当前位置:文档之家› 对称性、奇偶性、周期性

对称性、奇偶性、周期性

对称性、奇偶性、周期性
对称性、奇偶性、周期性

函数的周期性、奇偶性、对称性

一、函数周期性:,()()x I f x T f x ?∈+=满足,则称T 为函数的一个周期,且nT 也是它的周期。 1、()-()f x a f x +=?()f x 的最小正周期为2a 2、()(+)f x a f x b +=?()f x 的最小正周期为-b a 3、1()()f x a f x +=

?()f x 的最小正周期为2a 4、1()-()

f x a f x +=?()f x 的最小正周期为2a

二、函数对称性:(主要研究轴对称):在某一条轴的两侧图形完全一致,则称这条轴为函数的对称轴。 1、(-)()f x f x =?()f x 关于y 轴对称 2、(+)(-)f a x f a x =?()f x 关于(+)+(-)

==2

a x a x x a 对

称 3、(+)(-)f a x f b x =?()f x 关于(+)+(-)+=

=

22

a x

b x a b

x 对称

三、函数奇偶性

12()()340(0)0

f x f x f ??

-=-?

??

?*∈=?、定义域关于原点对称

、奇函数、图像关于原点对称、如果I ,则 12()()3f x f x y ??-=

???、定义域关于原点对称偶函数、、图像关于轴对称

题型一:函数奇偶性

1、若奇函数()3sin f x x c =+的定义域是[],a b ,则a b c ++=

2、已知2

()=+f x ax bx 是定义在[]-1,2a a 的偶函数,

那么+=a b 3、()(21)()

x

f x x x a =

+-是奇函数,则a =

4、2

()=+-sin +1f x x ax b x 是偶函数,则+=a b

5、设函数()y f x =是定义在R 上的奇函数,当0x ≤ 时,2

()2f x x x =-,则(1)f =

6、设函数()y f x =是定义在R 上的奇函数,当>0x 时,2

()+2f x x x =-,则()=f x

7、已知函数975

()=++-8f x x ax bx 且(-2)=10f ,求

(2)=f

8、已知()f x 和()g x 都是定义在R 上的奇函数,若

()=()+g()+2F x af x b x 且(-2)=5F ,则(2)=F

9、函数2

+()=

1+ax b

f x x 式定义在(-1,1)上的奇函数,满足12(

)=25

f 。(1)求()f x 的表达式 (2)证明()f x 是增函数(3)解不等式

(-1)+()<0f t f t

题型二、函数周期 性

1、已知函数()y f x =是定义在R 上的奇函数,且

(2)(2)f x f x +=-,则(4)f = 2、已知()f x 是定义在R 上的奇函数,且满足

(4)()f x f x +=,则(8)f =

3、()f x 是定义在

R

上的偶函数且

1

(2)-

()

f x f x += 当12x ≤≤时,()=-2f x x ,则(6.5)=f 4

)

(x f 有

(2)()f x f x +=-(0,1)x ∈且

时12

()2,(log 18)x

f x f =则的值为

5、函数()f x 对于任意实数x 满足条件

()()

12f x f x +=

,若()15,f =-则()()5f f = 6、()f x 是定义在R 上的以3为周期的奇函数,且满足(2)0f =,则方程()0f x =在区间(0,6)内解的个数的最小值是( ) A .2

B .3

C .4

D .7

7、已知()f x 是R 上最小正周期为2的周期函数,且当02x ≤<时,3

()f x x x =-,则函数()y f x =的图像在区间[]0,6上与x 轴的交点个数为:

A 、6

B 、7

C 、8

D 、.9 ★8、已知定义在R 上的奇函数)(x f ,满足

(4)()f x f x -=-,且在区间[0,2]上是增函数,则

A 、(25)(11)(80)f f f -<<

B 、(80)(11)(25)f f f <<-

C 、(11)(80)(25)f f f <<-

D 、(25)(80)(11)f f f -<<

★9、(上海) 设()g x 是定义在R 上,以1为周期

的函数,若函数()()f x x g x =+在区间[3,4]上的值

域为[2,5]-,则()f x 在区间[10,10]-上的为 .

★10、已知函数()y f x =是定义在R 上的周期函数,

周期5T =,函数()y f x =(11)x -≤≤是奇函数.

又知()y f x =在[0,1]上是一次函数,在[1,4]上是二次函数,且在2x =时函数取得最小值5-. (1)证明:(1)(4)0f f +=;

(2)求(),[1,4]y f x x =∈的解析式;

解:①∵()f x 是以5为周期,且在[1,1]-上是奇函

∴(1)(1)(51)(4)(1)(4)0f f f f f f =--=--=-∴+= ②当[1,4]x ∈时,可设2

()(2) 5 (0)f x a x a =--> 由(1)(4)0f f +=得2

2(12)5(42)50a a --+--= ∴2a =∴2()2(2)5(14)f x x x =--≤≤.

题型三:函数对称性

1、二次函数()y f x =满足(3)(3)f x f x +=-,且

()0f x =有两个实根12,x x 则12x x +等于( )

上是减函数,若()(2)f a f ≥,则实数a 的取值范围是

4、已知偶函数()f x 在[0,)+∞上单调递增,则满足

1

(21)()3f x f -<的x 取值范围是( )

A 、(13,23)

B 、[13,23)

C 、(12,23)

D 、[12,23

5、定义在R 上的偶函数()f x 满足:对任意的

1212,[0,)()x x x x ∈+∞≠,有

2121

()()

0f x f x x x -<-.

A 、(3)(2)(1)f f f <-<

B 、(1)(2)(3)f f f <-<

C 、(2)(1)(3)f f f -<<

D 、(3)(1)(2)f f f <<- ★6、已知定义在R 上的奇函数)(x f ,满足

(4)()f x f x -=-,且在区间[0,2]上是增函数,若方程

f(x)=m(m>0)在区间[]8,8-上有四个不同的根

1234,,,x x x x ,则1234_________.

x x x x +++=

解析:函数是以8为周期的周期函数,又因为)(x f 在区间[0,2]上是增函数,所以)(x f 在区间[-2,0]上也是增函数.如图所示,那么方程f(x)=m(m>0)在区间

[]8,8-上有四个不同的根1234,,,x x x x ,不妨设

1234

x x x x <<<由

1212x x +=-,

344x x +=所以 12341248

x x x x +++=-+=-

★5、已知偶函数()f x 在[0,)+∞上单调递增,则满

足()f f x <的x 的取值范围是 6、偶函数()log a f x x b =-在(,0)-∞是增函数则 A 、(1)(2)f a f b +=+ A 、(1)(2)f a f b +<+ C 、(1)(2)f a f b +>+ D 、不确定 7、已知函数2

()(0,)a

f x x x a R x

=+

≠∈ (1)讨论函数()f x 的奇偶性

(2)若()f x 在[2,)+∞上是增函数,求a 的范围。 8、已知偶函数()f x 的的定义域为[2,2]-,且在区间[0,2]内递减,若()(1)f m f <,求m 的范围 9、已知奇函数()f x 的的定义域为[2,2]-,且在区间[2,0]-内递减,求满足2

(1)(1)0f m f m -+-<的m 的取值范围。

10、已知定义域为R 的函数12()22

x x b

f x +-+=+是奇函

(1)求()f x 的表达式 (2)判断()f x 的单调性 (3)x R ?∈有2

2

(2)(2)0f t t f t k -+-<恒成立,求k 取值范围。

周期性与对称性

函数之周期性与对称性的理解 首先请大家辨析一下这几个等式关系: 2 )2()()62 )2()(5) 2()()4)2)()30 )2()(20 )2()(1=++=+-++-=+==++=+-+x f x f x f x f x f x f x f x f x f x f x f x f )()) 以上6个等式,其中1)、4)、5)是在讲对称性,2)、3)、6)是在讲述周期性。 在教学过程中,我们发现很多学生到高三了还无法自如地辨析,其实大家只需记住六字口诀就能加以辨析: “同周期、异对称” 1)、4)、5)中x 的系数相同,即为周期,2)、3)、6)中x 的系数相异,即为对称,这样我们就能迅速辨析哪些是在讲周期,哪些是对称。 那具体周期为多少?具体关于什么对称呢?这又是大家一个容易混淆的点。 一、下面先讲对称问题的理解,以1)为例: 0)2()(=+-+x f x f 我们要从本质上理解这个等式:令第一个括号里的1x x =,22x x =+-,则满足221=+x x , 即横坐标的和为2,那就意味着两个横坐标的中点为1=x 。同样的,令1)(y x f =,2)2(y x f =+-,则满足021=+y y ,即这两个点的纵坐标和为零,那就意味着纵坐标互为相反数。那么如果现在我换种方式描述,我说两个点),(),(2211y x y x 与,满足221=+x x ,021=+y y ,那 我们就可以在平面直角坐标系中把这两个点的对称关系画出来了。由图1我们可以很直观的看出来这两个点关于(1,0)中心对称,这两个点都在y=f(x)上,从而整个 函数关于(1,0)中心对称。 同样的,我们分析4),2121,2y y x x ==+,在图像上表示对称关系如下:A 、B 两点关于

函数对称性、周期性和奇偶性规律总结

( 函数对称性、周期性和奇偶性 关岭民中数学组 (一)、同一函数的函数的奇偶性与对称性:(奇偶性是一种特殊的对称性) 1、奇偶性:(1) 奇函数关于(0,0)对称,奇函数有关系式0)()(=-+x f x f (2)偶函数关于y (即x=0)轴对称,偶函数有关系式 )()(x f x f =- 2、奇偶性的拓展 : 同一函数的对称性 (1)函数的轴对称: 函数)(x f y =关于a x =对称?)()(x a f x a f -=+ > )()(x a f x a f -=+也可以写成)2()(x a f x f -= 或 )2()(x a f x f +=- 若写成:)()(x b f x a f -=+,则函数)(x f y =关于直线 2 2)()(b a x b x a x +=-++= 对称 证明:设点),(11y x 在)(x f y =上,通过)2()(x a f x f -=可知, )2()(111x a f x f y -==,即点)(),2(11x f y y x a =-也在上,而点 ),(11y x 与点),2(11y x a -关于x=a 对称。得证。 说明:关于a x =对称要求横坐标之和为2a ,纵坐标相等。 ∵1111(,)(,)a x y a x y +-与 关于x a =对称,∴函数)(x f y =关于a x =对称 ?)()(x a f x a f -=+ ∵1111(,)(2,)x y a x y -与关于x a =对称,∴函数)(x f y =关于a x =对称 ?)2()(x a f x f -= ∵1111(,)(2,)x y a x y -+与关于x a =对称,∴函数)(x f y =关于a x =对称 ?)2()(x a f x f +=- (2)函数的点对称: · 函数)(x f y =关于点),(b a 对称?b x a f x a f 2)()(=-++ b x f x a f 2)()2(=-++上述关系也可以写成 或 b x f x a f 2)()2(=+-

函数对称性与周期性关系

函数 对称性与周期性关系 【知识梳理】 一、 同一函数的周期性、对称性问题(即函数自身) 1、 周期性:对于函数)(x f y =,如果存在一个不为零的常数T ,使得当x 取定义域内的每一个值时,都有 )()(x f T x f =+都成立,那么就把函数)(x f y =叫做周期函数,不为零的常数T 叫做这个函数的周期。 如果所有的周期中存在着一个最小的正数,就把这个最小的正数叫做最小正周期。 2、 对称性定义(略),请用图形来理解。 3、 对称性: 我们知道:偶函数关于y (即x=0)轴对称,偶函数有关系式 )()(x f x f =- 奇函数关于(0,0)对称,奇函数有关系式0)()(=-+x f x f 上述关系式是否可以进行拓展?答案是肯定的 探讨:(1)函数)(x f y =关于a x =对称?)()(x a f x a f -=+ )()(x a f x a f -=+也可以写成)2()(x a f x f -= 或 )2()(x a f x f +=- 简证:设点),(11y x 在)(x f y =上,通过)2()(x a f x f -=可知,)2()(111x a f x f y -==,即 点)(),2(11x f y y x a =-也在上,而点),(11y x 与点),2(11y x a -关于x=a 对称。得证。 若写成:)()(x b f x a f -=+,函数)(x f y =关于直线2 2)()(b a x b x a x +=-++= 对称 (2)函数)(x f y =关于点),(b a 对称?b x a f x a f 2)()(=-++ b x f x a f 2)()2(=-++上述关系也可以写成 或 b x f x a f 2)()2(=+- 简证:设点),(11y x 在)(x f y =上,即)(11x f y =,通过b x f x a f 2)()2(=+-可知,

对称性、奇偶性和周期性的综合运用

函数的对称性、奇偶性和周期性的综合运用 一.函数的对称性 的图象自身对称 1、轴对称 对于函数f(x)的定义域内任意一个x, 称. . 推论1 . 推论2 . 2、中心对称 对于函数f(x)的定义域内任意一个x, . . . . 小结: 轴对称与中心对称的区别 轴对称:f(a+x)= f(b-x)中,自变量系数互为相反数(内反),函数值相等(差为零);

中心对称:f(a+x)= - f(b-x)+2c中,自变量系数互为相反数(内反),函数值和为定值.(二)两个函数的图象相互对称 1; 特别地,函数y=f(a+x)与y=f(a-x)关于直线x=0(y轴)轴对称; y轴对称; 求对称轴方法:令a+x=b-x,得 2、函数y=f(a+x)+c与y=-f(b-x)+d 特别地,函数y=f(a+x)与y=-f(a-x)关于点(0,0)(原点)中心对称. . 求对称中心方法:横坐标令a+x=b-x,得 二.函数的奇偶性 1. 如果对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x) (f(x) -f(-x)=0),那么 函数f(x)叫做偶函数.偶函数的图象关于y轴(x=0)对称. 推论:若y=f(x+a)为偶函数,则f(x+a)=f(-x+a),即y=f(x)的图像关于直线x=a轴对称. 2. 如果对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x) (f(x) +f(-x)=0),那么 函数f(x)叫做奇函数.奇函数的图象关于原点(0,0)对称. 推论:若y=f(x+a)为奇函数,则f(-x+a)=-f(a+x),即y=f(x) 的图像关于点(a,0)中心对称. 三.函数的周期性 1. 定义:对于定义域内的任意一个,都存在非零常数,使得

函数对称性、周期性和奇偶性的规律总结大全 .分解

函数对称性、周期性和奇偶性规律 一、 同一函数的周期性、对称性问题(即函数自身) 1、 周期性:对于函数 )(x f y =,如果存在一个不为零的常数 T ,使得当x 取定义域内的每一个值时,都有 )()(x f T x f =+都成立,那么就把函数)(x f y =叫做周期函数,不为零的常数T 叫做这个函数的周 期。如果所有的周期中存在着一个最小的正数,就把这个最小的正数叫做最小正周期。 2、 对称性定义(略),请用图形来理解。 3、 对称性: 我们知道:偶函数关于y (即x=0)轴对称,偶函数有关系式 )()(x f x f =- 奇函数关于(0,0)对称,奇函数有关系式 0)()(=-+x f x f 上述关系式是否可以进行拓展?答案是肯定的 探讨:(1)函数)(x f y =关于a x =对称?)()(x a f x a f -=+ )()(x a f x a f -=+也可以写成)2()(x a f x f -= 或 )2()(x a f x f +=- 简证:设点),(11y x 在 )(x f y =上,通过)2()(x a f x f -=可知,)2()(111x a f x f y -==, 即点)(),2(11x f y y x a =-也在上,而点),(11y x 与点),2(11y x a -关于x=a 对称。得证。 若写成:)()(x b f x a f -=+,函数)(x f y =关于直线2 2)()(b a x b x a x +=-++= 对称 (2)函数 )(x f y =关于点),(b a 对称?b x a f x a f 2)()(=-++ b x f x a f 2)()2(=-++上述关系也可以写成 或 b x f x a f 2)()2(=+- 简证:设点),(11y x 在 )(x f y =上,即) (11x f y =,通过 b x f x a f 2)()2(=+-可知, b x f x a f 2)()2(11=+-,所以 1 112)(2)2(y b x f b x a f -=-=-,所以点 )2,2(11y b x a --也在)(x f y =上,而点)2,2(11y b x a --与),(11y x 关于),(b a 对称。得 证。 若写成:c x b f x a f =-++)()(,函数)(x f y =关于点)2 ,2( c b a + 对称 (3)函数 )(x f y =关于点b y =对称:假设函数关于b y =对称,即关于任一个x 值,都有两个 y 值与其对应,显然这不符合函数的定义,故函数自身不可能关于b y =对称。但在曲线c(x,y)=0,则 有可能会出现关于 b y =对称,比如圆04),(22=-+=y x y x c 它会关于y=0对称。 4、 周期性: (1)函数 )(x f y =满足如下关系系,则T x f 2)(的周期为 A 、 )()(x f T x f -=+ B 、) (1 )()(1)(x f T x f x f T x f - =+= +或 C 、 )(1)(1)2(x f x f T x f -+=+或) (1) (1)2(x f x f T x f +-=+(等式右边加负号亦成立)

对称性和周期性性质总结

函数の对称性和周期性 一、几个重要の结论 (一)函数图象本身の对称性(自身对称) 1、函数 )(x f y =满足 )()(x T f x T f -=+(T 为常数)の充要条件是 )(x f y =の图象关于直线 T x =对称。 2、函数 )(x f y =满足 )2()(x T f x f -=(T 为常数)の充要条件是 )(x f y =の图象关于直线 T x =对称。 3、函数 )(x f y =满足 )()(x b f x a f -=+の充要条件是 )(x f y =图象关于直线 22)()(b a x b x a x +=-++=对称。特殊地,如果a=0,b=0,则其关于x=0即关于y 轴对称,此时)()(x b f x a f -=+变为f(x)=f(-x),其实就是偶函数。 4、如果函数 )(x f y =满足 )()(11x T f x T f -=+且 )()(22x T f x T f -=+,( 1T 和 2T 是不相等の常数),则 )(x f y =是以为 )(212T T -为周期の周期函数。 5、如果偶函数 )(x f y =满足 )()(x T f x T f -=+( 0≠T ),则函数 )(x f y =是以2T 为周期の周期性函数。 6、如果奇函数 )(x f y =满足 )()(x T f x T f -=+( 0≠T ),则函数 )(x f y =是以4T 为周期の周期性函数。

我当初の总结是:函数对称包涵两种:一是点对称,而是线对称,比如偶函数属于线对称,奇函数属于点对称,奇偶函数对称都是关于0.即偶函数关于x=0对称,奇函数关于(0,0)对称。那么如果一个函数是双重对称,那么该函数就是周期函数,那么什么叫多重对称呢?且看下面列子你就明白了: 1, 若函数关于两条线x=a 和x=b 对称(这就叫双重对称),那么该函数一定是周 期函数,且周期为2|b-a|。 2, 若函数关于两个点(a,0)和(b,0)(注都是x 轴上の点),那么该函数一定是 周期函数,且周期为2|b-a|。 3, 若函数关于一点(a,0)和一条线x=b 对称,那么该函数一定是周期函数,且 周期为4|b-a|。 就是说同类对称为2倍,异类对称为4倍。 结合上面4,5,6条你还会发现这种双重性质,4条为周期周期为2倍,5条为线(偶函数)周期为2倍。(仅仅这里不符合异类为4倍,我再三确认后没错),6条为点(奇函数)周期为4倍。 (注意:上面指の是一个函数) (二)两个函数の图象对称性(相互对称) 1、曲线 )(x f y =与 )(x f y -=关于X 轴对称。(这是两条不同曲线) 2、曲线 )(x f y =与 )(x f y -=关于Y 轴对称。 3、曲线 )(x f y =与 )2(x a f y -=关于直线 a x =对称。 4、曲线 0),(=y x f 关于直线 b x =对称曲线为 0)2,(=-y b x f 。

函数的周期性和对称性(解析版)

专题二:函数的周期性和对称性 【高考地位】 函数的周期性和对称性是函数的两个基本性质。在高中数学中,研究一个函数,首看定义域、值域,然后就要研究对称性(中心对称、轴对称),并且在高考中也经常考查函数的对称性和周期性,以及它们之间的联系。因此,我们应该掌握一些简单常见的几类函数的周期性与对称性的基本方法。 【方法点评】 一、函数的周期性求法 使用情景:几类特殊函数类型 解题模板:第一步 合理利用已知函数关系并进行适当地变形; 第二步 准确求出函数的周期性; 第三步 运用函数的周期性求解实际问题. 例1 (1) 函数)(x f 对于任意实数x 满足条件) (1 )2(x f x f = +,若5)1(-=f ,则=))5((f f ( ) A .5- B .5 C .51 D .5 1- 【答案】D 考点:函数的周期性. (2) 已知()x f 在R 上是奇函数,且满足()()x f x f -=+5,当()5,0∈x 时,()x x x f -=2 ,则()=2016f ( ) A 、-12 B 、-16 C 、-20 D 、0 【答案】A 试题分析:因为()()5f x f x +=-,所以()()()105f x f x f x +=-+=,()f x 的周期为10,因此 ()()()()20164416412f f f =-=-=--=-,故选A . 考点:1、函数的奇偶性;2、函数的解析式及单调性. 【点评】(1)函数的周期性反映了函数在整个定义域上的性质.对函数周期性的考查,主要涉及函数周期性的判断,利用函数周期性求值.(2)求函数周期的方法 【变式演练1】已知定义在R 上的函数()f x 满足()()f x f x -=-,(3)()f x f x -=,则(2019)f =( ) A .3- B .0 C .1 D .3 【答案】B

函数的对称性与周期性

函数的对称性与周期性 一、相关结论 1.关于x 轴、y 轴、原点、x y =对称 2.周期性(内同) ① 若)()(x f T x f =+(0≠T ),则)(x f 为周期函数,T 为一个周期。 ② 若)()(b x f a x f +=+(b a ≠),则)(x f 为周期函数,||a b -为一个周期。 ③ 若)()(x f a x f -=+(0≠a ),则)(x f 为周期函数,a 2为一个周期。 ④ 若) (1 )(x f a x f =+(0≠a ),则)(x f 为周期函数,a 2为一个周期。 3.自对称性(内反) ①若)()(x b f x a f -=+,则)(x f 的图像关于直线2 b a x += 对称;特别地,若)()(x a f x a f -=+,则)(x f 的图像关于直线a x =对称;0=a 为偶函数。 ②若)()(x b f x a f --=+,则)(x f 的图像关于点)0,2 ( b a +对称;特别地,若)()(x a f x a f --=+,则)(x f 的图像关于点)0,(a 对称;0=a 为奇函数。 ③若c x b f x a f =-++)()(,则)(x f 的图像关于点)2 ,2(c b a +对称。 4.互对称性 ①函数)(x a f y +=与函数)(x b f y -=的图像关于直线2a b x -=对称; ②函数)(x a f y +=与函数)(x b f y --=的图像关于点)0,2 (a b -对称; ③函数)(x a f y +=与函数)(x a f y -=的图像关于直线0=x 对称。 5. 对称性与周期性的关系 ①若)(x f 的图像有两条对称轴a x =和b x =(b a ≠),则)(x f 为周期函数, ||2a b -为一个周期。 ②若)(x f 的图像有两个对称中心)0,(a 和)0,(b (b a ≠),则)(x f 为周期函数, ||2a b -为一个周期。 若)(x f 的图像有一条对称轴a x =和一个对称中心)0,(b (b a ≠),则)(x f 为周期函 数,||4a b -为一个周期。

函数对称性、周期性和奇偶性规律总结

函数对称性、周期性和奇偶性规律总结

注:换种说法:)(x f y =与()()y g x f x ==-若满足)()(x g x f -=,即它们关于0=y 对称。 2、()y f x =与()y f x =-关于Y 轴对称。 证明:设()y f x =上任一点为11(,)x y 则11()y f x =,所以()y f x =-经过点11(,)x y - ∵11(,)x y 与11(,)x y -关于Y 轴对称,∴()y f x =与()y f x =-关于Y 轴对称。 注:因为11(,)x y -代入()y f x =-得111(())()y f x f x =--=所以()y f x =-经过点11(,)x y - 换种说法:)(x f y =与()()y g x f x ==-若满足)()(x g x f -=,即它们关于0=x 对称。 ()(())()g x f x f x -=--= 3、()y f x =与(2)y f a x =-关于直线x a = 对称。 证明:设()y f x =上任一点为11(,)x y 则11()y f x =,所以(2)y f a x =-经过点11(2,)a x y - ∵11(,)x y 与11(2,)a x y -关于x a =轴对称,∴()y f x =与(2)y f a x =-关 于直线x a = 对称。 注:换种说法:)(x f y =与()(2)y g x f a x ==-若满足)2()(x a g x f -=,即它们关于a x =对称。 4、)(x f y =与)(2x f a y -=关于直线a y =对称。 证明:设()y f x =上任一点为11(,)x y 则11()y f x =,所以)(2x f a y -=经过点11(,2)x a y - ∵11(,)x y 与11(,2)x a y -关于y a =轴对称,∴)(x f y =与)(2x f a y -=关于直线a y =对称. 注:换种说法:)(x f y =与()2()y g x a f x ==-若满足a x g x f 2)()(=+,即它们关于a y =对称。 5、)2(2)(x a f b y x f y --==与关于点(a,b)对称。 证明:设()y f x =上任一点为11(,)x y 则11()y f x =,所以2(2)y b f a x =--经过点11(2,2)a x b y --

7.周期性与对称性

7.函数的周期性和对称性 题型1:函数周期性与对称性 例1:函数f x 对于任意实数x 满足条件1 2f x f x ,若15,f 则 5f f _____________ 例2:设函数()y f x 对任意实数t 都有()(2)f t f t ,若当1x 时,24y x ,则当1x 时,___________. y 例3:设函数()f x 定义在实数集上,它的图像关于直线 1x 对称,且当1x ≥时,()31x f x ,则1 32,,323f f f 的大小关系是____________ 例4: 已知函数)(x f 和)(x g 的图象关于原点对称,且 x x x f 2)(2⑴求函数)(x g 的解析式;⑵设() 0()()0f x x h x g x x ,作出()h x 的图象,并写出它的的单调区间. 周 期 性 定义 设y = f(x ),x I,若存在非零常数T,使得对任意x I,都有f(x +T)=f(x ), 则称f(x )是周期函数,T 是其一个周期. 性质10定义性质可转化求值; 20图象性质:呈周期性变化; 30 nT (n ∈N*)也是f(x )的周期. 判定 10定义法(叠代求周期); 20图象法:图象是否呈周期性变化. 对 称 性 类型直线对称(函数满足()()f a x f a x ,则其图像关于直线x a 对称) 点对称(函数满足()()2f m x f m x n ,则其图像关于点(,)m n 对称) 特殊奇(偶)函数图象关于原点(y 轴对称);

〖练习〗 1.函数f x 对于任意实数x 满足条件1)(2x f x f ,若15,f 则5f __________ 2.在R 上定义的函数 x f 是奇函数,且x f x f 2,若x f 在区间2,1是减函数,则函数x f 在区间2,3上是_____(增/减)函数,区间4,3上是________(增/减)函数. 3.把下面不完整的命题补充完整,并使之成为真命题: 若函数x x f 2log 3)(的图象与)(x g 的图象关于____对称,则函数)(x g =______(注:填上你认为可以成为真命题的一件情形即可,不必考虑所有可能的情形) 题型2:函数性质的综合应用 例1:若()f x 在定义域1,1内是减函数,又当,1,1a b 且0a b 时都有 ()()0 f a f b . (1)判断()f x 的奇偶性; (2)求不等式2(1)(1)0f m f m 的解集. 例2:已知定义在2,2上的偶函数()f x 在区间0,2上单调递增,则满足(21)f x < ()f x 的x 取值范围是_________.

(完整版)常见函数对称性和周期性

(一)函数)(x f y =图象本身的对称性(自身对称) 若()()f x a f x b +=±+,则()f x 具有周期性;若()()f a x f b x +=±-,则()f x 具有对称性:“内同表示周期性,内反表示对称性”。 推论1:)()(x a f x a f -=+ ?)(x f y =的图象关于直线a x =对称 推论2、)2()(x a f x f -= ?)(x f y =的图象关于直线a x =对称 推论3、)2()(x a f x f +=- ?)(x f y =的图象关于直线a x =对称 推论1、b x a f x a f 2)()(=-++ ?)(x f y =的图象关于点),(b a 对称 推论2、b x a f x f 2)2()(=-+ ?)(x f y =的图象关于点),(b a 对称 推论3、b x a f x f 2)2()(=++- ?)(x f y =的图象关于点),(b a 对称 (二)两个函数的图象对称性(相互对称)(利用解析几何中的对称曲线轨迹方程理解) 1、偶函数)(x f y =与)(x f y -=图象关于Y 轴对称 2、奇函数)(x f y =与)(x f y --=图象关于原点对称函数 3、函数)(x f y =与()y f x =-图象关于X 轴对称 4、互为反函数)(x f y =与函数1()y f x -=图象关于直线y x =对称 推论1:函数)(x a f y +=与)(x a f y -=图象关于直线0=x 对称 推论2:函数)(x f y =与)2(x a f y -= 图象关于直线a x =对称 推论3:函数)(x f y -=与)2(x a f y +=图象关于直线a x -=对称

函数对称性与周期性几个重要结论论述.doc

函数对称性与周期性几个重要结论 一、几个重要的结论 (一)函数图象本身的对称性(自身对称) 1、函数 )(x f y =满足 )()(x T f x T f -=+(T 为常数)的充要条件是 )(x f y =的图象关于直线 T x =对称。 2、函数 )(x f y =满足 )2()(x T f x f -=(T 为常数)的充要条件是 )(x f y =的图象关于直线 T x =对称。 3、函数 )(x f y =满足 )()(x b f x a f -=+的充要条件是 )(x f y =图象关于直线 22)()(b a x b x a x += -++= 对称。 4、如果函数 )(x f y =满足 )()(11x T f x T f -=+且 )()(22x T f x T f -=+,( 1T 和 2T 是不相等的常数),则 )(x f y =是以为 )(212T T -为周期的周期函数。 5、如果奇函数 )(x f y =满足 )()(x T f x T f -=+( 0≠T ),则函数 )(x f y =是以4T 为周期的周期性函数。 6、如果偶函数 )(x f y =满足 )()(x T f x T f -=+( 0≠T ),则函数 )(x f y =是以2T 为周期的周期性函数。 (二)两个函数的图象对称性(相互对称)(利用解析几何中的对称曲线轨迹方程理解) 1、曲线 )(x f y =与 )(x f y -=关于X 轴对称。 2、曲线 )(x f y =与 )(x f y -=关于Y 轴对称。 3、曲线 )(x f y =与 )2(x a f y -=关于直线 a x =对称。 4、曲线 0),(=y x f 关于直线 b x =对称曲线为 0)2,(=-y b x f 。 5、曲线 0),(=y x f 关于直线 0=++c y x 对称曲线为 0),(=----c x c y f 。 6、曲线 0),(=y x f 关于直线 0=+-c y x 对称曲线为 0),(=+-c x c y f 。 7、曲线 0),(=y x f 关于点 ),(b a P 对称曲线为 0)2,2(=--y b x a f 。 二、试试看,练练笔 1、定义在实数集上的奇函数 )(x f 恒满足 )1()1(x f x f -=+,且 )0,1(-∈x 时, 51 2)(+ =x x f ,则 =)20(log 2f ________。 2、已知函数 )(x f y =满足 0)2()(=-+x f x f ,则 )(x f y =图象关于__________对

函数的周期性与对称性

函数的周期性与对称性 1、函数的周期性 若a 是非零常数,若对于函数y =f(x)定义域内的任一变量x 点有下列条件之一成立,则函数y =f(x)是周期函数,且2|a|是它的一个周期。 ①f(x+a)=f(x -a) ②f(x+a)=-f(x) ③f(x+a)=1/f(x) ④f(x+a)=-1/f(x) 2、函数的对称性与周期性 性质5 若函数y =f(x)同时关于直线x =a 与x =b 轴对称,则函数f(x)必为周期函数,且T =2|a -b| 性质6、若函数y =f(x)同时关于点(a ,0)与点(b ,0)中心对称,则函数f(x)必为周期函数,且T =2|a -b| 性质7、若函数y =f(x)既关于点(a ,0)中心对称,又关于直线x =b 轴对称,则函数f(x)必为周期函数,且T =4|a -b| 3.函数)(x f y =图象本身的对称性(自身对称) 若()()f x a f x b +=±+,则()f x 具有周期性;若()()f a x f b x +=±-,则()f x 具有对称性:“内同表示周期性,内反表示对称性”。 1、)()(x b f x a f -=+ ?)(x f y =图象关于直线2 2)()(b a x b x a x += -++= 对称 推论1:)()(x a f x a f -=+ ?)(x f y =的图象关于直线a x =对称 推论2、)2()(x a f x f -= ?)(x f y =的图象关于直线a x =对称 推论3、)2()(x a f x f +=- ?)(x f y =的图象关于直线a x =对称 2、c x b f x a f 2)()(=-++ ?)(x f y =的图象关于点),2 ( c b a +对称 推论1、 b x a f x a f 2)()(=-++ ?)(x f y =的图象关于点),(b a 对称 推论2、b x a f x f 2)2()(=-+ ?)(x f y =的图象关于点),(b a 对称 推论3、b x a f x f 2)2()(=++- ?)(x f y =的图象关于点),(b a 对称 例题分析: 1.设)(x f 是),(+∞-∞上的奇函数,)()2(x f x f -=+,当10≤≤x 时,x x f =)(,则 )5.47(f 等于 ( ) (A )0.5 (B )5.0- (C )1.5 (D )5.1- 2、(山东)已知定义在R 上的奇函数)(x f 满足(2)()f x f x +=-,则(6)f 的值为( ) A .-1 B .0 C .1 D .2 3.设)(x f 是定义在R 上的奇函数,(1)2,(1)(6),f f x f x =+=+求(10).f 4.函数)(x f 对于任意实数x 满足条件1 (2)() f x f x += ,若(1)5f =-,则[(5)]f f =___

函数的单调性奇偶性和周期性和对称性之间的关系

函 数 的 对 称 性 一个函数的自对称 定义1、定义域为R 的函数()f x ,若满足()()f a x f a x +=-或是(2)()f a x f x -=,图像特征函数自身关于x a =对称。就是该函数的对称轴是x a =。 定义2、定义域为R 的函数()f x ,若满足()()f a x f a x +=--或是(2)()f a x f x -=-,图像特征函数自身关于点(,0)a 对称。就是该函数的对称点是(,0)a 。 定义3、定义域为R 的函数()f x ,若满足()()f a x f b x +=-,图像特征函数自身关于2a b x += 对称。就是该函数的对称轴是2 a b x +=。 定义2、定义域为R 的函数()f x ,若满足()()f a x f b x +=--,图像特征函数自身关于点( ,0)2a b +对称。就是该函数的对称点是(,0)2 a b +。 还可以推广为()()f a x m f b x +=-- 含义:函数()f x 关于( ,)22a b m +这个点对称。 周期性:若()f x 对于定义域中的任意x 均有()()f x T f x +=,则()f x 是周期函数. 它的变形有: (1)f(x-1)=f(x+1) (2)f(x+2)=-f(x);(3)f(x+2)=1() f x - (4)f(x+3) +f(x)=1 (5)f(x+1)=) (11)(x f x f -+ 特征是x 的符号相同。 习 题 1、已知()f x 是R 上的偶函数,且f(-x-1)=f(-x+1) 当[0,1]x ∈时,()1f x x =-+,求当[5,7]x ∈时,()f x 的解析式。 2、定义域为R 的()f x 既是奇函数又是周期函数,T 是它的一个周期.问:区间[,]T T -上它有几个根?(财富:奇函数的半周期也是0点) 3、定义在R 上的偶函数()f x 以3为周期,且(2)0f =,则方程()0f x =在区间(0,6) 上有几个根? 4、()f x 是R 上的偶函数,若将()f x 的图象向右平移一个单位又得到一个奇函数,且(2)1f =-,求(1)(2)(3)(2008)f f f f ++++L 的值. 5、定义在R 上的函数()f x 满足5()()02 f x f x ++=且5 ()4 f x +为奇函数,下列结论谁正确? ①函数()f x 的最小正周期是52;②函数()f x 的图象关于点(5,04)对称;③函数()f x 的图象关于52 x =对称;④函数()f x 的最大值为5()2f . 6、函数()f x 的定义域为R ,若(1)f x +与(1)f x -都是奇函数,则( )(A) ()f x 是偶函数; (B) ()f x 是奇函数 (C) ()(2)f x f x =+ ; (D) (3)f x +是奇函数 例4举例子,构造新函数,用定义,平移,伸缩处理四道抽象函数题。 (1)f(x)是奇函数,则有f(-x+a)= f(x+a)是奇函数,则f(-x+a)= (2)函数f(x-1)是偶函数,求y=f(x)的对称轴。

函数对称性与周期性几个重要结论赏析

函数对称性与周期性几个重要结论赏析 对称性和周期性是函数的两个重要性质,下面总结这两个性质的几个重要结论及运用它们解决抽象型函数的有关习题。 一、 几个重要的结论 (一)函数图象本身的对称性(自身对称) 1、函数)(x f y =满足)()(x T f x T f -=+(T 为常数)的充要条件是)(x f y =的图象关于直线T x =对称。 2、函数)(x f y =满足)2()(x T f x f -=(T 为常数)的充要条件是)(x f y =的图象关于直线T x =对称。 3、函数)(x f y =满足)()(x b f x a f -=+的充要条件是)(x f y =图象关于直线2 2)()(b a x b x a x +=-++=对称。 4、如果函数 )(x f y =满足)()(11x T f x T f -=+且)()(22x T f x T f -=+,(1T 和2T 是不相等的常数),则)(x f y =是以为)(212T T -为周期的周期函数。 5、如果奇函数)(x f y =满足)()(x T f x T f -=+(0≠T ),则函数)(x f y =是以4T 为周期的周期性函数。 6、如果偶函数)(x f y =满足)()(x T f x T f -=+(0≠T ),则函数)(x f y =是以2T 为周期的周期性函数。 (二)两个函数的图象对称性(相互对称)(利用解析几何中的对称曲线轨迹方程理解) 1、曲线 )(x f y =与)(x f y -=关于X 轴对称。 2、曲线)(x f y =与)(x f y -=关于Y 轴对称。 3、曲线)(x f y =与)2(x a f y -=关于直线a x =对称。 4、曲线0),(=y x f 关于直线b x =对称曲线为0)2,(=-y b x f 。 5、曲线0),(=y x f 关于直线0=++c y x 对称曲线为0),(=----c x c y f 。 6、曲线0),(=y x f 关于直线0=+-c y x 对称曲线为0),(=+-c x c y f 。 7、曲线0),(=y x f 关于点),(b a P 对称曲线为0)2,2(=--y b x a f 。 二、试试看,练练笔 1、定义在实数集上的奇函数 )(x f 恒满足)1()1(x f x f -=+,且)0,1(-∈x 时, 512)(+=x x f ,则=)20(log 2f ________。 2、已知函数)(x f y =满足0)2()(=-+x f x f ,则)(x f y =图象关于__________对称。 3、函数)1(-=x f y 与函数)1(x f y -=的图象关于关于__________对称。 4、设函数)(x f y =的定义域为R ,且满足)1()1(x f x f -=-,则)(x f y =的图象关于__________ 对称。 5、设函数)(x f y =的定义域为R ,且满足)1()1(x f x f -=+,则)1(+=x f y 的图象关于__________对称。)(x f y =图象关于__________对称。 6、设)(x f y =的定义域为R ,且对任意R x ∈,有)2()21(x f x f =-,则)2(x f y =图象关于__________对称,)(x f y =关于__________对称。 7、已知函数)(x f y =对一切实数x 满足)4()2(x f x f +=-,且方程0)(=x f 有5个实根,则这5个实根之和为( ) A 、5 B 、10 C 、15 D 、18 8、设函数 )(x f y =的定义域为R ,则下列命题中,①若)(x f y =是偶函数,则)2(+=x f y 图象

函数奇偶性、对称性与周期性有关结论

函数奇偶性、对称性与周期性 奇偶性、对称性和周期性是函数的重要性质,下面总结关于它们的一些重要结论及运用它们解决抽象型函数的有关习题。 一、几个重要的结论 (一)函数)(x f y =图象本身的对称性(自身对称) 2、)2()(x a f x f -=?)(x f y =的图象关于直线a x =对称。 3、)2()(x a f x f +=-?)(x f y =的图象关于直线a x =对称。 4、)()(x b f x a f -=+?)(x f y =的图象关于直线2 2)()(b a x b x a x +=-++=对称。 5、b x a f x a f 2)()(=-++?)(x f y =的图象关于点),(b a 对称。 6、b x a f x f 2)2()(=-+?)(x f y =的图象关于点),(b a 对称。 7、b x a f x f 2)2()(=++-?)(x f y =的图象关于点),(b a 对称。 8、c x b f x a f 2)()(=-++?)(x f y =的图象关于点),2 (c b a +对称。 (二)两个函数的图象对称性(相互对称)(利用解析几何中的对称曲线轨迹方程理解) 1、函数)(x a f y +=与)(x a f y -=图象关于直线0=x 对称。 2、函数)(x f y =与)2(x a f y -=图象关于直线a x =对称 3、函数)(x f y -=与)2(x a f y +=图象关于直线a x -=对称 4、函数)(x a f y +=与)(x b f y -=图象关于直线0)()(=--+x b x a 对称 即直线2 a b x -=对称 5、函数)(x f y =与)(x f y -=图象关于X 轴对称。 6、函数)(x f y =与)(x f y -=图象关于Y 轴对称。 7、函数)(x f y =与)(x f y --=图象关于原点对称

函数单调性、奇偶性、对称性、周期性解析

函数单调性、奇偶性、对称性、周期性解析 一、函数的单调性 1.单调函数与严格单调函数 设()f x 为定义在I 上的函数,若对任何12,x x I ∈,当12x x <时,总有 (ⅰ) )()(21x x f f ≤,则称()f x 为I 上的增函数,特别当且仅当严格不等式12()()f x f x <成立时称()f x 为I 上的严格单调递增函数。 (ⅱ) )()(21x x f f ≥,则称()f x 为I 上的减函数,特别当且仅当严格不等式12()()f x f x >成立时称()f x 为I 上的严格单调递减函数。 2.函数单调的充要条件 ★若()f x 为区间I 上的单调递增函数,1x 、2x 为区间内两任意值,那么有: 1212 ()() 0f f x x x x ->-或1212)[()()]0f f x x x x -->( ★若()f x 为区间I 上的单调递减函数,1x 、2x 为区间内两任意值,那么有: 121 2 ()() 0f f x x x x -<-或1212)[()()]0f f x x x x --<( 3.函数单调性的判断(证明) (1)作差法(定义法) (2)作商法 4复合函数的单调性的判定 对于函数()y f u =和()u g x =,如果函数()u g x =在区间(,)a b 上具有单调性,当 (),x a b ∈时(),u m n ∈,且函数()y f u =在区间(,)m n 上也具有单调性,则复合函数 (())y f g x =在区间(),a b 具有单调性。 5.由单调函数的四则运算所得到的函数的单调性的判断 对于两个单调函数()f x 和()g x ,若它们的定义域分别为I 和J ,且I J ?≠?: (1)当()f x 和()g x 具有相同的增减性时,函数1()()()F x f x g x =+、2()()()F x f x g x =?的增减性与()f x (或()g x )相同,3()()()F x f x g x =-、4() ()(()0)() f x F x g x g x = ≠的增减性

函数的周期性与对称性

第5炼函数得对称性与周期性 一、基础知识 (一)函数得对称性 1、对定义域得要求:无论就是轴对称还就是中心对称,均要求函数得定义域要关于对称轴(或对称中心)对称 2、轴对称得等价描述: (1)关于轴对称(当时,恰好就就是偶函数) (2)关于轴对称 在已知对称轴得情况下,构造形如得等式只需注意两点,一就是等式两侧前面得符号相同,且括号内前面得符号相反;二就是得取值保证为所给对称轴即可。例如:关于轴对称,或得到均可,只就是在求函数值方面,一侧就是更为方便 (3)就是偶函数,则,进而可得到:关于轴对称。 ①要注意偶函数就是指自变量取相反数,函数值相等,所以在中,仅就是括号中得一部分,偶函数只就是指其中得取相反数时,函数值相等,即,要与以下得命题区分: 若就是偶函数,则:就是偶函数中得占据整个括号,所以就是指括号内取相反数,则函数值相等,所以有 ②本结论也可通过图像变换来理解,就是偶函数,则关于轴对称,而可视为平移了个单位(方向由得符号决定),所以关于对称。 在已知对称中心得情况下,构造形如得等式同样需注意两点,一就是等式两侧与前面得符号均相反;二就是得取值保证为所给对称中心即可。例如:关于中心对称,或得到均可,同样在求函数值方面,一侧就是更为方便 (3)就是奇函数,则,进而可得到:关于中心对称。 ①要注意奇函数就是指自变量取相反数,函数值相反,所以在中,仅就是括号中得一部分,奇函数只就是指其中得取相反数时,函数值相反,即,要与以下得命题区分: 若就是奇函数,则:就是奇函数中得占据整个括号,所以就是指括号内取相反数,则函数值相反,所以有 ②本结论也可通过图像变换来理解,就是奇函数,则关于中心对称,而可视为平移了个单位(方向由得符号决定),所以关于对称。 4、对称性得作用:最突出得作用为“知一半而得全部”,即一旦函数具备对称性,则只需要分

相关主题
文本预览
相关文档 最新文档