当前位置:文档之家› 傅里叶变换光谱解析

傅里叶变换光谱解析

傅里叶变换光谱解析
傅里叶变换光谱解析

傅立叶变换光谱实验报告

姓名:学号:专业:光电子

一、实验目的

(1 自组傅里叶变换光谱仪,掌握傅里叶变换光谱的原理;

(2 测量常用光源的光谱分布。

二、实验原理

傅里叶变换光谱仪是基于迈克尔逊干涉仪结构。使两束相干光的光程差发生连续改变,干涉光强相应发生变化,记录下光强接收器输出中连续的变化部分,得到干涉光强随光程差的变化曲线,即干涉图函数。然后计算出干涉图的傅里叶余弦变换,即可得到光源的光谱分布。这样得到的光谱就被称为傅里叶变换光谱。

1、干涉光强的计算

根据光波叠加原理,若有两束单色光,它们的波数都是σ,具有Δ的光程差,传播方向和偏振方向相同,光强都是I ’,这两束光相互叠加产生干涉,得到光强为:

I =4I ' cos (πσ? =2I ' +2I ' cos(2πσ? 2

从上式看,单色光的干涉图像包含一个直流分量和一个余弦函数分量,余

弦函数分量的周期就是单色光的波长。

若光源不是单色光,光强随波长的分布为I(σ, 在光谱间隔d σ内光强是(σ)I d σ将此光源发出的光等强分成两束,相互干涉后光强是:

dI =2I (σ d σ+2I (σ d σcos(2πσ?

在整个光谱范围内的干涉总光强为:

I =c òI (s d s+c òI (scos(2psD d s

00¥¥

其中为常数,上式右侧第一项为常数,与光程差Δ无关;右边第二项是光程差的函数,将第二项单独写出:

I (D =c òI (scos(2psD d s

0¥

两束光干涉所得光强是光束光谱分布的傅立叶余弦变换。傅立叶余弦变换是可逆的,则有:

I (σ =c ' ?I (? cos(2πσ? d ?

只要测出相干光束的干涉光强随光程差变化的干涉图函数曲线I(σ 进行傅立叶变换就可以得到相干光束的光谱分布。

2、实际应用的相关讨论

将上述公式用于实际还需进行一下讨论:

1. 公式中要求光程差测量范围为0到∞,但实际中光程差的测量范围有限。理论上,光程差测量范围的大小(最大光程差X )决定了傅里叶变换光谱的光谱分辨率,其波束分辨率为1/(2X, 但由实际条件X 只能为有限值;

2. 公式中要求干涉光强随光程差连续变化曲线I(Δ 。但实际中采用间隔一定距离离散采样的方法,光程差的采样间隔的大小决定了傅里叶变换光谱的光谱范围。避免光谱线混淆的条件是采样间隔小于或等于最小波长的二分之一。

实验中为了实现高精度的等光程差,采用间接测量的方法:用一个精密电机带动迈克尔逊干涉仪的细调手轮,让其动镜匀速移动,从而以恒定速度改变光程差。用光电接收器接收光强信号,得到干涉光强随时间变化的曲线。再用已知波长的单色光测出动镜移动的速度,就可以得到干涉光

强随光程差的变化曲线。

在精密的傅里叶变换光谱仪中,需要实时测量动镜的移动速度,根据移动速度调整采样间隔时间大小,使光程差间隔相同。为此加入一条辅助标定光路(引入一个已知波长的光源He-Ne 激光),让其通过光路,比较单色光干涉图函数曲线的疏密分布,推算出光程差随时间改变的曲线。

本实验中无标定光路。

三、实验仪器与实验装置示意图

傅里叶变换光谱实验装置示意图

实验仪器:被测光源(汞灯)、氦氖激光器、反射镜、扩束镜、分束镜、补偿镜、定镜M 1、反射镜M 2、力矩电机、光屏、测量控制单元、计算机、光电倍增管

四、实验内容

(1 首先在光探测器的位置放一个白屏,激光束打在分束镜上,调节平面镜背面的调节螺丝,使白屏上的两个光点重合;

(2 加入扩束镜,则可在白屏上看到干涉条纹。调节干涉仪的细调手轮和M1下方的细调螺旋,调出竖直的等倾干涉条纹,并进一步调节使条纹间隔在2-3mm ,移去光屏。

(3 打开电脑程序,控制测量控制系统,采集数据,运行程序测出氦氖激光器的光谱。

(4 在激光器下调出圆形的等厚干涉条纹,调节麦克尔逊干涉仪,使条纹尽量最大,如下图所示,再放上白光,可以观察到光屏上的彩色干涉条纹,移去光屏,打开程序处理数据,测得白光的光谱。

白光光谱测量光路图

五、数据记录与处理

六、参考文献 1高立模,《近代物理实验》,南开大学出版社

七、思考题

a 为什么在光源较弱的红外光谱区,傅里叶变换法占据统治地位?答:目前主流的分光方法有三种:棱镜,光栅,和傅里叶变换技术。普通的分光技术由于有入射和出射狭缝的限制,其光通量受到很大的限制,而傅立叶光谱仪没有狭缝的制约,可以实现很大的光通量,并且相比棱镜和光栅分光相比,能够实现很高精度;

红外光谱波长较长,从而波数比较小,需要高精度的测量方法,而傅里叶变换技术恰好满足这一点,由此傅立叶变换法在红外光谱区占统治地位。

b 傅立叶光谱仪的分辨率有什么决定,能不能达到无限大。

答:很显然最大光程差光程差的大小决定了傅立叶变换光谱的光谱分辨率,假设这段距离长为X ,则变换光谱的波数分辨率为1/(2X )。在理论上,光程差的变换范围为零到无穷大,但是在实际测量中,光程差的测量不可能到无穷远,只可能是零到一段有限的距离,因此,傅立叶光谱仪的分辨率不能达到无穷大。

6

(完整word版)Nicolet_iS5_型傅里叶变换红外光谱仪标准操作规程

本细则根据傅里叶变换红外光谱方法通则(JY?T 001-1996)和美国Nicolet公司Nicolet 380型傅里叶变换红外光谱仪操作说明书制定。 1 适用范围 本方法适用于液体、固体、气体、金属材料表面镀膜等样品。它不仅可以检测样品的分子结构特征,而且还可对混合物中各组份进行定量分析,本仪器的测量范围为4000 ~ 400cm-1。 2 术语、符号、代号 见国标(GB3100-93)。 3 方法原理 红外光谱是根据物质吸收辐射能量后引起分子振动的能级跃迁,记录跃迁过程而获得该分子的红外吸收光谱。 4 常用试剂及材料 分析纯:四氯化碳、二氯甲烷、溴化钾、氯化钠; 窗片:溴化钾、氯化钠、KRS-5(碘化铯、溴化铯合晶)。

5 检测仪器 5.1仪器技术参数 仪器名称:傅里叶变换红外光谱仪 型号:Nicolet 380 测试波数范围:4000 ~400cm-1 波数精度:≤0.1 cm-1 4cm-1分辨率就可以达到要求。 分辨率: 0.1~16cm-1,一般测试样品使用 5.2 仪器环境要求 室内温度:18℃~ 23℃ 相对湿度:≤ 50% 5.3 仪器供电需求 仪器供电电压:220V?% 交流电频率:50Hz?% 交流电零地电压:<1 V 6 检测方法 6.1 试样制备方法 6.1.1 一般注意事项 在定性分析中,所制备的样品最好使最强的吸收峰透过率为 10%左右。

Nicolet 380 型傅里叶变换红外光谱仪标准操作指导书 作者: 唐兴国审核: 丁春燕文件编号: HY-002 生效日期: 2010-11-22 最后审核日期: 2010-11-26 版次:01 修订号: 00 6.1.2 固体样品 (1)压片法:取 1~2mg的样品在玛瑙研钵中研磨成细粉末与干燥的溴化钾(A. R.级)粉末(约 100mg,粒度 200目)混合均匀,装入模具内,在压片机上压制成片测试。 玛瑙研钵压片模具 (2)溶液法:把样品溶解在适当的溶液中,注入液体池内测试。所选择的溶剂应不腐蚀池窗,在分析波数范围内没有吸收,并对溶质不产生溶剂效应。一般使用 0.1mm的液体池,溶液浓度在 10%左右为宜。 a:镜片; b:液体池部件(不含镜片); c: 装配图; d:使用方法

FTIR(傅里叶红外光谱简介)

1、简介: 傅里叶变换红外光谱仪(Fourier Transform Infrared Spectrometer,简写为FTIR Spectrometer),简称为傅里叶红外光谱仪。它不同于色散型红外分光的原理,是基于对干涉后的红外光进行傅里叶变换的原理而开发的红外光谱仪,主要由红外光源、光阑、干涉仪(分束器、动镜、定镜)、样品室、检测器以及各种红外反射镜、激光器、控制电路板和电源组成。可以对样品进行定性和定量分析,广泛应用于医药化工、地矿、石油、煤炭、环保、海关、宝石鉴定、刑侦鉴定等领域。 2、基本原理 光源发出的光被分束器(类似半透半反镜)分为两束,一束经透射到达动镜,另一束经反射到达定镜。两束光分别经定镜和动镜反射再回到分束器,动镜以一恒定速度作直线运动,因而经分束器分束后的两束光形成光程差,产生干涉。干涉光在分束器会合后通过样品池,通过样品后含有样品信息的干涉光到达检测器,然后通过傅里叶变换对信号进行处理,最终得到透过率或吸光度随波数或波长的红外吸收光谱图。 3、主要特点 ①信噪比高 傅里叶变换红外光谱仪所用的光学元件少,没有光栅或棱镜分光器,降低了光的损耗,而且通过干涉进一步增加了光的信号,因此到达检测器的辐射强度大,信噪比高。 ②重现性好 傅里叶变换红外光谱仪采用的傅里叶变换对光的信号进行处理,避免了电机驱动光栅分光时带来的误差,所以重现性比较好。 ③扫描速度快 傅里叶变换红外光谱仪是按照全波段进行数据采集的,得到的光谱是对多次数据采集求平均后的结果,而且完成一次完整的数据采集只需要一至数秒,而色散型仪器则需要在任一瞬间只测试很窄的频率范围,一次完整的数据采集需要十分钟至二十分钟。 4、技术参数 光谱范围:4000--400cm-1 7800--350cm-1(中红外) 125000--350cm-1(近、中红外) 最高分辨率:2.0cm-1 / 1.0cm-1 / 0.5cm-1 信噪比:15000:1(P-P) / 30000:1(P-P) / 40000:1(P-P)

傅里叶变换红外光谱仪的测试原理解读

傅里叶变换红外光谱仪的测试原理 傅里叶变换红外光谱仪由迈克耳逊干涉仪和数据处理系统组合而成,它的工作原理就是迈克耳逊干涉仪的原理。 迈克耳逊干涉仪的光路如图所示,图中已调到M2与M1垂直。∑是面光源(由被单色光或白光照亮的一块毛玻璃充当,面上每一点都向各个方向射出光线,又称扩展光源,图中只画出由S点射出光线中的一条来说明光路。这条光线进入分束板G1后,在半透膜上被分成两条光线,反射光线①和透射光线②,分别射向M1和M2又被反射回来。反射后,光线①再次进入G1并穿出,光线②再次穿过补偿板G2并被G1上的半透膜反射,最后两条光线平行射向探测器的透镜E,会聚于焦平面上的一点,探测器也可以是观测者的眼睛。由于光线①和光线②是用分振幅法获得的相干光,故可产生干涉。光路中加补偿板G2的作用是使分束后的光线①和光线②都以相等的光程分别通过G1、G2两次,补偿了只有G1而产生的附加光程差。M2′是M2被G1上半透膜反射所成的虚象,在观测者看来好象M2位于M2′的位置并与M1平行,在它 们之间形成了一个空气薄膜。移动M1即可改变空气膜的厚度,当M1接近M2′时厚度减小,直至二者重合时厚度为零,继续同向移动,M1还可穿越M2′的另一测形成空气膜。最后通过观测干涉条纹的分布情况就可以获得我们所要的信息。 如果是傅里叶变换红外光谱仪,那还要加上对干涉信息的数据处理系统而最终获得我们的数据图表。 二.紫外—可见分光光度计定量分析法的依据是什么? 比耳(Beer确定了吸光度与溶液浓度及液层厚度之间的关系,建立了光吸收的基本定律。 ○1. 朗伯定律 当溶液浓度一定时,入射光强度与透射光强度之比的对数,即透光率倒数的对数与液层厚度成正比。人们定义:溶液对单色光的吸收程度为吸光度。公式表示为 A=Lg(I0/It

傅立叶变换红外光谱仪操作指导—nicolet6700型

傅立叶变换红外光谱仪操作指导—nicolet6700型 一、 仪器简介 1、型号名称:Nicolet 6700 高级傅里叶变换红外光谱仪 美国 2、适用范围:本方法适用于液体、固体、气体、金属材料表面镀膜等样品。它可以检测样品的分子结构特征,还可对混合物中各组份进行定量分析,本仪器的测量范围为4000~400 cm -1。 3、方法原理:红外光谱是根据物质吸收辐射能量后引起分子振动的能级跃迁,记录跃迁过程而获得该分子的红外吸收光谱。 二、 基本操作 (一)试样制备方法 1、固体样品 (1)压片法:取1~2mg 的样品在玛瑙研钵中研磨成细粉末与干燥的溴化钾(A. R.级)粉末(约100mg ,粒度200目)混合均匀,装入模具内,在压片机上压制成片测试。 玛瑙研钵 压片模具 (2)糊状法:在玛瑙研钵中,将干燥的样品研磨成细粉末。然后滴入1~2滴液体石蜡混研成糊状,涂于KBr 或BaF 2晶片上测试。 (3)溶液法:把样品溶解在适当的溶液中,注入液体池内测试。所选择的溶剂应不腐蚀池窗,在分析波数范围内没有吸收,并对溶质不产生溶剂效应。一般使用0.1mm 的液体池,溶液浓度在10%左右为宜。 a :镜片; b :液体池部件(不含镜片); c: 装配图; d :使用方法 a b c d

2、液体样品 (1)液膜法:油状或粘稠液体,直接涂于KBr晶片上测试。流动性大,沸点低(≤100℃)的液体,可夹在两块KBr晶片之间或直接注入厚度适当的液体池内测试(液体池的安装见说明书)。对极性样品的清洗剂一般用CHCl3,非极性样品清洗剂一般用CCl4。 样品池BaF2镜片KBr镜片(杜绝含水样品)(2)水溶液样品:可用有机溶剂萃取水中的有机物,然后将溶剂挥发干,所留下的液体涂于KBr晶片上测试。 应特别注意含水的样品坚决不能直接接触KBr或NaCl窗片液体池内测试。 3、塑料、高聚物样品 (1)溶液涂膜:把样品溶于适当的溶剂中,然后把溶液一滴一滴的滴加在KBr晶片上,待溶剂挥发后把留在晶片上的液膜进行测试。 (2)溶液制膜:把样品溶于适当的溶剂中,制成稀溶液,然后倒在玻璃片上待溶剂挥发后,形成一薄膜(厚度最好在0.01~0.05mm),用刀片剥离。薄膜不易剥离时,可连同玻璃片一起浸在蒸馏水中,待水把薄膜湿润后便可剥离。这种方法溶剂不易除去,可把制好的薄膜放置1~2天后再进行测试。或用低沸点的溶剂萃取掉残留的溶剂,这种溶剂不能溶解高聚物,但能和原溶剂混溶。 4、磁性膜材料直接固定在磁性膜材料的样品架上测定。 磁性样品架 5、其它样品 对于一些特殊样品,如:金属表面镀膜,无机涂料板的漫反射率和反射率的测试等,则要采用特殊附件,如:A TR,DR,SR等附件。 (二)测量操作

傅里叶变换光谱实验

傅里叶变换光谱实验 一、实验目的 1、了解傅里叶变换光谱的基本原理。 2、学会测量待测光的光谱图。 重点:傅里叶变换光谱实验装置的正确使用,实验过程中参数的选定 难点:傅里叶变换光谱原理的理解 二、实验原理 现代光学的一个重大进展是引入“傅里叶变换”概念,由此发展成为光学领域内的一个崭新分支——傅里叶变换光学。本实验中用到的“傅里叶变换光谱实验装置”利用了傅里叶光谱中存在的干涉图和光谱图的变换关系,仪器用途是演示通过傅里叶变换的方法测定光源的辐射光谱。本实验仪器的意义在于进行傅里叶变换原理的演示。本实验测量光谱范围设计在可见区(400-800nm )并且光路部分设计为开放式,以便能更深刻、直观地了解傅里叶变换光学的实现与应用。 傅里叶变换过程实际上就是调制与解调的过程,通过调制我们将待测光的高频率调制成我们可以掌控、接收的频率。然后将接收到的信号送到解调器中进行分解,得出待测光中的频率成分及各频率对应的强度值。这样我们就得到了待测光的光谱图。下面介绍两个方程: 调制方程:()()cos 2I x I xd σπσσ+∞-∞=? 解调方程:()()cos 2I I x xdx σπσ+∞ -∞=?

调制过程:这一步由迈克耳孙干涉仪实现,设一单色光进入干涉仪后,它将被分成两束后进行干涉,干涉后的光强值为 0()c o s 2I x I x πσ=,(其中x 为光程差,它随动镜的移动而变化,σ为单色光的波数值)。如果待测光为连续光谱,那么干涉后的光强为()()cos 2I x I xd σπσσ+∞ -∞=?。 图1 实验装置中的迈克尔孙干涉仪 解调过程:我们把从接收器上采集到的数据送入计算机中进行数据处理,这一步就是解调过程。使用的方程就是解调方程,这个方程也是傅里叶变换光谱学中干涉图—光谱图关系的基本方程。 对于给定的波数σ,如果已知干涉图与光程差的关系式,就可以用解调方程计算的这波数处的光谱强度()I σ。为了获得整个工作波数范围的光谱图,只需对所希望的波段内的每一个波数反复按解调方程进行傅里叶变换运算就行了。 三、实验仪器 XGF-Ⅰ型傅里叶变换光谱实验装置 、数据传输设备(USB 线)、 计算机一套(如需要数据输出还应连接相应的输出设备,比如说打印机等)、待测光源(如图2所示)。

(完整版)浅谈原位漫反射傅立叶变换红外光谱

浅谈原位漫反射傅立叶变换红外光谱 漫反射傅立叶变换红外光谱(DRIFTS)是近年来发展起来的一项原位(in situ)技术,通过对催化剂上现场反应吸附态的跟踪表征以获得一些很有价值的表面反应信息,进而对反应机理进行剖析,已在催化表征中日益受到重视。该表征技术适合于固体粉末样品的直接测定以及材料的表面分析。将漫反射方法,红外光谱与原位红外技术结合,试样处理简单,无需压片,并且不改变样品原有形态,所以较之其他原位红外方法更容易实现在各种温度,压力和气氛下的原位分析。 1实验原理与装置 原位漫反射红外光谱的实验系统一般由漫反射附件、原位池、真空系统、气源、净化与压力装置,加热与温度控制装置、FTIR光谱仪组成。 在红外光谱仪样品室加装一个漫反射装置,将装好样品的原位池置于其中,调整漫反射装置,使样品上的漫反射光与主机的光路匹配,以实现漫反射测量。原位池可在高温、高压,高真空状态下工作。图1所示为漫反射红外装置的光路图。光谱仪光源发出的红外辐射光束经一椭圆镜会聚在样品表面并在内部进行折射、散射、反射和吸收,当这部分辐射再次穿出样品表面时,即是被样品吸收所衰减了的漫反射光。如图2所示。图3为漫反射原位池结构示意图,图4为热电公司红外的漫反射附件实物图 图1 图2 图3

图4 目前原位红外漫反射方面国内做的最好是大连化物所的辛勤老师,自行设计出一套漫反射红外装置。利用该装置在催化反应机理推导方面研究出很多有意义的结果。 2.实验操作 开机前需要更换干燥剂,装好液氮先对检测器冷却,依次打开电脑、仪器、软件并检查各项参数是否在指定范围内,根据需要设置扫描次数、分辨率、纵坐标。对于智能型有的参数一般是不需要更改设置的。调节样品池高度使探测器接收到的能量最大(粗调),然后将所测固体粉末样品装入样品池中,刮平样品表面,装上窗体,再调节样品池高度(细调),保证光正好打在样品上。样品颗粒越细越好,这样得出的谱图会更精细。对于深色样品不利于测样可以掺入溴化钾稀释。一般样品,比如我们制的的催化剂要进行预处理,即在惰性气体氛围中高温加热一两个小时,一来可以除去催化剂上的水分和二氧化碳气体,二来也是对催化剂的活化。注意,气速不能开的太大否则会吹散样品粉末堵塞气体管路对后续实验造成影响或是把样品表面吹不平整也会影响谱图质量。如果做探针分子的选择化学吸附,一般步骤是降温并在设定的温度段采集背景,然后在特定的温度下关闭惰性气体通入探针气体直到达到吸附饱和再改吹惰性气体吹扫,不断采集样品信息,然后升温,在开始采集背景时设定的温度段继续采样,背景和采样温度应一致。如果特定需要还可以抽真空或加到一定压力。我们所测的固体催化剂样品一般分辨率都选择4cm-1,扫描次数则常选择32、64。对于漫反射最好选择设置纵坐标以Kubelka-Munk表示,以便可以在需要定量时使用。 实验气路则是根据实验需要自行设计,没有一定的模式,切不同设计方法气路也有所不同。现举一例我们实验室常用来测样品酸性的气路图5如下 图5 1气体干燥装置,2气速控制装置,3阀门,4探针,5原位池 3.在催化中的应用 红外光谱法用于催化研究领域已有几十年的历史。1964年,Delfs等最先尝试用漫反射

傅里叶变换红外光谱仪解析

仪器分析综述 系别:生物科学与技术系 班级:09食品2 姓名:欧阳凡学号:091304251 傅里叶变换红外光谱仪 前言 随着计算方法和计算技术的发展,20世纪70年代出现新一代的红外光谱测量技术及仪器--傅里叶变换红外光谱仪(Fourier Transform Infrared Spectrometer,简写为FTIR ,简称为傅里叶红外光谱仪。它不同于色散型红外分光的原理,是基于对干涉后的红外光进行傅里叶变换的原理而开发的红外光谱仪,主要由红外光源、光阑、干涉仪(分束器、动镜、定镜)、样品室、检测器以及各种红外反射镜、激光器、控制电路板和电源组成。可以对样品进行定性和定量分析,广泛应用于医药化工、地矿、石油、煤炭、环保、海关、宝石鉴定、刑侦鉴定等领域。 正文 傅里叶变换红外光谱仪分光光度计由光学检测系统、计算机书籍处理系统、计算机接口、电子线路系统组成。 光源发出的光被分束器(类似半透半反镜)分为两束,一束经反射到达动镜,另一束经透射到达定镜。两束光分别经定镜和动镜反射再回到分束器,动镜以一恒定速度作直线运动,因而经分束器分束后的两束光形成光程差,产生干涉。干涉光在分束器会合后通过样品池,通过样品后含有样品信息的干涉光到达检测器,然后通过傅里叶变换对信号进行处理,最终得到透过率或吸光度随波数或波长的红外吸收光谱图。 光学检测系统由迈克逊干涉仪、光源、检测器组成、迈克逊干涉仪内有两个相垂直的平面反射镜M1、M2和一个与两镜成45度角的分束器,M1可沿镜轴方向前后移动。自光源发出的红外光经准直镜M3反射后变为平行光束,照在分束器上

后变成两束光。其中一束被反射到可动镜头M1后又被M1反射回分束器,并在分束器上再次分城反射光和透射光,透射光部分照在举聚光镜M4上,然后到到达探测器,另一束光透过分束器,射在固定镜M2上,并被M2反射回分束器,在分束器上再次发生反射和透射,反射部分照在聚光镜M4上,最后也到达探测器。因而这两束到达探测器的光油了光程差,成了相干光,移动可动镜M1可改变两束光程差。在连续改变光程差的同时,记录下中央干涉条纹的光强变化,及得到干涉图。如果在复合的相干光路中放有样品,就得到样品的干涉图。需要通过计算机进行傅里叶变换后才能得到红外光谱图。 主要特点 1、信噪比高 傅里叶变换红外光谱仪所用的光学元件少,没有光栅或棱镜分光器,降低了光的损耗,而且通过干涉进一步增加了光的信号,因此到达检测器的辐射强度大,信噪比高。 2、重现性好 傅里叶变换红外光谱仪采用的傅里叶变换对光的信号进行处理,避免了电机驱动光栅分光时带来的误差,所以重现性比较好。 3、扫描速度快 傅里叶变换红外光谱仪是按照全波段进行数据采集的,得到的光谱是对多次数据采集平均后的结果,而且完成一次完整的数据采集只需要一至数秒,而色散型仪器则需要在任一瞬间只测试很窄的频率范围,一次完整的数据采集需要十分钟至二十分钟。 FTIR 的吸收强度和表示方法 红外吸收光谱分析对于同一类型的化学键,偶极矩的变化与结构的对称性有关。例如C =

傅里叶变换红外光谱分析基础知识

傅里叶变换红外光谱分析基础知识 傅里叶变换红外光谱分析技术介绍傅里叶变换红外光谱分析技术为大量的学术研究实验室、化学分析实验室、质保/质控实验室和法庭科学实验室提供了重要的分析手段。傅里叶变换红外光谱分析方法的普及已深深植根,从简单的化合物鉴定到质控监测,广泛应用于各种化学分析,尤其是聚合物和有机化合物分析。 什么是傅立叶变换红外光谱? FTIR指的是傅立叶变换红外,是红外光谱分析的优选方法。当连续波长的红外光源照射样品时,样品中的分子会吸收或部分某些波长光,没有被吸收的光会到达检测器(称为透射方法)。将检测器获取透过样品的光模拟信号进行模数转换和傅立叶变换,得到具有样品信息和背景信息的单光束谱,然后用相同的检测方法获取红外光不经过样品的背景单光束谱,将透过样品的单光束谱扣除背景单光束谱,就生成了代表样品分子结构特征的红外指纹的光谱。由于不同化学结构(分子)会产生不同的指纹光谱,这就体现出红外光谱的价值意义。 那么,什么是FTIR(傅立叶变换红外光谱)? 傅立叶变换技术将检测器输出信号转换成可解读红外光谱。傅立叶变换红外生成的光谱以图形的形式提供可解析的样品分子结构的信息。 傅立叶变换红外的工作原理是什么?为何使用它? 傅立叶变换红外利用干涉图记录放置于红外光路中的材料的相关信息。傅立叶变换产生光谱,分析人员利用该光谱鉴定材料或进行定量分析。 一个傅立叶变换红外光谱是从干涉图被译解成为可解读的光谱。光谱图的图形可帮助鉴定样品,因为样品的分子振动吸收会在光谱上显示出特定的红外指纹。 傅立叶变换红外采样介绍 傅立叶变换红外主要有以下四种采样技术: 透射衰减全反射 (ATR)镜面反射漫反射每一项技术有各自特点,这使它们可适用于不同的状态的样品。 傅立叶变换红外光谱仪的采样和应用

实验-傅立叶变换光谱实验

实验3-3 傅立叶变换光谱实验 ● 实验简介: 利用光的干涉现象,得到干涉图,经过傅立叶变换,在频域中得到光谱,这种方法得到的光谱称为傅立叶变换光谱,所用的仪器称为傅立叶光谱仪。它的优点是: 1. 它以大的圆形入射孔径代替普通光谱仪的窄的入射狭缝,在获得同样分辨本领条件下,它能从较大的立体角接受光源辐射。 2. 在一般分光光度计中,每一瞬间只能测量一个光谱元,而傅立叶光谱仪能在整个工作时间内,同时记录所有待测光谱元,这又进一步使接收器获得更多的辐射能量,提高接收信号的信噪比。所以,它特别适合于光源较弱的红外光谱区,目前它已作为一种新型红外光谱仪广泛应用于红外光谱工作中。 ● 实验目的: 利用傅立叶变换光谱仪,测量常用光源的光谱分布。 ● 实验原理 傅立叶光谱方法利用干涉图和光谱图之间的对应关系。通过测量干涉图和对干涉图进行傅立叶积分变换的方法来测定和研究光谱图。和传统的色散性光谱仪相比较,傅立叶光谱仪可以理解为以某种数学方式对光谱信息进行编码的摄谱仪,它能同时测量、记录所有谱元的信号,并以更高的效率采集来自光源的辐射能量,从而使它具有比传统光谱仪高得多的信噪比和分辨率;同时它的数字化的光谱数据,也便于计算机处理和演绎。正是这些基本优点,使得傅立叶光谱方法发展为目前红外和远红外波段中最有力的光谱工具。它的研究、开发和应用已经形成了光谱学的一个独立分支——傅立叶光谱学,或称干涉光谱学。 傅立叶的变换过程实际上就是调制与解调的过程,通过调制我们将待测光的高频率调制成我们可以掌控、接收的频率。然后将接收器接收到的信号送到调制器中进行分解,得出待测光中的频率成分及各频率对应的强度值。这样我们就得到了待测光的光谱图。 调制和解调方程: 调制方程: ()()cos(2)I B d δνπνδν+∞-∞=? 解调方程: ()()cos(2)B I d νδπνδδ+∞-∞=? I(δ)——随光程变化的干涉图 v ——表示最小波数 B(v)——复原光谱图强度分布 ● 实验内容 1.利用激光调整迈克尔逊干涉仪,调出光的干涉条纹 2.利用钨丝灯调出白光的干涉条纹,目的是找出光程差为零的位置 3.去掉白光灯,放入被测光源,调整干涉条纹的方向和宽度 4.调整参考激光光路,尽量减少两光路之间的相互影响 5.调整电机转速,连接计算机,开始采集数据

傅立叶变换红外光谱仪的基本原理

傅立叶变换红外光谱仪的 基本原理及其应用 红外光谱仪是鉴别物质和分析物质结构的有效手段,其中傅立叶变换红外光谱仪(FT-IR)是七十年代发展起来的第三代红外光谱仪的典型代表。它是根据光的相干性原理设计的,是一种干涉型光谱仪,具有优良的特性,完善的功能,并且应用围极其广泛,同样也有着广泛的发展前景。本文就傅立叶变换红外光谱仪的基本原理作扼要的介绍,总结了傅立叶变换红外光谱法的主要特点,综述了其在各个方面的应用,并对傅立叶变换红外光谱仪的发展方向提出了一些基本观点。 关键词:傅立叶变换红外光谱仪;基本原理;应用;发展

目录 摘要................................................................................... I ABSTRACT......................................................................... II 1 傅里叶红外光谱仪的发展历史 (1) 2 基本原理 (4) 2.1光学系统及工作原理 (4) 2.2傅立叶变换红外光谱测定 (6) 2.3傅立叶变换红外光谱仪的主要特点 (7) 3 样品处理 (8) 3.1气体样品 (8) 3.2液体和溶液样品 (8) 3.3固体样品 (8) 4 傅立叶变换红外光谱仪的应用 (9) 4.1在临床医学和药学方面的应用⑷ (9) 4.2在化学、化工方面的应用 (10) 4.3在环境分析中的应用 (11) 4.4在半导体和超导材料等方面的应用⑼ (11) 5 全文总结 (12) 参考文献 (13)

傅里叶变换红外(FTIR)光谱专题实验

傅里叶变换红外(FTIR )光谱专题实验 实验一、红外吸收光谱仪的结构及基本操作(老师讲解) 实验二、薄膜样品的层数定量分析 二、实验准备 准备好某种塑料薄膜,分别制成1、2、3、4层样品。 三、实验步骤 1)开机步骤 a.开启计算机 b.打开仪器 c.打开Perkinelmer Spectrum 软件 2)测定步骤 a.设置合适的各参数(扫描范围在4000-4001 cm ) b.背景扫描 c.用强磁力样品架,依次扫描准备好的样品 d.对图谱进行数据处理并保存至文件夹 四、注意事项 a.所制薄膜样品不可太厚或太薄。过薄或浓度过低常使弱的甚至中等强度的吸收谱带显示不出来;如果样品过厚或过浓会使许多主要吸收谱带彼此连成一片(或峰过宽),看不出准确的波数位置和其精细结构。 b.样品中不应有游离水 c.样品表面反射回引起能量损失,造成普带变形。并产生干涉条纹,可使样品表面粗糙些来消除。 d.样品扫描过程中禁止打开样品舱盖 五、数据处理 040 80 T r a n s m i t t a n c e % wavenumber (cm -1 ) 图1 1、对图谱进行基线校正,并标出个谱峰的位置对照红外波谱数据解析,了解所标普带

Area n 表示的化学键 2、分析所实验样品得结果并与标准样品对照,考察其匹配程度。 分析:由上图1红外光谱对照红外数据推知约36001 -cm 处的吸收为自由OH -,峰尖很大可能是材料表面有水分所导致。重点是该材料在400~40001 -cm 的特征吸收主要有3组,分别为峰为2912(与2849是一组)、1466和7221 -cm 四处峰,其中29121 -cm 对应于反对称伸缩振动,28491 -cm 对称伸缩振动(并由图可知材料中H C -基团浓度较高,该组振动强度很大);14661 -cm 对应弯曲振动;7221 -cm 处的峰是n CH )(2(4≥n )亚甲基平面摇摆振动。据此可初步判断该材料为聚乙烯。 3、薄膜层数计算 由origin 软件经积分处理得到薄膜层数与特征吸收峰高度和薄膜层数与特征吸收面积数据表(未转换成吸收光谱): 图2 Lambert-beer 定律 bc I I T A t ε=-=-=)lg( lg 0 n Height

WQF-510A型傅里叶变换红外光谱仪

WQF-510A型傅立叶变换红外光谱仪是我们公司生产的最新型仪器,拥有完全自主知识产权。它不仅继承了WQF-500系列操作简单、维护成本低、性能价格比高等特点,而且仪器更加稳定、可靠。 技术参数 波数范围:7800cm-1~350cm-1 分辨率:0.85 cm-1 波数精度:±0.01 cm-1 扫描速度:微机控制可选择不同的扫描速度,五档可调。 信噪比:优于15,000:1(RMS值,在2100 cm-1 附近,4 cm-1分辨率,DTGS探测器,1分钟数据采集。) 分数器:KBr基片镀锗 探测器:标准配置DTGS,另外可选MCT 光源:高强度空气冷却红外光源 仪器尺寸:540cm×515cm×260cm 重量:28kg 数据系统 通用微机,连接喷墨或激光打印机,可输出高质量的光谱图。 软件:全新中文应用软件:Windows操作系统下的通用操作软件系统。包括谱库检索软件、定量分析软件、谱图输出软件。 仪器特点 新型角镜型迈克尔逊干涉仪体积更小、结构更紧凑,具有更优良的稳定性和抗震性。 干涉仪多重密封防潮、防尘的设计使仪器对环境的适应能力更强。可视硅胶窗口便于观察及更换。 外置隔离红外光源及大空间散热腔设计,仪器具有更高的热学稳定性,无须动态调整就具有稳定的干涉度。 高强度红外光源采用球形反射装置,可获得均匀、稳定的红外辐射。 散热风扇弹性悬浮设计具有良好的机械稳定性。 超宽大空间样品室设计更便于工作。 程控增益放大电路、高精度A/D转换电路的设计及嵌入式微机的应用,提高了仪器的精度及可靠性。 光谱仪与计算机间通过USB方式进行控制和数据通讯,完全实现即插即用。 通用微机系统,全中文应用软件界面友好、内容丰富。具备完整的谱图采集、光谱转换、光谱处理、光谱分析及谱图输出功能,使得操作更简单、方便、灵活。 拥有多种专用红外谱库,除常规检索外,用户可进行添加维护,并自定义新的谱库。 WQF-510/520型傅立叶变换红外光谱仪 WQF-510/520型傅立叶变换红外光谱仪是我公司生产的最新型仪器,拥有完全自主知识产权。具有操作简单、维护成本低、性能价格比高等特点,能广泛应用于石油、化工、医药、环保、高校、农业、材料、公安、国防等领域。是红外科研、应用领域的首选产品。 仪器特点 最新独立研制开发的角镜型迈克尔逊干涉仪,拥有完全自主知识产权。与传统的迈克尔逊干涉仪相比,不仅体积小、结构紧凑,而且具有更优良的机械和热学稳定性。 干涉仪中角镜及精密导轨的应用使仪器具有高稳定性和抗震性。

基于傅立叶变换的光谱数据分析

1绪论 本章介绍课题的研究背景,总结阐述光谱分析技术的发展应用,以及光谱测量仪 器的分类和各自特点,特别是傅里叶光谱仪及应用情况,简要介绍傅里叶变换光谱仪 的研究现状及成果;最后阐述本课题的研究目的、意义以及主要研究内容和技术指标 要求。 1.1选题的背景、目的和意义 在现代高技术战争中,激光武器及其对抗已显得日益重要,面对战场上激光战术 侦察、激光武器和激光制导武器等激光威胁,加速发展激光侦察告警技术己成为激光 对抗的首要任务。准确、可靠、迅速地掌握对方激光的属性己成为交战双方开战的重要前提,因此采用先进技术提高激光告警设备敌我识别的性能、抗干扰能力和反应速度是非常必要的。 激光告警技术是是光电对抗的重要组成部分。研究激光告警技术的目的是快速探测敌方激光威胁的存在,尽可能确定出其方位、波长、强度、脉冲特性(脉宽、重复频率等)等信息,以便我方能及时采取保护或反击措施。激光告警设备硬件通常由激光接收系统、光电传感器、信号处理器、显示与告警装置等部分组成。目前,告警设备在软件上基本都采用解方程组或者查表的方法,求解来袭激光的波长、角度和次数等基本信息。例如,典型相干识别法的迈克尔逊型、法布里一拍罗(F-P)型和光栅衍射型告警机,利用形成的干涉条纹间距确定入射激光的波长,利用干涉图的横向位移量确定入射激光方向等。当激光以一定波长和方向入射时,特定条纹在光电探测器上的位置的不同或者条纹阳间距的不同,制作波长和与入射方向对应的查找表,这样处理器只需计算目标条纹的成像位置和间距,便可通过软件查表实现波长和角度的测定。这种方法原理简单、编程容易;但是无法求出目标激光的光谱特征,从而无法得到威胁激光的时、空特性和类型[1]。 为了实时获取来袭激光的光谱分布和类型,提高告警系统的信噪比和探测率,需 要研究具有高速、准确、性能可靠的新型激光告警系统。 1.2激光光谱探测技术的国内外研究现状 目前,激光信号光谱的探测,主要通过光谱仪来实现,光谱仪从原理上可分为色 散型和干涉型两大类。

傅里叶变换光谱

傅立叶变换光谱实验报告 姓名: 学号: 专业:光电子 一、 实验目的 (1) 自组傅里叶变换光谱仪,掌握傅里叶变换光谱的原理; (2) 测量常用光源的光谱分布。 二、 实验原理 傅里叶变换光谱仪是基于迈克尔逊干涉仪结构。使两束相干光的光程差发生连续改变,干涉光强相应发生变化,记录下光强接收器输出中连续的变化部分,得到干涉光强随光程差的变化曲线,即干涉图函数。然后计算出干涉图的傅里叶余弦变换,即可得到光源的光谱分布。这样得到的光谱就被称为傅里叶变换光谱。 1、干涉光强的计算 根据光波叠加原理,若有两束单色光,它们的波数都是σ,具有Δ的光程差,传播方向和偏振方向相同,光强都是I ’,这两束光相互叠加产生干涉,得到光强为: )2cos('2'2)(cos '42 ?+=?=πσπσI I I I 从上式看,单色光的干涉图像包含一个直流分量和一个余弦函数分量,余弦函数分量的周期就是单色光的波长。 若光源不是单色光,光强随波长的分布为I(σ),在光谱间隔d σ内光强是I (σ)d σ将此光源发出的光等强分成两束,相互干涉后光强是: )2cos()(2)(2?+=πσσσσσd I d I dI 在整个光谱范围内的干涉总光强为: I =c ò0 ¥ I (s )d s +c ò0 ¥ I (s )cos(2ps D )d s

其中为常数,上式右侧第一项为常数,与光程差Δ无关;右边第二项是光程差的函数,将第二项单独写出: I (D )=c ò0¥ I (s )cos(2ps D )d s 两束光干涉所得光强是光束光谱分布的傅立叶余弦变换。傅立叶余弦变换是可逆的,则有: ? ???=∞ d I c I )2cos()(')(0 πσσ 只要测出相干光束的干涉光强随光程差变化的干涉图函数曲线I(σ)进行傅立叶变换就可以得到相干光束的光谱分布。 2、实际应用的相关讨论 将上述公式用于实际还需进行一下讨论: 1.公式中要求光程差测量范围为0到∞,但实际中光程差的测量范围有限。理论上,光程差测量范围的大小(最大光程差X )决定了傅里叶变换光谱的光谱分辨率,其波束分辨率为1/(2X),但由实际条件X 只能为有限值; 2.公式中要求干涉光强随光程差连续变化曲线I(Δ)。但实际中采用间隔一定距离离散采样的方法,光程差的采样间隔的大小决定了傅里叶变换光谱的光谱范围。避免光谱线混淆的条件是采样间隔小于或等于最小波长的二分之一。 实验中为了实现高精度的等光程差,采用间接测量的方法:用一个精密电机带动迈克尔逊干涉仪的细调手轮,让其动镜匀速移动,从而以恒定速度改变光程差。用光电接收器接收光强信号,得到干涉光强随时间变化的曲线。再用已知波长的单色光测出动镜移动的速度,就可以得到干涉光

傅里叶红外光谱(FTIR)

红外光谱的原理及应用 (一)红外吸收光谱的定义及产生 分子的振动能量比转动能量大,当发生振动能级跃迁时,不可避免地伴随有转动能级的跃迁,所以无法测量纯粹的振动光谱,而只能得到分子的振动-转动光谱,这种光谱称为红外吸收光谱 红外吸收光谱也是一种分子吸收光谱。当样品受到频率连续变化的红外光照射时,分子吸收了某些频率的辐射,并由其振动或转动运动引起偶极矩的净变化,产生分子振动和转动能级从基态到激发态的跃迁,使相应于这些吸收区域的透射光强度减弱。记录红外光的百分透射比与波数或波长关系曲线,就得到红外光谱 (二)基本原理 1产生红外吸收的条件 (1)分子振动时,必须伴随有瞬时偶极矩的变化。对称分子:没有偶极矩,辐射不能引起共振,无红外活性。如:N2、O2、Cl2 等。非对称分子:有偶极矩,红外活性。 (2)只有当照射分子的红外辐射的频率与分子某种振动方式的频率相同时,分子吸收能量后,从基态振动能级跃迁到较高能量的振动能级,从而在图谱上出现相应的吸收带。 2分子的振动类型 伸缩振动:键长变动,包括对称与非对称伸缩振动 弯曲振动:键角变动,包括剪式振动、平面摇摆、非平面摇摆、扭曲振动 3几个术语 基频峰:由基态跃迁到第一激发态,产生一个强的吸收峰,基频峰; 倍频峰:由基态直接跃迁到第二激发态,产生一个弱的吸收峰,倍频峰; 组频:如果分子吸收一个红外光子,同时激发了基频分别为v1和v2的两种跃迁,此时所产生的吸收频率应该等于上述两种跃迁的吸收频率之和,故称组频。 特征峰:凡是能用于鉴定官能团存在的吸收峰,相应频率成为特征频率。 相关峰:相互可以依存而又相互可以佐证的吸收峰称为相关峰 4影响基团吸收频率的因素 (1 外部条件对吸收峰位置的影响:物态效应、溶剂效应 (2分子结构对基团吸收谱带的影响: 诱导效应:通常吸电子基团使邻近基团吸收波数升高,给电子基团使波数降低。 共轭效应:基团与吸电子基团共轭,使基团键力常数增加,因此基团吸收频率升高,基团与给电子基团共轭,使基团键力常数减小,因此基团吸收频率降低。 当同时存在诱导效应和共轭效应,若两者作用一致,则两个作用互相加强,不一致,取决于作用强的作用。 (3)偶极场效应:互相靠近的基团之间通过空间起作用。 (4)张力效应:环外双键的伸缩振动波数随环减小其波数越高。 (5)氢键效应:氢键的形成使伸缩振动波数移向低波数,吸收强度增强 (6)位阻效应:共轭因位阻效应受限,基团吸收接近正常值。 (7)振动耦合,(8)互变异构的影响 (三)红外吸收光谱法的解析 红外光谱一般解析步骤 1. 检查光谱图是否符合要求; 2. 了解样品来源、样品的理化性质、其他分析的数据、样品重结晶溶剂及纯度; 3. 排除可能的“假谱带”; 4. 若可以根据其他分析数据写出分子式,则应先算出分子的不饱和度U

傅里叶变换光谱 s.

傅里叶变换光谱 傅里叶变换光谱: 利用光的干涉现象,得到干涉图,经过傅立叶变换,在频域中得到光谱,这种方法得到的光谱称 为傅立叶变换光谱,所用的仪器称为傅立叶光谱仪。它的优点是: 1. 它以大的圆形入射孔径代替普通光谱仪的窄的入射狭缝,在获得同样分辨本领条件下,它能从 较大的立体角接受光源辐射。 2. 在一般分光光度计中,每一瞬间只能测量一个光谱元,而傅立叶光谱仪能在整个工作时间内, 同时记录所有待测光谱元,这又进一步使接收器获得更多的辐射能量,提高接收信号的信噪比。所以, 它特别适合于光源较弱的红外光谱区,目前它已作为一种新型红外光谱仪广泛应用于红外光谱工作中。 实验目的: 1. 掌握傅里叶变换光谱的原理 2. 自组傅里叶变换光谱仪 3. 测量常用光源的光谱分布 实验原理: 1. 傅里叶变换光谱实验的应用与特点简介

傅里叶变换光谱技术是光谱学中主要的分光手段之一,具有高精度、多通道、高通量、宽光谱范围、结构紧凑等优势。其实验结果是通过傅里叶变换从空间域变换到频率域通过数学计算的方法得到。 多数傅里叶变换光谱仪是基于迈克尔逊干涉仪结构的。其借助于连续的移动其中的一个反射镜(动镜),干涉仪产生的两束相干光的光程差发生连续改变,干涉光强就会发生相应改变。在改变光程差的同时,记录下光强接收器输出中的变化部分,得到干涉光强随光程差的变化曲线,即干涉图函数。在获得干涉图后,算出干涉图的傅里叶余弦变换,即得光源的光谱分布。 2. 运用傅里叶变换得到相干光束的光谱分布 若有两束单色光,波数都为σ,传播方向和偏振方向相同,光强均为I' ,两光束间光程差为Δ,两束光相互叠加产生干涉,得到的光强为 在整个光谱范围内的干涉总光强为: 上式右方第一项为常数项,第二项为光程差Δ的函数,故以 I(Δ 表示第二项为: 2cos( (2 (2?+=πσσσσσd I d I dI ??∞∞?+=00 2cos( ( (σπσσσσd I c d I c I ? ∞?=?0 2cos( ( (σπσσd I c I 由于傅里叶余弦变换可逆,故: 上式需要测量的光程差范围是0到∞,但实际测量范围无法如此精确,存在较大误差。理论分析得到:光程差测量范围大小决定了傅里叶变换光谱的光谱分辨率,即傅里叶变换光谱仪的光谱分辨率由最大光程差决定;同时上式要求测量干涉光强是随光程差变化的连续变化曲线,实际测量中亦无法实现,只能采用间隔一定距离离散采样的方法。 3. 如何实现高精度的等光程差,并采取间隔的选取是实验的关键

NICOLET 6700傅里叶红外光谱仪操作指南.

NICOLET 6700傅里叶红外光谱仪操作指南 以粉末样品测试为例 1. 样品制备 把研磨后的KBr 粉末,放入红外干燥箱内,干燥10min 左右,取少量与样品混合(KBr 与样品的比例约100:1),在玛瑙研钵中混合均匀。使用压片装置压片, 2. 打开软件:双击桌面OMINC 图标,打开OMINC 软件,进入软件主界面 3. 实验条件设置:点击菜单栏“采样”项中“实验设置”或快捷键,在跳出窗口中,设置扫描次数(32次)、分辨率(4),背景光谱管理项一般选择“采集样品前采集背景”,其它选项也可,根据习惯而定。

4. 样品采集:点击“采集样品”图标,跳出“准备背景采集”对话框,点击“确定”,进行背景扫描(吸收谱一般选择“空气”为背景)。 背景扫描完毕,跳出“准备样品采集”对话框,推开样品室上盖,将样品架放入样品室内样品固定座,拉下样品室盖子,点击“确定”,进行样品的采集,采集结束后,跳出谱图标题窗口,输入标题名:预约单号+样品编号+样品名称,然后点击确定,跳出“数据采集完成”窗口,点击“是”,样品采集结束。

5. 谱图处理 点击菜单栏“数据处理”项中的“吸光度”和“透过率”可以进行吸光度与透过率的转换;另外还可以对谱图进行基线校正、平滑、差谱等。点击菜单栏“谱图分析”项中“标峰”或图标“ ”对峰值进行标定。 实验完毕,取出样品架,关闭“OMNIC ”软件。 6. 谱图的输出 谱图处理完毕后,根据客户的要求,以*.SPA原始文件格式;*.CSV;*.TIF等格式点击菜单栏“文件”项中“另存为”,把谱图保存到指定文件夹(D:\all user\月份\)。 7. 注意事项

傅里叶变换红外光谱仪教学文稿

傅里叶变换红外光谱 仪

傅里叶红外光谱仪(FTIR) (仅供参考) 一.实验目的: 1.了解FTIR的工作原理以及仪器的操作。 2.通过对多孔硅的测试,初步学会分析方法。 二.实验原理: 1.傅里叶红外光谱仪的工作原理: FTIR光谱仪由3部分组成:红外光学台(光学系统)、计算机和打印机。而红外光学台是红外光谱仪的最主要部分。 红外光学台由红外光源、光阑、干涉仪、样品室、检测器以及各种红外反射镜、氦氖激光器、控制电路和电源组成。下图所示为红外光学台基本光路图。 傅里叶变换红外光谱是将迈克尔逊干涉仪动镜扫描时采集的数据点进行傅立叶变换得到的。动镜在移动过程中,在一定的长度范围内,在大小有限,距离相等的位置采集数据,由这些数据点组成干涉图,然后对它进行傅立叶变换,得到一定范围内的红外光谱图。每一个数据点由两个数组成,对应于X轴和Y轴。对应同一个数据点,X值和Y值决定于光谱图的表示方式。因此,在采集数据之前,需要设定光谱的横纵坐标单位。

红外光谱图的横坐标单位有两种表示法:波数和波长。通常以波数为单位。而对于纵坐标,对于采用透射法测定样品的透射光谱,光谱图的纵坐标只有两种表示方法,即透射率T和吸光度A。透射率T是由红外光透过样品的光强I和红外光透过背景(通常是空光路)的光强I0的比值,通常采用百分数(%)表示。吸光度A是透射率T倒数的对数。 透射率光谱图虽然能直观地看出样品对红外光的吸收情况,但是透射率光谱的透射率与样品的质量不成正比关系,即透射率光谱不能用于红外光谱的定量分析。而吸光度光谱的吸光度值A在一定范围内与样品的厚度和样品的浓度成正比关系,所以大都以吸光度表示红外光谱图。 本实验运用的仪器是Nicolet 380 智能傅立叶红外光谱仪。 2.傅里叶红外光谱仪的主要特点: ⑴具有很高的分辨能力,在整个光谱范围内分辨能力达到0.1cm-1。 ⑵具有极高的波数准确度,波数准确度可以达到0.01cm-1。 ⑶杂散光的影响度低,通常在全光谱范围杂散光影响低于0.3%。 ⑷扫描时间短,可以用于观测瞬时反应。 ⑸可以研究很宽的光谱范围。本实验仪器波数范围为400cm-1~4000cm-1。 ⑹具有极高的灵敏度。 ⑺适合于微小试样的研究。光束截面约1mm,适合微量、单晶、单纤维等小样的测量。 3.傅里叶红外光谱仪的应用范围: 根据红外光谱的吸收峰位置、形状和强度可以进行定性分析,推断未知物的结构,适合于鉴定有机物、高聚物以及其他复杂结构的天然及人工合成产物。

傅立叶变换红外光谱仪的基本原理及其应用

J I A N G X I N O R M A L U N I V E R S I T Y 2009届本科生毕业论文课题名称:傅立叶变换红外光谱仪的基本原 理及其应用 Basic principles and application of Fourier transform infrared spectrometer 姓名高立峰 学院理电学院 专业物理学(师范) 学号06 完成时间2009.4 声明 本人郑重声明: 所呈交的毕业设计(论文)是本人在指导教师指导下进行的研究工作及取得的研究成果。其中除加以标注和致谢的地方外,不包含其他人已经发表或撰写并以某种方式公开过的研究成果,也不包含为获得其他教育机构的学位或证书而作的材料。其他同志对本研究所做的任何贡献均已在文中作了明确的说明并表示谢意。 本毕业设计(论文)成果是本人在江西师范大学读书期间在指导教师指导下取得的,成果归江西师范大学所有。

特此声明。 声明人(毕业设计(论文)作者)学号:06 声明人(毕业设计(论文)作者)签名: 摘要 红外光谱仪是鉴别物质和分析物质结构的有效手段,其中傅立叶变换红外光谱仪(FT-IR)是七十年代发展起来的第三代红外光谱仪的典型代表。它是根据光的相干性原理设计的,是一种干涉型光谱仪,具有优良的特性,完善的功能,并且应用范围极其广泛,同样也有着广泛的发展前景。本文就傅立叶变换红外光谱仪的基本原理作扼要的介绍,总结了傅立叶变换红外光谱法的主要特点,综述了其在各个方面的应用,并对傅立叶变换红外光谱仪的发展方向提出了一些基本观点。 关键词:傅立叶变换红外光谱仪;基本原理;应用;发展 Abstract Infrared spectroscopy is an effective method to identify substance and analyze the structures of molecular. Fourier transform infrared (FT-IR) spectrometers developed in the seventies are a typical representative of the third generation of infrared spectroscopy. They are a kind of interference-type spectrometers which were designed based on the principle of coherent light, with excellent features and perfect functions. And they haven’t only been used widely but also have extensive pros pects. In this paper, the basic principles of Fourier transform infrared spectrometer are described briefly. The main features of FT-IR were summed up as well as its application in various fields, and some basic opinions of developmental direction as far as FT-IR were put forward. Key words: Fourier transform infrared spectrometer;Basic principles;Application;Development

相关主题
文本预览
相关文档 最新文档