当前位置:文档之家› 灰色模型介绍及应用

灰色模型介绍及应用

灰色模型介绍及应用
灰色模型介绍及应用

灰色模型介绍及应用

第十章灰色模型介绍及应用(徐利艳天津农学院 2.4万字)

10.1灰色理论基本知识

10.1.1概言

10.1.2有关名词概念

10.1.3GM建模机理

10.2灰色理论模型应用

10.2.1GM(1,1)模型的应用——污染物浓度问题

10.2.2 GM(1,1)残差模型的应用——油菜发病率问题

10.2.3GM模型在复杂问题中的应用——SARS 疫情问题

10.2.4 GM(1,n)模型的应用——因素相关问题

本章小结

思考题

推荐阅读书目

第十章灰色模型介绍及应用

10.1灰色理论基本知识

10.1.1概言

客观世界的很多实际问题,其内部的结构、参数以及特征并未全部被人们了解,人们不可能象研究白箱问题那样将其内部机理研究清楚,只能依据某种思维逻辑与推断来构造模型。对这类部分信息已知而部分信息未知的系统,我们称之

为灰色系统。本章介绍的方法是从灰色系统的本征灰色出发,研究在信息大量缺乏或紊乱的情况下,如何对实际问题进行分析和解决。

灰色系统的研究对象是“部分信息已知、部分信息未知”的“小样本”、“贫信息”不确定性系统,它通过对“部分”已知信息的生成、开发实现对现实世界的确切描述和认识。信息不完全是“灰”的基本含义。

灰色系统理论建模的主要任务是根据具体

灰色系统的行为特征数据,充分开发并利用不多的数据中的显信息和隐信息,寻找因素间或因素本身的数学关系。通常的办法是采用离散模型,建立一个按时间作逐段分析的模型。但是,离散模型只能对客观系统的发展做短期分析,适应不了从现在起做较长远的分析、规划、决策的要求。尽管连续系统的离散近似模型对许多工程应用

来讲是有用的,但在某些研究领域中,人们却常常希望使用微分方程模型。事实上,微分方程的系统描述了我们所希望辨识的系统内部的物理

或化学过程的本质。

目前,灰色系统理论已成功地应用于工程控制、经济管理、未来学研究、生态系统及复杂多

变的农业系统中,并取得了可喜的成就。灰色系统理论有可能对社会、经济等抽象系统进行分析、建模、预测、决策和控制,它有可能成为人们认识客观系统改造客观系统的一个新型的理

论工具。

10.1.2有关名词概念

灰数:一个信息不完全的数,称为灰数。

灰元:信息不完全或内容难以穷尽的元素,称为灰元。

灰关系:信息不完全或机制不明确的关系,称为灰关系。具有灰关系的因素是灰因素,灰因素之间的量化作用,称为灰关联。

灰色系统:含灰数、灰元或灰关系的系统称为信息不完全系统。如果按照灰色理论去研究它。则称此系统为灰色系统。

累加生成:由于灰系统对一切随机量都可看作是在一定范围内变化的灰色量,因此,为适应灰系统建模需要,提出“生成”的概念,“生成”即指对原始数据做累加(或累减)处理。累加生成一般可写成AGO。若计(0)x为原始数列,()r x为r次累加生成后数列,即

(0)(0)(0)(0)

x x x x n

{(1),(2),()}

()()()(){(1),(2),

()}r r r r x x x x n =

则r 次累加生成算式为

()

(1)

(1)

(1)

(1)1

(1)(1)(1)(1)()(1)()(1)(2)()()

[(1)(2)(1)]()(1)()

k

r r r r r i r r r r r r x k x

x

x

k x i x x x k x k x k x k ----=-----=++==++-+=-+∑ 一般常用的是一次累加生成,即

(1)

(0)1(1)(0)()()

(1)()

k

i x k x i x k x k ===-+∑

10.1.3GM 建模机理

建立GM 模型,实际就是将原始数列经过累加生成后,建立具有微分、差分近似指数规律兼容的方程,成为灰色建模,所建模型称为灰色模型,简记为GM (Grey Model )。如GM (m,n )称为m 阶n 个变量的灰色模型,其中GM (1,1)模型是GM (1,n )模型的特例,是灰色系统最基本的模型,也是常用的预测模型,因此本章重点介绍几种GM (1,1)模型的建模过程和计算方法,并简单介绍GM (1,n )建模过程。

GM (1,1)的建模机理

GM (1,1)模型是GM (1,N )模型的特例,其简单的微分方程形式(白化形式的微分方程)是

+=dx

ax u dt

利用常数变易法解得,通解为

()-=+at

u

x t ce a

若初始条件为0

0,()==t x t x ,则可得到微分方程

的特解为

0()()-=-+

at u u x t x e a a

或时间响应函数

(1)(1)((1))-+=-+

at u u

x t x e a a

其中白化微分方程中的ax 项中的x 为dx dt

的背景值,也称为初始值; ,a u

为常数(有时也将u 写

成b )。

按白化导数定义有差分形式的微分方程,即

()()

lim ?→+?-=?t dx x t t x t dt t

显然,当时间密化值定义为1,即当1?→t 时,上式可记为

1

[(1)()]lim ?→=+-t dx

x t x t dt 记为离散形式

(1)()=+-dx

x t x t dt

这显然表明dx dt

是一次累计生成,因此上述方程可改写为

(1)(1)(0)(1)()(1)=+-=+dx

x t x t x t dt

这实际也表明,模型是以生成数(1)

x

((1)x 是以

(0)x 的一次累加)为基础的。

当?t 足够小时,()x t 到()+?x t t 不会发生突变,因此可取()x t 与()+?x t t 的平均值作为0?→t 时的背景值,因此,背景值便可记为

(1)(1)

(1)1[(1)()]2

=

++x x t x t 或

(1)(1)

(1)1[(1)()]2

=

++x x k x k

于是白化的微分方程

(1)

(1)+=dx ax u dt

可改写为 (0)(1)(1)1

(1)[(1)()]2

++

++=x k a x k x k u 或

(0)(1)(1)1

(1)[(1)()]2

+=-

+++x k a x k x k u

(0)(1)(1)(0)(1)(1)(0)(1)(1)1

(2)[(2)(1)]21

(3)[(2)(1)]21

()[()(1)]2

=-++=-++=-

+-

+x a x x u x a x x u

x n a x n x n u

因此,上述方程可以改写为矩阵方程形式,即

(1)(1)(0)

(1)(1)(0)(0)(1)(1)

1[(2)(1)]21(2)1[(2)(1)]1(3)21()1[()(1)]2??-+??????????????-+??????=+??????????????????-+-???

?

a x x x a x x x a u x n a x n x n

引入下列符号,设

(0)(0)(0)(2)(3)()??

???

?=??????

N x x Y x n

111??????

=??????

E

(1)(1)(1)(1)(1)(1)

1[(2)(1)]21[(2)(1)]2

1[()(1)]2??-+??????

-+??=??????-+-???

?

a x x a x x X a x n x n

于是便有

[]??

=+=??

??

N a Y aX uE X E u

??

=??

??

a a u (1)(1)

(1)(1)(1)(1)1[(2)(1)]121[(2)(1)]1[]2

1[()(1)]12??-+????

??

-+??==??????-+-????

a x x a x x B X E a x n x n

[]??

=+==????

N a Y aX uE X E Ba u

解得

1()-??

==????

T T N

a a B B B Y u

将求解得到的代入微分方程的解式(也称时间响应函数),则

(1)(1)(1)((1))-+=-+

ak u u

x k x e a a

由于(0)

(1)(1)(1)=x

x ,

因此求导还原得

(0)(0)(1)((1))-+=--ak u

x k a x e a

上述两式便为GM (1,1)的时间响应式,及灰色系统预测模型的基本算式,当然上述两式计算结果只是近似计算值。

为简记,一般可以将GM (1,1)的建模过程记为

(0)0(1)(0)((1);,)(1)(1)

????+?+IAGO GM AGOx GM x a u x k x k

10.2灰色理论模型应用

10.2.1GM (1,1)模型的应用——污染物浓度问题

GM (1,1)模型是灰色系统最基本的模型,下面以污染物浓度问题说明GM (1,1)模型的建立及求解过程。

例10.1 某污染源中某种污染物质量浓度测量值如表10.1,试建立GM (1,1)模型

表10.1 某污染物质量浓度测量值 (mg/L )

解:第一步,设原始数据为

(0)(0)(0)(0)((1),(2),

,(6))(3.936,4.575,4.968,5.063,5.968,5.507)

==x x x x 第二步,对原始数据进行累加生成,即

(1)(

=x A G O x

(1)(0)

(1)(1)3.936==x x

(1)(1)

(0)

(2)

[

(1)(2)]

3.936

4.575

8.511

=+=+=x x x

(1)(1)

(0)

(3)[(2)(3)]13.479=+=x x x (1)(1)(0)

(4)[(3)

(4)]

18.542=+=x x x (1)(1)

(0)

(5)[(4)(5)]

24.510

=+=x x x (1)(1)(0)

(6)

[

(5)

(6)]

30.017

=+=x x x

因此累加生成数据为

(1)(0)(3.936,8.511,13.479,18.542,24.510,30.017)==x AGOx

第三步,构造矩阵,N

B Y

(1)(1)

(1)(1)(1)(1)(1)

(1)(1)(1)

1[(1)(2)]121 -6.2235 1.0000[(2)(3)]12 -10.9950 1.00001

-16.0105 1.0000[(3)(4)]

12 -21[(4)(5)]121[(5)(6)]12??-+???

?

??-+??????==-+????-+??????-+????

x x x x B x x x x x x 1.5260 1.0000 -27.2635 1.0000

??????????

????

?

?

(0)(0)(0)[(2),(3),

,(6)][4.575 4.968 5.063 5.968 5.507]==T T

N Y x x x 第四步,计算1?()-=T T N a

B B B Y 。 先求1()-T

B

B ,

1622.6 -82.0 -82.0 5??=????

T

B B 根据逆矩阵的求解方法,得

1 0.0036 0.0592() 0.059

2 1.1706-??=????

T B B 再求T

N

B Y 的值,即

-442.7641 26.0810??

=????

T N B Y

进而求得?a

的值为 1 0.0036 0.0592-442.7641-0.0539a ?() 0.0592 1.1706 26.0810 4.3322u -????????

====??????

??????????

T T N a B B B Y

计算GM1_1的程序如下

function 10toliti01(X0) [m,n]=size(X0); X1=cumsum(X0); X2=[]; for i=1:n-1

X2(i,:)=X1(i)+X1(i+1); end

B=-0.5.*X2;

t=ones(n-1,1); B=[B,t]; YN=X0(2:end);

P_t=YN./X1(1:(length(X0)-1)) A=inv(B.'*B)*B.'*YN.'; a=A(1) u=A(2) B b1=B.'*B b2=inv(B.'*B) b3=B.'*YN.' b4=u/a b5=X1(1)-b4 b6=-a*b5

第五步,将,a u 的值代入微分方程的时间响应函数,

令(1)

(1)?(1)(0) 3.936==x

x ,

(1)(1)0.0539?(1)((1))84.326480.3904-+=-+=-ak k u u

x

k x e e a a

第六步,求导还原得

(0)(1)0.0539?(1)((1)) 4.5443-+=--=ak k u

x

k a x e e a

第七步,对上述模型进行精度检验。

常用的方法是回代检验,即分别用(1)

(1)?(1),(0)

x

x

模型求出各时刻值,然后求相对误差。

先利用时间响应函数模型

(1)0.0539?(1)84.326480.3904+=-k x

k e 求各时刻值(1,2,

,5

=k ),

并计算相对误差,结果如表10.2所示.

表10.2 精度检验实测值、残差值表 1,2,

,5=k

GM 计算值

(1)?(1)+x

k 实测值

(1)(1)+x k

残差

(1)(1)+e k

相对残差

(1)(1)+q k

8.6059 13.5344 18.7359 24.2254 30.0190

8.5110 13.4790 18.5420 24.5100 30.0170

-0.0949 -0.0554 -0.1939 0.2846 -0.0020

-0.0112 -0.0041 -0.0105 0.0116 -0.0001

再利用时间响应函数模型(0)

0.0539?(1) 4.5443+=k

x

k e 求各时刻值(1,2,,5

=k ),并计算相对误差,结果

如表10.3所示.

表10.3 计算值与实验原始数据值对照表 1,2,

,5=k

GM 计算值

(0)?(1)+x

k 实测值

(0)(1)+x k

残差

(0)(1)+e k

相对残差

(0)(1)+q k

4.7960

5.0616 5.3419 5.6377 5.9499

4.5750 4.9680

5.0630 5.9680 5.5070

-0.2210 -0.0936 -0.2789 0.3303 -0.4429

-0.0483 -0.0188 -0.0551 0.0553 -0.0804

从残差检验结果看,累计生成数列曲线拟合较好,相对误差在0.01即1%左右;而还原数列

的相对误差较大,其原因是累加生成数据将原始数据的随机性弱化,正负误差有抵消的,当数据再被还原回来时便表现出来。

10.2.2 GM (1,1)残差模型的应用——油菜发病率问题

当GM(1,1)模型的精度不符合要求时,可用残差序列建立GM(1,1)模型,对原来的模型进行修正,以提高精度,即建立残差GM(1,1)模型,步骤如下

第一步,利用原始数据建立GM (1,1)模型,得时间响应式

(1)(1)(1)((1))-+=-+

ak u u

x k x e a a

(0)(0)(1)((1))-+=--ak u

x k a x e a

其中第二个式子也成为导数还原值。 鉴于导数还原值与原始数据(累减还原值)不一致,为减少往返运算造成的误差,往往用原始数据与导数还原值的残差修正的(0)

x 模拟值(0)

x 。

第二步,利用残差数列建立新的GM (1,1)模型。

建立残差模型的过程和计算方法同于GM (1,1)建模过程,只不过建立残差模型所用的原始数列采用的是残差数据。令(0)

()

g

k 为残差,则

(0)(0)(0)()()()=-g k x k x k

(0)(0)(0)(0)((),(1),

())(,1,

,)=+=+g g k g k g n k i i n

(0)(0)(0)(0)((1),(2),

(1))=-+g g g g n i

利用残差序列(0)

g 建立新的GM (1,1)模型,求解得时间响应式

(1)(1)'0''(1)(())''

-+=-

+a k u u g k g k e a a

(0)(1)'0'

(1)'(())'

-+=--a k

u g k a g k e a

第三步,结合上两步的GM (1,1)模型,建立残差GM (1,1)模型

结合上两步的GM (1,1)模型,则相应的残差修正时间响应式为

()()(0)

0(0)(0)(1)'0

(1)(1)'(1)(')(())'---?--

?--+--≥??

ak ak a k

u a x e k k a

x k u u a x e a g k e k k a a

称为导数还原式的残差修正模型。

例10.2 某县油菜发病率数据如表10.4所示,试建立残差GM 模型并进行求解。

表10.4 某县油菜发病率数据 (%)

解:第一步,建立原始数据的GM (1,1)模型

设原始数据为

()

(0)(0)(0)(0)((1),(2),

,(13))

0.01*6,20,40,25,40,45,35,21,14,18,15.5,17,15==x x x x

建立GM (1,1)模型,利用GM (1,1)的求解程序得时间响应式为

()(1)

0.064861 5.680 5.740-+=-+k x k e ()(0)

0.0648610.368-+=k x

k e

第二步,误差检验 利用时间响应函数模型()(0)

0.0648610.368-+=k x

k e 计算

各时刻值(1,2,,12

=k ),并计算相对误差,程序

如下

function 10toliti02(X0) %format long ;

%X0=0.01*[6 20 40 25 40 45 35 21

14 18 15.5 17 15];

[m,n]=size(X0); s(1)=1; for i=1:12

y(i+1)=0.368*exp(-0.06486*i);

z(i+1)=X0(i+1)-y(i+1); w(i+1)=z(i+1)/X0(i+1); s(i+1)=i+1; end y' X0' z' w' z*z'

sum(abs(w))/12

计算结果如表10.5所示

表10.5 计算值与实验原始数据值对照表 1,2,

,12=k

由表可以看出,最大误差高达72.44%,最低

的也达到6.06%,模拟误差较大,进一步 计算平均相对误差

13(0)

2

1()28.01%

12=?==∑k q k

平均相对误差很较大,相对精度约70%。因此为了提高远原点(即现时)精度,即将最后一个误差减小,需采用残差模型进行修正。

第三步,以部分残差数据为原始数据建立新的GM (1,1)模型 取0

9

k

=得残差尾端,即取最后5个数据的残差:

-0.0790,-0.0253,-0.0374,-0.0103,-0.0190,

用此尾段可建立残差尾段模型,取绝对值,得残差数列

()(0)(0)

0.0790,0.0253,0.0374,0.0103,0.0190==g q

以上述的残差数列为原始数据建立新的GM (1,1)模型,得残差的时间响应式

()(1)

0.189410.17320.2522-+=-+k g

k e

()(0)

0.189410.0328-+=k g

k e

第四步,将原始数据和部分残差数据的两

个GM (1,1)模型即

()(0)

0.0648610.368-+=k x

k e

()(0)

0.145710.1876-+=k g

k e

结合,得到修正后的残差GM (1,1)模型

00.064860.064860.18940.368,9

(1)0.3680.0328,9-∧

--?

+=??-≥?

k k k e k x k e e k

第五步,用修正后的模型对8,9,

,12

=k 的模

拟值进行修正,结果为:

(0)(0)(0)???((9),(10),,(13))0.2118,0.1993,0.1874,0.1762,0.1656=x

x x

第六步,精度检验 建立如下程序:

function 10toliti021(X0) %format long ;

%X0=0.01*[6 20 40 25 40 45 35 21

14 18 15.5 17 15];

[m,n]=size(X0); s(1)=1; for i=8:12

y(i+1)=0.368*exp(-0.06486*i)-0.0328*exp(-

基于灰色预测模型的上海世博会分析 张文彬华北电力大学保定 张静峰华北电力大学科技学院保定 摘要:众所周知,世博会正日益成为全世界人民交流历史文化、展示科技成果、体现合作精神、展望未来发展等的重要舞台。世博会的举行可以推动该城市经济的发展。本文基于灰色预测模型从第一、第二、第三产业、进出口贸易、居民消费价格指数等方面对上海世博会的举行对上海经济的发展进行了分析和说明。 关键词:灰色预测模型,世博会,经济发展 一前言 世界博览会是人类文明的驿站。自1851年伦敦的万国工业博览会开始,世博会正日益成为全球经济、科技和文化领域的盛会,成为各国人民总结历史经验、交流聪明才智、体现合作精神、展望未来发展的重要舞台。 中国是一个历史悠久的文明古国,2010年世界博览会的成功举行,让中国了解了世界,也让世界更多的了解中国,同时上海世博会的成功举行对上海经济的发展也起到了巨大的推动作用。而评价经济体系的指标有很多,本文选择有代表性的第一产业(农业、林业、牧业、渔业等)、第二产业(采矿业、制造业、电力、燃气及水的生产和供应业,建筑业等)、第三产业(交通运输业、邮电通讯业、商业饮食业等流通类行业和金融业、保险业、旅游业、教育文化、酒店业等服务类产业)、居民消费价格指数、进出口贸易等指标[1][2],根据上海统计年鉴中1997-2002年各指标的数据,剔除世博会举行的因素,利用灰色预测模型对2003-2009年的相关数据进行预测,并进行了残差分析,然后根据实际世界博览会举行时各项指标数据,通过与预测数据的图形对比,可以直观反映出上海世博会对上海经济发展的影响力,并对相关数 据进行了分析。 二灰色预测模型[3][4] 灰色系统理论最早由华中理工大学邓聚龙教授提出,先后发表过灰色控制、灰色预测、灰色决策等多部专著,较详细在阐述了灰色系统理论的产生、原理与应用。什么叫灰?用邓先生自己的话来讲:“完全已知的系统称作白系统;完全未知的系统称作黑系统;部分已知、部分未知的系统称作灰色系统。”,而灰色预测就是采用已知的数据来预测未知的数据的一种方法。其中G表示Grey(灰,M表示Model(模型,前一个“1”表示一阶,后一个“1”表示一个变量,GM(1, 1则是一阶,一个变量的微分方程预测模型。其算法流程如下: 1.由已知数据得初始,并按生成新的数列 。

灰色系统模型的应用 灰色系统理论对中国50年人口发展预测 一、中国人口发展概况 中国是世界上人口最多的发展中国家,人口多、底子薄、耕地少、人均占有资源相对不足,是我国的基本国情,人口问题一直是制约中国经济发展的首要因素。新中国成立60年,我国人口发展经历了前30年高速增长和后20多年低速增长两大阶段:从建国初期到上世纪70年代初,中国人口由旧中国的高出生、高死亡率进入高出生、低死亡率的人口高增长时期,1950-1975年人口出生率始终保持在30‰以上, 最高达到37‰(表3.2.1)。70年代以后,人口过快增长的势头得到迅速扭转,人口出生率、自然增长率、妇女总和生育率有了明显下降,人口出生率由70年代初的33‰大幅度下降到80年代的21‰, 妇女总和生育率也由6下降到2.3左右。90年代以来,随着我国经济高速发展,人民文化和健康水平逐步提高,计划生育工作不断深入,在20-29岁生育旺盛人数年均超过1亿的情况下, 人口出生率依然呈现大幅下降的趋势,到2000年底人口出生率从1990年的21.06‰下降到14.03‰,自然增长率由1990年的14.39‰下降到7.58‰, 妇女总和生育率也下降到2以下。进入90年代末期, 我国人口实现了低出生、低死亡、低增长的历史性转变。到2000年底全国总人口为12.6743亿, 成功实现了“九五”计划将人口控制在13亿的奋斗目标。 中国政府自1980年在全国城乡实行计划生育以来成果卓著,据国家计生委“计划生育投入与效益研究”课题组的研究成果,20年共少生2.5亿个孩子,有效地控制了人口的快速增长,为中国现代化建设、全面实现小康打下了坚实的基础, 同时也为世界人口的增长和控制做出了杰出贡献。但是由于中国人口基数大,人口增长问题依然十分严峻,1990-1999年每年平均净增人口约1300万,这仍然对我国社会和经济产生巨大的压力。因此,准确预测未来50年人口数量及其增长,为中国经济和社会发展决策提供科学依据,对于加速推进我国现代化

灰色预测模型理论及其应用 灰色系统理论认为对既含有已知信息又含有未知或非确定信息的系统进行预测,就是对在一定方位内变化的、与时间有关的灰色过程的预测. 尽管过程中所显示的现象是随机的、杂乱无章的,但毕竟是有序的、有界的,因此这一数据集合具备潜在的规律,灰色预测就是利用这种规律建立灰色模型对灰色系统进行预测. 灰色预测模型只需要较少的观测数据即可,这和时间序列分析,多元回归分析等需要较多数据的统计模型不一样. 因此,对于只有少量观测数据的项目来说,灰色预测是一种有用的工具.本文主要围绕灰色预测GM(1,1)模型及其应用进行展开。 一、灰色系统及灰色预测的概念 1.1灰色系统 灰色系统产生于控制理论的研究中。 若一个系统的内部特征是完全已知的,即系统的信息是充足完全的,我们称之为白色系统。 若一个系统的内部信息是一无所知,一团漆黑,只能从它同外部的联系来观测研究,这种系统便是黑色系统。 灰色系统介于二者之间,灰色系统的一部分信息是已知的,一部分是未知的。 区别白色和灰色系统的重要标志是系统各因素间是否有确定的关系。 特点:灰色系统理论以“部分信息已知、部分信息未知”的“小样本”、“贫信息”不确定型系统的研究对象。 1.2灰色预测 灰色系统分析方法是通过鉴别系统因素之间发展趋势的相似或相异程度,即进行关联度分析,并通过对原始数据的生成处理来寻求系统变动的规律。生成数据序列有较强的规律性,可以用它来建立相应的微分方程模型,从而预测事物未来的发展趋势和未来状态。灰色预测是用灰色模型GM(1,1)来进行定量分析的,通常分为以下几类: (1) 灰色时间序列预测。用等时距观测到的反映预测对象特征的一系列数量(如产量、销量、人口数量、存款数量、利率等)构造灰色预测模型,预测未来某一时刻的特征量,或者达到某特征量的时间。 (2) 畸变预测(灾变预测)。通过模型预测异常值出现的时刻,预测异常值什么时候出现在特定时区内。 (3) 波形预测,或称为拓扑预测,它是通过灰色模型预测事物未来变动的轨迹。 (4) 系统预测,是对系统行为特征指标建立一族相互关联的灰色预测理论模型,在预测系统整体变化的同时,预测系统各个环节的变化。 上述灰预测方法的共同特点是: (1)允许少数据预测; (2)允许对灰因果律事件进行预测,比如 灰因白果律事件:在粮食生产预测中,影响粮食生产的因子很多,多到无法枚举,故为灰因,然而粮食产量却是具体的,故为白果。粮食预测即为灰因白果律事件预测。白因灰果律事件:在开发项目前景预测时,开发项目的投入是具体的,为白因,而项目的效益暂时不很清楚,为灰果。项目前景预测即为灰因白果律事件预测。

第十章灰色模型介绍及应用(徐利艳天津农学院 2.4万字) 10.1灰色理论基本知识 10.1.1概言 10.1.2有关名词概念 10.1.3GM建模机理 10.2灰色理论模型应用 10.2.1GM(1,1)模型的应用——污染物浓度问题 10.2.2 GM(1,1)残差模型的应用——油菜发病率问题 10.2.3GM模型在复杂问题中的应用——SARS 疫情问题 10.2.4 GM(1,n)模型的应用——因素相关问题 本章小结 思考题 推荐阅读书目

第十章灰色模型介绍及应用 10.1灰色理论基本知识 10.1.1概言 客观世界的很多实际问题,其内部的结构、参数以及特征并未全部被人们了解,人们不可能象研究白箱问题那样将其内部机理研究清楚,只能依据某种思维逻辑与推断来构造模型。对这类部分信息已知而部分信息未知的系统,我们称之为灰色系统。本章介绍的方法是从灰色系统的本征灰色出发,研究在信息大量缺乏或紊乱的情况下,如何对实际问题进行分析和解决。 灰色系统的研究对象是“部分信息已知、部分信息未知”的“小样本”、“贫信息”不确定性系统,它通过对“部分”已知信息的生成、开发实现对现实世界的确切描述和认识。信息不完全是“灰”的基本含义。 灰色系统理论建模的主要任务是根据具体灰色系统的行为特征数据,充分开发并利用不多的数据中的显信息和隐信息,寻找因素间或因素本身的数学关系。通常的办法是采用离散模型,建立一个按时间作逐段分析的模型。但是,离散模型只能对客观系统的发展做短期分析,适应不了从现在起做较长远的分析、规划、决策的要求。尽管连续系统的离散近似模型对许多工程应用来讲是有用的,但在某些研究领域中,人们却常常希望使用微分方程模型。事实上,微分方程的系统描述了我们所希望辨识的系统内部的物理或化学过程的本质。 目前,灰色系统理论已成功地应用于工程控制、经济管理、未来学研究、生态系统及复杂多变的农业系统中,并取得了可喜的成就。灰色系统理论有可能对社会、经济等抽象系统进行分析、建模、预测、决策和控制,它有可能成为人们认识客观系统改造客观系统的一个新型的理论工具。 10.1.2有关名词概念 灰数:一个信息不完全的数,称为灰数。 灰元:信息不完全或内容难以穷尽的元素,称为灰元。 灰关系:信息不完全或机制不明确的关系,称为灰关系。具有灰关系的因素是灰因素,灰因素之间的量化作用,称为灰关联。

建设与管理工程学院 课程设计 课程名称: 物流系统分析与优化课程设计课程代码:1204179 题目:某物流公司订单额预测 年级/专业/班:2012级物流管理2班 学生姓名:杨超 学号:312012********* 开始时间: 2016年6月6日 完成时间: 2016年6月 20日 课程设计成绩: 指导教师签名:年月日

物流系统分析与优化课程设计 任务书 学院名称:建设与管理工程学院课程代码:__1204179_ 专业:物流管理年级:2012 一、题目 自选题目,题目可以选择当前物流或流通领域热点问题或企业实际情况,开展物流系统分析与优化活动,提交成果,写出总结。选题尽量细小,避免假、大、空。 选题参考: 选题参考: 1、针对当前物流或流通领域的相关问题,在国内外公开出版的刊物上发表论文。 2、物流或流通相关领域的发明创造、创业计划书。 4、针对当前物流或流通领域热点问题的物流系统分析与优化课程设计等。 本人题目:某物流公司订单额预测 二、主要内容及要求 内容与物流或流通领域相关的物流系统分析,形式上可以是(但不限于)以下之一: 1.一人一题,不允许重复。调查类型的题目允许以小组为单位,但个人论文题目应有所区 别,各有侧重。 2.格式要求(附后,含目录、摘要、引言、正文、致谢、参考文献) 3.工作量要求:正文部分字数4000以上 4.阶段性要求:每周必须与导师见面,寻求指导;选题须经导师同意后才可进 入下一阶段; 5.本课程特别强调物流系统分析与优化。抄袭者将不予成绩且无重新提交报告 的资格。 6.提交材料: A、最终成果:(装订顺序为:封面、任务书、课程论文,可能的案例或调查计划。)B、参考的资料(可以是原始文稿电子文档或纸质件、书、手写的读书笔记、摘抄等反应),共指导教师检查、不存档。

第十章灰色模型介绍及应用(徐利艳天津农学院2.4万字) 10.1灰色理论基本知识 10.1.3GM建模机理 10.2灰色理论模型应用 ——污染物浓度问题 10.2.2 GM(1,1)残差模型的应用——油菜发病率问题 10.2.3GM模型在复杂问题中的应用——SARS 疫情问题 10.2.4 GM(1,n)模型的应用——因素相关问题 本章小结 思考题 推荐阅读书目 第十章灰色模型介绍及应用 10.1灰色理论基本知识 客观世界的很多实际问题,其内部的结构、参数以及特征并未全部被人们了解,人们不可能象研究白箱问题那样将其内部机理研究清楚,只能依据某种思维逻辑与推断来构造模型。对这类部分信息已知而部分信息未知的系统,我们称之为灰色系统。本章介绍的方法是从灰色系统的本征灰色出发,研究在信息大量缺乏或紊乱的情况下,如何对实际问题进行分析和解决。 灰色系统的研究对象是“部分信息已知、部分信息未知”的“小样本”、“贫信息”不确定性系统,它通过对“部分”已知信息的生成、开发实现对现实世界的确切描述和认识。信息不完全是“灰”的基本含义。 灰色系统理论建模的主要任务是根据具体灰色系统的行为特征数据,充分开发并利用不多的数据中的显信息和隐信息,寻找因素间或因素本身的数学关系。通常的办法是采用离散模型,建立一个按时间作逐段分析的模型。但是,离散模型只能对客观系统的发展做短期分析,适应不了从现在起做较长远的分析、规划、决策的要求。尽管连续系统的离散近似模型对许多工程应用来讲是有用的,但在

某些研究领域中,人们却常常希望使用微分方程模型。事实上,微分方程的系统描述了我们所希望辨识的系统内部的物理或化学过程的本质。 目前,灰色系统理论已成功地应用于工程控制、经济管理、未来学研究、生态系统及复杂多变的农业系统中,并取得了可喜的成就。灰色系统理论有可能对社会、经济等抽象系统进行分析、建模、预测、决策和控制,它有可能成为人们认识客观系统改造客观系统的一个新型的理论工具。 灰数:一个信息不完全的数,称为灰数。 灰元:信息不完全或内容难以穷尽的元素,称为灰元。 灰关系:信息不完全或机制不明确的关系,称为灰关系。具有灰关系的因素是灰因素,灰因素之间的量化作用,称为灰关联。 灰色系统:含灰数、灰元或灰关系的系统称为信息不完全系统。如果按照灰色理论去研究它。则称此系统为灰色系统。 累加生成:由于灰系统对一切随机量都可看作是在一定范围内变化的灰色量,因此,为适应灰系统建模需要,提出“生成”的概念,“生成”即指对原始数据做累加(或累减)处理。累加生成一般可写成AGO 。若计(0) x 为原始数列,() r x 为r 次累加生成后数列,即 则r 次累加生成算式为 ()(1) (1) (1) (1)1 (1)(1)(1)(1)()(1)()(1)(2)()() [(1)(2)(1)]()(1)() k r r r r r i r r r r r r x k x x x k x i x x x k x k x k x k ----=-----=++==++ -+=-+∑ 一般常用的是一次累加生成,即 10.1.3GM 建模机理 建立GM 模型,实际就是将原始数列经过累加生成后,建立具有微分、差分近似指数规律兼容的方程,成为灰色建模,所建模型称为灰色模型,简记为GM (Grey Model )。如GM (m,n )称为m 阶n 个变量的灰色模型,其中GM (1,1)模型是GM (1,n )模型的特例,是灰色系统最基本的模型,也是常用的预测模型,因此本章重点介绍几种GM (1,1)模型的建模过程和计算方法,并简单介绍GM (1,n )建模过程。 GM (1,1)的建模机理 GM (1,1)模型是GM (1,N )模型的特例,其简单的微分方程形式(白化形式的微分方程)是 利用常数变易法解得,通解为

灰色系统模型的应用 第一节灰色系统模型在现金流量预测中的应用 一、灰色理论应用在现金流量预测中 我们选取伊利集团的2000—2007年财务报表的现金流量表中的“经营活动产生的净现金流”作为分析预测的对象。伊利集团是我国著名的奶业生产集团,知名度较高,且长期以来生产经营较为规范,其报表可信度较高,所以,用该公司的财务报表的数据,可以较好的反映实际情况,有利于我们进行分析和验证。而2008年出现的儿童奶粉事件,给乳制品产业带来了致命的打击,所以不采用2008年的财务报表。 在使用GM(1,1)时,首先要对实际的原始数据进行一定的处理或假设: 1.企业在长期来看,不存在负现金流。尽管企业在短期,例如月现金流无法避免存在负现金流,但对于一个持续经营的企业来说,尽量保持正的现金流,是大多数的企业理财所应达到的目标。当然,当企业的实际数据出现负现金流时,也可用第二章第八节五中提到的办法进行处理。 2.企业在一定时期内的经营条件和外部环境不存在大的波动。即企业在相似的外部环境和促销手段下进行。这种假设避免了现金流大的波动,从而避免预测失真。由于对于一般的销售型企业来说,经营活动的现金流量是主要的资金来源,筹资活动和投资活动并不是经常发生的项目。而且,经营活动产生的现金流量通常情况下较稳定,不会产生大的波动,也很少有负值的出现,即使在短时期内可能出现应收账款较多,资金周转不开的情况,但从一年时间来看,在一年内的现金收入通常会大于现金流出。对于一个健康的正在成长的企业来说,经营活动现金流量应该是正数,投资活动是负数,筹资活动是正负相间的。 所以,以下选择的伊利集团现金流量表中2000-2007的数据符合前述假设和模型的要求,见表1。

1.1.5 两岸间液体化工品贸易前景预测 从上述分析可见,两岸间液体化工品贸易总体上呈现上升的增长趋势。然而,两岸间的这类贸易受两岸关系、特别是台湾岛内随机性政治因素影响很大。因此,要对这一贸易市场今后发展的态势做出准确的定量判断是相当困难的;但从另一方面来说,按目前两岸和平交往的常态考察,贸易作为两岸经济与贸易交往的一个有机组成部分,其一般演化态势有某些规律可寻的。故而,我们可以利用其内在的关联性,通过选取一定的数学模型和计算方法,对之作一些必要的预测。 鉴此,本研究报告拟采用一定的预测技术,借助一定的计算软件,对今后10余年间大陆从台湾进口液化品贸易量作一个初步的预测。 (1) 模型的选择 经认真考虑,我们选取了灰色系统作为预测的技术手段,因为两岸化工品贸易具有的受到外界的因素影响大和受调查条件限制数据采集很难完全的两大特点,正好符合灰色系统研究对象的主要特征,即“部分信息已知,部分信息未知”的不确定性。灰色系统理论认为,对既含有已知信息又含有未知信息或不确定信息的系统进行预测,就是在一定方位内变化的、与时间有关的灰色过程进行的预测。尽管这一过程中所显示的现象是随机的,但毕竟是有序的,因此这一数据集合具有潜在的规律。灰色预测就是利用这种规律建立灰色模型对灰色系统进行预测。 本报告以灰色预测模型,对两岸间化工品贸易进行的预测如下: 灰色预测模型预测的一般过程为: ① 一阶累加生成(1-AGO ) 设有变量为) 0(X 的原始非负数据序列 )0(X =[)1()0(x ,)2()0(x ,…)() 0(n x ] (1.1) 则) 0(X 的一阶累加生成序列 )1(X =[)1() 1(x ,)2()1(x …)()1(n x ] (1.2) 式中 ) ()(1 )0() 1(i x k x k i ∑== k=1,2…n ② 对) 0(X 进行准光滑检验和对进行准指数规律检验

管理预测与决策的课程设计报告 灰色系统理论的研究 专业:计算机信息管理 姓名:XXX 班级:xxx 学号:XX 指导老师:XXX 日期2012年11月01 日

摘要:科学地预测尚未发生的事物是预测的根本目的和任务。无论个体还是组织,在制定和规划面向未来的策略过程中,预测都是必不可少的重要环节,它是科学决策的重要前提。在众多的预测方法中,灰色预测模型自开创以来一直深受许多学者的重视,它建模不需要太多的样本,不要求样本有较好的分布规律,计算量少而且有较强的适应性,灰色模型广泛运用于各种领域并取得了辉煌的成就。本文详细推导GM(1,1)模型, 另外对灰关联度进行了进一步的改进,让改进的计算式具有唯一性和规范性[]4。通过给 出的实例高校传染病发病率情况,建立了GM(1,1)预测模型,并预测了1993年的传染病发病率。另外对传染病发病率较高的痢疾、肝炎、疟疾三种疾病做了关联度分析,发现痢疾与整个传染病关系最密切,而肝炎、疟疾与整个传染病的密切程度依次差些。 关键词:灰色预测模型;灰关联度;灰色系统理论

目录 1、引言1 1.1、研究背景 (1) 1.1.1、国内研究现状 1 1.1.2、国外研究现状 1 1.2、研究意义 (2) 2、灰色系统及灰色预测的概念2 2.1、灰色系统理论发展概况2 2.1.1、灰色系统理论的提出2 2.1.2、灰色系统理论的研究对象 2 2.1.3、灰色系统理论的应用范围 2 2.1.4、三种不确定性系统研究方法的比较分析 3 2.2、灰色系统的特点.4 2.3、常见灰色系统模型 5 2.4、灰色预测 (5) 3、简单的灰色预测——GM(1,1)预测6

灰色系统理论的研究 摘要:科学地预测尚未发生的事物是预测的根本目的和任务。无论个体还是组织,在制定和规划面向未来的策略过程中,预测都是必不可少的重要环节,它是科学决策的重要前提。在众多的预测方法中,灰色预测模型自开创以来一直深受许多学者的重视,它建模不需要太多的样本,不要求样本有较好的分布规律,计算量少而且有较强的适应性,灰色模型广泛运用于各种领域并取得了辉煌的成就。本文详细推导GM(1,1)模型,另外对灰关联度进行了进一步的改进,让改进的计 算式具有唯一性和规范性[]4 。通过给出的实例高校传染病发病率情况,建立了GM(1,1)预测模型, 并预测了1993年的传染病发病率。另外对传染病发病率较高的痢疾、肝炎、疟疾三种疾病做了关联度分析,发现痢疾与整个传染病关系最密切,而肝炎、疟疾与整个传染病的密切程度依次差些。 关键词:灰色预测模型;灰关联度;灰色系统理论

灰色系统理论的研究 GM(1,1)预测与关联度的拓展 1、引言 模型按照对研究对象的了解程度可分为:黑箱模型、白箱模型、灰箱模型。黑箱模型:信息缺乏,暗,混沌。白箱模型:信息完全,明朗,纯净。灰箱模型:信息不完全,若明若暗,多种成分。 1.1、研究背景 1.1.1、国内研究现状 灰色系统理论在我国提出至今已有二十几年的历史,它的应用引起了人们的广泛兴趣,不论是我国粮食发展决策中总产量预测模型,还是对湖北2000年宏观经济的发展趋势的量化分析,抑或是河南人民胜利渠的最佳灌溉决策,还是武汉汉阳火车对火车装车吨位的预测等,无一不是灰色预测系统理论杰出的硕果。 1.1.2、国外研究现状 灰色系统理论在国际上也产生了很大的影响,IBM公司要求将灰色系统软件加入其为全球服务的管理软件库。目前英国、美国、德国、日本、澳大利亚、加拿大、奥地利、俄罗斯等国家、地区及国际组织有许多学者从事灰色系统的研究和应用。 国内外84所高校开设了灰色系统课程,数百名博士、硕士研究生运用灰色系统的思想方法开展学科研究,撰写学位论文。国际、国内200多种学术期刊发表灰色系统论文,许多会议把灰色系统列为讨论专题,SCI、EI、ISTP、SA、MR、MA等纷纷检索我国灰色论著。 1.2、研究意义 邓聚龙教授提出灰色系统有着重要的意义: (1) 是系统思维和系统思想在方法论上的具体体现; (2) 是科学方法论上的重大进展, 具有原创性的科学意义和深远的学术影响,是对系统科学的新贡献。 2、灰色系统及灰色预测的概念 2.1、灰色系统理论发展概况 2.1.1、灰色系统理论的提出 著名学者邓聚龙教授于20世纪70年代末、80年代初提出。

第十章灰色模型介绍及应用 10.1灰色理论基本知识 10.1.1概言 10.1.2有关名词概念 10.1.3 GM建模机理 10.2灰色理论模型应用 10.2.1GM(1,1)模型的应用——污染物浓度问题 10.2.2 GM(1,1)残差模型的应用——油菜发病率问题 10.2.3GM模型在复杂问题中的应用——SARS 疫情问题 10.2.4 GM(1,n)模型的应用——因素相关问题 本章小结 思考题 推荐阅读书目

第十章灰色模型介绍及应用 10.1灰色理论基本知识 10.1.1概言 客观世界的很多实际问题,其内部的结构、参数以及特征并未全部被人们了解,人们不可能象研究白箱问题那样将其内部机理研究清楚,只能依据某种思维逻辑与推断来构造模型。对这类部分信息已知而部分信息未知的系统,我们称之为灰色系统。本章介绍的方法是从灰色系统的本征灰色出发,研究在信息大量缺乏或紊乱的情况下,如何对实际问题进行分析和解决。 灰色系统的研究对象是“部分信息已知、部分信息未知”的“小样本”、“贫信息”不确定性系统,它通过对“部分”已知信息的生成、开发实现对现实世界的确切描述和认识。信息不完全是“灰”的基本含义。 灰色系统理论建模的主要任务是根据具体灰色系统的行为特征数据,充分开发并利用不多的数据中的显信息和隐信息,寻找因素间或因素本身的数学关系。通常的办法是采用离散模型,建立一个按时间作逐段分析的模型。但是,离散模型只能对客观系统的发展做短期分析,适应不了从现在起做较长远的分析、规划、决策的要求。尽管连续系统的离散近似模型对许多工程应用来讲是有用的,但在某些研究领域中,人们却常常希望使用微分方程模型。事实上,微分方程的系统描述了我们所希望辨识的系统内部的物理或化学过程的本质。 目前,灰色系统理论已成功地应用于工程控制、经济管理、未来学研究、生态系统及复杂多变的农业系统中,并取得了可喜的成就。灰色系统理论有可能对社会、经济等抽象系统进行分析、建模、预测、决策和控制,它有可能成为人们认识客观系统改造客观系统的一个新型的理论工具。 10.1.2有关名词概念 灰数:一个信息不完全的数,称为灰数。 灰元:信息不完全或内容难以穷尽的元素,称为灰元。 灰关系:信息不完全或机制不明确的关系,称为灰关系。具有灰关系的因素是灰因素,灰因素之间的量化作用,称为灰关联。

建模机理 灰色理论模型应用 ——污染物浓度问题 GM( 1, 1)残差模型的应用——油菜发病率问题 GM模型在复杂问题中的应用——SARS 疫情问题 GM( 1, n)模型的应用——因素相关问题 本章小结 思考题 推荐阅读书目 第十章灰色模型介绍及应用 灰色理论基本知识 客观世界的很多实际问题,其内部的结构、参数以及特征并未全部被人们了解,人们 不可能象研究白箱问题那样将其内部机理研究清楚,只能依据某种思维逻辑与推断来构造模型。对这类部分信息已知而部分信息未知的系统,我们称之为灰色系统。本章介绍的方法是从灰色系统的本征灰色出发,研究在信息大量缺乏或紊乱的情况下,如何对实际问题进行分析和解决。 灰色系统的研究对象是“部分信息已知、部分信息未知”的“小样本”、“贫信息”不 确定性系统,它通过对“部分”已知信息的生成、开发实现对现实世界的确切描述和认识。 信息不完全是“灰”的基本含义。 灰色系统理论建模的主要任务是根据具体灰色系统的行为特征数据,充分开发并利用不多的数据中的显信息和隐信息,寻找因素间或因素本身的数学关系。通常的办法是采用离散模型,建立一个按时间作逐段分析的模型。但是,离散模型只能对客观系统的发展做短期分析,适应不了从现在起做较长远的分析、规划、决策的要求。尽管连续系统的离散近似模型对许多工程应用来讲是有用的,但在某些研究领域中,人们却常常希望使用微分方程模型。 事实上,微分方程的系统描述了我们所希望辨识的系统内部的物理或化学过程的本质。 目前,灰色系统理论已成功地应用于工程控制、经济管理、未来学研究、生态系统及复 杂多变的农业系统中,并取得了可喜的成就。灰色系统理论有可能对社会、经济等抽象系统

灰色系统预测 重点内容:灰色系统理论的产生和发展动态,灰色系统的基本概念,灰色系统与模糊数学、黑箱方法的区别,灰色系统预测GM (1,1)模型,GM(1,N)模型,灰色系统模型的检验,应用举例。 1灰色系统理论的产生和发展动态 1982邓聚龙发表第一篇中文论文《灰色控制系统》标志着灰色系统这一学科诞生。 1985灰色系统研究会成立,灰色系统相关研究发展迅速。 1989海洋出版社出版英文版《灰色系统论文集》,同年,英文版国际刊物《灰色系统》杂志正式创刊。目前,国际、国内200多种期刊发表灰色系统论文,许多国际会议把灰色系统列为讨论专题。国际著名检索已检索我国学者的灰色系统论著500多次。灰色系统理论已应用范围已拓展到工业、农业、社会、经济、能源、地质、石油等众多科学领域,成功地解决了生产、生活和科学研究中的大量实际问题,取得了显著成果。 2灰色系统的基本原理 2.1灰色系统的基本概念 我们将信息完全明确的系统称为白色系统,信息未知的系统称为黑色系统,部分信息明确、部分信息不明确的系统称为灰色系统。系统信息不完全的情况有以下四种: 1.元素信息不完全 2.结构信息不完全 3.边界信息不完全 4.运行行为信息不完全 2.2灰色系统与模糊数学、黑箱方法的区别 主要在于对系统内涵与外延处理态度不同; 研究对象内涵与外延的性质不同。 灰色系统着重外延明确、内涵不明确的对象,模糊数学着重外延不明确、内涵明确的对象。 “黑箱”方法着重系统外部行为数据的处理方法,是因果关系的两户方法,使扬外延而弃内涵的处理方法,而灰色系统方法是外延内涵均注重的方法。

2.3灰色系统的基本原理 公理1:差异信息原理。“差异”是信息,凡信息必有差异。 公理2:解的非唯一性原理。信息不完全,不明确地解是非唯一的。 公理3:最少信息原理。灰色系统理论的特点是充分开发利用已有的“最少信息”。 公理4:认知根据原理。信息是认知的根据。 公理5:新信息优先原理。新信息对认知的作用大于老信息。 公理6:灰性不灭原理。“信息不完全”是绝对的。 2.4灰色系统理论的主要内容 灰色系统理论经过10多年的发展,已基本建立起了一门新兴学科的结构体系,其主要内容包括以“灰色朦胧集”为基础的理论体系、以晦涩关联空间为依托的分析体系、以晦涩序列生成为基础的方法体系,以灰色模型(G ,M )为核心的模型体系。以系统分析、评估、建模、预测、决策、控制、优化为主体的技术体系。 灰色关联分析 灰色统计 灰色聚类 3灰色系统预测模型 灰色预测方法的特点表现在:首先是它把离散数据视为连续变量在其变化过程中所取的离散值,从而可利用微分方程式处理数据;而不直接使用原始数据而是由它产生累加生成数,对生成数列使用微分方程模型。这样,可以抵消大部分随机误差,显示出规律性。 3.1灰色系统理论的建模思想 下面举一个例子,说明灰色理论的建模思想。考虑4个数据,记为)4(),3(),2(),1() 0() 0() 0() 0(X X X X

2§ 3 灰色模型GM(1,N)及其应用 客观系统无论本征非灰,还是本征灰,一般都存在能量吸收、储存、释放等过程,加之生成数列一般都有较强的指数变化趋势,所以灰色系统理论指出用离散的随机数,经过生成变为随机性被显著削减的较有规律的生成数,这样便可以对变化过程做较长时间的描述,进而建立微分方程形式的模型。建模的实质是建立微分方程的系数。 设有N个数列 X i(0)(X i(0)(1),X(0)(2), ,X i(0)(n)) i 1,2, ,N 对X i(0)做累加生成,得到生成数列 2 n X i(1)(X i(0)(1), X i(0)(m), , X(0)(m)) m 1 m 1 (X i⑴(1), X i⑴(1) X i(0)(2), ,X i(1)(n 1) X i(0)(n)) i 1,2, ,N 我们将数列X i⑴的时刻k 1,2,小看作连续的变量t,而将数列X i(1)转而看成时间t的函 数X i(1)X i(1)(t)。如果数列X21),X31), ,X N1)对X1(1)的变化率产生影响,则可建立白化式微分 方程 ⑴ dX 1 (1) (1) (1) (1) aX 1 b1 X 2 b2 X 3 b N 1X N( 1) dt 这个微分方程模型记为GM( 1,N )。 方程(1)的参数列记为(a,b1,b2, b N 1)T,再设Y N(X1(0)(2),X1(0)(3), ,X;0)(n))T,将方程(1)按差分法离散,可得到线性方程组,形如 Y N B ? 按照最小二乘法,有 求出?后,微分方程(1)便确定了。 若n 1 N,则方程组(2)的方程个数少于未知数的个数,此时,B T B是奇异矩阵,我们(2) (3) ? (B T B) 1B T Y N 其中,利用两点滑动平均的思想,最终可得矩阵 1 (1) -(X1( )(1) 2X1(1)(2))(1) X 2(2)X N1)(2) 1 (1) B 2(X;)⑵X1(1)(3))⑴ X 2 (3)X N1)(3) T(X1(1)( n 1)X1(1)( n))(1) X 2(n)X N1)( n)

§2 灰色预测模型GM(1,1)及其应用 蠕变是材料在高温下的一个重要性能。处于高温状态下的材料长期受到载荷作用时,即使其载荷较低,并且在短时间的高温拉伸试验中材料不发生变形,但在此情况下仍会有微小的蠕变,极端的情况下,甚至会使材料发生破坏。高温材料多应用于各种车辆的发动机及冶金厂中各种设备上,如果因蠕变引起破坏,可能造成很大的事故。 为了保证设备的安全可靠,在某一使用温度下,预先知道该材料对不同载荷应力下断裂的时间是很重要的。过去,人们都是通过蠕变试验测量断裂时间。而做蠕变试验时,需要很长时间才能得到结果,即使通过试验得出的数据,也只是对某几个具体试样而言,存在很大的偶然性,不能代表普遍的规律。如果将实测的数据用灰色系统理论来处理,可以预测在某一温度下的任何载荷应力的断裂时间。 一、灰色预测模型GM (1,1) 建模步骤如下: (1)GM (1,1)代表一个白化形式的微分方程: u aX dt dX =+)1() 1( (1) 式中,u a ,是需要通过建模来求得的参数;) 1(X 是原始数据) 0(X 的累加生成(AGO )值。 (2)将同一数据列的前k 项元素累加后生成新数据列的第k 项元素,这就是数据处理。表示为: ∑==k n n X k X 1 )0() 1()()( (2) 不直接采用原始数据) 0(X 建模,而是将原始的、无规律的数据进行加工处理,使之变得较有规律, 然后利用生成后的数据列来分析建模,这正是灰色系统理论的特点之一。 (3)对GM (1,1),其数据矩阵为

?????? ? ? ?+--+-+-=1)]()1([5.01)]3()2([5.01)]2()1([5.0)1()1()1()1()1()1(N X N X X X X X B M M (3) 向量T N N X X X Y )](,),3(),2([)0()0()0(Λ= (4)作最小二乘估计,求参数u a , N T T Y B B B u a 1)(?-=??? ? ??=α (4) (5)建立时间响应函数,求微分方程(1)的解为 a u e a u X t X at +-=+-))1(()1(?)0()1( (5) 这就是要建立的灰色预测模型。 二、低合金钢铸件蠕变性能的灰色预测 下面是对Cr-mo-0.25V 低合金钢铸件高温蠕变情况利用灰色系统理论进行研究。在500℃的高温下,已测得此铸件在载荷分别为37,36,35,34,33(kg/mm 2)情况下的蠕变断裂时间见下表。 1、建立GM (1,1)模型 表中一次累加数列)() 1(k X 是根据断裂时间数列)()0(k X ,由公式(2)得到的。例如,

灰色预测模型理论及其 应用 Document number【980KGB-6898YT-769T8CB-246UT-18GG08】

灰色预测模型理论及其应用灰色系统理论认为对既含有已知信息又含有未知或非确定信息的系统进行预测,就是对在一定方位内变化的、与时间有关的灰色过程的预测. 尽管过程中所显示的现象是随机的、杂乱无章的,但毕竟是有序的、有界的,因此这一数据集合具备潜在的规律,灰色预测就是利用这种规律建立灰色模型对灰色系统进行预测. 灰色预测模型只需要较少的观测数据即可,这和时间序列分析,多元回归分析等需要较多数据的统计模型不一样. 因此,对于只有少量观测数据的项目来说,灰色预测是一种有用的工具.本文主要围绕灰色预测GM(1,1)模型及其应用进行展开。 一、灰色系统及灰色预测的概念 灰色系统 灰色系统产生于控制理论的研究中。 若一个系统的内部特征是完全已知的,即系统的信息是充足完全的,我们称之为白色系统。 若一个系统的内部信息是一无所知,一团漆黑,只能从它同外部的联系来观测研究,这种系统便是黑色系统。 灰色系统介于二者之间,灰色系统的一部分信息是已知的,一部分是未知的。 区别白色和灰色系统的重要标志是系统各因素间是否有确定的关系。 特点:灰色系统理论以“部分信息已知、部分信息未知”的“小样本”、“贫信息”不确定型系统的研究对象。 灰色预测 灰色系统分析方法是通过鉴别系统因素之间发展趋势的相似或相异程度,即进行关联度分析,并通过对原始数据的生成处理来寻求系统变动的规律。生成数据序列有较强的规律性,可以用它来建立相应的微分方程模型,从而预测事物未来的发展趋势和未来状态。灰色预测是用灰色模型GM(1,1)来进行定量分析的,通常分为以下几类: (1) 灰色时间序列预测。用等时距观测到的反映预测对象特征的一系列数量(如产量、销量、人口数量、存款数量、利率等)构造灰色预测模型,预测未来某一时刻的特征量,或者达到某特征量的时间。 (2) 畸变预测(灾变预测)。通过模型预测异常值出现的时刻,预测异常值什么时候出现在特定时区内。 (3) 波形预测,或称为拓扑预测,它是通过灰色模型预测事物未来变动的轨迹。 (4) 系统预测,是对系统行为特征指标建立一族相互关联的灰色预测理论模型,在预测系统整体变化的同时,预测系统各个环节的变化。 上述灰预测方法的共同特点是: (1)允许少数据预测; (2)允许对灰因果律事件进行预测,比如

灰色理论基本知识 概言 有关名词概念 建模机理 灰色理论模型应用 (1,1)模型的应用——污染物浓度问题 GM(1,1)残差模型的应用——油菜发病率问题 GM模型在复杂问题中的应用——SARS 疫情问题 GM(1,n)模型的应用——因素相关问题 本章小结 思考题 推荐阅读书目

第十章灰色模型介绍及应用 灰色理论基本知识 概言 客观世界的很多实际问题,其内部的结构、参数以及特征并未全部被人们了解,人们不可能象研究白箱问题那样将其内部机理研究清楚,只能依据某种思维逻辑与推断来构造模型。对这类部分信息已知而部分信息未知的系统,我们称之为灰色系统。本章介绍的方法是从灰色系统的本征灰色出发,研究在信息大量缺乏或紊乱的情况下,如何对实际问题进行分析和解决。 灰色系统的研究对象是“部分信息已知、部分信息未知”的“小样本”、“贫信息”不确定性系统,它通过对“部分”已知信息的生成、开发实现对现实世界的确切描述和认识。信息不完全是“灰”的基本含义。 灰色系统理论建模的主要任务是根据具体灰色系统的行为特征数据,充分开发并利用不多的数据中的显信息和隐信息,寻找因素间或因素本身的数学关系。通常的办法是采用离散模型,建立一个按时间作逐段分析的模型。但是,离散模型只能对客观系统的发展做短期分析,适应不了从现在起做较长远的分析、规划、决策的要求。尽管连续系统的离散近似模型对许多工程应用来讲是有用的,但在某些研究领域中,人们却常常希望使用微分方程模型。事实上,微分方程的系统描述了我们所希望辨识的系统内部的物理或化学过程的本质。 目前,灰色系统理论已成功地应用于工程控制、经济管理、未来学研究、生态系统及复杂多变的农业系统中,并取得了可喜的成就。灰色系统理论有可能对社会、经济等抽象系统进行分析、建模、预测、决策和控制,它有可能成为人们认识客观系统改造客观系统的一个新型的理论工具。 有关名词概念 灰数:一个信息不完全的数,称为灰数。 灰元:信息不完全或内容难以穷尽的元素,称为灰元。 灰关系:信息不完全或机制不明确的关系,称为灰关系。具有灰关系的因素是灰因素,灰因素之间的量化作用,称为灰关联。

灰色预测模型及应用论文Newly compiled on November 23, 2020

灰色系统理论的研究 GM(1,1)预测与关联度的拓展 摘要:科学地预测尚未发生的事物是预测的根本目的和任务。无论个体还是组织,在制定和规划面向未来的策略过程中,预测都是必不可少的重要环节,它是科学决策的重要前提。在众多的预测方法中,灰色预测模型自开创以来一直深受许多学者的重视,它建模不需要太多的样本,不要求样本有较好的分布规律,计算量少而且有较强的适应性,灰色模型广泛运用于各种领域并取得了辉煌的成就。本文详细推导GM(1,1)模型,另外对灰关联度进行了进一步的改进,让改进的计算式具有唯一性和规范性[]4。通过给出的实例高校传染病发病率情况,建立了GM(1,1)预测模型,并预测了1993年的传染病发病率。另外对传染病发病率较高的痢疾、肝炎、疟疾三种疾病做了关联度分析,发现痢疾与整个传染病关系最密切,而肝炎、疟疾与整个传染病的密切程度依次差些。 关键词:灰色预测模型;灰关联度;灰色系统理论 The Research of Grey System Theory GM(1,1) prediction and the expansion of correlation xueshenping Instructor: tangshaofang Abstract:Science has not yet occurred to predict the fundamental thing is to predict the purpose and mission. Whether individuals or organizations, in developing future-oriented strategy and planning process, the forecasts are essential and important aspect, which is an important prerequisite for scientific decision-making. Among the many prediction methods, the gray prediction model has been well received since its inception attention of many scholars, it does not require much sample modeling, does not require a better distribution of the sample was calculated, and has strong adaptability less , gray model widely used in various fields and has made brilliant achievements. This paper is derived GM (1,1) model, the other on the gray correlation was further improved, so that the improved formula is unique and normative. University by giving examples of the incidence of infectious diseases, establishing the GM (1,1) prediction model and predict the incidence of infectious diseases in 1993. In addition to the high incidence of infectious diseases, dysentery, hepatitis, malaria, made the three diseases, correlation analysis, found that dysentery is most closely with the infectious disease, and hepatitis, malaria and infectious diseases, the closeness of the order of hearing. Key words:Grey prediction model ; Grey relational grade;Grey system theory

相关主题
文本预览
相关文档 最新文档