当前位置:文档之家› 实验5 直线段的裁剪

实验5 直线段的裁剪

实验5 直线段的裁剪
实验5 直线段的裁剪

实验五裁剪

一、实验学时:2学时

二、实验类型:设计型实验

三、实验目的和要求:

1、掌握二维图形的基本裁剪算法,如编码算法、Liang-Barsky算法;

四、实验内容:

1、采用编码算法或梁友栋-Barsky算法,编程实现

1)单击鼠标左键,运行窗口出现裁剪窗口及待裁剪线段,效果图如左下图;

2)单击鼠标右键,窗口呈现出裁剪后的裁剪窗口及裁剪线段,效果图如右下图。

五、建立工程步骤

1、新建一个项目。

选择菜单File中的New选项,弹出一个分页的对话框,选中页Projects中的Win32 Console Application项,然后填入你自己的Project name,如Test,回车即可。VC为你创建一个工作区(WorkSpace),你的项目Test就放在这个工作区里。

2、为项目添加文件

为了使用glut,我们需要:

(1)把两个Lib文件:glut32.lib、glut.lib加入到c:\program files\Microsoft Visual Studio\vc98\lib目录中。

(2)把头文件glut.h加入到c:\program files\Microsoft Visual Studio\vc98\include\GL目录中。

(3)把两个动态链接库文件:glut32.dll、glut.dll加入到C:\Windows\System32目录中(4)在源文件开头加入如下语句来导入静态库:

#include

#include

#pragma comment(lib, "glut32.lib")

#pragma comment(lib, "glut.lib")

(5)点击工具条中New Text File按钮,新建一个C++或C源文件,作为你的源程序文件,再把它加入到项目中,然后就可以开始编程了。

六、实验报告

1、实验内容:采用的算法名称

2、设计:核心算法设计,包括主要功能的输入,处理(算法框架)和输出。

3、程序清单:源程序,其中包括变量说明及详细的注释。

Tips:

(1)关于鼠标的交互操作,请同学们参考实验四。

(2)绘制图形的函数,建议放在回调函数mouse中,而display()函数中可以为空。

(3)裁剪窗口大小可设置为glOrtho2D(-10.0, -10.0,10.0,10.0); 线段的两个端点可设置为

p1(-15,-17) ,p2(14,18)

直接剪切试验报告

实验五 直接剪切试验 实验人: 学号: 一、概述 直接剪切试验就是直接对试样进行剪切的试验,简称直剪试验,是测定土的抗剪强度的一种常用方法,通常采用4个试样,分别在不同的垂直压力p 下,施加水平剪切力,测得试样破坏时的剪应力τ,然后根据库仑定律确定土的抗剪强度参数内摩擦角?和粘聚力c 。 二、仪器设备 1、直剪仪。采用应变控制式直接剪切仪,如图所示,由剪切盒、垂直加压设备、剪切传动装置、测力计以及位移量测系统等组成。加压设备采用杠杆传动。 2、测力计。采用应变圈,量表为百分表。 3、环刀。内径6.18cm ,高2.0cm 。 4、其他。切土刀、钢丝锯、滤纸、毛玻璃板、凡士林等。 三、操作步骤 1、将试样表面削平,用环刀切取试件,测密度,每组试验至少取四个试样,各级垂直荷载的大小根据工程实际和土的软硬程度而定,一般可按100kPa ,200kPa ,300kPa ,400kPa (即1.0 kg/cm 2,2.0 kg/cm 2,3.0 kg/cm 2,4.0 kg/cm 2)施加。 2、检查下盒底下两滑槽内钢珠是否分布均匀,在上下盒接触面上涂抹少许润滑油,对准剪切盒的上下盒,插入固定销钉,在下盒内顺次放洁净透水石一块及湿润滤纸一张。 图7-1 应变控制式直剪仪 1—轮轴;2—底座;3—透水石;4—测微表;5—活塞; 6—上盒;7—土样;8—测微表;9—量力环;10—下盒

3、将盛有试样的环刀平口朝下,刀口朝上,在试样面放湿润滤纸一张及透水石一块,对准剪切盒的上盒,然后将试样通过透水石徐徐压入剪切盒底,移去环刀,并顺次加上传压板及加压框架。 4、在量力环的安装水平测微表,装好后应检查测微表是否装反,表脚是否灵活和水平,然后按顺时针方向徐徐转动手轮,使上盒两端的钢珠恰好与量力环按触(即量力环中测微表指针被触动)。 5、顺次小心地加上传压板、钢珠,加压框架和相应质量的砝码(避免撞击和摇动)。 6、施加垂直压力后应立即拔去固定销(此项工作切勿忘记)。开动秒表,同时以每分钟4~12转的均匀速度转动手轮(学生可用6转/分),转动过程不应中途停顿或时快时慢,使试样在3~5分钟内剪破,手轮每转一圈应测记测微表读数一次,直至量力环中的测微表指针不再前进或有后退,即说明试样已经剪破,如测微表指针一直缓慢前进,说明不出现峰值和终值,则试验应进行至剪切变形达到4mm(手轮转20转)为止。 7、剪切结束后,吸去剪切盒中积水,倒转手轮,尽快移去砝码,加压框架,传压板等,取出试样,测定剪切面附近土的剪后含水率。 8、另装试样,重复以上步骤,测定其它三种垂直荷载(200kPa,300kPa,400kPa)下的抗剪强度。 四、成果整理 1、按式(7-1)计算抗剪强度: τ(7-1) = CR 式中R—量力环中测微表最大读数,或位移4mm时的读数。精确至0.01mm。 C—量力环校正系数,(N/mm2/0.01mm)。 2、按式(7-2)计算剪切位移: L- ?2.0(7-2) = R n 式中0.2 —手轮每转一周,剪切盒位移0.2mm; n—手轮转数。 3、制图 ?(1)以剪应力为纵坐标,剪切位移为横坐标,绘制剪应力τ与剪切位移L 的关系曲线,如试验图7-2所示。取曲线上剪应力的峰值为抗剪强度,无峰值时,取剪切位移4mm所对应的剪应力为抗剪强度。 (2)以抗剪强度为纵坐标,垂直压力为横坐标,绘制抗剪强度与垂直压力关系曲线(图7-3),直线的倾角为土的内摩擦角?,直线在纵坐标上的截距为土

直接剪切试验—慢剪实施细则

土工作业指导书 直接剪切试验—慢剪实施细则 文件编号: 版本号: 编制: 批准: 生效日期:

直接剪切试验—慢剪实施细则 1. 目的 为了规范标准固结试验中的各个环节,特制定本细则。 2. 适用范围 本试验方法适用细粒土。 3. 引用文件 GB/T50123-1999 土工试验方法标准。 4. 检测设备 本试验所用的主要仪器设备,应符合下列规定: 1、应变控制式直剪仪:由剪切盒、垂直加压设备、剪切传动装置、测力计、位移量测 系统组成。 2、环刀:内径61.8mm,高度20mm。 3、位移量测设备:量程为10mm,分度值为0.01mm的百分表;或准确度为全量程 0.2%的传感器。 5.操作步骤进行: 5.1试样的制备: 5.1.1原状土试样制备: a.将原土样筒按标明的上下方向放置,剥去蜡封和胶带,开启土样筒取出土样。检查土样结构,当确定土样已受扰动或取土质量不符合规定时,不应制备力学性质试验的试样。 b.根据试验要求用环刀切取试样时,应在环刀内壁涂一薄层凡士林,刃口向下放在土样上,将环刀垂直下压,并用切土刀沿环刀外侧切削土样,边压边削至土样高出环刀,根据试样的软硬采用钢丝锯或切土刀整平环刀两端土样,擦净环刀外壁,称环刀和土的总质量。 c.切削试样时,应对土样的层次、气味、颜色、夹杂物、裂缝和均匀性进行描述,对低塑性和高灵敏度的软土,制样时不得扰动。

d.测定试样的含水率和密度,取切下的余土测定土粒比重:对均质和含有机质的土样,宜采用天然含水率状态下代表性土样,供颗粒分析、界限含水率试验。对非均质土应根据试验项目取足够数量的土样,置于通风处凉干至可碾散为止。对砂土和进行比重试验的土样宜在105~110℃温度下烘干,对有机质含量超过5%的土、含石膏和硫酸盐的土,应在65~70℃温度下烘干。 5.1.2扰动土试样的制备和试样的制样: 试样的制备: a.将土样从土样筒或包装袋袋中取出,对土样的颜色、气味、夹杂物和土类及均匀程度进行描述,并将土样切成碎块,拌和均匀,取代表性土样测定含水率。 b、对均质和含有机质的土样,宜采用天然含水率状态下代表性土样,供颗粒分析、界限含水率试验。对非均质土应根据试验项目取足够数量的土样,置于通风处凉干至可碾散为止。对砂土和进行比重试验的土样宜在105~110℃温度下烘干,对有机质含量超过5%的土、含石膏和硫酸盐的土,应在65~70℃温度下烘干。 c.将风干或烘干的土样放在橡皮板上用木碾碾散,对不含砂和砾的土样,可用碎土器碾散(碎土器不得将土粒破碎)。 d.对分散后的粗粒土和细粒土,应按下表要求过筛。对含细粒土的砾质土,应先用水浸泡并充分搅拌,使粗细颗粒分离后按不同试验项目的要求进行过筛。

线段裁剪代码-MATLAB

四、线段裁剪 %Sutherland_Test.m文件,主文件函数 clear all; clc; MainMenu(); %check_callback.m文件,查看图形函数 function check_callback() %查看原始线段图形回调函数 %lines矩阵共四列,每一列的含义如下: %端点A x坐标端点A y坐标端点B x坐标端点B y坐标 % lines=getappdata(0,'lines'); if isempty(lines) errordlg('当前尚未生成线段,无法显示!'); return; end figure(); hold on; for i=1:length(lines(:,1)) plot(lines(i,[1,3]),lines(i,[2,4])); end hold off; end %Cohen_Sutherland.m文件,编码裁剪算法 function Lines=Cohen_Sutherland(line,Rectangle) %编码裁剪算法 %line为线段端点矩阵,共四列,其数据含义如下: % 端点A x坐标端点A y坐标端点B x坐标端点B y坐标 %Rectangle为窗口边界值,共四个元素,其含义分别为Xwl,Xwr,Ywb,Ywt。 % %首先检测参数是否合法 [row column]=size(line); if column<4||length(Rectangle)<4 Lines=[]; fprintf('参数不合法不合法'); return ; end % %程序中主要变量说明 %code为线段端点的编码矩阵,两行四列,第一行为点P1的编码,第二行为点P2的编码% 四列的含义为:D0,D1,D2,D3

改进的cohen-sutherland线段裁剪算法

改进的cohen-sutherland线段裁剪算法 王艳娟肖刚强任洪海 (大连交通大学软件学院116052) 摘要:针对目前的conhen-sutherland线段裁剪算法不能有效地判断出线段是否完全在窗口外的问题,提出了一种改进的conhen-sutherland线段裁剪算法,通过添加一个判断条件,使得所有完全位于窗口外的线段都能快速的过滤出来,从而减少了求交点的次数,提高了运算效率。 关键词:裁剪算法,cohen-sutherland线裁剪算法,求交运算0.引言 线段裁剪是复杂图元裁剪的基础,各种非线性边界都可以用直线段来近似,以减少计算量。目前广泛使用的3种经典裁剪算法分别是梁友栋-Barsky参数裁剪算法、 Cohen-sutherland编码裁剪算法和Nicholl-Lee-Nicholl多区域判别算法。这些算法各有特色,梁友栋-Barsky裁剪算法利用线段的参数表示形式,把被裁剪线段所在直线与矩形裁剪窗口边框线的交点坐标的计算,简化为对交点对应的参数值的计算,再根据交点参数与被裁剪线段的参数定义区间比较的结果,确定出有效的交点,从而得到裁剪后应保留的部分线段。Cohen-sutherland裁剪算法是一个最早开发的快速线段裁

剪算法,应用较为广泛。该算法通过初始测试来减少交点计算,从而减少线段裁剪算法所用的时间。Nicholl-Lee-Nicholl 算法通过在裁剪窗口边界创立多个区域,从而避免对一个直线段进行多次裁剪。由于Cohen-sutherland线段裁剪算法实现简单,应用广泛,本文对此算法进行了一些改进。1.Cohen-sutherland线段裁剪算法描述 Cohen-sutherland线段裁剪算法对每条线段的端点都赋予一个四位二进制编码,称为‘区域码’。区域码的每一位用来标示端点相对于相应裁剪边界的里面还是外面,分别用‘0’和‘1’表示。这样,四个窗口边界一起生成了九个区域,每个区域都有一个唯一的区域码,如图1所示。 图1 裁剪窗口的九个位置区域码 一旦给所有的线段端点建立了区域码,就可以快速判断哪条线段完全在裁剪窗口内,哪条线段完全在窗口之外。完全在窗口边界内的线段,其两个端点的区域码均为0000,因此保留这些线段。若两个端点的区域码中,有某一相同位置

直接剪切试验

试验八 直接剪切试验 (一) 概述 直接剪切试验就是直接对试样进行剪切的试验,是测定抗剪强度的一种常用方法,,通常采用4个试样,分别在不同的垂直压力施加水平剪力,测试样破坏时的剪应力,然后根据库仑定律确定土的抗剪强度参数?与c (二) 试验方法 直接剪切试验一般可分为慢剪、固结快剪和快剪三种试验方法。 1.慢剪试验。先使土样在某一级垂直压力作用下,固结至排水变形稳定(变形稳定标准为每小时变形不大于0.005mm),再以小于每分钟0.02 mm 的剪切速量缓慢施加水平剪应力,在施加剪应力的过程中,使土样内始终不产生孔隙水压力, 用几个土样在不同垂直压力下进行剪切,将得到有效应力抗剪强度参数c s 和Фs 值,但历时较长,剪切破坏时间可按下式估算 ) 18(5050 ?=t t f 式中 t f ——达到破坏所经历的时间; t 50——固结度达到50%的时间。 2.固结快剪试验。先使土样在某一级垂直压力作用下,固结至排水变形稳定,再以每分钟0.8mm 的剪切速率施加剪力,直至剪坏,一般在3~5min 内完成,适用于渗透系数小于10-6cm/s 的细粒土。由于时间短促,剪力所产生的超静水压力不会转化为粒间的有效应力,用几个土样在不同垂直压力下进行慢剪,便能求得抗剪强度参数cq cq C 与? 值,这种c cq 、cq ?值称为总应力法抗剪强度参数。 3.快剪试验。采用原状土样尽量接近现场情况,以每分钟0.8mm 的剪切速率施加剪力,直至剪坏,一般在3~5 min 内完成,适用于渗透系数小于10-6cm/s 的细粒土。种方法将使粒间有效应力维持原状,不受试验外力的影响,但由于这种粒间有效应力的数值无法求得,所以试验结果只能求得(σtanФq +c q )的混合值。快速法适用于测定粘性土天然强度,但φq 角将会偏大。 (三)仪器设备 1..直剪仪。采用应变控制式直接剪切仪,如图8-1所示,由剪切盒、垂直

直线段的裁剪

{ 实验:直线段的裁剪 姓名:龙泽学号:20141090068 指导教师:吴昊 实验内容:采用Liang-Barsky 算法对直线段进行裁剪。 实验设计:本次实验采用的是Liang-Barsky 算法,根据这个算法需先定义直线段的起点坐标(x1,y1 ),终点坐标(x2,y2 ),以及裁剪框(矩形)的左边界(wxl), 右边界(wxr) ,上边界(wyt) ,下边界(wyb) ,如void Line_Clipping(float x1, float y1, float x2, float y2,float Wxl,float Wxr,float Wyt,float Wyb) ,再结合鼠标mouse函数,实现点击鼠标左键显示矩形框和待裁剪的直线段,点击鼠标右键进行裁剪并显示裁剪过后的直线段,最终显示出来。 由于在Line_Clipping 函数下用到了line 函数,所以我在上面定义了个line 函数来绘制直线段(绘制直线段所采用的算法为Bresenham算法)。 程序代码: #include #include //初始化OpenGL场景 void myinit (void) { glClearColor (1, 1,1, 0); // 将背景置成白色 glMatrixMode(GL_PROJECTION); gluOrtho2D(0,500,0,500); // 设置投影变换,使用正交投影 } void setPixel(int x, int y)// 在指定位置(x,y)绘制点图元 glBegin (GL_POINTS);

线段裁剪算法

计算机图形学 实验报告 实验(四) 实验题目:线段裁剪算法 指导老师:吴颖斌 专业:数字媒体技术 班级: 1306班 姓名: xx(20131006xx) 2014年 11月19日

一、实验类型 验证性。 二、实验目的和要求 目的:编写线段裁剪算法程序,验证算法的正确性。 要求:编写Cohen-Sutherland直线剪裁算法程序,编译、调试,查看运行结果。 三、实验中用到的硬件设备及软件环境 Microsoft Visual C++ 6.0和PC机 四、实验主要程序代码 Cohen-Sutherland直线剪裁算法 (1)主要步骤和代码: 步骤1:创建Code_Clip工程文件; 步骤2:在主程序的程序头部定义符号常量(鼠标双击“CCode_ClipView”,添 加至 “class CCode_ClipView : public …………”之前) #define LEFT 1 #define RIGHT 2 #define BOTTOM 4 #define TOP 8 步骤3:定义成员变量和成员函数(鼠标双击“CCode_ClipView”,添加至“class CCode_ClipView : public …………”之内)) int WT; int WB; int WR; int WL; 步骤4:在构造函数中为窗口边界变量赋初值 CCode_ClipView::CCode_ClipView() { // TODO: add construction code here WL=100;WR=400;WB=100;WT=300; } 步骤5:编写成员函数程序(在“CCode_ClipView”单击鼠标右键-->Add member function……) void CCode_ClipView::encode(int x, int y, int *code) {

计算机图形学代码_CS法直线段裁剪

这段代码主要是用CS法对一个直线段进行裁剪。 运行在VC环境下。 typedef struct { float x,y; }Point; typedef struct { unsigned all; unsigned left,right,top,bottom; }OutCode; void CompOutCode(Point p,RECT* rect,OutCode *outCode) { outCode->all=0; outCode->top=outCode->bottom=0; if>(float)rect->bottom) { outCode->top=1; outCode->all+=1; } else if<(float)rect->top) { outCode->bottom=1; outCode->all+=1; } outCode->left=outCode->right=0; if>(float)rect->right) { outCode->right=1; outCode->all+=1; } else if<(float)rect->left) { outCode->left=1; outCode->all+=1; } } void Cohen_SutherlandLineClip(Point p0,Point p1,RECT *rect,CDC* pDC) { bool accept=false,done=false;

OutCode outCode0,outCode1; OutCode *outCodeOut; Point p; CompOutCode(p0,rect,&outCode0); CompOutCode(p1,rect,&outCode1); do { if(!&&! accept=done=true; else if(&!=0) done=true; else { if outCodeOut=&outCode0; else outCodeOut=&outCode1; if(outCodeOut->left) { =+ =(float)rect->left; } else if(outCodeOut->top) { =+ =(float)rect->top; } else if(outCodeOut->right) { =+ =(float)rect->right; } else if(outCodeOut->bottom) { =+ =(float)rect->bottom; } if(outCodeOut->all== { =; =; CompOutCode(p0,rect,&outCode0);

直线裁剪算法研究(Cohen-Sutherland算法和Liang-Barsky算法)

直线裁剪算法研究 摘要:直线裁剪是计算机图形学中的一个重要技术,在对常见的直经线裁剪的算法分析的基础上,针对Cohen-Sutherland算法和Liang-Barsky算法进行了分析研究。并对两种算法了计算直线与窗口边界的交点时,进行了有效有比较。 关键词:裁剪;算法;Cohen-Sutherland;Liang-Barsky; 1 引言 直线是图形系统中使用最多的一个基本元素。所以对于直线段的裁剪算法是被研究最深入的一类算法,目前在矩形窗口的直线裁剪算法中,出现了许多有效的算法。其中比较著名的有:Cohen-Sutherland算法、中点分割算法、Liang-Ba rsky算法、Sobkow-Pospisil-Yang算法,及Nicholl-Lee-Ncholl算法等。 2 直线裁剪的基本原理 图1所示的为直线与窗口边界之间可能出现的几种关系。可以通过检查直线的两个端点是否在窗口之内确定如何对此直线裁剪。如果一直线的两个端点均在窗口边界之内(如图1中P5到P6的直线),则此直线应保留。如果一条直线的一个端点在窗口外(如P9)另一个点在窗口内(如P10),则应从直线与边界的交点(P9)处裁剪掉边界之外的线段。如果直线的两个端点均在边界外,则可分为两种情况:一种情况是该直线全部在窗口之外;另一种情况是直线穿过两个窗口边界。图中从P3到P4的直线属于前一种情况,应全部裁剪掉;从P7到P8的直线属于后一种情况,应保留P7到P8的线段,其余部分均裁剪掉。 图1直线相对干窗口边界的栽剪 直线裁剪算法应首先确定哪些直线全部保留或全部裁剪,剩下的即为部分裁剪的直线。对于部分裁剪的直线则首先要求出这些直线与窗口边界的交点,把从交点开始在边界外的部分裁剪掉。一个复杂的画面中可能包含有几千条直线,为了提高算法效率,加快裁剪速度,应当采用计算量较小的算法求直线与窗口边界的交点。

直接剪切试验任务说明书

直接剪切试验任务说明书 试验七直接剪切试验(快剪法) 一、指标含义与试验目的 土的抗剪强度是土在外力作用下,其一部分土体对于另一部分土体滑动时所具有的抵抗剪切的极限强度。 直接剪切试验是测定土的抗剪强度的一种常用方法。通常采用四个试样为一组,分别在不同的垂直压力σ下,施加水平剪应力进行剪切,求得破坏时的剪应力τ,然后根据库仑定律确定土的抗剪强度参数内摩擦角υ和凝聚力 C 。在确定地基土的承载力、挡土墙的土压力以及验算土坡的稳定性等时,都要用到抗剪强度指标。 二、试验方法试验原理 直剪试验分为快剪(Q)、固结快剪(CQ)和慢剪(S)三种试验方法。在教学中可采用快剪法。 快剪试验是在试样上施加垂直压力后立即快速施加水平剪切力,以0.8~1.2mm/min的速率剪切,一般使试样在3~5min内剪破。快剪法适用于渗透系数小于10-6cm/s的细粒土,测定粘性土天然强度。 三、仪器设备 1.应变控制式直接剪切仪:如附图7-1,有剪力盒、垂直加压框架、剪切传动装置、测力计及位移量测系统等。 2.环刀:内径61.8mm,高度20mm。 2.位移量测设备:百分表,量程为10mm,分度值为0.01mm。

附图7-1 应变控制式直剪仪结构示意图 1-垂直变形百分表;2-垂直加压框架;3-推动座;4-剪切盒;5-试样;6-测力计;7-台板;8-杠杆;9-砝码 四、试验步骤 1.切取试样:根据工程需要,从原状土或制备成所需状态的扰动土中用环刀切四个试样,如系原状土样,切试样方向应与土在天然地层中的方向一致。 测定试样的密度及含水率。如试样需要饱和,可对试样进行抽气饱和。以上做法要求与固结试验相同。 2.安装试样:对准剪切容器上下盒,插入固定销钉。在下盒内放入透水板,上覆隔水蜡纸(或硬塑料薄膜)一张。将装有试样的环刀刃口向上,对准剪切盒口,在试样上放隔水蜡纸(或硬塑料薄膜)一张,再放上透水板,将试样徐徐推入剪切盒内,移去环刀。不需安装垂直位移量测装置。 3.施加垂直压力:转动手轮,使上盒前端钢珠刚好与测力计接触,调整测力计中的量表读数为零。顺次加上盖板、钢珠压力框架。每组四个试样,分别在四种不同的垂直压力下进行剪切。在教学上,可取四个垂直压力分别为100、200、300、400kPa。 4.进行剪切:施加垂直压力后,立即拔出固定销钉,开动秒表,以每分钟4~6转的均匀速率旋转手轮(在教学中可采用每分钟6转)。

土的直接剪切试验

土的直接剪切试验 直接剪切试验是通过在预定的剪切面上分别直接施加法向压力和剪应力求得土的抗剪强度指标的试验。环刀内径61.8mm,高度20mm 基本原理 土的抗剪强度是土在外力作用下,其一部分土体对于另一部分土体滑动时所具有的抵抗剪切的极限强度。该试验是将同一种土的几个试样分别在不同的垂直压力作用下,沿固定的剪切面直接施加水平剪力,得到破坏时的剪应力,然后根据库仑定律,确定土的抗剪强度指标:内摩擦角和凝聚力。 剪切类型 直接剪切试验,英文direct shear test,属于工程地质学词汇,即根据剪切时排水条件,直接剪切试验方法可分为快剪(不排水剪)、慢剪(排水剪)及固结快剪(固结不排水剪)等。按施加剪力的方式不同,直接剪切仪分应变控制式和应力控制式两种。前者是通过弹性钢环变形控制剪切位移的速率。后者是通过杠杆用砝码控制施加剪应力的速率,测相应的剪切位移。目前多用应变控制式,应力控制式只适用于作慢剪及长期强度试验。慢剪(排水剪)适用于细粒土;固结快剪(固结不排水剪)适用于渗透系数小于l0 cm/s的细粒土;快剪(不排水剪)适用于渗透系数小于10cm/s的细粒土。 剪切实验:慢剪 (1)本试验方法适用于细粒土;(2)本试验所用的主要仪器设备,应符合下列规定:①应变控制式直剪仪:由剪切盒、垂直加压设备、剪切传动装置、测力计、位移量测系统组成;②环刀:内径61.8mm,高度20mm;③位移量测设备:量程为10mm,分度值为0.01mm的百分表或准确度为全量程0.2 %的传感器; (3) 慢剪试验,应按下列步骤进行:①原状土试样制备,应按"试样制备"第4条的步骤进行,扰动±试样制备按"试样制备"第6条的步骤进行,每组试样不得少于4 个。

线段与多边形的裁剪

一、实验目标 1. CohenSutherland 线段裁剪; 2. LiangBarsky线段裁剪; 3. SutherlandHodgeman 多边形裁剪; 二、实验内容 一、实验内容 在给定的MFC程序模板中添加Cohen_Sutherland 线段裁剪、Liang_Barsky x 线段裁剪、Sutherland_Hodgeman 多边形裁剪,生成新的程序窗口中要有Cohen_Sutherland 线段裁剪、Liang_Barsky x线段裁剪、Sutherland_Hodgeman 多边形裁剪的菜单按钮,点击按钮分别弹出Cohen_Sutherland 线段裁剪、Liang_Barsky 线段裁剪、Sutherland_Hodgeman 多边形裁剪的窗口,通过点击鼠标操作实现裁剪框和线段以及多边形的定义和裁剪。 二、实验原理 1. Cohen_Sutherland 线段裁剪 该算法也称为编码算法,首先对线段的两个端点按所在的区域进行分区编码,根据编码可以迅速地判明全部在窗口内的线段和全部在某边界外侧的线段。只有不属于这两种情况的线段,才需要求出线段与窗口边界的交点,求出交点后,舍去窗外部分。对剩余部分,把它作为新的线段看待,又从头开始考虑。两遍循环之后,就能确定该线段是部分截留下来,还是全部舍弃。 编码 延长裁剪边框将二维平面分成九个区域,每个区域各用一个四位二进制代码标识。各区代码值如图中所示。四位二进制代码的编码规则是: (1)第一位置1:区域在左边界外侧(2)第二位置1:区域在右边界外侧 (3)第三位置1:区域在下边界外侧(4)第四位置1:区域在上边界外侧

(土工)直接剪切实验(报告)

直接剪切实验报告 专业班级学号姓名同组者姓名 实验编号实验名称直接剪切实验 实验日期批报告日期成绩 一、实验目的 直接剪切实验是测定土的抗剪强度的一种常用方法,通常采用四个试样,分别在不同的垂直压力下,施加水平剪切力进行剪切,测出破坏时剪应力,然后根据库仑定律确定土的抗剪强度指标:内摩擦角φ和粘聚力c。 二、实验原理 土的破坏都是剪切破坏,土的抗剪强度是土在外力作用下,其一部分土体对于另一部分土体滑动时所具有的抵抗剪切的极限强度。土体的一部分对于另一部分移动时,便认为该点发生了剪切破坏。无粘性土的抗剪强度与法向应力成正比;粘性土的抗剪强度除和法向应力有关外,还决定于土的粘聚力。土的摩擦角φ、粘聚力c是土压力、地基承载力和土坡稳定等强度计算必不可少的指标。 三、实验仪器 1.应变控制式直剪仪:由剪切容器、垂直加压设备、水平力推力座、量力环等组成。 2.其它辅助设备:百分表、天平、环刀、秒表、饱和器、透水石、削土刀等。 四、实验步骤 (见实训指导书,不要都抄,自己总结,写关键步骤即可。) 1.按要求的干密度,称出一个环刀体积所需的风干试样。本实验使用扰动土试样。制备四份试样,在四种不同竖向压力下进行剪切试验。 2. .取出剪切容器的加压盖及上部透水石,将上下盒对准,插入固定销。 3.将试样徐徐倒入剪切容器内,在试样面上依次放好透水石、加压盖、钢珠

和加力框架。 4. 徐徐转动手轮至量力环上的百分表长针微微转动为止,将百分表的长针 调至零,即R 0=0。 5. 在试样面上施加第一级垂直压力P=100kpa 。 6. 拔去固定销,以8s/r 的均匀速率转动手轮,使试样在3--5分钟内剪破。 剪破标准: (1)当百分表读数不变或明显后退,(2)百分表指针不后退时, 以剪切位移为4mm 对应的剪应力为抗剪强度,这时剪切至剪切位移达6mm 时才停止剪切。 7. 卸除压力,取下加力框架、钢珠、加压盖等,倒出试样,刷净剪切盒。 8.重复2-7步骤,改变垂直压力,使分别为200、300、400kpa 进行试验。 五、 注意事项 1.先安装试样,再装量表。安装试样时要用透水石把土样从环刀推进剪切盒里,试验 前量表中的大指针调至零。 2.加荷时,不要摇晃砝码;剪切时要拔出销钉。 六、 实验数据记录与处理 直接剪切试验记录 仪器编号 试样面积(cm 2) 垂直压力p (kPa ) 100 200 300 400 量力环最大变形R (0.01mm ) 量力环号数 量力环系数C (Kpa/0.01mm ) 抗剪强度CR =τ(Kpa ) 抗剪强度指标 C= kpa , ?= °

直接剪切试验—固结快剪实施细则

土工作业指导书 直接剪切试验—固结快剪实施细则 文件编号: 版本号: 编制: 批准: 生效日期:

直接剪切试验—固结快剪实施细则 1. 目的 为了规范标准固结试验中的各个环节,特制定本细则。 2. 适用范围 本试验方法适用于渗透系数小于10-6cm/s的细粒土。 3. 引用文件 GB/T50123-1999 土工试验方法标准。 4. 检测设备 本试验所用的主要仪器设备,应符合下列规定: 1、应变控制式直剪仪:由剪切盒、垂直加压设备、剪切传动装置、测力计、位移量测 系统组成。 2、环刀:内径61.8mm,高度20mm。 3、位移量测设备:量程为10mm,分度值为0.01mm的百分表;或准确度为全量程 0.2%的传感器。 5.操作步骤进行: 5.1试样的制备: 5.1.1原状土试样制备: a.将原土样筒按标明的上下方向放置,剥去蜡封和胶带,开启土样筒取出土样。检查土样结构,当确定土样已受扰动或取土质量不符合规定时,不应制备力学性质试验的试样。 b.根据试验要求用环刀切取试样时,应在环刀内壁涂一薄层凡士林,刃口向下放在土样上,将环刀垂直下压,并用切土刀沿环刀外侧切削土样,边压边削至土样高出环刀,根据试样的软硬采用钢丝锯或切土刀整平环刀两端土样,擦净环刀外壁,称环刀和土的总质量。 c.切削试样时,应对土样的层次、气味、颜色、夹杂物、裂缝和均匀性进行描述,对低塑性和高灵敏度的软土,制样时不得扰动。

d.测定试样的含水率和密度,取切下的余土测定土粒比重:对均质和含有机质的土样,宜采用天然含水率状态下代表性土样,供颗粒分析、界限含水率试验。对非均质土应根据试验项目取足够数量的土样,置于通风处凉干至可碾散为止。对砂土和进行比重试验的土样宜在105~110℃温度下烘干,对有机质含量超过5%的土、含石膏和硫酸盐的土,应在65~70℃温度下烘干。 5.1.2扰动土试样的制备和试样的制样: 试样的制备: a.将土样从土样筒或包装袋袋中取出,对土样的颜色、气味、夹杂物和土类及均匀程度进行描述,并将土样切成碎块,拌和均匀,取代表性土样测定含水率。 b、对均质和含有机质的土样,宜采用天然含水率状态下代表性土样,供颗粒分析、界限含水率试验。对非均质土应根据试验项目取足够数量的土样,置于通风处凉干至可碾散为止。对砂土和进行比重试验的土样宜在105~110℃温度下烘干,对有机质含量超过5%的土、含石膏和硫酸盐的土,应在65~70℃温度下烘干。 c.将风干或烘干的土样放在橡皮板上用木碾碾散,对不含砂和砾的土样,可用碎土器碾散(碎土器不得将土粒破碎)。 d.对分散后的粗粒土和细粒土,应按下表要求过筛。对含细粒土的砾质土,应先用水浸泡并充分搅拌,使粗细颗粒分离后按不同试验项目的要求进行过筛。

图形学_直线裁剪__实验报告

实验报告 实验报告 实验报告三 一、实验目的 1、理解、巩固线段裁剪的含义; 2、掌握Cohen-Sutherland线段裁剪方法。 二、算法原理介绍 对于每条线段P1P2,分为三种情况处理。 (1)若P1P2完全在窗口内,则显示该线段P1P2,简称“取”之。 (2)若P1P2明显在窗口外,则丢弃该线段,简称“弃”之。 (3)若线段既不满足“取”的条件,也不满足“弃”的条件,则把线段分为两段。 其中一段完全在窗口外,可弃之。然后对另一段重复上述处理。 三、程序源代码 #include #include #define LEFT 1 #define RIGHT 2 #define BOTTOM 4 #define TOP 8

#define XL 100 #define XR 300 #define YB 100 #define YT 300 void encode(float x,float y,int * code) { int c=0; if(xXR)c=c | RIGHT; if(yYT)c=c | TOP; *code=c; return; } /*(x1,y1)与(x2,y2)是线段端点坐标, 其它四个参数分别定义窗口的左,下,右,上边界*/ void C_S_LineCLip(float x1, float y1, float x2, float y2) { int code1,code2,code; float x,y; encode(x1,y1,&code1); encode(x2,y2,&code2); while((code1!=0) || (code2!=0)) { if((code1&code2)!=0)return; code=code1; if(code1==0)code=code2; if((LEFT&code)!=0)/*线段与左边界相交*/ { x=XL; y=y1+(y2-y1)*(XL-x1)/(x2-x1); } else if((RIGHT&code)!=0)/*线段与右边界相交*/ { x=XR;

直线段剪裁实验报告

《计算机图形学》实验报告 《实验名称》 直线段裁剪 学号 专业 班级 天津大学计算机科学与技术学院

一、实验目的 熟练掌握Cohen-Sutherland直线裁剪算法,并编程实现 二、实验内容 (1) 裁剪窗口为矩形窗口,且矩形边和坐标轴平行,长宽自己定。 (2) 待裁剪线段端点坐标自己定;裁剪线段涵盖完全可见、不完全可见、 完全不可见类型。 (3) 要求显示待裁剪线段并用不同颜色标示出裁剪结果。 实现方法:一般情况下,需要判断一条直线是全部可见,全部不可见,部分裁剪(一段裁剪),全部裁剪(两端裁剪)。通过把裁剪区域分成许多部分,然后给每一段被裁剪的线段的两端分配一位代码,通过少量if语句和一个case语句就可以判断出具体情况。 伪代码如下: #define CLIP_CODE_C 0x0000 #define CLIP_CODE_N 0x0008 #define CLIP_CODE_S 0x0004

#define CLIP_CODE_E 0x0002 #define CLIP_CODE_W 0x0001 #define CLIP_CODE_NE 0x000a #define CLIP_CODE_SE 0x0006 #define CLIP_CODE_NW 0x0009 #define CLIP_CODE_SW 0x0005 实验步骤: 1)生成裁剪窗口,窗口由直线xl=250,xr=850,yb=250,yt=450 2)绘制直线段 3)编写Cohen-Sutherland直线裁剪算法,对直线段进行裁剪 编码定义规则: 第一位C1:若端点位于窗口之左侧,即Xxr,则C2=1,否则C2=0。 第三位C3:若端点位于窗口之下侧,即Yyt,则C4=1,否则C4=0。 裁剪步骤: 对所有直线的端点都建立了区域码之后,就可按区域码判断直线在窗口

土力学直剪试验(完整报告-含实验数据、强度图)

直接剪切实验 一、实验目的 直接剪切实验是测定土的抗剪强度的一种常用方法,通常采用四个试样,分别在不同的垂直压力下,施加水平剪切力进行剪切,测出破坏时剪应力,然后根据库仑定律确定土的抗剪强度指标:内摩擦角φ和粘聚力c。 二、实验原理: 土的破坏都是剪切破坏,土的抗剪强度是土在外力作用下,其一部分土体对于另一部分土体滑动时所具有的抵抗剪切的极限强度。土体的一部分对于另一部分移动时,便认为该点发生了剪切破坏。无粘性土的抗剪强度与法向应力成正比;粘性土的抗剪强度除和法向应力有关外,还决定于土的粘聚力。土的摩擦角φ、粘聚力c是土压力、地基承载力和土坡稳定等强度计算必不可少的指标。 三、实验设备: 1.应变控制式直剪仪:由剪切容器、垂直加压设备、水平力推力座、量力 环等组成。 2.其它辅助设备:百分表、天平、环刀、秒表、饱和器、透水石、削土刀等。 四、实验步骤: 1.按要求的干密度,称出一个环刀体积所需的风干试样。本实验使用扰动 土试样。制备四份试样,在四种不同竖向压力下进行剪切试验。 2.取出剪切容器的加压盖及上部透水石,将上下盒对准,插入固定销。 3.将试样徐徐倒入剪切容器内,在试样面上依次放好透水石、加压盖、钢 珠和加力框架。 4.徐徐转动手轮至量力环上的百分表长针微微转动为止,将百分表的长针 =0。 调至零,即R 5.在试样面上施加第一级垂直压力P=100kpa。 6.拔去固定销,以8s/r的均匀速率转动手轮,使试样在3--5分钟内剪破。 剪破标准:(1)当百分表读数不变或明显后退,(2)百分表指针不后退时,以剪切位移为4mm对应的剪应力为抗剪强度,这时剪切至剪切位移达6mm 时才停止剪切。 7.卸除压力,取下加力框架、钢珠、加压盖等,倒出试样,刷净剪切盒。 8.重复2-7步骤,改变垂直压力,使分别为200、300、400kpa进行试验。 五、数据分析:

土的直接剪切试验

土的直接剪切试验 一、基本原理 直接剪切试验的原理是根据库伦定律,土的内摩擦力与剪切面上的法向压力成正比,将同一种土制备成几个土样,分别在不同的法向压力下,沿固定的剪切面直接施加水平剪力,得其剪坏时剪应力,即为抗剪强度τf,然后根据剪切定律确定土的抗剪强度指标φ和c。 本次试验主题词:法向应力;剪应力;抗剪强度;快剪法;慢剪法,固结快剪法。 二、仪器设备 目前广泛使用杠杆式应变式直剪仪,示意图如下。 试验设备包括:试样盒(分上、下两部分,上盒固定,下盒放在钢珠上,可以在水平方向滑动)、百分表(用以量测竖直变形)、加荷框架(采用杠杆传动的加荷方法,杠杆比为1:10)、推动座、剪切容器、测力计(亦称应力环)、环刀(内径6.18cm、高20cm)、切土工具、滤纸(蜡纸)、毛玻璃板、秒表及润滑油等。 三、操作步骤 1.切取土样,按照要求切取3-4个原状土样 2.仪器检查。上下盒间接触及盒内应涂抹凡士林,以减少阻力,百分表是否灵敏,插销是否失灵,钢珠是否脱落。 3.安装试样对准上下盒,插入固定销,在下盒内放入透水石一块,放入蜡纸一张,将带有土样的环刀、刃口朝上、对准盒口,将试样推入盒内,然后在试验样上放上蜡纸、透水石及盒盖,装入仪器内,加上压力,转动手轮,让其接触,拨掉插销,开始实验。

4.垂直加压。一般垂直压力分别为0.1、0.2、0.3、0.4 MPa,若土质松软,可调整加压荷载,以免挤出。 5.水平剪切。 转动手轮,使上盒前端钢珠刚好与量力环接触。调整量力环中的百分表读数为零。 拔出固定销,开动秒表,固结快剪和快剪法以每分钟6转匀速旋转手轮,使试样在3-5分钟内剪坏。如量力环中百分表指针不再前进,或者显著后退,表示试样已剪坏。若百分表读数无峰值,则剪切变形达6mm才能停止。同时测记手轮转数n和量力环测微表读数R0。 慢剪法剪切速率应小于0.02mm/min,一般采用电动装置。 四、计算及试验误差 1、根据下式计算测得剪应力 式中:τ——剪应力,kPa Kl——量力环率定系数,N/0.01mm R——百分表读数,0.01mm γ——剪位移,0.01mm n——手轮转数 A——试样初始汤面积,cm2 ΔL——手轮转一圈的位移量,0.01mm。 2、绘制剪应力(τ)与剪位移(ΔL)的关系曲线图。 3、绘制τ-σ关系曲线。由曲线图确定土的抗剪强度指标c、υ。

Cohen-Sutherland直线裁剪算法

实验三图形裁剪算法 1.实验目的: 理解区域编码(Region Code,RC) 设计Cohen-Sutherland直线裁剪算法 编程实现Cohen-Sutherland直线裁剪算法 2.实验描述: 设置裁剪窗口坐标为:wxl=250;wxr=850;wyb=250;wyt=450;裁剪前如下图所示: 裁剪后结果为: 3.算法设计: Cohen-Sutherland 直线裁剪算法: 假设裁剪窗口是标准矩形,由上(y=wyt)、下(y=wyb)、左(x=wxl)、右(x=wxr)四条边组成,如下图所示。延长窗口四条边形成9个区域。根据被裁剪直线的任一端点P(x,y)所处的窗口区域位置,可以赋予一组4位二进制区域码C4C3C2C1。

为了保证窗口内直线端点的编码为零,编码规则定义如下: 第一位:若端点位于窗口之左侧,即xwxr,则C2=1,否则C2=0。 第三位:若端点位于窗口之下侧,即ywyt,则C4=1,否则C4=0。 裁剪步骤: 1. 若直线的两个端点的区域编码都为零,即RC1|RC2=0(二者按位相或的结果为零,即RC1=0 且RC2=0),说明直线两端点都在窗口内,应“简取”之。 2. 若直线的两个端点的区域编码都不为零,即RC1&RC2≠0(二者按位相与的结果不为零,即RC1≠0且RC2≠0,即直线位于窗外的同一侧,说明直线的两个端点都在窗口外,应“简弃”之。 3. 若直线既不满足“简取”也不满足“简弃”的条件,直线必然与窗口相交,需要计算直线与窗口边界的交点。交点将直线分为两段,其中一段完全位于窗口外,可“简弃”之。对另一段赋予交点处的区域编码,再次测试,再次求交,直至确定完全位于窗口内的直线段为止。 4. 实现时,一般按固定顺序左(x=wxl)、右(x=wxr)、下(y=wyb)、上(y=wyt)求解窗口与直线的交点。

直接剪切试验

直接剪切试验(快剪法)(一)试验目的 直接剪切试验是测定土的抗剪强度的一种常用方法。通常采用四个试样为一组,分别在不同的垂直压力σ下,施加水平剪应力进行剪切,求得破坏时的剪应力τ,然后根据库仑定律确定土的抗剪强度参数内摩擦角φ和凝聚力C。直剪试验分为快剪(Q)、固结快剪(CQ)和慢剪(S)三种试验方法。在教学中可采用快剪法。 (二)试验原理 快剪试验是在试样上施加垂直压力后立即快速施加水平剪切力,以0.8~1.2mm/min的速率剪切,一般使试样在3~5min内剪破。快剪法适用于测定粘性土天然强度。 附图9-1 应变控制式直剪仪结构示意图1-垂直变形百分表;2-垂直加压框架;3-推动座;4-剪切盒;5-试样;6-测力计;7-台板;8-杠杆;9-砝码 (三)仪器设备 1.应变控制式直接剪切仪:如附图9-1,有剪力盒、垂直加压框架、测力计及推动机构等。 2.其它:量表、砝码等。 (四)试验步骤 1.切取试样:按工程需要用环刀切取一组试样,至少四个,并测定试样的密度及含水率。如试样需要饱和,可对试样进行抽气饱和。 2.安装试样:对准上下盒,插入固定销钉。在下盒内放入一透水石,上覆隔水蜡纸一张。将装有试样的环刀平口向下,对准剪切盒,试样上放隔水蜡纸一张,再放上透水石,将试样徐徐推入剪切盒内,移去环刀。 3.施加垂直压力:转动手轮,使上盒前端钢珠刚好与测力计接触,调整测力计中的量表读数为零。顺次加上盖板、钢珠压力框架。每组四个试样,分别在四种不同的垂直压力下进行剪切。在教学上,可取四个垂直压力分别为100、200、300、400kPa。 4.进行剪切:施加垂直压力后,立即拔出固定销钉,开动秒表,以每分钟4~6转的均匀速率旋转手轮(在教学中可采用每分钟6转)。使试样在3~5分钟内剪破。如测力计中的量表指针不再前进,或有显著后退,表示试样已经被剪破。但一般宜剪至剪切变形达4mm。若量表指针再继续增加,则剪切变形应达6mm为止。手轮每转一圈,同时测记测力计量表读数,直到试样剪破为止。 5.拆卸试样:剪切结束后,吸去剪切盒中的积水,倒转手轮,尽快移去垂直压力、框架、上盖板,取出试样。 附图9-2 τ~σ关系曲线 (五)试验注意事项

相关主题
文本预览
相关文档 最新文档