当前位置:文档之家› CHI660D测试方法原理

CHI660D测试方法原理

CHI660D测试方法原理
CHI660D测试方法原理

Technique Command

Use this command to select an electrochemical technique.

This command presents an Electrochemical Techniques dialog box:

The following options allow you to select an electrochemical technique:

Technique Selection

Select the electrochemical technique you want to use. This box lists the techniques available in the instrument. Double clicking the technique you want to select is equivalent to selecting the technique and clicking the OK button.

Polarographic Mode

Check this box will enable the polarographic mode. In the polarographic mode, the mercury drop will be allowed to grow and be dislodged for every data point.

Only a few techniques are allowed to have polarographic mode: Sampling Current (Staircase) Polarography (SCP), Differential Pulse Polarography (DPP), Normal Pulse

Polarography (NPP), Differential Normal Pulse Polarography (DNPP), A.C. Polarography (ACP), and Second Harmonic A.C. Polarography (SHACP).

Once polarographic mode is enabled, stripping mode is disabled. In order to set stripping mode by using the Stripping Mode command in Control Menu, you have to uncheck the polarographic mode.

This command has a toolbar button:

Parameters Command

Use this command to set experimental parameters.

This command presents a Parameter dialog box so you can select the parameters you want to use.

Depending on the technique, the parameters dialog box will be different. The followings are the parameters for different techniques:

Parameters for Cyclic Voltammetry

Parameters for Linear Sweep Voltammetry

Parameters for Sampled Current Voltammetry

Parameters for Tafel Plot

Parameters for Chronoamperometry

Parameters for Chronocoulometry

Parameters for Differential Pulse Voltammetry

Parameters for Normal Pulse Voltammetry

Parameters for Differential Normal Pulse Voltammetry

Parameters for Square Wave Voltammetry

Parameters for A.C. Voltammetry

Parameters for 2nd Harmonic A.C. Voltammetry

Parameters for Amperometric i-t Curve

Parameters for Differential Pulse Amperometry

Parameters for Double Differential Pulse Amperometry

Parameters for Triple Pulse Amperometry

Parameters for Integrated Pulse Amperometric Detection

Parameters for Bulk Electrolysis with Coulomtery

Parameters for Hydrodynamic Modulation Voltammetry

Parameters for Sweep-Step Functions

Parameters for Multi-Potential Steps

Parameters for A.C. Impedance

Parameters for Impedance - Time

Parameters for Impedance - Potential

Parameters for Chronopotentiometry

Parameters for Chronopotentiometry with Current Ramp

Parameters for Multi-Current Steps

Parameters for Potentiometric Stripping Analysis

Parameters for Open Circuit Potential - Time

For details of the parameters of each technique, see the description of individual dialog box of related techniques.

This command has a toolbar button:

Parameters for Cyclic Voltammetry

In Cyclic Voltammetry (CV), potential is scanned from Init E toward either High E or Low E depending on the Init P/N. The potential will then scan back. The following diagram shows the potential waveform applied as the function of time. The current is recorded as the function of potential.

The following are the experimental parameters, their range and descriptions:

Parameters Range

Description Init E (V)-10 - +10Initial potential

High E (V)-10 - +10High limit of potential scan Low E (V)-10 - +10

Low limit of potential scan Init P/N

Positive or Negative Initial scan direction Scan Rate (V/s)1e-6 - 20000Potential scan rate

Sweep Segments 1 - 1000000Sweep segments, each segments is half cycle Sample Interval (V)1e-6 - 0.064Data sampling interval

Quiet Time (sec)0 - 100000Quiescent time before potential scan Sensitivity (A/V)1e-12 - 0.1

Sensitivity scale

Auto Sens

Check or Uncheck Automatic sensitivity switching during run Scan Complete Cycles Check or Uncheck Scan complete cycles

Auxiliary Signal Recording

Check or Uncheck

Simultaneously external signal recording when the scan rate is less than 0.25V/s

Notes:

P o t e n t i a l (V )

Init E

Time (s)

High E

Scan Rate (V/s)

Segment 1

Segment 2

Segment 3

Low E

1.High E and Low E should be at least 0.01 V apart.

2.If unreasonable High E and Low E are entered, the system will automatically readjust them.

3.Depending on the Init E, High E and Low E value, the system will automatically readjust initial scan direction.

4.The maximum potential scan range is 13.1V.

5.The potential increment is 0.1 mV if the scan rate is below 500 V/s. The potential increment is 1 mV at the scan rate of 5000 V/s, and 4 mV at 20000 V/s.

6.The sample interval can be 1 mV When the scan rate is below 1000 V/s. The sample interval is 2 mV at the scan rate of 2000 V/s, 5 mV at 5000 V/s, and 20 mV at 20000 V/s. If the scan rate is high, the data sampling interval will be automatically increased.

7.When large number of sweep segments are involved, the data sampling interval will be automatically increased up to 0.02V. If the scan rate is higher than 0.5V/s, the number of sweep segments will be limited by the memory size (64000 points). If the scan rate is below 0.5V/s, the maximum data length set by the System command will take effect. When the scan rate is low, the specified sweep segments will be executed, but only limited number of segments will be stored. Large sweep segments might be useful for conditioning of electrodes.

8.When scan rate is below 0.01 V/s, the sensitivity scale during run can be automatically switched according to the current level. When it is activated, the sensitivity selection will have no effect on the measurement. However, the automatic sensitivity switching range will be from 1e-8 - 0.1 A/V, instead of 1e-12 - 0.1 A/V. The Picoamp Booster will not work either. In order to select higher sensitivities, automatic sensitivity switching option needs to be disabled.

9.Scan Complete Cycles will only work for Sweep Segments at 3, 5, 7, 9, (odd numbers) and if Initial E is different from High E and Low E. When it works, the last segment will stop at Initial E instead of High E or Low E.

10.If the scan rate is lower than 0.25V/s, it is possible to record external voltage signal (such s spectroscopic signal) simultaneously with the voltammogram. Use the 9-pin D-connector on the real panel for signal input. Check the User's Manual for the pin-out and signal level requirements.

Parameters for Linear Sweep Voltammetry

In Linear Sweep Voltammetry (LSV), potential is scanned from Init E toward Final E.The following diagram shows the potential waveform applied as the function of time. The current is recorded as the function of potential.

The following are the experimental parameters, their range and descriptions:Parameters Range

Description Init E (V)-10 - +10Initial potential Final E (V)-10 - +10Final potential Scan Rate (V/s)1e-6 - 20000Potential scan rate Sample Interval (V)1e-6 - 0.064Data sampling interval

Quiet Time (sec)0 - 100000Quiescent time before potential scan Sensitivity (A/V)1e-12 - 0.1Sensitivity scale

Auto Sens Check or Uncheck Automatic sensitivity switching during run

Auxiliary Signal Recording

Check or Uncheck

Simultaneously external signal recording when the scan rate is less than 0. 25V/s

Notes:

1.Init E and Final E should be at least 0.01 V apart.

2.The maximum potential scan range is 1

3.1 V.

3.When the scan rate is high, the data sampling interval will be automatically increased.

P o t e n t i a l (V )

Init E

Time (s)

Final E

Scan Rate (V/s)

4.The potential increment is 0.1 mV if the scan rate is below 500 V/s. The potential increment is 1 mV at the scan rate of 5000 V/s, and 4 mV at 20000 V/s.

5.The sample interval can be 1 mV When the scan rate is below 1000 V/s. The sample interval is 2 mV at the scan rate of 2000 V/s, 5 mV at 5000 V/s, and 20 mV at 20000 V/s. If the scan rate is high, the data sampling interval will be automatically increased.

6.When scan rate is below 0.01 V/s, the sensitivity scale during run can be automatically switched according to the current level. When it is activated, the sensitivity selection will have no effect on the measurement. However, the automatic sensitivity switching range will be from 1e-8 - 0.1 A/V, instead of 1e-12 - 0.1 A/V. The Picoamp Booster will not work either. In order to select higher sensitivities, automatic sensitivity switching option needs to be disabled.

7.If the scan rate is lower than 0.25V/s, it is possible to record external voltage signal (such s spectroscopic signal) simultaneously with the voltammogram. Use the 9-pin D-connector on the real panel for signal input. Check the User's Manual for the pin-out and signal level requirements.

8. Linear polarization resistance plot can be obtained by the Special Plots command under the Graphics menu.

Parameters for Staircase Voltammetry

In Staircase Voltammetry (SCV), potential is increment from Init E toward Final E. The potential may be scanned back. The following diagram shows the potential waveform applied as the function of time. The current is sampled at every potential increment and recorded as the function of potential.

The following are the experimental parameters, their range and descriptions:Parameters Range

Description Init E (V)-10 - +10Initial potential Final E (V)-10 - +10Final potential

Incr E (V)

1e-3 - 0.05

Increment potential of each step

Segments

1 - 10000

Number of scan segments

Sampling Width (sec)1e-4 - 50Data sampling width for each point Step Period (sec)0.001 - 50Potential step period or dropping time Quiet Time (sec)0 - 100000Quiescent time before potential scan Sensitivity (A/V)1e-12 - 0.1Sensitivity scale

Notes:

1.Init E and Final E should be at least 0.01 V apart.

2.Sampling Width should be no more than half of Step Period, otherwise the system will automatically readjust Sampling Width.

3.Data sampling always occurs at the end of each step.

P o t e n t i a l (V )

Init E

Time (s)

Final E Segment 1

Segment 2

Incr E

Sample Width Step Period

Parameters for Tafel Plot

In Tafel Plot (TAFEL), potential is scanned from Init E toward Final E. The potential may be scanned back. The following diagram shows the potential waveform applied as the function of time. The logarithm of current is recorded as the function of potential.

The following are the experimental parameters, their range and descriptions:Parameters Range

Description Init E (V)-10 - +10Initial potential Final E (V)

-10 - +10Final potential

Sweep Segments

1 - 2

Sweep segments, each segments is half cycle Hold Time at Final E (s)0 - 100000Potential hold time atfer 1st sweep segent Scan Rate (V/s)1e-6 - 0.1Potential scan rate

Quiet Time (sec)0 - 100000Quiescent time before potential scan Sensitivity (A/V)1e-12 - 0.1Sensitivity scale

Auto Sens

Check or Uncheck

Automatic sensitivity switching during run

Notes:

1.Init E and Final E should be at least 0.01 V apart.

2.Corrosion rate calculation can be obtained by Special Analysis command under the Analysis menu.

P o t e n t i a l (V )

Init E

Time (s)

Final E

Scan Rate (V/s)

Segment 1

Segment 2

Hold Time

Parameters for Chronoamperometry

In Chronoamperometry (CA), potential is stepped from Init E toward either High E or Low E depending on the Init P/N. The potential will then step back. The following diagram shows the potential waveform applied as the function of time. The current is recorded as the function of time.

The following are the experimental parameters, their range and descriptions:Parameters

Range

Description Init E (V)-10 - +10Initial potential

High E (V)-10 - +10High limit of potential scan Low E (V)-10 - +10

Low limit of potential scan Init P/N

Positive or Negative Initial step direction

Number of Steps 1 - 320Number of potential steps Pulse Width (sec)1e-4 - 1000Potential pulse width Sample Interval (s)1e-6 - 10Sampling Interval

Quiet Time (sec)0 - 100000Quiescent time before potential step Sensitivity (A/V)1e-12 - 0.1

Sensitivity scale

Auxiliary Signal Recording

Check or Uncheck

Simultaneously external signal

recording when the sample interval is greater than 0.005 s

Notes:

P o t e n t i a l (V )

Init E

Time (s)

High E Step 1

Step 2Step 3

Low E

High E

Pulse Width

Pulse Width

1.High E and Low E should be at least 0.01 V apart.

2.If unreasonable High E and Low E are entered, the system will automatically readjust them.

3.Depending on the Init E, High E and Low E value, the system will automatically readjust initial step direction.

4.The maximum potential step range is 13.1 V.

5.Shorter sample interval will increase data density, but will reduce the signal-noise ratio. If earlier transient data is important, shorter sample interval is recommended. If the later part of data is of interest, longer sample interval is recommended. However, minimum 100 points per step are required.

6.If the sample interval is less than 0.002s, the data will not be transferred on the real-time base. Instead the data will be transferred after the experiment is completed. Cell is turned off during the data transfer unless the Cell On between Run option is selected. From start of experiment and data transfer there is a delay. The total number of data points will be limited to 64K due to internal memory size limitation. Sample interval might be automatically altered to adjust the data points in the reasonable range.

7.If the sample interval is longer than 0.002s, data will be transferred during experiment. Maximum 64K total data points are allowed for each step. Sample interval might be automatically altered to adjust the data points in the reasonable range.

8.If the sample interval is greater than 0.005s, it is possible to record external voltage signal (such s spectroscopic signal) simultaneously with the current. Use the 9-pin D-connector on the real panel for signal input. Check the Appendix of the User's Manual for the pin out.

Parameters for Chronocoulometry

In Chronocoulometry (CC), potential is stepped from Init E toward Fianl E. The potential may step back. The following diagram shows the potential waveform applied as the function of time. The charge passing through the working electrode is recorded as the function of time.

The following are the experimental parameters, their range and descriptions:Parameters Range

Description Init E (V)-10 - +10Initial potential Final E (V)

-10 - +10Final potential

Number of Steps 1 - 320Number of potential steps Pulse Width (sec)1e-4 - 1000Potential pulse width Sample Interval (s)1e-6 - 10Sampling Interval

Quiet Time (sec)0 - 100000Quiescent time before potential step Sensitivity (C or A/V)

1e-12 - 0.1or 1e-9C/V -1e-6 C/V

Sensitivity scale

Notes:

1.Init E and Final E should be at least 0.01 V apart.

2.The maximum potential step range is 1

3.1 V.

3. A true integrator (charge-to-voltage converter) can be chosen. In this case, the sensitivity is 1e-9C/V to 1e-6C/V. If the charge exceeds the 8e-6 coulomb, the capacitor of the

P o t e n t i a l (V )

Init E

Time (s)

Final E Step 1

Step 2Step 3

Init E

Final E

Pulse Width Pulse Width

integrator will be discharged and the new charge will be added to the previous value. This allows higher charge to be measured with the integrator. There might be discontinuity in charge-time curve due to the capacitor discharge. The discontinuity should be negligible. However, if it is significant to the measurement, you may choose to use the current-to-voltage converter and integrate the current measured by software.

4.Current-to-voltage converter is not ideal for chronocoulometry, particularly if the early transient data is important, such as double layer capacitance, or surface reactions. Charge-to-voltage converter (true integrator) is a better choice.

5. If current-to-voltage converter is selected due to high total charge, shorter sample interval will increase data density, but will reduce the signal-to-noise ratio. If earlier transient data is important, shorter sample interval is recommended. If the later part of data is of interest, longer sample interval is recommended. However, minimum 1000 points per step are required, unless sampling rate does not allow it.

6.If the sample interval is less than 0.002s, the data will not be transferred on the real-time base. Instead the data will be transferred after the experiment is completed. Cell is turned off during the data transfer unless the Cell On between Run option is selected. From start of experiment and data transfer there is a delay. The total number of data points will be limited to 64K due to internal memory size limitation. Sample interval might be automatically altered to adjust the data points in the reasonable range.

7.If the sample interval is longer than 0.002s, data will be transferred during experiment. Maximum 64K total data points are allowed for each step. Sample interval might be automatically altered to adjust the data points in the reasonable range.

8.If the current-to-voltage converter is used, during the run, an “Overflow” warning might appear. This is due to the current transient immediately after the potential step. If the intercept (that gives information of double layer capacitance and adsorption) of Anson plot (Q-t1/2 plot) is not your primary interest, you may not worry about it. However, if the data distortion can be seen visually, you have to lower the sensitivity scale.

Sometimes, you may use i/E converter filter to slow the system down, but make sure that the time constant of the filter (1/cutoff freq) is much shorter than the pulse width.

In order to reduce noise and enhance the accuracy of the measurement, it is recommended to use the highest sensitivity scale possible.

Parameters for Differential Pulse Voltammetry

In Differential Pulse Voltammetry (DPV), the base potential is incremented from Init E toward Final E. A potential pulse is applied. The current before the potential pulse and at the end of the potential pulse are sampled. The difference of these two current samples is recorded as the function of potential. The following diagram shows the potential waveform applied as the function of time and the current sampling scheme.

The following are the experimental parameters, their range and descriptions:Parameters Range

Description Init E (V)-10 - +10Initial potential Final E (V)-10 - +10Final potential

Incr E (V)±0.001 - ±0.05Increment potential of each point Amplitude (V)0.001 - 0.5Potential pulse amplitude Pulse Width (sec)0.001 - 10Potential pulse width Sampling Width (sec)1e-4 - 10Data sampling width

Pulse Period (sec)0.01 - 50Potential pulse period or dropping time Quiet Time (sec)0 - 100000Quiescent time before potential scan Sensitivity (A/V)

1e-12 - 0.1

Sensitivity scale

Notes:

1.Init E and Final E should be at least 0.01 V apart.

2.Pulse Width should be no more than half of Pulse Period, otherwise the system will automatically readjust Pulse Width.

3.Sampling Width should be no more than half of Pulse Width, otherwise the system will automatically readjust Sampling Width.

4.When amplitude is negative, the pulse direction is different from the potential scan direction.

P o t e n t i a l (V )

Init E

Time (s)

Final E

Incr E

Sample Width

Pulse Period

Amplitude

Pulse Width

Parameters for Normal Pulse Voltammetry

In Normal Pulse Voltammetry (NPV), the base potential is held at Init E. A sequence of potential pulse with increasing amplitude is applied. The current at the end of the potential pulse is sampled. This current is recoded as the function of the pulsed potential. The following

diagram shows the potential waveform applied as the function of time and the current sampling scheme.

The following are the experimental parameters, their range and descriptions:Parameters Range

Description Init E (V)-10 - +10Initial potential Final E (V)-10 - +10Final potential

Incr E (V)

0.001 - 0.05Increment potential of each point Pulse Width (sec)0.001 - 10Potential pulse width Sampling Width (sec)1e-4 - 10Data sampling width

Pulse Period (sec)0.01 - 50Potential pulse period or dropping time Quiet Time (sec)0 - 100000Quiescent time before potential scan Sensitivity (A/V)

1e-12 - 0.1

Sensitivity scale

Notes:

1.Init E and Final E should be at least 0.01 V apart.

2.Pulse Width should be no more than half of Pulse Period, otherwise the system will automatically readjust Pulse Width.

3.Sampling Width should be no more than half of Pulse Width, otherwise the system will automatically readjust Sampling Width.

P o t e n t i a l (V )

Init E

Time (s)

Final E

Incr E

Sample Width

Pulse Period

Pulse Width

Parameters for Differential Normal Pulse Voltammetry

In Differential Normal Pulse Voltammetry (DNPV), the base potential is held at Init E. A sequence of dual potential pulses are applied. The first pulse will increment its magnitude for each pulse. The second pulse has the constant amplitude. The current at the end of two potential pulses are sampled. The difference of these two current is recoded as the function of the first pulsed potential. The following diagram shows the potential waveform applied as the function of time and the current sampling scheme.

The following are the experimental parameters, their range and descriptions:Parameters Range

Description Init E (V)-10 - +10Initial potential Final E (V)-10 - +10Final potential

Incr E (V)0.001 - 0.05Increment potential of each point Amplitude (V)

0.001 - 0.5Potential pulse amplitude 1st Pulse Width (sec)0.01 - 10First potential pulse width 2nd Pulse Width (sec)0.01 - 10Second potential pulse width Sampling Width (sec)0.001 - 5Data sampling width

Pulse Period (sec)0.05 - 50Potential pulse period or dropping time Quiet Time (sec)0 - 100000Quiescent time before potential scan Sensitivity (A/V)

1e-12 - 0.1Sensitivity scale

Open Circuit at Initial E

Check or uncheck

Step 1 could be either held at a constant potential or open circuit

Notes:

1.Init E and Final E should be at least 0.01 V apart.

P o t e n t i a l (V )

Init E

Time (s)

Final E

Incr E

Sample Width

Pulse Period Pulse Width Pulse Width

Amplitude

2.In Differential Normal Pulse Voltammetry, the potential of first step is normally held at Initial E where no electrochemical reaction will occur. The second step is incremented every cycle. A current sample is taken at the later part of the period. The potential of the third is also incremented like the second step, but it is more positive (for positive scan) or more negative (for negative scan) than the second potential by a constant magnitude (amplitude). The second sample is taken at the later part of the period. The difference between the two current samples is reported as the function of the second potential.

3.Pulse Width should be no more than half of Pulse Period, otherwise the system will automatically readjust Pulse Width.

4.Sampling Width should be no more than half of Pulse Width, otherwise the system will automatically readjust Sampling Width.

Parameters for Square Wave Voltammetry

In Square Wave Voltammetry (SWV), the base potential is increment from Init E towards Final E. A square wave potential is superimposed to the base potential. The base potential increments after each cycles of the square wave. The current at the end of forward and reverse steps are sampled. These two current are recoded as the function of the base potential. During the experiment, only the difference of two current samples is displayed. After experiment, the forward and reverse current are also available for display. The following diagram shows the potential waveform applied as the function of time and the current sampling scheme.

The following are the experimental parameters, their range and descriptions:Parameters Range

Description Init E (V)-10 - +10Initial potential Final E (V)-10 - +10Final potential

Incr E (V)0.001 - 0.05Increment potential of each point

Amplitude (V)0.001 - 0.5Square wave amplitude, half peak-to-peak Frequency (Hz) 1 - 100000Square wave frequency

Quiet Time (sec)0 - 100000Quiescent time before potential scan Sensitivity (A/V)

1e-12 - 0.1

Sensitivity scale

Notes:

1.Init E and Final E should be at least 0.01 V apart.

2.Forward, reverse and difference currents are recorded. Use the Graph Option command under the Graphics menu to choose data display options.

P o t e n t i a l (V )

Init E

Time (s)

Final E

Incr E

Sample Width

1/Frequency

Amplitude

Parameters for A.C. Voltammetry

In AC Voltammetry (ACV), the base potential is increment from Init E towards Final E.A sequential sine waveform is superimposed to the base potential. The current is sampled when ac signal is applied and analyzed using a software lock-in amplifier. During the experiment, only the absolute ac current is displayed. After experiment, the phase-selective current at any phase angle are also available for display. The following diagram shows the potential waveform applied as the function of time.

The following are the experimental parameters, their range and descriptions:Parameters Range

Description Init E (V)-10 - +10Initial potential Final E (V)-10 - +10Final potential

Incr E (V)0.001 - 0.05Increment potential of each point Amplitude (V)0.001 - 0.4 A.C. amplitude Frequency (Hz)0.1 - 10000 A.C. frequency

Sample Period (sec) 1 - 65

Data sampling period or dropping time Quiet Time (sec)0 - 100000Quiescent time before potential scan Sensitivity (A/V)1e-12 - 0.1Sensitivity scale

Bias DC Current off - range - on Enable dc current bias during run

Auto Sens

Check or Uncheck

Automatic sensitivity switching during run

Notes:

1.Init E and Final E should be at least 0.01 V apart.

P o t e n t i a l (V )

Init E

Time (s)

Final E

Incr E

Sample Period

Amplitude

2.Depending on the frequency range, sometimes the exact frequency can not be obtained. If this occurs, the closest possible frequency will be applied.

3.When frequency is 2 Hz or lower, Sample Period should be at least 2 seconds, otherwise, the system will automatically readjust Sample Period.

4.When dc current is high and ac current is low, the sensitivity can not be increased because dc current will overflow. This problem is more serious when the frequency is relatively low. By applying dc current bias, it allows higher ac signal amplification. A 16-bit DAC is used for this purpose. If dc current is not expected to be large and the frequency is high, one may not want to bias dc current.

5.Both absolute current and phase selective current are available. Use the Graph Option command under the Graphics menu to choose data display options.

8. 什么是弱束暗场像?与中心暗场像有何不同?试用Ewald图解说明。 答:弱束暗场像是通过入射束倾斜,使偏离布拉格条件较远的一个衍射束通过物镜光阑,透射束和其他衍射束都被挡掉,利用透过物镜光阑的强度较弱的衍射束成像。 与中心暗场像不同的是,中心暗场像是在双光束的条件下用的成像条件成像,即除直射束外只有一个强的衍射束,而弱束暗场像是在双光阑条件下的g/3g的成像条件成像,采用很大的偏离参量s。中心暗场像的成像衍射束严格满足布拉格条件,衍射强度较强,而弱束暗场像利用偏离布拉格条件较远的衍射束成像,衍射束强度很弱。采用弱束暗场像,完整区域的衍射束强度极弱,而在缺陷附近的极小区域内发生较强的反射,形成高分辨率的缺陷图像。图:PPT透射电子显微技术1页 10. 透射电子显微成像中,层错、反相畴界、畴界、孪晶界、晶界等衍衬像有何异同?用什么办法及根据什么特征才能将它们区分开来? 答:由于层错区域衍射波振幅一般与无层错区域衍射波振幅不同,则层错区和与相邻区域形成了不同的衬度,相应地出现均匀的亮线和暗线,由于层错两侧的区域晶体结构和位相相同,故所有亮线和暗线的衬度分别相同。层错衍衬像表现为平行于层错面迹线的明暗相间的等间距条纹。 孪晶界和晶界两侧的晶体由于位向不同,或者还由于点阵类型不同,一边的晶体处于双光束条件时,另一边的衍射条件不可能是完全相同的,也可能是处于无强衍射的情况,就相当于出现等厚条纹,所以他们的衍衬像都是间距不等的明暗相间的条纹,不同的是孪晶界是一条直线,而晶界不是直线。 反相畴界的衍衬像是曲折的带状条纹将晶粒分隔成许多形状不规则的小区域。 层错条纹平行线直线间距相等 反相畴界非平行线非直线间距不等 孪晶界条纹平行线直线间距不等 晶界条纹平行线非直线间距不等 11.什么是透射电子显微像中的质厚衬度、衍射衬度和相位衬度。形成衍射衬度像和相位衬度像时,物镜在聚焦方面有何不同?为什么? 答:质厚衬度:入射电子透过非晶样品时,由于样品不同微区间存在原子序数或厚度的差异,导致透过不同区域落在像平面上的电子数不同,对应各个区域的图像的明暗不同,形成的衬度。 衍射衬度:由于样品中的不同晶体或同一晶体中不同部位的位向差异导致产生衍射程度不同而形成各区域图像亮度的差异,形成的衬度。 相位衬度:电子束透过样品,试样中原子核和核外电子产生的库伦场导致电子波的相位发生变化,样品中不同微区对相位变化作用不同,把相应的相位的变化情况转变为相衬度,称为相位衬度。 物镜聚焦方面的不同:透射电子束和至少一个衍射束同时通过物镜光阑成像时,透射束和衍射束相互干涉形成反应晶体点阵周期的条纹成像或点阵像或结构物象,这种相位衬度图像的形成是透射束和衍射束相干的结果,而衍射衬度成像只用透射束或者衍射束成像。

西南科技大学 材料科学与工程学院 教师教案 教师姓名:张宝述 课程名称:材料现代分析测试方法 课程代码:11319074 授课对象:本科专业:材料物理 授课总学时:64 其中理论:64 实验:16(单独开课) 教材:左演声等. 材料现代分析方法. 北京工业大 学出版社,2000 材料学院教学科研办公室制

2、简述X射线与固体相互作用产生的主要信息及据此建立的主要分析方法。 章节名称第三章粒子(束)与材料的相互作用 教学 时数 2 教学目的及要求1.理解概念:(电子的)最大穿入深度、连续X射线、特征X射线、溅射;掌握概念:散射角(2 )、电子吸收、二次电子、俄歇电子、背散射电子、吸收电流(电子)、透射电子、二次离子。 2.了解物质对电子散射的基元、种类及其特征。 3.掌握电子与物质相互作用产生的主要信号及据此建立的主要分析方法。 4.掌握二次电子的产额与入射角的关系。 5.掌握入射电子产生的各种信息的深度和广度范围。 6.了解离子束与材料的相互作用及据此建立的主要分析方法。 重点难点重点:电子的散射,电子与固体作用产生的信号。难点:电子与固体的相互作用,离子散射,溅射。 教学内容提要 第一节电子束与材料的相互作用 一、散射 二、电子与固体作用产生的信号 三、电子激发产生的其它现象第二节离子束与材料的相互作用 一、散射 二、二次离子 作业一、教材习题 3-1电子与固体作用产生多种粒子信号(教材图3-3),哪些对应入射电子?哪些是由电子激发产生的? 图3-3入射电子束与固体作用产生的发射现象 3-2电子“吸收”与光子吸收有何不同? 3-3入射X射线比同样能量的入射电子在固体中穿入深度大得多,而俄歇电子与X光电子的逸出深度相当,这是为什么? 3-8配合表面分析方法用离子溅射实行纵深剖析是确定样品表面层成分和化学状态的重要方法。试分析纵深剖析应注意哪些问题。 二、补充习题 1、简述电子与固体作用产生的信号及据此建立的主要分析方法。 章节第四章材料现代分析测试方法概述教学 4

实验一:显微镜的操作与金相组织观察 一、实验目的: 1. 了解掌握普通光学金相显微镜基本原理。 2. 掌握普通光学金相显微镜基本操作。 3. 分辨已制备好的标准试祥组织。 二、实验设备及材料: 1. 台式金相显微镜; 2. 已制备好的标准试祥。 三、实验内容: 1. 掌握金相显微镜的使用方法。 2. 观察标准试样的组织,调整粗调及微调手轮,掌握显微镜的聚焦方法 3. 分别调整视场光栏和孔径光栏,观察其对显微镜分辨率的影响规律。 4. 调整物镜与目镜的匹配,理解有效放大倍数。 5. 分别用100X及400X观察标准试祥组织,并描绘示意图。 四、实验报告要求: 1. 实验目的 2. 实验设备及材料 3. 实验内容 4. 讨论 (1)简述金相显微镜的放大原理。 (2)简述影响显微镜成像质量的因素有哪些。 (3)如何提高显微镜的分辨率。 (4)画出观察组织的示意图。示意图按统一规格画,并用箭头标明各组织

材料: 放大倍数: 实验二:金相试样制备技术 一、实验目的: 1. 了解试样的制备原理,熟悉制备过程。 2. 初步掌握显微试样的制备方法。 二、实验设备及材料: 砂轮机、抛光机、加工好的碳钢试样、砂纸、抛光膏、无水乙醇、浓硝酸。 三、实验内容 1. 每人制备一块碳钢的金相显微试样,按照下面步骤:砂轮机粗磨 T 砂纸从粗到细磨 制f 机械抛光f 化学腐蚀。 2. 观察金相制备试样,分析所制备试样存在的缺陷。 四、实验报告要求: 1. 实验目的 2. 实验设备及材料 3. 实验内容 4. 讨论 (1) 简述金相试样的制备原理和过程。 (2) 分析试样制备过程中出现缺陷的原因, 结合自己试样中的缺陷讨论如何制备出高质 量的显微试样 编号: 组织:

一、金相实验室 ? Leica DM/RM 光学显微镜 主要特性:用于金相显微分析,可直观检测金属材料的微观组织,如原材料缺陷、偏析、初生碳化物、脱碳层、氮化层及焊接、冷加工、铸造、锻造、热处理等等不同状态下的组织组成,从而判断材质优劣。须进行样品制备工作,最大放大倍数约1400倍。 ? Leica 体视显微镜 主要特性:1、用于观察材料的表面低倍形貌,初步判断材质缺陷; 2、观察断口的宏观断裂形貌,初步判断裂纹起源。 ?热振光模拟显微镜 ?图象分析仪 ?莱卡DM/RM 显微镜附 CCD数码照相装置 二、电子显微镜实验室 ?扫描电子显微镜(附电子探针) (JEOL JSM5200,JOEL JSM820,JEOL JSM6335) 主要特性: 1、用于断裂分析、断口的高倍显微形貌分析,如解理断裂、疲劳断裂(疲劳辉纹)、晶间断裂(氢脆、应力腐蚀、蠕变、高温回火脆性、起源于晶界的脆性物、析出物等)、侵蚀形貌、侵蚀产物分析及焊缝分析。 2、附带能谱,用于微区成分分析及较小样品的成分分析、晶体学分析,测量点阵参数/合金相、夹杂物分析、浓度梯度测定等。 3、用于金属、半导体、电子陶瓷、电容器的失效分析及材质检验、放大倍率:10X—300,000X;样品尺寸:0.1mm—10cm;分辩率:1—50nm。 ?透射电子显微镜(菲利蒲 CM-20,CM-200) 主要特性: 1、需进行试样制备为金属薄膜,试样厚度须<200nm。用于薄膜表面科学分析,带能谱,可进行化学成分分析。 2、有三种衍射花样:斑点花样、菊池线花样、会聚束花样。斑点花样用于确定第二相、孪晶、有序化、调幅结构、取向关系、成象衍射条件。菊池线花样用于衬度分析、结构分析、相变分析以及晶体精确取向、布拉格位移矢量、电子波长测定。会聚束花样用于测定晶体试样厚度、强度分布、取向、点群、空间群及晶体缺陷。 三、X射线衍射实验室 ? XRD-Siemens500—X射线衍射仪 主要特性: 1、专用于测定粉末样品的晶体结构(如密排六方,体心立方,面心立方等),晶型,点阵类型,晶面指数,衍射角,布拉格位移矢量,已及用于各组成相的含量及类型的测定。测试时间约需1小时。 2、可升温(加热)使用。 ? XRD-Philips X’Pert MRD—X射线衍射仪 主要特性: 1、分辨率衍射仪,主要用于材料科学的研究工作,如半导体材料等,其重现性精度达万分之一度。 2、具备物相分析(定性、定量、物相晶粒度测定;点阵参数测定),残余应力及织构的测定;薄膜物相鉴定、薄膜厚度、粗糙度测定;非平整样品物相分析、小角度散射分析等功能。 3、用于快速定性定量测定各类材料(包括金属、陶瓷、半导体材料)的化学成分组成及元素含量。如:Si、P、S 、Mn、Cr、Mo、Ni、V、Fe、Co、W等等,精确度为0.1%。 4、同时可观察样品的显微形貌,进行显微选区成分分析。

第一章X射线衍射分析 激发:1.较高能级是空的或未填满,由泡利不相容原理决定。 2.吸收能量是两能级能量之差。 辐射的吸收:辐射通过物质时,某些频率的辐射被组成物质的粒子选择性吸收而使辐射强度减弱的现象,实质为吸收辐射光子能量发生粒子的能级跃迁。 辐射的发射:1.光电效应:以光子激发原子所发生的激发和辐射过程。被击出的电子称为光电子。 2.俄歇效应:高能级电子向低能级跃迁时,除以辐射X射线的形式释放能量外,这些能量可能被周围某个壳层上的电子所吸引,并促使该电子受激溢出原子成为二次电子,该二次电子具有特定的能量值,可以用来表征这些原子。所产生的二次电子即为俄歇电子。 原子内层电子受激吸收能量发生跃迁,形成X射线的吸收光谱。光子激出内层电子,外层电子向空位跃迁产生光激发,形成二次X射线,构成X射线的荧光光谱。 X射线产生条件:1.产生自由电子。2.使电子做定向高速运动。3.在运动路径设置使其突然减速的阻碍物。 X射线属于横波,波长为0.01~10nm能使某些荧光物质发光,使照相底片感光,使部分气体电离。 X射线谱是X射线强度与波长的关系曲线。 特征X射线:强度峰的波长反映物质的原子序数特征。,产生特征X射线的最低电压为激发电压,也叫临界电压。 阳极靶材原子序数越大,所需临界电压值越高。 K层电子被击出的过程定义为K系激发,随之的电子跃迁叫K系辐射。 相干散射:X射线通过物质时,在入射束电场的作用下,物质原子中的电子受迫振动,同时向四周辐射出与入射X射线相同频率的散射X射线,同一方向上各散射波可以互相干涉。 非相干散射:X射线光子冲击束缚力较小的电子或自由电子时,会产生一种反冲电子,而入射X射线光子则偏离入射方向,散射X射线光子波长增大,因能量减小程度不同,故不可干涉。 入射X射线光子能量到达一定阀值,可击出物质原子内层电子,同时外层高能态电子向内层的空位跃迁时辐射出波长一定的特征X射线。该阀值对应的波长为吸收限或K系特征辐射激发限。λk=1.24/U K K 衍射分析中,受原子结构影响,不同能级上电子跃迁会引起特征波长的微小差别,滤波片可去除这种干扰,得到单色的入射X射线。 干涉指数(HKL)可以认为是带有公约数的晶面指数,其表示的晶面并不一定是真实原子面,

二 硬 度 1、硬度试验 1.1硬度(hardness ) 材料抵抗弹性变形、塑性变形、划痕或破裂等一种或多种作用同时发生的能力。 最常用的有:布氏硬度、洛氏硬度、维氏硬度、努氏硬度、 肖氏硬度等。 1.2布氏硬度试验(Brinell hardness test ) 对一定直径的硬质合金球加规定的试验力压入试样表面,经规定的保持时间后,卸除试验力,测量试样表面的压痕直径。布氏硬度与试验力除的压痕表面积的商成正比。 HBW=K · ) (22 2 d D D D F ??π 式中:HBW ——布氏硬度; K ——单位系数 K=0.102; D ——压头直径mm ; F ——试验力N ; D ——压痕直径mm 。 标准块硬度值的表示方法,符号HBW 前为硬度值,符号后按顺序用数字表示球压头直径(mm ),试验力和试验力保持时间(10~15S 可不标注)。如350HBW5/750。表示用直径5mm 的硬质合金球在7.355KN 试验力下保持10~15S 测定的布氏硬度值为350,600HBW1/30/20表示用直径1mm 的硬质合金球在294.2N 试验力下保持20S 测定的布氏硬度值为600。 1.3洛氏硬度试验(Rockwell hardness test ) 在初试验力F 。及总试验力F 先后作用下,将压头(金刚石圆锥、钢球或硬质合金球)压入试样表面,经规定保持时间后,卸除主试验力F 1,测量在初试验力下的残余压痕深度h 。 HR=N- s h 式中:HR ——洛氏硬度; N ——给定标尺的硬度常数; H ——卸除主试验力后,在初试验力下压痕残留的深度(残余压痕深度);mm ; S ——给定标尺的单位;mm 。 A 、C 、D 、N 、T 标尺N=100, B 、E 、F 、G 、H 、K 标尺N=130;A 、B 、 C 、 D 、 E 、

材料现代分析方法北京工业大学 篇一:13103105-材料现代分析方法 《材料现代分析方法》课程教学大纲 一、课程基本信息 课程编号:13103105 课程类别:专业核心课程 适应专业:材料物理 总学时:54学时 总学分:3 课程简介: 本课程介绍材料微观形貌、结构及成分的分析与表面分析技术主要方法及基本技术,简单介绍光谱分析方法。包括晶体X射线衍射、电子显微分析、X射线光电子谱仪、原子光谱、分子光谱等分析方法及基本技术。 授课教材:《材料分析测试方法》,黄新民解挺编,国防工业出版社,20XX年。 参考书目: [1]《现代物理测试技术》,梁志德、王福编,冶金工业出版社,20XX 年。 [2]《X射线衍射分析原理与应用》,刘粤惠、刘平安编,化学工业出

版社,20XX年。 [3]《X射线衍射技术及设备》,丘利、胡玉和编,冶金工业出版社,20XX年。 [4]《材料现代分析方法》,左演声、陈文哲、梁伟编,北京工业大学出版社,20XX年。 [5]《材料分析测试技术》,周玉、武高辉编,哈尔滨工业大学出版社,2000年。 [6]《材料结构表征及应用》,吴刚编,化学工业出版社,20XX年。 [7]《材料结构分析基础》,余鲲编,科学出版社,20XX年。 二、课程教育目标 通过学习,了解X射线衍射仪及电子显微镜的结构,掌握X-射线衍射及电子显微镜的基本原理和操作方法,了解试样制备的基本要求及方法,了解材料成分的分析与表面分析技术的主要方法及基本技术,了解光谱分析方法,能够利用上述相关仪器进行材料的物相组成、显微结构、表面分析研究。学会运用以上技术的基本方法,对材料进行测试、计算和分析,得到有关微观组织结构、形貌及成分等方面的信息。 三、教学内容与要求 第一章X射线的物理基础 教学重点:X射线的产生及其与物质作用原理 教学难点:X射线的吸收和衰减、激发限 教学时数:2学时

一、名词解释 1. 原子吸收灵敏度:也称特征浓度,在原子吸收法中,将能产生1%吸收率即得到0.0044 的吸光 度的某元素的浓度称为特征浓度。计算公式:S=0.0044 x C/A (ug/mL/1%) S——1%吸收灵敏度C ——标准溶液浓度0.0044 ——为1%吸收的吸光度 A——3 次测得的吸光度读数均值 2. 原子吸收检出限:是指能产生一个确证在试样中存在被测定组分的分析信号所需要的该组分的最 小浓度或最小含量。通常以产生空白溶液信号的标准偏差2?3倍时的测量讯号的浓度表示。 只有待测元素的存在量达到这一最低浓度或更高时,才有可能将有效分析信号和噪声信号可靠地区分开。 计算公式: D = c K S /A m D一一元素的检出限ug/mL c ――试液的浓度 S ――空白溶液吸光度的标准偏差 A m――试液的平均吸光度K――置信度常数,通常取2~3 3.荧光激发光谱:将激发光的光源分光,测定不同波长的激发光照射下所发射的荧光强度的变化, 以I F—入激发作图,便可得到荧光物质的激发光谱 4 ?紫外可见分光光度法:紫外一可见分光光度法是利用某些物质分子能够吸收200 ~ 800 nm光谱 区的辐射来进行分析测定的方法。这种分子吸收光谱源于价电子或分子轨道上电子的电子能级间跃迁,广泛用于无机和有机物质的定量测定,辅助定性分析(如配合IR)。 5 ?热重法:热重法(TG是在程序控制温度下,测量物质质量与温度关系的一种技术。TG基本原 理:许多物质在加热过程中常伴随质量的变化,这种变化过程有助于研究晶体性质的变化,如熔化、蒸发、升华和吸附等物质的物理现象;也有助于研究物质的脱水、解离、氧化、还原等物质的化学现象。热重分析通常可分为两类:动态(升温)和静态(恒温)。检测质量的变化最常用的办法就是用热天平(图1),测量的原理有两种:变位法和零位法。 6?差热分析;差热分析是在程序控制温度下,测量物质与参比物之间的温度差与温度关系的一种技 术。差热分析曲线是描述样品与参比物之间的温差(△ T)随温度或时间的变化关系。在DAT试验中, 样品温度的变化是由于相转变或反应的吸热或放热效应引起的。如: 相转变,熔化,结晶结构的转变, 沸腾,升华,蒸发,脱氢反应,断裂或分解反应,氧化或还原反应,晶格结构的破坏和其它化学反应。一般说来,相转变、脱氢还原和一些分解反应产生吸热效应;而结晶、氧化和一些分解反应产生放热效应。 7. 红外光谱:红外光谱又称分子振动转动光谱,属分子吸收光谱。样品受到频率连续变化的红外光 照射时,分子吸收其中一些频率的辐射,导致分子振动或转动引起偶极矩的净变化,使振-转能级从基态跃迁到激发态,相应于这些区域的透射光强度减弱,记录经过样品的光透过率T%寸波数或波长

力学与材料学院 材料现代分析方法实验报告二 XRD图谱分析 专业年级:1 姓名:1 指导老师:1 学号:1 2016年12月 中国南京 目录 实验名称:XRD图谱分析…………………………………………… 一、实验目的……………………………………………………

二、实验要求…………………………………………………… 三、操作过程…………………………………………………… 四、结果分析与讨论……………………………………………… 实验名称:XRD图谱分析 一、实验目的 了解XRD基本原理及其应用,不同物相晶体结构XRD图谱的区别,熟练掌握如何来分析利用X射线测试得到的XRD图谱。 二、实验要求

1、熟练掌握如何来利用软件打开、分析XRD图谱,以及输出分析结果。 2、明确不同物质的XRD图谱,掌握XRD图谱包含的晶体结构的关系,通过自己分析、数据查找和鉴别的全过程,了解如何利用软件正确分析和确定不同物相的XRD图谱,并输出分析结果。 3、实验报告的编写,要求报告能准确的反映实验目的、方法、过程及结论。 三、操作过程 1、启动Jade 6.0,并打开实验数据。 2、点击图标使图谱平滑后,再连续两次点击图标扣除背景影响。 3、右击工具栏中的图标,全选左侧的项目,取消选择右侧中的Use Chemistry Filter,最后在下方选择S/M Focus on Major Phases(如图一),并点击OK。 图一

4、得到物相分析,根据FOM值(越小,匹配性越高)可推断出该物相为以ZnO为主,可能含有CaF2、Al2O3、Mg(OH)2混合组成的物质(如图二),双击第一种物质可以得到主晶相的PDF卡片(如图三),点击图三版面中的Lines可以观察到不同角度处的衍射强度(如图四)。 图二

《现代分析测试技术》复习知识点 一、名词解释 1. 原子吸收灵敏度、指产生1%吸收时水溶液中某种元素的浓度 2. 原子吸收检出限、是指能产生一个确证在试样中存在被测定组分的分析信号所需要的该组分的最小浓度或最小含量 3.荧光激发光谱、4.紫外可见分光光度法 5.热重法、是在程序控制温度下,测量物质质量与温度关系的一种技术。 6.差热分析、是在程序控制温度下,测量物质与参比物之间的温度差与温度关系的一种技术。 7.红外光谱、如果将透过物质的光辐射用单色器加以色散,使光的波长按大小依次排列,同时测量在不同波长处的辐射强度,即得到物质的吸收光谱。如果用的是光源是红外辐射就得到红外吸收光谱(Infrared Spectrometry)。 8.拉曼散射,但也存在很微量的光子不仅改变了光的传播方向,而且也改变了光波的频率,这种散射称为拉曼散射。 9.瑞利散射、当一束激发光的光子与作为散射中心的分子发生相互作用时,大部分光子仅是改变了方向,发生散射,而光的频率仍与激发光源一致,这种散射称为瑞利散射 10.连续X射线:当高速运动的电子击靶时,电子穿过靶材原子核附近的强电场时被减速。电子所减少的能量(△E)转为所发射X 射线光子能量(hν),即hν=△E。 这种过程是一种量子过程。由于击靶的电子数目极多,击靶时间不同、穿透的深浅不同、损失的动能不等,因此,由电子动能转换为X 射线光子的能量有多有少,产生的X 射线频率也有高有低,从而形成一系列不同频率、不同波长的X 射线,构成了连续谱 11.特征X射线、原子内部的电子按泡利不相容原理和能量最低原理分布于各个能级。在电子轰击阳极的过程中,当某个具有足够能量的电子将阳极靶原子的内层电子击出时,于是在低能级上出现空位,系统能量升高,处于不稳定激发态。较高能级上的电子向低能级上的空位跃迁,并以光子的形式辐射出标识X 射线 13.相干散射、当入射X射线光子与原子中束缚较紧的电子发生弹性碰撞时,X射线光子的能量不足以使电子摆脱束缚,电子的散射线波长与入射线波长相同,有确定的相位关系。这种散射称相干散射或汤姆逊(Thomson)散射。 14.非相干散射,,当入射X射线光子与原子中束缚较弱的电子(如外层电子)发生非弹性碰撞时,光子消耗一部分能量作为电子的动能,于是电子被撞出原子之外,同时发出波长变长、能量降低的非相干散射或康普顿(Compton)散射

1 引言 涂膜硬度是涂膜抵抗诸如碰撞、压陷、擦划等机械力作用的能力;是表示涂膜机械强度的重要性能之一;也是表示涂膜性能优劣的重要指标之一。涂膜硬度与涂料品种及涂膜的固化程度有关。油性漆及醇酸树脂漆的涂膜硬度较低,其它合成树脂漆的硬度较高。涂膜的固化程度直接影响涂膜的硬度,只有完全固化的涂膜,才具有其特定的最高硬度,在涂膜干燥过程中,涂膜硬度是干燥时间的函数,随着时间的延长,硬度由小到大,直至达到最高值。在采用固化剂固化的涂料中,固化剂的用量影响涂膜硬度,一般情况下提高固化剂的配比,使涂膜硬度增加,但固化剂过量则使涂膜柔韧性、耐冲击性等性能下降。一些自干型涂料,以适当的温度烘干,在一定程度上能提高涂膜硬度。涂膜硬度是涂料、涂装的重要指标,大多数情况下属于必须检测的项目。 2 铅笔硬度测定法 铅笔硬度法是采用已知硬度标号的铅笔刮划涂膜,以能够穿透涂膜到达底材的铅笔硬度来表示涂膜硬度的测定方法。国家标准GB/T 6739—1996《涂膜硬度铅笔测定法》规定了手动法和试验机法2 种方法,该标准等效采用日本工业标准JIS K5400-90-8.4《涂料一般试验方法———铅笔刮划值》。标准规定采用中华牌高级绘图铅笔,其硬度为9H、8H、7H、6H、5H、4H、3H、2H、H、F、HB、B、2B、3B、4B、5B、6B 共16 个等级,9H 最硬,6B 最软。测试用铅笔用削笔刀削去木质部分至露出笔芯约3 mm,不能削伤笔芯,然后将铅笔芯垂直于400# 水砂纸上画圆圈,将铅笔芯磨成平面、边缘锐利为止。试板为马口铁板或薄钢板,尺寸为50 mm×120mm×(0.2 ~0.3)mm 或70 mm×150 mm×(0.45 ~0.80)mm,按规定方法制备涂膜。

材料现代分析方法试题9(参考答案) 一、基本概念题(共10题,每题5分) 1.为什么特征X射线的产生存在一个临界激发电压?X射线管的工作电压与其靶材的临界激发电压有什么关系?为什么? 答:要使内层电子受激发,必须给予施加大于或等于其结合能的能量,才能使其脱离 轨道,从而产生特征X射线,而要施加的最低能量,就存在一个临界激发电压。X射线 管的工作电压一般是其靶材的临界激发电压的3-5倍,这时特征X射线对连续X射线比 例最大,背底较低。 2.布拉格方程2dsinθ=λ中的d、θ、λ分别表示什么?布拉格方程式有何用途?答:d HKL表示HKL晶面的面网间距,θ角表示掠过角或布拉格角,即入射X射线或衍射线与面网间的夹角,λ表示入射X射线的波长。该公式有二个方面用途: (1)已知晶体的d值。通过测量θ,求特征X射线的λ,并通过λ判断产生特征X射线的元素。这主要应用于X射线荧光光谱仪和电子探针中。(2)已知入射X射线的波 长,通过测量θ,求晶面间距。并通过晶面间距,测定晶体结构或进行物相分析。3.多重性因子的物理意义是什么?某立方晶系晶体,其{100}的多重性因子是多少?如该晶体转变为四方晶系,这个晶面族的多重性因子会发生什么变化? 答:多重性因子的物理意义是等同晶面个数对衍射强度的影响因数叫作多重性因子。某立方晶系晶体,其{100}的多重性因子是6?如该晶体转变为四方晶系多重性因子是4;这个晶面族的多重性因子会随对称性不同而改变。 4.什么是丝织构,它的极图有何特点? 答:丝织构是一种晶粒取向轴对称分布的织构,存在于拉、轧或挤压成形的丝、棒材 及各种表面镀层中。其特点是多晶体中各种晶粒的某晶向[uvw]与丝轴或镀层表面法线 平行。 丝织构的极图呈轴对称分布 5.电磁透镜的像差是怎样产生的? 如何来消除和减少像差? 答:电磁透镜的像差包括球差、像散和色差。 球差即球面像差,是磁透镜中心区和边沿区对电子的折射能力不同引起的,其中离

硬度是衡量材料软硬程度的一种力学性能,它是指材料表面上低于变形或者破裂的能力。硬度试验是一种应用十分广泛的力学性能试验方法。硬度试验方法有很多,不同硬度测量方法有着各自的特点和适用范围。下面为大家介绍的是洛氏硬度、维氏硬度、布氏硬度、显微硬度、努氏硬度、肖氏硬度各自的特点及其适用领域。供各位材料科学与工程专业同学参考选择。 洛氏硬度: 采用测量压入深度的方式,硬度值可直接读出,操作简单快捷,工作效率高。然而由于金刚石压头的生产及测量机构精度不佳,洛氏硬度的精度不如维氏、布氏。适用于成批量零部件检测,可现场或生产线上对成品检测。 维氏硬度: 维氏硬度测量范围广,不但可以测量高硬度材料,也可以测量较软的金属以及板材、带材,具有较高的精度。但测量效率较低。 布氏硬度: 具有较大的压头和较大的试验力,得到压痕较大,因而能测出试样较大范围的性能。与抗拉强度有着近似的换算关系。测量结果较为准确。对材料表面破坏较大,不适合测量成品。测量过程复杂费事。适合测量灰铸铁、轴承合金和具有粗大晶粒的金属材料,适用于原料及半成品硬度测量。 对于测量精度,维氏大于布氏,布氏大于洛氏。

显微硬度: 压痕极小,可以归为无损检测一类;适用于测量诸如钟表较微小的零件,及表面渗碳、氮化等表面硬化层的硬度。除了正四棱锥金刚石压头之外,还有三角形角锥体、双锥形、船底形、双柱形压头,适用于测量特殊材料和形状的硬度。 努氏硬度: 努氏硬度测量精度比维氏硬度还要高,而且同样试验力下,比维氏硬度压入深度较浅,适合测量薄层硬度。再加上努氏压头作用下压痕周围脆裂倾向性小,适合测量高硬度金属陶瓷材料,人造宝石及玻璃、矿石等脆性材料。 肖氏硬度: 操作简单,测量迅速,试验力小,基本不损坏工件,适合现场测量大型工件,广泛应用于轧辊及机床、大齿轮、螺旋桨等大型工件。肖氏硬度是轧辊重要指标之一。 不同硬度测量方式有着自己的测量范围,下面从硬度值这一角度来说明不同硬度测量法的测量范围:

第二篇材料电子显微分析 实验一透射电子显微镜样品制备 一、实验目的 1.掌握塑料—碳二级复型样品的制备方法。 2.掌握材料薄膜样品的制备方法—双喷电解减薄法和离子薄化法。 二、塑料—碳二级复型的制备原理与方法 (一) AC纸的制作 所谓AC纸就是醋酸纤维素薄膜。它的制作方法是:首先按重量比配制6%醋酸纤维素丙酮溶液。为了使AC纸质地柔软、渗透性强并具有蓝色,在配制溶液中再加入2%磷酸三苯脂和几粒甲基紫。 待上述物质全部溶入丙酮中且形成蓝色半透明的液体,再将它调制均匀并等气泡逸尽后,适量地倒在干净、平滑的玻璃板上,倾斜转动玻璃板,使液体大面积展平。用一个玻璃钟罩扣上,让钟罩下边与玻璃板间留有一定间隙,以便保护AC纸的清洁和控制干燥速度。醋酸纤维素丙酮溶液蒸发过慢,AC纸易吸水变白,干燥过快AC纸会产生龟裂。所以,要根据室温、湿度确定钟罩下边和玻璃间的间隙大小。经过24小时后,把贴在玻璃板上已干透的AC纸边沿用薄刀片划开,小心地揭下AC纸,将它夹在书本中即可备用。 (二) 塑料—碳二级复型的制备方法 (1) 在腐蚀好的金相样品表面上滴上一滴丙酮,贴上一张稍大于金相样品表面的AC纸(厚30~80μm),如图1-2(a)所示。注意不要留有气泡和皱折。若金相样品表面浮雕大,可在丙酮完全蒸发前适当加压。静置片刻后,最好在灯泡下烘烤一刻钟左右使之干燥。 (2) 小心地揭下已经干透的AC纸复型(即第一级复型),将复型复制面朝上平整地贴在衬有纸片的胶纸上,如图1-2(b)所示。 (3) 把滴上一滴扩散泵油的白瓷片和贴有复型的载玻片置于镀膜机真空室中。按镀膜机的操作规程,先以倾斜方向“投影”铬,再以垂直方向喷碳,如图1-2(c)所示。其膜厚度以无油处白色瓷片变成浅褐色为宜。 (4) 打开真空室,从载玻片上取下复合复型,将要分析的部位小心地剪成2mm×2mm的小方片,置于盛有丙酮的磨口培养皿中,如图1-2(d)所示。 (5) AC纸从碳复型上全部被溶解掉后,第二级复型(即碳复型)将漂浮在丙酮液面上,用铜网布制成的小勺把碳复型捞到清洁的丙酮中洗涤,再移到蒸馏水中,依靠水的表面张力使卷曲的碳复型展平并漂浮在水面上。最后用摄子夹持支撑铜网把它捞起,如图1-2 (e)所示,放到过滤纸上,干燥后即可置于电镜中观察。AC纸在溶解过程中,常常由于它的膨胀使碳膜畸变或破坏。为了得到较完整的碳复型,可采用下述方法: (1) 使用薄的或加入磷酸三苯脂及甲基紫的AC纸。 (2) 用50%酒精冲淡的丙酮溶液或加热(≤55℃)的纯丙酮溶解AC纸。 (3) 保证在优于2.66×10-3Pa高真空条件下喷碳。 (4) 在溶解AC纸前用低温石腊加固碳膜。即把剪成小方片的复合复型碳面与熔化在烘热的小玻璃片上的低温石腊液贴在一起,待石腊液凝固后,放在丙酮中溶解掉AC纸,然后加热(≤55℃)丙酮并保温20分钟,使石腊全部熔掉,碳复型将漂浮在丙酮液面上,再经干净的丙酮和蒸馏水的清洗,捞到样品支撑铜网上,这样就获得了不碎的碳复型。

《材料现代分析方法》课程教学大纲 一、课程基本信息 课程编号:13103105 课程类别:专业核心课程 适应专业:材料物理 总学时:54学时 总学分: 3 课程简介: 本课程介绍材料微观形貌、结构及成分的分析与表面分析技术主要方法及基本技术,简单介绍光谱分析方法。包括晶体X射线衍射、电子显微分析、X射线光电子谱仪、原子光谱、分子光谱等分析方法及基本技术。 授课教材:《材料分析测试方法》,黄新民解挺编,国防工业出版社,2005年。 参考书目: [1]《现代物理测试技术》,梁志德、王福编,冶金工业出版社,2003年。 [2]《X射线衍射分析原理与应用》,刘粤惠、刘平安编,化学工业出版社,2003年。 [3]《X射线衍射技术及设备》,丘利、胡玉和编,冶金工业出版社,2001年。 [4]《材料现代分析方法》,左演声、陈文哲、梁伟编,北京工业大学出版社,2001年。 [5]《材料分析测试技术》,周玉、武高辉编,哈尔滨工业大学出版社,2000年。 [6]《材料结构表征及应用》,吴刚编,化学工业出版社,2001年。 [7]《材料结构分析基础》,余鲲编,科学出版社,2001年。 二、课程教育目标 通过学习,了解X射线衍射仪及电子显微镜的结构,掌握X-射线衍射及电子显微镜的基本原理和操作方法,了解试样制备的基本要求及方法,了解材料成分的分析与表面分析技术的主要方法及基本技术,了解光谱分析方法,能够利用上述相关仪器进行材料的物相组成、显微结构、表面分析研究。学会运用以上技术的基本方法,对材料进行测试、计算和分析,得到有关微观组织结构、形貌及成分等方面的信息。 三、教学内容与要求 第一章X射线的物理基础 教学重点:X射线的产生及其与物质作用原理 教学难点:X射线的吸收和衰减、激发限 教学时数:2学时 教学内容:X射线的性质,X射线的产生,X射线谱,X射线与物质的相互作用,X射线的衰减规律,吸收限的应用

《近代材料测试方法》复习题 1.材料微观结构和成分分析可以分为哪几个层次?分别可以用什么方法分析? 答:化学成分分析、晶体结构分析和显微结构分析 化学成分分析——常规方法(平均成分):湿化学法、光谱分析法 ——先进方法(种类、浓度、价态、分布):X射线荧光光谱、电子探针、 光电子能谱、俄歇电子能谱 晶体结构分析:X射线衍射、电子衍射 显微结构分析:光学显微镜、透射电子显微镜、扫面电子显微镜、扫面隧道显微镜、原 子力显微镜、场离子显微镜 2.X射线与物质相互作用有哪些现象和规律?利用这些现象和规律可以进行哪些科学研究工作,有哪些实际应用? 答:除贯穿部分的光束外,射线能量损失在与物质作用过程之中,基本上可以归为两大类:一部 分可能变成次级或更高次的X射线,即所谓荧光X射线,同时,激发出光电子或俄歇电子。另一部分消耗在X射线的散射之中,包括相干散射和非相干散射。此外,它还能变成热量逸出。 (1)现象/现象:散射X射线(想干、非相干)、荧光X射线、透射X射线、俄歇效 应、光电子、热能 (2)①光电效应:当入射X射线光子能量等于某一阈值,可击出原子内层电子,产 生光电效应。

应用:光电效应产生光电子,是X射线光电子能谱分析的技术基础。光电效应 使原子产生空位后的退激发过程产生俄歇电子或X射线荧光辐射是 X射线激发俄歇能谱分析和X射线荧光分析方法的技术基础。 ②二次特征辐射(X射线荧光辐射):当高能X射线光子击出被照射物质原子的 内层电子后,较外层电子填其空位而产生了次生特征X射线(称二次特征辐射)。 应用:X射线被物质散射时,产生两种现象:相干散射和非相干散射。相干散射 是X射线衍射分析方法的基础。 3.电子与物质相互作用有哪些现象和规律?利用这些现象和规律可以进行哪些科学研究工作,有哪些实际应用? 答:当电子束入射到固体样品时,入射电子和样品物质将发生强烈的相互作用,发生弹性散射和非弹性散射。伴随着散射过程,相互作用的区域中将产生多种与样品性质有关的物理信息。 (1)现象/规律:二次电子、背散射电子、吸收电子、透射电子、俄歇电子、特征X射 线 (2)获得不同的显微图像或有关试样化学成分和电子结构的谱学信息 4.光电效应、荧光辐射、特征辐射、俄歇效应,荧光产率与俄歇电子产率。 特征X射线产生机理。 光电效应:当入射X射线光子能量等于某一阈值,可击出原子内层电子,产生光电效应。 荧光辐射:被打掉了内层电子的受激原子,将发生外层电子向内层跃迁的过程,同时辐射出波长严格一定的特征X射线。这种利用X射线激发而产生的特征辐射为二次特

班级学号姓名考试科目现代材料测试技术A 卷开卷一、填空题(每空1 分,共计20 分;答案写在下面对应的空格处,否则不得分) 1. 原子中电子受激向高能级跃迁或由高能级向低能级跃迁均称为_辐射跃迁__ 跃迁或_无辐射跃迁__跃迁。 2. 多原子分子振动可分为__伸缩振动_振动与_变形振动__振动两类。 3. 晶体中的电子散射包括_弹性、__与非弹性___两种。 4. 电磁辐射与物质(材料)相互作用,产生辐射的_吸收_、_发射__、_散射/光电离__等,是光谱分析方法的主要技术基础。 5. 常见的三种电子显微分析是_透射电子显微分析、扫描电子显微分析___和_电子探针__。 6. 透射电子显微镜(TEM)由_照明__系统、_成像__系统、_记录__系统、_真空__系统和__电器系统_系统组成。 7. 电子探针分析主要有三种工作方式,分别是_定点_分析、_线扫描_分析和__ 面扫描_分析。 二、名词解释(每小题3 分,共计15 分;答案写在下面对应的空格处,否则不得分) 1. 二次电子二次电子:在单电子激发过程中被入射电子轰击出来的核外电子. 2. 电磁辐射:在空间传播的交变电磁场。在空间的传播遵循波动方程,其波动性表现为反射、折射、干涉、衍射、偏振等。 3. 干涉指数:对晶面空间方位与晶面间距的标识。 4. 主共振线:电子在基态与最低激发态之间跃迁所产生的谱线则称为主共振线 5. 特征X 射线:迭加于连续谱上,具有特定波长的X 射线谱,又称单色X 射线谱。 三、判断题(每小题2 分,共计20 分;对的用“√”标识,错的用“×”标识) 1.当有外磁场时,只用量子数n、l 与m 表征的原子能级失去意义。(√) 2.干涉指数表示的晶面并不一定是晶体中的真实原子面,即干涉指数表示的晶面上不一定有原子分布。(√) 3.晶面间距为d101/2 的晶面,其干涉指数为(202)。(×) 4.X 射线衍射是光谱法。(×) 5.根据特征X 射线的产生机理,λKβ<λK α。 (√ ) 6.物质的原子序数越高,对电子产生弹性散射的比例就越大。(√ ) 7.透射电镜分辨率的高低主要取决于物镜。(√ )8.通常所谓的扫描电子显微镜的分辨率是指二次电子像的分辨率。(√)9.背散射电子像与二次电子像比较,其分辨率高,景深大。(× )10.二次电子像的衬度来源于形貌衬度。(× ) 四、简答题(共计30 分;答案写在下面对应的空格处,否则不得分) 1. 简述电磁波谱的种类及其形成原因?(6 分)答:按照波长的顺序,可分为:(1)长波部分,包括射频波与微波。长波辐射光子能量低,与物质间隔很小的能级跃迁能量相适应,主要通过分子转动能级跃迁或电子自旋或核自旋形成;(2)中间部分,包括紫外线、可见光核红外线,统称为光学光谱,此部分辐射光子能量与原子或分子的外层电子的能级跃迁相适应;(3)短波部分,包括X 射线和γ射线,此部分可称射线谱。X 射线产生于原子内层电子能级跃迁,而γ射线产生于核反应。

硬度检测的理论及应用
郦 剑 教 授 浙江大学材料科学与工程学系
lijian48@https://www.doczj.com/doc/e218036778.html, 139********

内容简介
? 硬度测试方法 – 洛氏硬度,维氏硬度,布氏硬度,努氏硬度 ? 硬度检测实例 焊缝 热处理工件
渗层深度测试 钢的端淬试验
18-04-2013
2

硬度定义
? 最常用的是压入法测试,此 时材料硬度定义为材料抵抗 另一种更硬材料压入的能力, 通过测量施压后留下的永久 塑性变形表征,即压痕面积 或压痕深度的大小。 ? 此外还有以下几种硬度测试 方法:
18-04-2013 3
Force

刮擦式硬度
刻画式硬度是最古老的检测硬度的方法,用一个固体刮擦另一个固体表面划痕来 判别。1822年Mohs提出莫氏硬度,现在莫氏硬度主要应用于矿物学和宝石领域。
18-04-2013
4

刻画式硬度
工程上用标准硬度锉刀评判钢铁制品的硬度,也是属于刻 画式硬度检测技术。《钢铁硬度锉刀检验法》GB/T 133211991标准参照美国SAE J864 JUN 79锉刀检验表面硬度标准 制订的,锉刀检测硬度方法相应分为7级,最低1级为39~ 7 1 39 41 HRC,标准锉刀和标准试块的材料为T12A。检验用钢 材有结构钢、合金结构钢、碳素和合金工具钢、高速钢、 模具钢及渗碳钢等。热处理工艺有普通淬火、高频淬火、 真空淬火、渗碳、碳氮共渗、渗氮等。
18-04-2013
5

名词解释: 分子振动:分子中原子(或原子团)以平衡位置为中心的相对(往复)运动。伸缩振动:原子沿键轴方向的周期性(往复)运动;振动时键长变化而键角不变。(双原子振动即为伸缩振动) 变形振动又称变角振动或弯曲振动:基团键角发生周期性变化而键长不变的振动。 晶带:晶体中,与某一晶向[uvw]平行的所有(HKL)晶面属于同一晶带,称为[uvw]晶带。 辐射的吸收:辐射通过物质时,其中某些频率的辐射被组成物质的粒子(原子、离子或分子等)选择性地吸收,从而使辐射强度减弱的现象。 辐射被吸收程度对ν或λ的分布称为吸收光谱。 辐射的发射:物质吸收能量后产生电磁辐射的现象。 作为激发源的辐射光子称一次光子,而物质微粒受激后辐射跃迁发射的光子(二次光子)称为荧光或磷光。吸收一次光子与发射二次光子之间延误时间很短(10-8~10-4s)则称为荧光;延误时间较长(10-4~10s)则称为磷光。 发射光谱:物质粒子发射辐射的强度对ν或λ的分布称为发射光谱。光致发光者,则称为荧光或磷光光谱 辐射的散射:电磁辐射与物质发生相互作用,部分偏离原入射方向而分散传播的现象 散射基元:物质中与入射的辐射相互作用而致其散射的基本单元 瑞利散射(弹性散射):入射线光子与分子发生弹性碰撞作用,仅光子运动方向改变而没有能量变化的散射。 拉曼散射(非弹性散射):入射线(单色光)光子与分子发生非弹性碰撞作用,在光子运动方向改变的同时有能量增加或损失的散射。 拉曼散射线与入射线波长稍有不同,波长短于入射线者称为反斯托克斯线,反之则称为斯托克斯线 光电离:入射光子能量(hν)足够大时,使原子或分子产生电离的现象。 光电效应:物质在光照射下释放电子(称光电子)的现象又称(外)光电效应。 光电子能谱:光电子产额随入射光子能量的变化关系称为物质的光电子能谱 分子光谱:由分子能级跃迁而产生的光谱。

材料现代分析方法试题 一、基本概念题(共10题,每题5分) 1.什么是光电效应?光电效应在材料分析中有哪些用途? 2.当波长为λ的X射线在晶体上发生衍射时,相邻两个(hkl)晶面衍射线的 波程差是多少?相邻两个HKL干涉面的波程差又是多少? 3.测角仪在采集衍射图时,如果试样表面转到与入射线成30 0角,则计数管 与入射线所成角度为多少?能产生衍射的晶面,与试样的自由表面是何种几何关 系? 4.宏观应力对X射线衍射花样的影响是什么?衍射仪法测定宏观应力的方法 有哪些? 5.薄膜样品的基本要求是什么? 具体工艺过程如何? 双喷减薄与离子减薄 各适用于制备什么样品? 6.图说明衍衬成像原理,并说明什么是明场像、暗场像和中心暗场像。 7.说明透射电子显微镜成像系统的主要构成、安装位置、特点及其作用。 8.何为晶带定理和零层倒易截面? 说明同一晶带中各晶面及其倒易矢量与 晶带轴之间的关系。 9.含苯环的红外谱图中,吸收峰可能出现在哪4个波数范围? 10.陶瓷纳米/微米颗粒的红外光谱的分析样品该如何制,为什么? 二、综合及分析题(共5题,每题10分) 1.请说明多相混合物物相定性分析的原理与方法? 2.对于晶粒直径分别为100,75,50,25nm的粉末衍射图形,请计算由于晶粒细化引起的衍射线条宽化幅度B(设θ=450,λ=0.15nm)。对于晶粒直径为25nm的粉末,试计算θ=100、450、800时的B 值。 3.二次电子像和背散射电子像在显示表面形貌衬度时有何相同与不同之处? 4.何为波谱仪和能谱仪?说明其工作的三种基本方式及其典型应用,并比较波谱仪和能谱仪的优缺点。要分析钢中碳化物成分和基体中碳含量,应选用哪种电子探针仪? 为什么? 5.分别指出谱图中标记的各吸收峰所对应的基团? 材料现代分析方法试题(参考答案) 一、基本概念题(共10题,每题5分) 1.什么是光电效应?光电效应在材料分析中有哪些用途? 答:光电效应是指:当用X射线轰击物质时,若X射线的能量大于物质原子 对其内层电子的束缚力时,入射X射线光子的能量就会被吸收,从而导致其内层 电子被激发,产生光电子。材料分析中应用光电效应原理研制了光电子能谱仪和 荧光光谱仪,对材料物质的元素组成等进行分析。 2.什么叫干涉面?当波长为λ的X射线在晶体上发生衍射时,相邻两个(hkl) 晶面衍射线的波程差是多少?相邻两个HKL干涉面的波程差又是多少? 答:晶面间距为d’/n、干涉指数为nh、nk、nl的假想晶面称为干涉面。当波 长为λ的X射线照射到晶体上发生衍射,相邻两个(hkl)晶面的波程差是nλ, 相邻两个(HKL)晶面的波程差是λ。

相关主题
文本预览
相关文档 最新文档