当前位置:文档之家› 等差数列单元测试题含答案 百度文库

等差数列单元测试题含答案 百度文库

等差数列单元测试题含答案 百度文库
等差数列单元测试题含答案 百度文库

一、等差数列选择题

1.“中国剩余定理”又称“孙子定理”,1852年英国来华传教伟烈亚力将《孙子算经》中“物不知数”问题的解法传至欧洲.1874年,英国数学家马西森指出此法符合1801年由高斯得出的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”.“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将正整数中能被3除余2且被7除余2的数按由小到大的顺序排成一列,构成数列{} n a ,则5a =( ) A .103

B .107

C .109

D .105

2.已知数列{}n a 的前n 项和为n S ,15a =,且满足

122527

n n

a a n n +-=--,若p ,*q ∈N ,p q >,则p q S S -的最小值为( )

A .6-

B .2-

C .1-

D .0

3.在等差数列{}n a 中,3914a a +=,23a =,则10a =( ) A .11 B .10

C .6

D .3

4.定义

12n

n

p p p ++

+为n 个正数12,,

,n p p p 的“均倒数”,若已知数列{}n a 的前

n 项的“均倒数”为

12n ,又2n n a b =,则1223

910

111

b b b b b b +++

=( ) A .

8

17 B .

1021

C .

1123 D .

919

5.设数列{}n a 的前n 项和2

1n S n =+. 则8a 的值为( ).

A .65

B .16

C .15

D .14

6.设a ,0b ≠,数列{}n a 的前n 项和(21)[(2)22]n n

n S a b n =---?+,*n N ∈,则

存在数列{}n b 和{}n c 使得( )

A .n n n a b c =+,其中{}n b 和{}n c 都为等比数列

B .n n n a b c =+,其中{}n b 为等差数列,{}n c 为等比数列

C .·

n n n a b c =,其中{}n b 和{}n c 都为等比数列 D .·

n n n a b c =,其中{}n b 为等差数列,{}n c 为等比数列 7.已知等差数列{}n a 中,前n 项和2

15n S n n =-,则使n S 有最小值的n 是( )

A .7

B .8

C .7或8

D .9

8.已知数列{}n a 的前n 项和为n S ,11

2

a =,2n ≥且*n ∈N ,满足120n n n a S S -+=,数列1n S ??

?

???

的前n 项和为n T ,则下列说法中错误的是( )

A .214

a =-

B .

648

211S S S =+ C .数列{}12n n n S S S +++-的最大项为

712

D .1121

n n n n n

T T T n n +-=

++ 9.南宋数学家杨辉《详解九张算法》和《算法通变本末》中,提出垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差不相等,但是逐项差数之差或者高次成等差数列.在杨辉之后一般称为“块积术”.现有高阶等差数列,其前7项分别1,7,15,27,45,71,107,则该数列的第8项为( ) A .161

B .155

C .141

D .139

10.在等差数列{}n a 中,若n S 为其前n 项和,65a =,则11S 的值是( ) A .60

B .11

C .50

D .55

11.已知等差数列{}n a ,且()()35710133248a a a a a ++++=,则数列{}n a 的前13项之和为( ) A .24

B .39

C .104

D .52

12.等差数列{}n a 的前n 项和为n S ,且132a a +=,422a a -=,则5S =( ) A .21

B .15

C .10

D .6

13.在等差数列{}n a 的中,若131,5a a ==,则5a 等于( ) A .25

B .11

C .10

D .9

14.在等差数列{}n a 中,()()3589133224a a a a a ++++=,则此数列前13项的和是( ) A .13 B .26 C .52 D .56 15.若等差数列{a n }满足a 2=20,a 5=8,则a 1=( )

A .24

B .23

C .17

D .16

16.设等差数列{}n a 的前n 和为n S ,若(

)*

111,m m a a a m m N +-<<->∈,则必有( )

A .0m S <且10m S +>

B .0m S >且10m S +>

C .0m S <且10m S +<

D .0m S >且10m S +<

17.已知数列{}n a 中,11a =,22a =,对*n N ?∈都有333

122n n n a a a ++=+,则10a 等于

( ) A .10

B

C .64

D .4

18.数学著作《孙子算经》中有这样一个问题:“今有物不知其数,三三数之剩二(除以3余2),五五数之剩三(除以5余3),问物几何?”现将1到2020共2020个整数中,同时满足“三三数之剩二,五五数之剩三”的数按从小到大的顺序排成一列,构成数列{},n a 则该数列共有( ) A .132项

B .133项

C .134项

D .135项

19.已知{}n a 为等差数列,n S 是其前n 项和,且100S =,下列式子正确的是( )

A .450a a +=

B .560a a +=

C .670a a +=

D .890a a +=

20.《张丘建算经》卷上第22题为:“今有女善织,日益功疾(注:从第2天开始,每天比前一天多织相同量的布),第一天织5尺布,现一月(按30天计)共织390尺”,则从第2天起每天比前一天多织( ) A .

1

2

尺布 B .

5

18

尺布 C .

16

31

尺布 D .

16

29

尺布 二、多选题

21.斐波那契数列,又称黄金分割数列、兔子数列,是数学家列昂多·斐波那契于1202年提出的数列.斐波那契数列为1,1,2,3,5,8,13,21,……,此数列从第3项开始,每一项都等于前两项之和,记该数列为(){}

F n ,则(){}

F n 的通项公式为( )

A .(1)1()2

n n F n -+=

B .()()()11,2F n F n F n n +=+-≥且()()11,21F F ==

C .(

)n n

F n ???=-?????? D .(

)1122n n F n ?????=+ ??????

22.已知数列{}n a 的前n 项和为()0n n S S ≠,且满足140(2)n n n a S S n -+=≥,11

4

a =,则下列说法错误的是( ) A .数列{}n a 的前n 项和为4n S n = B .数列{}n a 的通项公式为1

4(1)

n a n n =

+

C .数列{}n a 为递增数列

D .数列1n S ??

????

为递增数列

23.(多选题)已知数列{}n a 中,前n 项和为n S ,且2

3

n n n S a +=,则1n n a a -的值不可能为

( ) A .2

B .5

C .3

D .4

24.已知数列{}2n

n

a n +是首项为1,公差为d 的等差数列,则下列判断正确的是( ) A .a 1=3 B .若d =1,则a n =n 2+2n C .a 2可能为6

D .a 1,a 2,a 3可能成等差数列

25.无穷等差数列{}n a 的前n 项和为S n ,若a 1>0,d <0,则下列结论正确的是( ) A .数列{}n a 单调递减 B .数列{}n a 有最大值 C .数列{}n S 单调递减

D .数列{}n S 有最大值

26.公差不为零的等差数列{}n a 满足38a a =,n S 为{}n a 前n 项和,则下列结论正确的

是( ) A .110S =

B .10n n S S -=(110n ≤≤)

C .当110S >时,5n S S ≥

D .当110S <时,5n S S ≥

27.(多选题)在数列{}n a 中,若22

1n n a a p --=,(2n ≥,*n N ∈,p 为常数),则称

{}n a 为“等方差数列”.下列对“等方差数列”的判断正确的是( )

A .若{}n a 是等差数列,则{}

2

n a 是等方差数列

B .

(){}1n

-是等方差数列

C .若{}n a 是等方差数列,则{}kn a (*k N ∈,k 为常数)也是等方差数列

D .若{}n a 既是等方差数列,又是等差数列,则该数列为常数列

28.已知无穷等差数列{}n a 的前n 项和为n S ,67S S <,且78S S >,则( ) A .在数列{}n a 中,1a 最大 B .在数列{}n a 中,3a 或4a 最大 C .310

S S =

D .当8n ≥时,0n a <

29.数列{}n a 满足11,121

n

n n a a a a +=

=+,则下列说法正确的是( ) A .数列1n a ??

????

是等差数列

B .数列1n a ??????

的前n 项和2

n S n =

C .数列{}n a 的通项公式为21n a n =-

D .数列{}n a 为递减数列

30.无穷数列{}n a 的前n 项和2

n S an bn c =++,其中a ,b ,c 为实数,则( )

A .{}n a 可能为等差数列

B .{}n a 可能为等比数列

C .{}n a 中一定存在连续三项构成等差数列

D .{}n a 中一定存在连续三项构成等比数列

【参考答案】***试卷处理标记,请不要删除

一、等差数列选择题 1.B 【分析】

根据题意可知正整数能被21整除余2,即可写出通项,求出答案. 【详解】

根据题意可知正整数能被21整除余2,

21+2n a n ∴=, 5215+2107a ∴=?=.

故选:B. 2.A 【分析】 转化条件为

122527

n n a a

n n +-=--,由等差数列的定义及通项公式可得()()2327n a n n =--,求得满足0n a ≤的项后即可得解.

【详解】 因为122527

n n a a n n +-=--,所以122527n n

a a n n +-

=--, 又

1127a =--,所以数列27n a n ??

??-??是以1-为首项,公差为2的等差数列, 所以

()1212327

n

a n n n =-+-=--,所以()()2327n a n n =--, 令()()23270n a n n =--≤,解得

3722

n ≤≤, 所以230,0a a <<,其余各项均大于0, 所以()

()()3123min

13316p q S S a a S S =-=+=?-+--?=-.

故选:A. 【点睛】

解决本题的关键是构造新数列求数列通项,再将问题转化为求数列中满足0n a ≤的项,即可得解. 3.A 【分析】

利用等差数列的通项公式求解1,a d ,代入即可得出结论. 【详解】

由3914a a +=,23a =, 又{}n a 为等差数列, 得39121014a a a d +=+=,

213a a d =+=,

解得12,1a d ==,

则101+92911a a d ==+=; 故选:A. 4.D 【分析】

由题意结合新定义的概念求得数列的前n 项和,然后利用前n 项和求解通项公式,最后裂项求和即可求得最终结果. 【详解】

设数列{}n a 的前n 项和为n S ,由题意可得:12n n S n

=,则:2

2n S n =, 当1n =时,112a S ==,

当2n ≥时,142n n n a S S n -=-=-, 且14122a =?-=,据此可得 42n a n =-,

故212

n

n a b n ==-,()()111111212122121n n b b n n n n +??==- ?-+-+??, 据此有:

1223910

11

11111111233517191.21891919

b b b b b b +++

????????=

-+-++- ? ? ???????

????

=?= 故选:D 5.C 【分析】

利用()12n n n a S S n -=-≥得出数列{}n a 的通项公差,然后求解8a . 【详解】

由2

1n S n =+得,12a =,()2

111n S n -=-+,

所以()2

21121n n n a S S n n n -=-=--=-,

所以2,1

21,2

n n a n n =?=?-≥?,故828115a =?-=.

故选:C. 【点睛】

本题考查数列的通项公式求解,较简单,利用()12n n n a S S n -=-≥求解即可. 6.D 【分析】

由题设求出数列{}n a 的通项公式,再根据等差数列与等比数列的通项公式的特征,逐项判断,即可得出正确选项. 【详解】 解:

(21)[(2)22](2)2(2)n n n n S a b n a b bn a b =---?+=+-?-+,

∴当1n =时,有110S a a ==≠;

当2n ≥时,有1

1()2n n n n a S S a bn b --=-=-+?, 又当1n =时,0

1()2a a b b a =-+?=也适合上式,

1()2n n a a bn b -∴=-+?,

令n b a b bn =+-,1

2n n c -=,则数列{}n b 为等差数列,{}n c 为等比数列,

故n n n a b c =,其中数列{}n b 为等差数列,{}n c 为等比数列;故C 错,D 正确;

因为11

()22n n n a a b bn --+=-??,0b ≠,所以{

}1

2

n bn -?即不是等差数列,也不是等比数

列,故AB 错. 故选:D. 【点睛】 方法点睛:

由数列前n 项和求通项公式时,一般根据11

,2

,1n n n S S n a a n --≥?=?=?求解,考查学生的计算能

力. 7.C 【分析】

215n S n n =-看作关于n 的二次函数,结合二次函数的图象与性质可以求解.

【详解】

2

2

152251524n S n n n ??=-=--

??

?,

∴数列{}n S 的图象是分布在抛物线2

1522524y x ??=--

??

?上的横坐标为正整数的离散的

点.

又抛物线开口向上,以15

2x =为对称轴,且1515|

7822

-=-|, 所以当7,8n =时,n S 有最小值. 故选:C 8.D 【分析】

当2n ≥且*n ∈N 时,由1n n n a S S -=-代入120n n n a S S -+=可推导出数列1n S ??

?

???

为等差

数列,确定该数列的首项和公差,可求得数列1n S ??

?

???

的通项公式,由221a S S =-可判断A 选项的正误;利用n S 的表达式可判断BC 选项的正误;求出n T ,可判断D 选项的正误. 【详解】

当2n ≥且*n ∈N 时,由1n n n a S S -=-, 由120n n n a S S -+=可得11111

2020n n n n n n

S S S S S S ----+=?

-+=, 整理得

1

112n n S S --=(2n ≥且n +∈N ). 则1n S ??

????

为以2为首项,以2为公差的等差数列

()12122n n n S ?=+-?=,12n S n ∴=. A 中,当2n =时,221111

424

a S S =-=-=-,A 选项正确; B 中,1n S ??

?

???

为等差数列,显然有648

211S S S =+,B 选项正确; C 中,记()()

1212211221n n n n b S S n n n S ++=+-=

+-++, ()()()

1123111

212223n n n n b S S S n n n ++++=+-=+-+++,

()()()

1111602223223n n n b b n n n n n n ++∴-=

--=-<++++,故{}n b 为递减数列, ()1123max 1117

24612

n b b S S S ∴==+-=

+-=,C 选项正确; D 中,

12n n S =,()()2212

n n n T n n +∴==+,()()112n T n n +∴=++. ()()()()()()111121121

11n n n n T T n n n n n n n n n n n n n n +-=?++?++=+--+++++222122212n n n n n n T =-++=+-≠,D 选项错误.

故选:D . 【点睛】

关键点点睛:利用n S 与n a 的关系求通项,一般利用11,1

,2

n n n S n a S S n -=?=?

-≥?来求解,在变形

过程中要注意1a 是否适用,当利用作差法求解不方便时,应利用1n n n a S S -=-将递推关系转化为有关n S 的递推数列来求解. 9.B

【分析】

画出图形分析即可列出式子求解. 【详解】

所给数列为高阶等差数列,设该数列的第8项为x ,根据所给定义:用数列的后一项减去前一项得到一个新数列,得到的新数列也用后一项减去前一项得到一个新数列,即得到了一个等差数列,如图:

由图可得:3612107y x y -=??-=? ,解得155

48x y =??=?

.

故选:B. 10.D 【分析】

根据题中条件,由等差数列的性质,以及等差数列的求和公式,即可求出结果. 【详解】

因为在等差数列{}n a 中,若n S 为其前n 项和,65a =, 所以()

1111161111552

a a S a +===.

故选:D. 11.D 【分析】

根据等差数列的性质计算求解. 【详解】

由题意()()357101341041073232236()1248a a a a a a a a a a ++++=?+?=+==,

74a =,∴11313713()

13134522

a a S a +=

==?=. 故选:D . 12.C 【分析】

根据已知条件得到关于首项1a 和公差d 的方程组,求解出1,a d 的值,再根据等差数列前n 项和的计算公式求解出5S 的值. 【详解】 因为134222a a a a +=??

-=?,所以1222

22

a d d +=??=?,所以101a d =??=?,

所以5154

550101102

S a d ?=+=?+?=, 故选:C. 13.D 【分析】

利用等差数列的性质直接求解. 【详解】 因为131,5a a ==,315529a a a a =+∴=,

故选:D . 14.B 【分析】

利用等差数列的下标性质,结合等差数列的求和公式即可得结果. 【详解】

由等差数列的性质,可得3542a a a +=,891371013103a a a a a a a ++=++=, 因为()()3589133224a a a a a ++++=, 可得410322324a a ?+?=,即4104a a +=, 故数列的前13项之和()()113410131313134

26222

a a a a S ++?====. 故选:B. 15.A 【分析】 由题意可得52820

45252

a a d --===---,再由220a =可求出1a 的值 【详解】 解:根据题意,52820

45252

a a d --===---,则1220(4)24a a d =-=--=, 故选:A. 16.D 【分析】

由等差数列前n 项和公式即可得解. 【详解】

由题意,1110,0m m a a a a ++>+<, 所以1()02m m m a a S +=>,111(1)()02

m m m a a S ++++=<. 故选:D. 17.D 【分析】

利用等差中项法可知,数列{}

3n a 为等差数列,根据11a =,22a =可求得数列{}

3

n a 的公

差,可求得3

10a 的值,进而可求得10a 的值. 【详解】

对*n N ?∈都有3

3

3

122n n n a a a ++=+,由等差中项法可知,数列{}

3

n a 为等差数列,

由于11a =,22a =,则数列{}

3n a 的公差为33

217d a a =-=,

所以,33

101919764a a d =+=+?=,因此,104a .

故选:D. 18.D 【分析】

由题意抽象出数列是等差数列,再根据通项公式计算项数. 【详解】

被3除余2且被5除余3的数构成首项为8,公差为15的等差数列,记为{}n a ,则

()8151157n a n n =+-=-,令1572020n a n =-≤,解得:2135

15

n ≤, 所以该数列的项数共有135项. 故选:D 【点睛】

关键点点睛:本题以数学文化为背景,考查等差数列,本题的关键是读懂题意,并能抽象出等差数列. 19.B 【分析】

由100S =可计算出1100a a +=,再利用等差数列下标和的性质可得出合适的选项. 【详解】

由等差数列的求和公式可得()

110101002

a a S +=

=,1100a a ∴+=, 由等差数列的基本性质可得561100a a a a +=+=. 故选:B. 20.D 【分析】

设该女子第()

N n n *∈尺布,前()

N n n *

∈天工织布n S 尺,则数列{}n a 为等差数列,设其公

差为d ,根据15a =,30390S =可求得d 的值. 【详解】

设该女子第()

N n n *∈尺布,前()

N n n *

∈天工织布n S 尺,则数列{}n a 为等差数列,设其公

差为d ,

由题意可得30130293015015293902

S a d d ?=+=+?=,解得16

29d =.

故选:D.

二、多选题

21.BC 【分析】

根据数列的前几项归纳出数列的通项公式,再验证即可; 【详解】

解:斐波那契数列为1,1,2,3,5,8,13,21,……,

显然()()11,21F F ==,()()()3122F F F =+=,()()()4233F F F =+=,

()()()11,2F n F n F n n +=+-≥,所以()()()11,2F n F n F n n +=+-≥且

()()11,21F F ==,即B 满足条件;

由()()()11,2F n F n F n n +=+-≥, 所以(

)(

)(

)()11F n n F n n ?+-

=--???

所以数列(

)()1F n n ????

+??????

是以12+

为首项,12+为公比的等比数列, 所以(

)(

)1n

F n n +-=??

11515()n F F n n -

+=++, 令

1

n

n n F b

-=

??

,则11n n b +=

+,

所以1

n n b b +=-

, 所以n b

??

????

?

的等比数列,

所以1

n n b -

+,

所以()11

15n n n n

F n --?

???

+??=+=- ? ?????????

?

????

???; 即C 满足条件;

故选:BC 【点睛】

考查等比数列的性质和通项公式,数列递推公式的应用,本题运算量较大,难度较大,要求由较高的逻辑思维能力,属于中档题. 22.ABC 【分析】

数列{}n a 的前n 项和为0n n S S ≠()

,且满足1402n n n a S S n -+=≥(),11

4

a =,可得:1140n n n n S S S S ---+=,化为:1114n n S S --=,利用等差数列的通项公式可得1n

S ,n S ,2n ≥时,()()

111144141n n n a S S n n n n -=-=

-=---,进而求出n a . 【详解】

数列{}n a 的前n 项和为0n n S S ≠()

,且满足1402n n n a S S n -+=≥(),11

4

a =, ∴1140n n n n S S S S ---+=,化为:

1

11

4n n S S --=, ∴数列1n S ??

????

是等差数列,公差为4,

∴()1

4414n n n S =+-=,可得14n S n

=, ∴2n ≥时,()()

1111

44141n n n a S S n n n n -=-=

-=---, ∴()

1

(1)4

1(2)41n n a n n n ?=??=??-≥-??,

对选项逐一进行分析可得,A ,B ,C 三个选项错误,D 选项正确. 故选:ABC. 【点睛】

本题考查数列递推式,解题关键是将已知递推式变形为1

11

4n n S S --=,进而求得其它性质,考查逻辑思维能力和运算能力,属于常考题 23.BD 【分析】 利用递推关系可得12

11

n n a a n -=+-,再利用数列的单调性即可得出答案. 【详解】

解:∵2

3

n n n S a +=

, ∴2n ≥时,1121

33

n n n n n n n a S S a a --++=-=

-, 化为:112

111

n n a n a n n -+==+--, 由于数列21n ??

?

?-??

单调递减, 可得:2n =时,2

1

n -取得最大值2. ∴

1

n

n a a -的最大值为3. 故选:BD . 【点睛】

本题考查了数列递推关系、数列的单调性,考查了推理能力与计算能力,属于中档题. 24.ACD 【分析】

利用等差数列的性质和通项公式,逐个选项进行判断即可求解 【详解】 因为

1

112a =+,1(1)2

n n a n d n =+-+,所以a 1=3,a n =[1+(n -1)d ](n +2n ).若d =1,则a n =n (n +2n );若d =0,则a 2=6.因为a 2=6+6d ,a 3=11+22d ,所以若a 1,a 2,a 3成等差数列,则a 1+a 3=a 2,即14+22d =12+12d ,解得1

5

d =-. 故选ACD 25.ABD 【分析】

由10n n a a d +-=<可判断AB ,再由a 1>0,d <0,可知等差数列数列{}n a 先正后负,可判断CD. 【详解】

根据等差数列定义可得10n n a a d +-=<,所以数列{}n a 单调递减,A 正确; 由数列{}n a 单调递减,可知数列{}n a 有最大值a 1,故B 正确;

由a 1>0,d <0,可知等差数列数列{}n a 先正后负,所以数列{}n S 先增再减,有最大值,C 不正确,D 正确. 故选:ABD. 26.BC 【分析】

设公差d 不为零,由38a a =,解得192

a d =-,然后逐项判断.

【详解】 设公差d 不为零, 因为

38a a =,

所以1127a d a d +=+, 即1127a d a d +=--, 解得192

a d =-,

11191111551155022S a d d d d ??

=+=?-+=≠ ???

,故A 错误;

()()()()()()221101110910,10102222

n n n n n n d

d na d n n n a n n S S d ----=+

=-=-+=-,故B 正确; 若11191111551155022S a d d d d ??

=+=?-

+=> ???

,解得0d >,

()()2

2510525222

n d d d n n S n S =

-=--≥,故C 正确;D 错误; 故选:BC 27.BCD 【分析】

根据定义以及举特殊数列来判断各选项中结论的正误. 【详解】 对于A 选项,取n a n =,则

()()()422444221111n n a a n n n n n n +????-=+-=+-?++????

()()221221n n n =+++不是常数,则{}

2

n a 不是等方差数列,A 选项中的结论错误; 对于B 选项,()

()2

2

111110n n +????---=-=?

???

为常数,则(){

}

1n

-是等方差数列,B 选项

中的结论正确;

对于C 选项,若{}n a 是等方差数列,则存在常数p R ∈,使得22

1n n a a p +-=,则数列

{}2n

a 为等差数列,所以(

)

2

21kn k n a a kp +-=,则数列{}kn a (*k N ∈,k 为常数)也是等方

差数列,C 选项中的结论正确;

对于D 选项,若数列{}n a 为等差数列,设其公差为d ,则存在m R ∈,使得

n a dn m =+,

则()()()()2

2

2

1112222n n n n n n a a a a a a d dn m d d n m d d +++-=-+=++=++,

由于数列{}n a 也为等方差数列,所以,存在实数p ,使得22

1n n a a p +-=,

则()

2

22d n m d d p ++=对任意的n *

∈N 恒成立,则()2202d m d d p

?=??+=??,得0p d ==, 此时,数列{}n a 为常数列,D 选项正确.故选BCD. 【点睛】

本题考查数列中的新定义,解题时要充分利用题中的定义进行判断,也可以结合特殊数列来判断命题不成立,考查逻辑推理能力,属于中等题. 28.AD 【分析】

由已知得到780,0a a ><,进而得到0d <,从而对ABD 作出判定.对于C,利用等差数列的和与项的关系可等价转化为160a d +=,可知不一定成立,从而判定C 错误. 【详解】

由已知得:780,0a a ><,

结合等差数列的性质可知,0d <,该等差数列是单调递减的数列, ∴A 正确,B 错误,D 正确,

310S S =,等价于1030S S -=,即45100a a a ++?+=,等价于4100a a +=,即160a d +=,

这在已知条件中是没有的,故C 错误. 故选:AD. 【点睛】

本题考查等差数列的性质和前n 项和,属基础题,关键在于掌握和与项的关系. 29.ABD 【分析】 首项根据11,121n n n a a a a +=

=+得到

1112n n a a +-=,从而得到1n a ??

????

是以首项为1,公差为2的等差数列,再依次判断选项即可.

【详解】

对选项A ,因为121

n

n n a a a +=

+,11a =, 所以121112n n n n a a a a ++==+,即1112n n

a a +-= 所以1n a ??

????

是以首项为1,公差为2的等差数列,故A 正确.

对选项B ,由A 知:

1

121

21n

n n a

数列1n a ???

???

的前n 项和()21212n

n n S n +-==,故B 正确. 对选项C ,因为

1

21n n a =-,所以121

n a n =-,故C 错误. 对选项D ,因为1

21

n a n =-,所以数列{}n a 为递减数列,故D 正确. 故选:ABD 【点睛】

本题主要考查等差数列的通项公式和前n 项和前n 项和,同时考查了递推公式,属于中档题. 30.ABC 【分析】

由2

n S an bn c =++可求得n a 的表达式,利用定义判定得出答案.

【详解】

当1n =时,11a S a b c ==++.

当2n ≥时,()()2

21112n n n a S S an bn c a n b n c an a b -=-=++-----=-+. 当1n =时,上式=+a b .

所以若{}n a 是等差数列,则0.a b a b c c +=++∴= 所以当0c

时,{}n a 是等差数列, 0

a c

b ==??

≠?时是等比数列;当0c ≠时,{}n a 从第二项开始是等差数列. 故选:A B C 【点睛】

本题只要考查等差数列前n 项和n S 与通项公式n a 的关系,利用n S 求通项公式,属于基础题.

相关主题
文本预览
相关文档 最新文档