种是基本是没有井资料,通常在勘探前期,第二种是有少量井资料,在勘探开发中期,第三种就是井资料很丰富,通常已经是开发中后期。随着井资料的丰富反演结果肯定越来越好啊,如果没有或者很少井,就只能通过插值或者数值模拟的方法搞出来伪井资料,这个往往误差很大 反演结果的好坏,地震资料的质量非常重要,反演结果的分辨率要高于地震资料的分辨率,因为加入了测井资料的高纵向分辨率。 反演预测的物性分布只是一个定性的描述,效果特别好也只是个半定量的描述。 反演的解具有高度不唯一性,需要测井来约束,道理上是井越多越好,但是井多了,约束的方法就比较复杂,能否约束好,是个关键问题。 反演的可信度高的判别标准是:该井参入反演与未参入反演的结果应该差别不大,井多井少结果差别不大,

2013年4月20日四川雅安芦山6.7级地震震源破裂过程2013年4月20日四川雅安芦山6.7级地震 震源破裂过程反演初步结果 Preliminary result for Rupture Process of Apr. 20, 2013, Mw6.7 Earthquake, Lushan, Yaan, China 王卫民1 郝金来2 姚振兴2 1中国科学院青藏高原研究所,北京,100085 2中国科学院地质与地球物理研究所,北京,100029 地震发生后,从IRIS数据中心下载了地震数据资料用于研究地震震源机制和震源破裂过程。选取其中信噪比较高并且沿方位角分布比较均匀的31个远场P波波形(震中距位于范围之内)数据进行点源模型的震源机制解反演;根据反演结果再利用31个远场P波波形并增加14个SH波波形资料用于震源过程反演。初始破裂点取USGS给出的震中位置。 计算得到的地震矩为1.54×10**19Nm,Mw=6.7。最大滑动159cm。 结果表明:雅安芦山地震为震级Mw6.7,震源深度10.2km的逆冲断层,破裂在断层面上的分布比较集中,震中区的地震烈度(中国地震烈度表,2008)约为9度。主震和余震分布于龙门山断层带西南端的彭县—灌县断裂带上,位于2008年5月12日汶川地震后的库伦应力增加区域内(单斌等,中国科学D,2009年39卷5期),且两者震源性质相近均为逆冲断裂为主,表明该地震与汶川地震有密切关系,可视为汶川地震的强余震。

图 1 雅安芦山Mw6.7级地震震源机制解 采用下半球投影,同时给出了点源模型的P波垂向位移理论图(红线)与资料(黑线)的拟合情况。图形下方给出了两组节面解(左下,λ,δ,θ,h分别表示错动倾伏角、断层倾角、断层走向、震源深度)和点源模型的震源时间函数(右下)。 Figure 1 Focal mechanism of the Mw6.7 earthquake, Lushan, Yaan, China. Lower-hemisphere projection is used here. The observed P wave records (black line) and the synthetic seismogram (red line) based on the simple point model are compared. The parameters of two possible fault planes are listed also, with l, d, q ,h indicating the rake angle, dip angle, strike direction and source depth respectively. The obtained source time function are plotted.

反演技术 前言 一. 反演的概念、目的 二. 反演的发展历史及趋势 三. 反演的基本方法 四. 地震反演难题的解决方案 五. 反演的实质 六. 反演的基本流程 七. AVO反演处理简介 地震、测井、钻井是石油工作者认识地下地质构造、地层、岩性、物性、含油气性的最重要的信息来源。虽然测井、钻井仅能提供井孔附近的有关信息,尤其是有关岩性、物性、含油气性的信息,但是这些信息往往具有很高的分辨率,可信度、准确性,能确切地指出含油气层的位置,定量化分析与储层、油藏有关的参数。然而一个油气田勘探、开发方案的设计、实施、调整仅靠测井、钻井资料是远远不够的,

必须与地震资料相结合进行综合分析才能取得良好效果。 地震资料的分辨率虽然远远不及测井、钻井,但是随着地震勘探技术的发展,从光电记录、模拟记录到数字记录,从二维到三维,地震资料的信噪比、分辨率、成像的准确性都获得了极大的提高,由于地震资料包含大量地下地质信息,覆盖面积广,具有三维特性,所以这项技术的使用越来越受到石油工作者的重视,如何利用地震资料研究地下地质构造、地层?如何进行储层预测、油藏描述?如何进行油藏、含油气层的预测? 这些问题促使地球物理学家、地质学家开发应用了一系列地震资料特殊处理技术,如地震资料反演技术、地震属性分析技术、AVO 分析技术,这些技术充分利用测井、钻井、地震的长处,使人们对地下储层、油藏的研究从点到面、从二维到三维、从三维可视化研究到油藏动态监测、从定性研究到定量化研究,大大提高了钻探成功率,有效地指导了油田开发,为提高油田最终采收率起到了积极的作用,因此地震技术被列为二十一世纪石油工业发展的首要技术,相信地震资料特殊处理技术(地震资料反演技术、地震属性分析技术、AVO分析技术)也必将在我国油田勘探、开发中起到越来越重要的作用。 一. 反演的概念、目的 地震资料反演技术就是充分利用测井、钻井、地质资料提供的丰富的构造、层位、岩性等信息,从常规的地震剖面推导出地下地层的波阻抗、密度、速度、孔隙度、渗透率、沙泥岩百分比、压力等信息。那么如何理解这个概念?还是让我们看看什么是正演吧! 1.正演的概念 如果我们已知地下的地质模型,它的地震响应如何?通过模拟野外地震采集,得到单炮记录,再通过速度分析、动校正、叠加、偏移得到合成剖面这一过程就是正演。

相关主题
文本预览
相关文档 最新文档