当前位置:文档之家› 执行机构原理

执行机构原理

执行机构原理
执行机构原理

执行机构原理文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

摘要:是物料或能量供给系统中不可缺少的重要组成部分,而执行机构是调节阀的关键组成部件。针对执行机构对调节阀工作性能的影响,分析了调节阀的执行机构类型,讨论了不同类型执行机构的组成、工作原理和特点,在此基础上对不同类型的执行机构适用范围进行了探讨,为调节阀的选择提供指导作用。1引言

调节阀广泛应用于火力发电、核电、等流体控制场合,是工业生产过程最常用的终端控制元件。执行机构和调节阀门是组成调节阀的两大部件,执行机构根据控制信号驱动调节阀门,对通过的流体进行调节,从而改变操纵变量的数值[1~2]。作为调节阀的驱动部分,执行机构在很大程度上影响着调节阀的工作性能。本文讨论了调节阀的执行机构,并对各种类型执行机构的性能特点进行了分析。

2调节阀执行机构

按操作的不同,调节阀执行机构可分为气动执行机构、电动执行机构和电液执行机构。

气动执行机构

气动薄膜执行机构是最常用的气动执行机构[3],工作原理如图1所示。将20~100kPa的标准气压信号P通入薄膜气室中,在薄膜上便产生一个向下的推力,驱动阀杆部件向下移动,调节阀门打开。与此同时,弹簧被压

缩,对薄膜产生一个向上的反作用力。当弹簧的反作用力与气压信号在薄膜产生的推力相等时,阀杆部件停止运动。信号压力越大,在薄膜上产生的推力就越大,弹簧压缩量即调节阀门的开度也就越大。

气动薄膜调节阀

将与执行阀杆刚性连接的调节阀运动部件视为一典型的质量-弹簧-阻尼环节,系统运动受力模型如图2所示。系统在运动过程满足以下方程:

方程式(1)

式中:m为与执行阀杆刚性连接的运动部件总质量;x为阀杆位移;c为阻尼系数;f为摩擦力;Fs为信号压力在薄膜上产生的推力;G为运动部件总重力;Ft为调节阀所控流体在阀芯上的压力差产生的不平衡力;k为弹簧刚度系数。当阀杆由下往上运动时,式(1)等号左端各项符号变负。

图2系统运动受力模型

式(1)中的摩擦力是造成调节阀死区与滞后的主要原因[4]。对于气动执行机构而言,由于工作介质的可压缩性比较大,使得摩擦对其动态响应特性的影响更为显着。当生产过程受到扰动的影响,虽然调节阀控制器的输出产生了一个用于纠正偏差的控制信号,但由于摩擦的存在,使得该信号并没有产生相应的阀杆位移。这就要求控制器输出更大的信号,只有当控

制信号超过一定范围,即死区,才能使阀杆产生位移。死区的存在使调节不能及时进行,有时还造成调节的过量,使调节阀的控制品质变差。

为了减小调节阀死区与滞后的影响,除了改进阀杆填料结构,采用合适密封材料等外,目前的主要改进措施是通过给气动调节阀配备门定位器[2],如图3所示。波纹管1的信号压力大小由调节阀控制器调节。当调节阀控制器的输出增大时,波纹管1的信号压力也增大,主杠杆2便绕支点3作逆时针转动,于是喷嘴5与挡板4的距离减小,喷嘴的背压升高,此背压经过放大器6放大后,进入薄膜气室7的压力也开始升高,阀杆8向下移动,并带动反馈杆9绕支点10作逆时针转动,与反馈杆9安装在同一支点的反馈凸轮11跟着作逆时针转动。与此同时,副杠杆12在滚轮13的作用下开始绕支点14作顺时针转动,反馈弹簧15被拉伸。当反馈弹簧15对主杠杆2的拉力与信号压力作用在波纹管1上的力达到力矩平衡时,调节阀气动执行阀杆达到平衡位置。因此,通过气动阀门定位器可以在输入信号与气动调节阀执行阀杆位移(即调节阀开口量)之间建立起一对应的关系。

图3带定位器的气动薄膜调节阀工作原理

添加气动阀门定位器后可以在一定程度上减小气动薄膜调节阀的死区与滞后,但要彻底解决死区与滞后的影响,需从根本上解决调节阀的摩擦力补偿等问题。

除气动薄膜执行机构外,还有气动活塞式执行机构,调节阀执行阀杆通过气缸驱动。

电动执行机构

电动执行机构是采用电动机和减速装置来移动调节阀门的执行机构,需与电动伺服放大器配套使用,其系统组成框图如图4所示。由于带有位移传感器实时检测执行阀杆的位移,故电动执行机构不需额外配备阀门定位器就可以组成位置反馈控制系统,以调节阀执行阀杆的位移信号作为调节阀控制器的反馈测量信号,将控制器输出的设定信号与反馈测量信号进行比较,当两者有偏差时,改变对伺服放大器的输出,使执行阀杆动作,从而建立起输入信号与调节阀执行阀杆位移(即调节阀开口量)一一对应的关系。通常电动执行机构的输入信号是标准的电流或电压信号,输出位移可以是直行程、角行程和多转式等类型[2]。

图4电动执行机构组成框图

电液执行机构

电液执行机构将输入的标准电流或电压信号转换为电动机的机械能,然后通过液压,将电动机的机械能转化为液压油的压力能,并经管道和控制元件向前传递,最后借助液压执行元件(如液压缸)将液压油的压力能转化为机械能,驱动调节阀阀杆(阀轴)完成直线(回转角度)运动,控制调节阀阀门的开度。电液执行机构的组成及系统框图如图5所示,位移传感

器所形成回路实际起着阀门定位器的作用,建立阀杆位移信号与调节阀控制器输出信号之间的一一对应关系。

图6是某类电液执行机构的工作原理图。工控机根据调节阀控制系统的设置,经D/A转换后以模拟信号的形式输出设定信号,使电液比例方向阀2的左位工作。液压泵1输出的压力油一路给蓄能器3充液,储备液压能,以备快速关闭或开启的应急功能,另一路经过电液比例方向阀2的左位进入液压缸6的左腔,推动活塞右移,调节阀门7打开。位移传感器实时检测调节阀开口量,经过A/D转换后将阀门开度信号输入工控机,经过调节阀控制器的处理后,又将信号输出给电液比例方向阀。电液比例方向阀根据传来的信号符号与大小确定活塞的移动方向和位移量,也就是调整调节阀开口的大小。

电磁4用于实现电液调节阀快速关闭或开启的应急功能,而手动换向阀5用于实现调节阀的机械手轮降级操作。

图5电液执行机构框图

图6电液调节阀系统原理

3调节阀执行机构的应用

气动执行机构具有结构简单、维修方便、价格低廉、抗环境污染等优点,在工业生产中得到了广泛的应用。但由于气动执行机构的气体工作介质具有较强的可压缩性,使气动执行机构的抗偏离能力比较差,给位置和速度

的精确稳定控制带来很大的影响[5],不适于快速响应和大的执行速度场合,从而限制了气动执行机构在大型精确控制项目中的进一步推广。

电动执行机构动作迅速、响应快、所用电源取用方便、便于进行远距离的信号传递,特别是随着电子与计算机技术在工业控制过程中的广泛应用,电动执行机构具有很大的发展前途。但由于电动执行机构由电机、减速齿轮箱、控制箱等组成,当实现大推力时,电动执行机构体积太庞大,而且其封闭的结构会产生热,防火防爆差,降低了安全性。

液压传动以几乎不可压缩的高压液体作为传递动力的介质,能够输出大的力或力矩,动作灵敏,运行较为平稳,传动无间隙,可在高速下启动、制动、换向[6~7]。随着国家大型电站等工业项目的推进,对调节阀提出了大推力(推力矩)、长行程、高精度、快速响应等控制要求。电液执行机构结合了电子技术和液压技术两个方面的优势,具有控制精度高、响应速度快、输出功率大、信号处理灵活、易于实现各种参量的反馈等优点,有助于调节阀适应大型工业项目提出的控制要求,同时也适应了现代工业过程控制系统化、智能化不断提高的发展趋势。

4结束语

执行机构是调节阀的关键部件,执行机构类型不同的调节阀工作性能有很大的差异。控制过程是否平稳取决于调节阀能否准确动作。选择恰当的调节阀是管路设计的主要内容,也是保证调节系统安全平稳运行的关键所在。在选择调节阀前应充分了解不同执行机构类型调节阀的特点、适用范围,根据不同的需要选择不同执行机构类型的调节阀。

执行机构基本工作原理(一)1

执行机构基本工作原理(一) ——执行机构发展史 一、执行机构的由来 执行机构,又称执行器,是一种自动控制领域的常用机电一体化设备(器件),是自动化仪表的三大组成部分(检测设备、调节设备和执行设备)中的执行设备。主要是对一些设备和装臵进行自动操作,控制其开关和调节,代替人工作业。 按动力类型可分为气动、液动、电动、电液动等几类;按运动形式可分为直行程、角行程、回转型(多转式)等几类。由于用电做为动力有其它几类介质不可比拟的优势,所以电动型近年来发展最快,应用面较广。电动型按不同标准又可分为:组合式结构和机电一体化结构;电器控制型、电子控制型和智能控制型(带HART、FF协议);数字型和模拟型;手动接触调试型和红外线遥控调试型等。 它是伴随着人们对控制性能的要求和自动控制技术的发展而迅猛发展的: 1.早期的工业领域,有许多的控制是手动和半自动的,在操作中人体直接接触工业设备的危险部位和危险介质(固、液、气三态的多种化学物质和辐射物质),极易造成对人的伤害,很不安全; 2.设备寿命短、易损坏、维修量大; 3.采用半自动特别是手动控制的控制效率很低、误差大,生产效率低下。 基于以上原因,执行机构逐渐产生并应用于工业和其它控制领

域,减少和避免了人身伤害和设备损坏,极大的提高了控制精确度和效率,同时也极大提高了生产效率。随着电子元器件技术、计算机技术和控制理论的飞速发展,国内外的执行机构都已跨入智能控制的时代。 二、执行机构的应用领域 执行机构主要应用在以下三大领域: 1、发电厂典型应用有:火电行业应用送风机风门挡板、一次进风风门挡板、空气预热风门挡板、烟气再循环、旁路风门挡板、二次进风风门挡板、主风箱风门挡板、燃烧器调节杆、燃烧器摇摆驱动器液压推杆驱动器、叶轮机调速、烟气调节阀、蒸气调节阀、球阀和蝶阀控制、滑动门、闸门;其它电力行业的阀门执行器应用球阀、除尘控制喷水、叶轮机转速控制、控制大型液压阀、燃气控制阀、燃烧器点火启动、蒸气控制阀、冷凝水再循环, 脱氧机,锅炉给水,过热控制器,再加热恒温控制器,及其它相关阀门应用 2、过程控制用于化工、石化、模具、食品、医药、包装等行业的生产过程控制,按照既定的逻辑指令或电脑程序对阀门、刀具、管道、挡板、滑槽、平台等进行精确的定位、起停、开合、回转,利用系统检测出的温度、压力、流量、尺寸、辐射、亮度、色度、粗糙度、密度等实时参数对系统进行调整,从而实现间歇、连续和循环的加工过程的控制。 3.工业自动化用于较为广泛的航空、航天、军工、机械、冶金、开采、交通、建材等方面,对各类自动化设备和系统的运动点(运动

电动执行器工作原理

电动执行器工作原理 电动执行器有五种类型:直行程电动执行器、角行程电动执行器、电动调节阀、PID电动调节执行器和电磁阀。前四种属于DDZ型。下面简要介绍一下直行程电动执行器(DKJ)和角行程电动执行器(DKZ)。 直行程与角行程电动执行器的作用是接收调节器或其它仪表送来的0~10,4~20毫安或1~5伏电压的标准值流电信号,经执行器后变成位移推力或转角力矩,以操作开关、阀门等,完成自动调节的任务。这两种执行器以前都是由伺服放大器与执行机构两大部分组成的。现在有机电一体智能化的结构,它们的结构、工作原理和使用方法都是相似的,区别仅在于,一个输出位移(推力),一个输出转角(力矩)。 电动执行器选型考虑要点 一、根据阀门类型选择电动执行器 阀门的种类相当多,工作原理也不太一样,一般以转动阀板角度、升降阀板等方式来实现启闭控制,当与电动执行器配套时首先应根据阀门的类型选择电动执行器。 1.角行程电动执行器(转角<360度) 电动执行器输出轴的转动小于一周,即小于360度,通常为90度就实现阀门的启闭过程控制。此类电动执行器根据安装接口方式的不同又分为直连式、底座曲柄式两种。 a)直连式:是指电动执行器输出轴与阀杆直连安装的形式。 b)底座曲柄式:是指输出轴通过曲柄与阀杆连接的形式。 此类电动执行器适用于蝶阀、球阀、旋塞阀等。 2.多回转电动执行器(转角>360度) 电动执行器输出轴的转动大于一周,即大于360度,一般需多圈才能实现阀门的启闭过程控制。 此类电动执行器适用于闸阀、截止阀等。 3.直行程(直线运动) 电动执行器输出轴的运动为直线运动式,不是转动形式。 此类电动执行器适用于单座调节阀、双座调节阀等。

气动执行机构的结构原理

第十九章:气动执行机构检修 一、概述 气动执行器以无油压缩空气为动力,驱动阀门或挡板动作。主要有以下几种类型:气动调节阀、电磁阀、电信号气动长行程执行机构。 二、气动调节阀 气动调节阀由气动执行机构和调节阀两部分组成。气动执行机构以无油压缩空气为动力,接受气信号20~100kpa并转换成位移,驱动调节阀以调节流体的流量。为了改善阀门位置的线性度,克服阀杆的摩擦力和消除被调介质压力变化等的影响,提高动作速度,使用气动阀门定位器与调节阀配套,从而使阀门位置能按调节信号实现正确的定位。 气源质量应无明显的油蒸汽、油和其他液体,无明显的腐蚀气体、蒸汽和溶剂。带定位器的调节阀气源中所含固体微粒数量应小于0.1g/m3,且微粒执行应小于60цm,含油量应小于10 g/m3。 常用的气动调节阀由气动薄膜调节阀和气动活塞调节阀。 ⒈气动薄膜调节阀 气动薄膜执行机构气源压力最大值为500kpa。执行机构分正作用和反作用两种型式,正作用式信号压力增大,调节阀关小,又称气关式;反作用是信号压力增大,调节阀也开大,又称气开式。 ⒉气动活塞调节阀 气动活塞执行机构气源压力的最大值为700kpa。与气动薄膜执行机构相比,在同样行程条件下,它具有较大的输出力,因此特别适合于高静压、高差压的场合。 ⒊气动隔膜阀 气动隔膜阀根据所选择的隔膜或衬里材质的不同,可适用于各种腐蚀性介质管路上,作为控制介质流动的启闭阀。例如,化学水处理程序控制用的阀门,常采用气动隔膜发执行机构并与电磁阀配合,实现阀门的全开或全关控制。 ⒋阀门定位器 有电气信号和气信号两种。 气动阀门定位器与气动调节阀配套使用。定位器的气源压力大小与执行机构的型式及其压力信号范围(或弹簧压力范围)有关。例如ZPQ—01定位器与ZM系列气动薄膜执行机构配套时,若执行机构压力信号范围为0.02~0.1Mpa,则气源压力为0.14Mpa;若压力信号范围为0.04~0.2Mpa,则气源压力为0.28Mpa;若ZPQ—02定位器与ZS—02系列活塞式执行机构配套时,压力信号范围为0.02~0.1Mpa时,气源压力为0.5Mpa。 电信号阀门定位器也可称电-气阀门定位器,可将0~10mA或4~20mA DC电信号转换成驱动调节阀的标准气信号。 ⒌气动保位阀 气动保位阀用于重要的气动控制系统作为安全保护装置。当仪表气源系统发生故障时,它能自动切断调节器与阀门的通路,使阀门保持在原来的位置上。气动保位阀型号为ZPB—201,给定压力调整范围为0.08~0.25Mpa,通道压力为0.02~0.2Mpa。 气动阀门定位器与气动调节阀配套使用。根据气动阀不同每种阀门都有配套的阀门定位器。阀门定位器的气源压力大小与执行机构的型式及其压力信号范围有关(或弹簧压力范围)有关。 三、调试 气动执行器的调试主要任务是吹扫气源管、阀门的动作方向、阀门定位器调整、阀门的线性度调整。

机械设计之基于机构组成原理的拼接设计

机械创新设计 指导书 机械设计教研究室 班级: 姓名: 学号:

实验一基于机构组成原理的拼接设计 一、实验目的 1、加深学生对机构组成原理的认识,进一步了解机构组成及其运动特性; 2、培养学生的工程实践动手能力; 3、培养学生创新意识及综合设计的能力。 二、设备和工具 1、创新组合模型一套: 1)五种平面低副Ⅱ级组,四种平面低副Ⅱ级组,各杆长可在80-340mm内无级调整,其他各种常见的杆组可根据需要自由装配; 2)两种单构件高副杆组 3)八种轮廓的凸轮构件,其从动件可实现八种运动规律: ⅰ)等加速等减速运动规律上升200mm,余弦规律回程,推程运动角180°,远休止角30°,近休止角30°,回程运动角120°,凸轮标号为1; ⅱ)等加速等减速运动规律上升20mm,余弦规律回程,推程运动角180°,远休止角30°,回程运动角150°,凸轮标号为2; ⅲ)等加速等减速运动规律上升20mm,余弦规律回程,推程运动角180°,回程运动角150°,近休止角30°,凸轮标号为3; ⅳ)等加速等减速运动规律上升20mm,余弦规律回程,推程运动角180°,回程运动角180°,凸轮标号为4; ⅴ)等加速等减速运动规律上升35mm,余弦规律回程,推程运动角180°,远休止角30°,近休止角30°,回程运动角120°,凸轮标号为5; ⅵ)等加速等减速运动规律上升35mm,余弦规律回程,推程运动角180°,远休止角30°,回程运动角150°,凸轮标号为6; ⅶ)等加速等减速运动规律上升35mm,余弦规律回程,推程运动角180°,回程运动角150°,近休止角30°,凸轮标号为7; ⅷ)等加速等减速运动规律上升35mm,余弦规律回程,推程运动角180°,回程运动角180°,凸轮标号为8; 4)模数相等齿数不同的7种直齿圆柱齿轮,其齿数分别为17,25,34,43,51,59,68,可提供21种传动比:与齿轮模数相等的齿条一个。 5)旋转式电机一台,其转速为10r/min。 6)直线式电机一台,其速度为10m/s。 2、平口起子和活动扳手各一把。 三、实验前的准备工作 1、要求预习实验,掌握实验原理,初步了解机构创新模型; 2、选择设计题目,初步拟定机构系统运动方案。

电动执行机构原理(汇编)

电动执行机构原理 目录 一:电动执行机构概述 二:工作原理及结构 三:用途 四:电动执行机构安装和接线 五:电动执行机构调试 六:使用和检维修 七:故障和排除方法 一、电动执行机构概述 执行机构,又称执行器,是一种自动控制领域的常用机电一体化设备(器件),是自动化仪表的三大组成部分(检测设备、调节设备和执行设备)中的执行设备。主要是对一些设备和装置进行自动操作,控制其开关和调节,代替人工作业。按动力类型可分为气动、液动、电动、电液动等几类;按运动形式可分为直行程、角行程、回转型(多转式)等几类。由于用电做为动力有其它几类介质不可比拟的优势,因此电动型近年来发展最 快,应用面较广。电动型按不同标准又可分为:组合式结构、机电一体化结构,电器控制型、电子控制型、智能控制型(带HART、 FF协议),数字型、模拟型,手动接触调试型、红外线遥控调试型等。它是伴随着人们对控制性能的要求和自动控制技术的发展而迅猛发展的。 ?早期的工业领域,有许多的控制是手动和半自动的,在操作中人体直接接触工业设备的危险部位和危险介质(固、液、气三态的多种化学物质和辐射物质),极易造成对人的伤害,很不安全; ?设备寿命短、易损坏、维修量大; ?采用半自动特别是手动控制的控制效率很低、 误差大,生产效率低下。基于以上原因,执行机构逐渐产生并应用于 工业和其它控制领域,减少和避免了人身伤 害和设备损坏,极大的提高了控制精确度和效率,同时也极大提高了生产效率。今年来 随着电子元器件技术、计算机技术和控制理论的飞速发展,国内外的执行机构都已跨入智能控制的时代。 ROTORK

LIMITORQUE、天津二通 (一)电动执行机构

执行机构原理修订稿

执行机构原理集团档案编码:[YTTR-YTPT28-YTNTL98-UYTYNN08]

摘要:是物料或能量供给系统中不可缺少的重要组成部分,而执行机构是调节阀的关键组 成部件。针对执行机构对调节阀工作性能的影响,分析了调节阀的执行机构类型,讨论了 不同类型执行机构的组成、工作原理和特点,在此基础上对不同类型的执行机构适用范围 进行了探讨,为调节阀的选择提供指导作用。1引言 调节阀广泛应用于火力发电、核电、等流体控制场合,是工业生产过程最常用的终端控制元件。执行机构和调节阀门是组成调节阀的两大部件,执行机构根据控制信号驱动调节阀门,对通过的流体进行调节,从而改变操纵变量的数值[1~2]。作为调节阀的驱动部分,执行机构在很大程度上影响着调节阀的工作性能。本文讨论了调节阀的执行机构,并对各种类型执行机构的性能特点进行了分析。 2调节阀执行机构 按操作的不同,调节阀执行机构可分为气动执行机构、电动执行机构和电液执行机构。 气动执行机构 气动薄膜执行机构是最常用的气动执行机构[3],工作原理如图1所示。将20~100kPa的标准气压信号P通入薄膜气室中,在薄膜上便产生一个向下的推力,驱动阀杆部件向下移动,调节阀门打开。与此同时,弹簧被压缩,对薄膜产生一个向上的反作用力。当弹簧的反作用力与气压信号在薄膜产生的推力相等时,阀杆部件停止运动。信号压力越大,在薄膜上产生的推力就越大,弹簧压缩量即调节阀门的开度也就越大。 气动薄膜调节阀 将与执行阀杆刚性连接的调节阀运动部件视为一典型的质量-弹簧-阻尼环节,系统运动受力模型如图2所示。系统在运动过程满足以下方程: 方程式(1) 式中:m为与执行阀杆刚性连接的运动部件总质量;x为阀杆位移;c为阻尼系数;f为摩擦力;Fs为信号压力在薄膜上产生的推力;G为运动部件总重力;Ft为调节阀所控流体在阀芯上的压力差产生的不平衡力;k为弹簧刚度系数。当阀杆由下往上运动时,式(1)等号左端各项符号变负。 图2系统运动受力模型

电动执行器的工作原理

运动形式可分为直行程、角行程、回转型(多转式)等几类。由于用电做为动力有其它几类介质不可比拟的优势,所以电动型近年来发展较快,应用面较广。电动型按不同标准又可分为:组合式结构和机电一体化结构;电器控制型、电子控制型和智能控制型;数字型和模拟型;手动接触调试型和红外线遥控调试型等。它是伴随着人们对控制性能的要求和自动控制技术的发展而迅猛发展的,在炼铁厂主要应用于布袋箱体荒、净煤气支管的开关箱体放散的开关以及冲渣水泵管道的开闭及调节、环境除尘管道的开关等。 阀门电动装置工作原理: 阀门驱动装置是实现阀门程控、自控和遥控不可缺少的驱动设备,其运动过程可由行程、转矩或轴向推力的大小来控制。由于阀门电动装置的工作特性和利用率取决于阀门的种类、装置工作规范及阀门在管线或设备上的位置。 电动阀门装置一般由下列部分组成: 1.专用电动机,特点是过载能力强﹑起动转矩大﹑转动惯量小,短时﹑断续工作。减速机构,用以减低电动机的输出转速。 2.行程控制机构,用以调节和准确控制阀门的启闭位置。转矩限制机构,用以调节转矩(或推力)并使之不超过预定值。 3.手动﹑电动切换机构,进行手动或电动操作的联锁机构。开度指示器,用以显示阀门在启闭过程中所处的位置。 根据阀门类型选择电动执行器 1、角行程电动执行器适配各种角行程阀门(球阀、蝶阀、旋塞阀等)与阀门共同构成电动调节阀、电动球阀、电动蝶阀等工业自控电动阀门。电动执行器按阀门形式分为直行程和角行程两种。 a)直行程:将阀门上下移动来控制阀门开度的(如:单座阀、双座阀、套筒阀、Y型阀等)。 b)角行程:角行程的带动的阀门的是在0~90°旋转来控制阀门开度的(如:蝶阀、球阀、偏心旋转阀、旋塞阀等)。 2、多回转电动执行器(转角>360°)适用于闸阀、截止阀等。电动执行器输出轴的转动大于一周,即大于360°,一般需多圈才能实现阀门的启闭过程控制。 根据生产工艺控制要求确定电动执行器的控制模式 1、开关型 开关型电动执行器一般实现对阀门的开或关控制,阀门要么处于全开位置,要么处于全关位置,此类阀门不需对介质流量进行准确控制。 2.调节型 调节型电动执行器不仅具有开关型一体化结构的功能,还能对阀门进行准确控制,调节介质流量。 三、根据使用环境和防爆等级分类的电动装置 根据使用环境和防爆等级要求,阀门的电动装置可分为普通型、户外型、隔爆型、户外隔爆型等。 根据阀门所需的扭力确定电动执行器的输出扭矩 阀门启闭所需的扭力决定着电动执行器选择多大的输出扭矩,一般由使用者提出或阀门厂家自行选配,做为执行器厂家只对执行器的输出扭矩负责,阀门正常启闭所需的扭矩由阀门口径大小、工作压力等因素决定,但因阀门厂家加工精度、装配工艺有所区别,所以不同厂家生产的同规格阀门所需扭矩也有所区别,即使是同个阀门厂家生产的同规格阀门扭矩

标书电动执行器技术规范

标书电动执行器技术规范 1.电动执行机构的机械部件与电子单元在设计原理、制造工艺及整机性能上均应是先进的、安全的、可靠的、高质量的无需维护或只需少量维护工作的定型产品。 2.所供电动执行机构应为非侵入式一体化智能型电动执行机构,执行机构必须带一体化智能型控制单元,控制单元必须带CPU,及液LCD晶显示屏可现场查看阀位反馈,免开盖进行调试和设定,主要参数可通过编程设定,具有故障自诊断功能,且操作调试简便。 3.电动执行机构参数设定由面板操作按键即可完成,无需遥控器,按键需使用不锈钢或耐腐蚀老化材质,保证按键的可靠性; 4.现场面板需显示远程控制信号目标位置,及故障指示标志,以便于维护 5.调节型电动执行机构可以通过自配的精确定位装置(随执行机构一体化)接受DCS系统输出的4~20mADC模拟信号,确保电动执行机构和自动调节系统的接口协调一致,组成完整的闭环控制回路。 6.调节型电动执行机构可提供一个内部供电的电气隔离的4~20mA阀位反馈信号。使控制输入信号与阀位反馈信号本身即为共地连接,保证调节性能。 7.电动执行机构具备干接点信号输出,且是独立的SPST接点,NC\NO可调。 8、能够提供4-20mA的阀位反馈用于阀门位置的远端指示,并具有反馈微调功能以矫正仪表。 9.调节型电动执行机构的每小时最大操作次数不应低于1200次。 10.买方仅提供动力电源和4-20mA控制系统指令。 11.电动执行机构应具有结构简单、性能可靠的双向过力矩保护装置和行程限位保护。 12.电动执行机构应具有可靠的制动功能,以防止电动机惰走,卖方在报价时应详细说明采用的制动方法及性能。 13.应配置就地操作面板,配备远控/就地操作切换开关、按钮、指示等,并提供保护措施防止就地误操作。就地操作仅在调试检修时使用,正常运行时均接受DCS系统的远方控制。具有远程联锁功能,防止现场误操作。 14.电动执行机构可以进行安全位置预设定,在丢失控制信号时自动运行到

配气机构常见故障诊断与排除

配气机构常见故障诊断与排除 摘要本论文阐述配气机构的作用、组成、主要构造、工作原理、故障的检测步骤和排除方法,同时论述了各类配气机构的优缺点,以及配气机构运用的最新技术及配气机构的发展趋势。 关键词:配气机构配气相位各类配气机构特点

1 绪论 发动机的配气机构就好比人体的呼吸系统,进排气的机械动作就有 如人体的呼吸气。尽管配气机构的作用相当于人体的呼吸器官,但是它 的作动原理以及构造却相对要复杂许多 人体呼吸作用是指让氧气通过呼吸道进入到体内,使细胞在氧气的参与下经过体内酶的催化转换,将糖类、脂肪类以及蛋白质等有机物彻底氧化分解产生出二氧化碳和水,同时释放出大量能量供肌体活动的过程。通常我们所提到的呼吸都是指有氧呼吸,而有氧呼吸也是大多数生物体的主要呼吸形式。实际上,除了生物需要做有氧呼吸外,汽车也同样如此。表面看来,汽车虽然是一台冰冷的钢铁机器,但是通过将各种电子设备以及功能零部件进行叠加,汽车已俨然具有了生物所特有的灵性。 汽车的构成部件中,发动机的配气机构是非常重要的一个组成部分,它的作用和人体的呼吸器官一样掌控着氧气的进入,对于能否做功拥有决定权,不过它的工作环境可比呼吸器官严酷多了——油污、高温、高压,毫不夸张的说简直有如炼狱。配气机构的主要功能是按照一定时限自动开启和关闭各气缸的进、排气门。它的作用则是空气及时通过进气门向气缸内供给可燃混合气(汽油机)或新鲜空气(柴油机)。并且及时将燃烧做功后形成的废气从排气门排出,实现发动机气缸换气补给的整个过程。 2配气机构的概述 2.1配气机构的作用 配气机构的功用是按照发动机每一气缸内所进行的工作循环和发火次序的要求,定时开启和关闭各气缸的进、排气门,使新鲜充量得以及时进入气缸,废气得以及时从气缸排出;在压缩与膨胀行程中,保证燃烧室的密封。新鲜充量对于汽油机而言是汽油和空气的棍合气,对于柴油机而言是纯空气。

执行机构原理及结构

执行器的工作原理及结构 一、概述 执行器在现代生产过程自动化中起着十分重要的作用。人们常把它称为实现生产过程控制的手足,因为它在自动化控制系统中接受调节器的控制信号,自动的改变调节变量,达到对被调参数(如温度、压力、流量、液位等)进行调节的目的,使生产过程按预定要求正常进行。 执行器根据执行机构使用的能源不同可可分为气动、电动和液动三大类。 电动执行器 电动执行器是以电能为动力的,它的特点是获取能源方便,动作快,信号传递速度快,且可远距离传输信号,便于和数字装置配合使用等。所以电动执行器处于发展和上升时期,是一种有发展前途的装置。其缺点是结构复杂,价格贵和推动力小,同时,一般来说电动执行器不适合防火防爆的场合。但如果采用防爆结构,也可以达到防火防爆的要求。 气动执行器 气动执行器是以压缩空气为动力的,具有结构简单、动作可靠稳定、输出力大、维护方便和防火防爆等优点。所以广泛应用于石油、化工、冶金、电力等部门,特别适用于具有爆炸危险的石油、化工生产过程。其缺点是滞后大,不适宜远传(150m以内),不能与数字装置连接。 目前,国内外所选用的执行器中,液动的很少。 执行器的基本结构 执行器由执行机构和调节阀(调节机构)两个部分组成,执行机构是执行器的推动装置,它根据控制信号的大小,产生相应的推力,推动调节阀动作。调节阀是执行器的调节部分,在执行机构推力的作用下,调节阀产生一定的位移或转角,直接调节流体的流量。 为了保证执行器能够正常工作,提高调节质量和可靠性,执行器还必须配备一定的辅助装置。常用的辅助装置有阀门定位器和手轮机构。阀门定位器利用反馈原理改善执行器性能,使执行器能按调节器的控制信号,实现准确定位。手轮机构用于直接操作调节阀,以便在停电、停气、调节器无输出或执行机构损坏而失灵的情况下,生产仍能正常工作。 二、气动执行机构 气动执行机构接受气动控制器或阀门定位器输出的气压信号,并将其转换成相应的推杆直线位移,以推动调节阀动作。 气动执行机构主要有两种类型:薄膜式与活塞式。薄膜式执行机构简单、动作可靠、维修方便、价格低廉,是最常用的一种执行机构;活塞式执行机构允许操作压力可达500kpa,因此输出推力大,但价格较高。 气动执行机构又可分为有弹簧和无弹簧两种,有弹簧的气动执行机构较之无弹簧的气动执行机构输出推力小、价格低。 气动执行机构有正作用和反作用两种形式。当信号压力增加时推杆向下动作的叫正作用式执行机构;信号压力增加时推杆向上动作的叫反作用式执行机构 气动薄膜执行机构使用弹性膜片将输入气压转变为推杆的推力,通过推杆使阀芯产生相应的位移,改变阀的开度,气动活塞式执行机构以汽缸内的活塞输出推力,由于汽缸允许压力较高,可获得较大的推力,并容易制成长行程执行机构。一个典型的气动薄膜型执行机构主要由弹性薄膜、压缩弹簧和推杆组成。

电动调节阀的工作原理

一、课程导引——执行器的作用 在过程控制系统中,执行器接受调节器的指令信号,经执行机构将其转换成相应的角位 移或直线位移,去操纵调节机构,改变被控对象进、出的能量或物料,以实现过程的自动控制。在任何自动控制系统中,执行器是必不可少的组成部分。如果把传感器比拟成控制系统的感觉器官,调节器就是控制系统的大脑,而执行器则可以比拟为干具体工作的手。 执行器常常工作在高温、高压、深冷、强腐蚀、高粘度、易结晶、闪蒸、汽蚀、高压差 等恶劣状态下,因此,它是整个控制系统的薄弱环节。如果执行器选择或使用不当,往往会给生产过程自动化带来困难。在许多场合下,会导致控制系统的控制质量下降、调节失灵,甚至因介质的易燃、易爆、有毒而造成严重的事故。 为此,对于执行器的正确选用和安装、维修等各个环 节,必须给予足够的注意。 执行器根据驱动动力的不同,可划分为气动执行 器、液动执行器和电动执行器,本次课将结合实验装 置所用的智能电动调节阀使用知识进行介绍。 二、产品知识——电动调节阀 的结构与工作原理(20分钟) 1、电动调节阀的基本结构 在THJ-2的实验装置上,配置了上海万迅仪表有 限公司生产的智能型电动调节阀,其型号为QSVP-16K ,图1是电动调节阀的典型外形,它由两个 可拆分的执行机构和调节阀(调节机构)部分组成。 上部是执行机构,接受调节器输出的0~10mADC 或4~20mADC 信号,并将其转换成相应的直线位移,推动下部的调节阀动作,直接调节流体的流量。各类电动调节阀的执行机构基本相同,但调节阀(调节机构)的结构因使用条件的不同类型很多,最常用的是直通单阀座和直通双阀座两种。 2、电动执行机构的基本结构(部分摘自上海万迅仪表产品说明书) 执行机构采用了德国进口的PSL 电子式一体化的电动执行机构,该产品体积小、重量轻,功能强、操作方便,已广泛应用于工业控制。 其直线行程电动执行器主要是由相互隔离的电气部分和齿轮传动部分组成,电机作为连执 行 机 构调节阀图1 电动调节阀外形机构

DDC 控制器原理及结构

DDC 控制器原理及结构 的输入/输出信号根据物理性质通常分为模拟输入量(Analogy Input,缩写为AD〉、模拟输出量(Analogy Output,缩写为AO)、数字输入量(Digital input,缩写为DI和数字输出量〈digital output,缩写为DO)四类. 在系统设计和使用中,需要掌握DDC输入和输出的连接, (1)模拟量输入的物理量有温度、湿度、压力、流量等,这些物理量由相应的传感器感应测得,往往经过变送器转变为电信号送入DDC的模拟输入口(AI).此电信号可以是电流信号 (0-10mA),也可以是电压信号〈0?5 V或0?10 V〉。一般一个DDC 控制器可有多个AI输入口,若变送器输出为电流信号,通常由接在输入端口的电阻转变为电压信号. (2)DDC计箅机能够直接判断D1通道上的电平高低(相当于开/关)两种状态,并将其转换为数字量〈1或0〉,进而对其进行逻辑分析和计箅.对于以开关状态为输出的传感器,如水 流开关、风速开关、压差开关等,可以直接接到DDC的DI通道上.除了測量开关状态外,DI通道还可以直接对脉冲信号进行測量,如测量脉冲頻率及高电平或低电平的脉冲宽度,或对脉冲个数进行计数. (3)DDC的模拟量输出(A0〉信号是0?5 V、0?10 V的电压或0?10mA、4?20mA的电流.其输出电压或电流的大小由控制软件决定.由于DDC计算机内部处理的信号都是数字信号,所以这种可连续变化

的模拟量信号是通过内部数字

/模拟拟转换器(D/A)产生的。 通常,模拟量输出(A0)信号控制风阀、水阀等执行器动作。风阀、水阀有气动执行器和电动执行器两种类型,采用气动执行器时需要将控制器的棋拟量输出信号(A0〉接至电气转换器,电气转换器根据输入的电压或电流的大小产生0?0.1 Mpa的空气,再通过气路送至气动执行器的气室中,推动活塞或隔膜完成对阀的调节.也有的气动执行器本身带有电动定位装置,可以直接将控制器输出的模拟量信号接到电动定位装置接线端子上.气动风阀、水阀动作可靠,故障率低,可以在较恶劣的环境下运行,在有现成的压缩空气源的场合,应该优先选择气动执行器。由于阀门执行机构是气动的,因此一般都没有阀位的电反馈信号,故这种控制器不能获得真实的阀门位置信号,无法判别阀门的机械故障.在选择电气转换器或阀门定位器时,一定要注意它所要求的输人信号的形式、范围。 风阀、水阀的电动执行器一般由一台三相或单相电动机通过机械减速系统与阀连接,由此控制速系统还与一可变电阻器相连,这样阀门的不同位置将使可变电阻器输出不同电阻值,成为反映阀位状态的电反馈信号.为了防止阀门全开或全关后电动机继续运转,执行器内还在相应位置设有限位开关.当阀门到达全开或全关位置时,可以通过机械装置直接切断限位开关,使电动机停止 (4)数字量输出D0也称开开量输出,它可由控制软件将输出通道变成高电平或低电平,通过驱动电动机电路即可带动继电器或其他幵关元件动作,也可使指示灯处于显示状态。

电动调节阀的工作原理

电动调节阀的工作原理

————————————————————————————————作者:————————————————————————————————日期:

一、课程导引——执行器的作用 在过程控制系统中,执行器接受调节器的指令信号,经执行机构将其转换成相应的角位移或直线位移,去操纵调节机构,改变被控对象进、出的能量或物料,以实现过程的自动控制。在任何自动控制系统中,执行器是必不可少的组成部分。如果把传感器比拟成控制系统的感觉器官,调节器就是控制系统的大脑,而执行器则可以比拟为干具体工作的手。 执行器常常工作在高温、高压、深冷、强腐蚀、高粘度、易结晶、闪蒸、汽蚀、高 压差等恶劣状态下,因此,它是整个控制系统的薄弱环节。如果执行器选择或使用不当,往往会给生产过程自动化带来困难。在许多场合下,会导致控制系统的控制质量下降、调节失灵,甚至因介质的易燃、易爆、有毒而造成严重的事 故。为此,对于执行器的正确选用和安装、维修等各 个环节,必须给予足够的注意。 执行器根据驱动动力的不同,可划分为气动执行 器、液动执行器和电动执行器,本次课将结合实验装 置所用的智能电动调节阀使用知识进行介绍。 二、产品知识——电动调节阀 的结构与工作原理(20分钟) 1、电动调节阀的基本结构 在THJ-2的实验装置上,配置了上海万迅仪表有限公司生产的智能型电动调节阀,其型号为 QSVP-16K ,图1是电动调节阀的典型外形,它由两 个可拆分的执行机构和调节阀(调节机构)部分组成。 上部是执行机构,接受调节器输出的0~10mADC 或4~20mADC 信号,并将其转换成相应的直线位移,推动下部的调节阀动作,直接调节流体的流量。各类电动调节阀的执行机构基本相同,但调节阀(调节机构)的结构因使用条件的不同类型很多,最常用的是直通单阀座和直通双阀座两种。 2、电动执行机构的基本结构(部分摘自上海万迅仪表产品说明书) 执行机构采用了德国进口的PSL 电子式一体化的电动执行机构,该产品体积小、重量轻,功能强、操作方便,已广泛应用于工业控制。 其直线行程电动执行器主要是由相互隔离的电气部分和齿轮传动部分组成,电机作为连执 行 机 构调节阀图1 电动调节阀外形机构

执行机构原理

摘要:调节阀是物料或能量供给系统中不可缺少的重要组成部分,而执行机构是调节阀的关 键组成部件。针对执行机构对调节阀工作性能的影响,分析了调节阀的执行机构类型,讨论 了不同类型执行机构的组成、工作原理和特点,在此基础上对不同类型的执行机构适用范围 进行了探讨,为调节阀的选择提供指导作用。 1引言 并 方程式(1) 点击此处查看全部新闻图片 式中:m为与执行阀杆刚性连接的运动部件总质量;x为阀杆位移;c为阻尼系数;f为摩擦力;Fs为信号压力在薄膜上产生的推力;G为运动部件总重力;Ft为调节阀所控流体在阀芯上的压力差产生的不平衡力;k为弹簧刚度系数。当阀杆由下往上运动时,式(1)等号左端各项符号变负。 图2系统运动受力模型

点击此处查看全部新闻图片 式(1)中的摩擦力是造成调节阀死区与滞后的主要原因[4]。对于气动执行机构而言,由于工作介质的可压缩性比较大,使得摩擦对其动态响应特性的影响更为显著。当生产过程受到扰动的影响,虽然调节阀控制器的输出产生了一个用于纠正偏差的控制信号,但由于摩擦的存在,使得该信号并没有产生相应的阀杆位移。这就要求控制器输出更大的信号,只有当控制信号超过一定范围,即死区,才能使阀杆产生位移。死区的存在使调节不能及时进行,有时还造成调节的过量,使调节阀的控制品质变差。 为了减小调节阀死区与滞后的影响,除了改进阀杆密封填料结构,采用合适密封材料等外,目前的主要改进措施是通过给气动调节阀配备气动阀门定位器[2],如图3所示。 1 8 1 号进行比较,当两者有偏差时,改变对伺服放大器的输出,使执行阀杆动作,从而建立起输入信号与调节阀执行阀杆位移(即调节阀开口量)一一对应的关系。通常电动执行机构的输入信号是标准的电流或电压信号,输出位移可以是直行程、角行程和多转式等类型[2]。 图4电动执行机构组成框图 点击此处查看全部新闻图片 2.3电液执行机构

组成原理__试题及答案

内部资料,转载请注明出处,谢谢合作。 1. 用ASCII码(七位)表示字符5和7是(1) ;按对应的ASCII码值来比较(2) ;二进制的十进制编码是(3) 。 (1) A. 1100101和1100111 B. 10100011和01110111 C. 1000101和1100011 D. 0110101和0110111 (2) A.“a”比“b”大 B.“f”比“Q”大 C. 空格比逗号大 D.“H”比“R”大 (3) A. BCD码 B. ASCII码 C. 机内码 D. 二进制编码 2. 运算器由许多部件组成,但核心部件应该是________。 A. 数据总线 B. 数据选择器 C. 算术逻辑运算单元 D 累加寄存器。 3. 对用户来说,CPU 内部有3个最重要的寄存器,它们是。 A. IR,A,B B. IP,A,F C. IR,IP,B D. IP,ALU,BUS 4. 存储器是计算机系统中的记忆设备,它主要用来。 A. 存放程序 B. 存放数据 C. 存放微程序 D. 存放程序和数据 5. 完整的计算机系统由组成。 A. 主机和外部设备 B. 运算器、存储器和控制器 C. 硬件系统和软件系统 D. 系统程序和应用程序 6.计算机操作系统是一种(1) ,用于(2) ,是(3) 的接口。 (1) A. 系统程序 B. 应用程序 C. 用户程序 D. 中间程序 (2) A.编码转换 B. 操作计算机 C. 控制和管理计算机系统的资源 D. 把高级语言程序翻译成机器语言程序 (3) A. 软件和硬件 B. 主机和外设 C. 用户和计算机 D. 高级语言和机器语言机 7.磁盘上的磁道是 (1) ,在磁盘存储器中查找时间是 (2) ,活动头磁盘存储器的平均存取时间是指 (3) ,磁道长短不同,其所存储的数据量 (4) 。 (1) A. 记录密度不同的同心圆 B. 记录密度相同的同心圆 C. 阿基米德螺线 D. 随机同心圆 (2) A. 磁头移动到要找的磁道时间 B. 在磁道上找到扇区的时间 C. 在扇区中找到数据块的时间 D. 以上都不对 (3) A. 平均找道时间 B. 平均找道时间+平均等待时间 C. 平均等待时间 D. 以上都不对 (4) A. 相同 B.长的容量大 C. 短的容量大 D.计算机随机决定

电动车门锁工作原理

如今的一些汽车可以采用四、五种方式给车门解锁,它们可以选择使用键盘、无匙进入系统或者传统的锁。汽车如何记住这些不同的方法,而车门又到底是如何解锁的呢实际上,打开车门的机械装置非常有趣。它必须非常可靠,因为在汽车的整个使用过程中,它要数万次地解锁车门。 在本篇博闻网文章中,我们将了解车门解锁装置。本文将详细介绍执行器以及如何强制打开车门锁。首先让我们看看汽车的所有信号是如何正常发挥作用的。 以下是解锁车门的几种方法: 使用钥匙 通过按车内的解锁按钮 通过使用车门外的组合锁 通过拔起车门内的按钮 使用无匙进入遥控器 通过控制中心发送的信号 在装有电动车门锁的车中,锁定/解锁开关实际上会向解锁车门的执行器提供电能。但在更复杂的系统中,锁定和解锁有若干种方法,这时,将由车身控制器决定何时解锁。 车身控制器是汽车中的计算机。它负责许多小事情,从而使您的车更易于使用。例如,它确保车内灯在汽车起动前始终亮着,此外,如果您忘了关前照灯或将钥匙落在点火开关中,它还会发出蜂鸣声来提醒您。 如果使用电动车门锁,车身控制器将监控“解锁”或“锁定”信号的所有可能来源。它将监控安装在车门上的触控板,并在输入正确代码时解锁车门。它负责监控无线电频率,当密钥卡中的无线电发射器收到正确的数字代码时,车门将被解锁。不仅如此,它还监控车内的开关。从上述任一信号源收到信号时,它还将为执行器提供电能,以解锁或锁定车门。 现在,让我们来看看车门中的部件,以及它们是如何协同工作的。

电动车门中的部件 在下图中,电动车门锁的执行器位于锁销下方。其中一个杆连接执行器和锁销,另一个连接锁销和突出在车门顶部的按钮。 车门中的部件 执行器向上移动锁销时,外部车门把手将和打开装置连接。锁销下移时,外部车门把手将与打开装置断开连接,从而锁定车门。 车门中的部件 为解锁车门,车身控制器将在一定的时间内为车门锁执行器提供电能。下面让我们来看一下执行器的内部结构。 电动车门锁执行器 电动车门锁执行器是个很简单的装置。 该执行器可以左右移动此图中所示的金属钩。安装在车中 时,执行器是垂直的,因此钩可以上下移动。其运动方式 与您拔或按按钮的动作相同。 此系统相当简单。一个小电动机带动一系列起齿轮减速作用的直齿圆柱齿轮。最后一个齿轮驱动齿条齿轮式齿轮组,该齿轮组与执行杆相连。齿条将电机的旋转运动转变为移动车门锁所需的直线运动。 电动车门锁执行器的内部结构 该机械装置一个有趣的地方是,尽管电机可以转动齿轮并移动锁销,但如果您移动锁销,它却不会带动电机。之所以会这样,是因为使用了离心式离合器,此离合器与齿轮

组成原理课后答案教材

第1章计算机系统概论 1. 什么是计算机系统、计算机硬件和计算机软件?硬件和软件哪个更重要?解:P3 计算机系统:由计算机硬件系统和软件系统组成的综合体。 计算机硬件:指计算机中的电子线路和物理装置。 计算机软件:计算机运行所需的程序及相关资料。 硬件和软件在计算机系统中相互依存,缺一不可,因此同样重要。 2. 如何理解计算机的层次结构? 答:计算机硬件、系统软件和应用软件构成了计算机系统的三个层次结构。 (1)硬件系统是最内层的,它是整个计算机系统的基础和核心。 (2)系统软件在硬件之外,为用户提供一个基本操作界面。 (3)应用软件在最外层,为用户提供解决具体问题的应用系统界面。 通常将硬件系统之外的其余层称为虚拟机。各层次之间关系密切,上层是下层的扩展,下层是上层的基础,各层次的划分不是绝对的。 3. 说明高级语言、汇编语言和机器语言的差别及其联系。 答:机器语言是计算机硬件能够直接识别的语言,汇编语言是机器语言的符号表示,高级语言是面向算法的语言。高级语言编写的程序(源程序)处于最高层,必须翻译成汇编语言,再由汇编程序汇编成机器语言(目标程序)之后才能被执行。

4. 如何理解计算机组成和计算机体系结构? 答:计算机体系结构是指那些能够被程序员所见到的计算机系统的属性,如指令系统、数据类型、寻址技术组成及I/O机理等。计算机组成是指如何实现计算机体系结构所体现的属性,包含对程序员透明的硬件细节,如组成计算机系统的各个功能部件的结构和功能,及相互连接方法等。 5. 冯?诺依曼计算机的特点是什么? 解:冯?诺依曼计算机的特点是:P8 ●计算机由运算器、控制器、存储器、输入设备、输出设备五大部件组成; ●指令和数据以同同等地位存放于存储器内,并可以按地址访问; ●指令和数据均用二进制表示; ●指令由操作码、地址码两大部分组成,操作码用来表示操作的性质,地 址码用来表示操作数在存储器中的位置; ●指令在存储器中顺序存放,通常自动顺序取出执行; ●机器以运算器为中心(原始冯?诺依曼机)。 6. 画出计算机硬件组成框图,说明各部件的作用及计算机系统的主要技术指标。答:计算机硬件组成框图如下:

配气机构的结构与工作原理说课稿

第三章第一节配气机构的构造与工作原理 尊敬的各位评委老师:大家好 今天,我的说课内容是选自中等职业学校《汽车发动机构造与维修》课程中的一节------配气机构的构造与工作原理,下面,我将从说教材、说学情、说教法及依据、说学法及依据、说教学过程及分析、说板书设计等几个方面进行讲述。 一、说教材 (一)教材分析 本节课选自中等职业学校《汽车发动机构造与维修》教材第三章第一节。在学习本章节之前我们已经学过了发动机总论,对发动机的两大机构五大系统有了初步的了解。从本节课开始讲授发动机二大机构之一的配气机构,因此本节课不仅是前面章节的延续,同时也是培养学生维修检测技能的重要一节。 (二)教学目标及确立依据: 根据本教材的结构和内容分析,结合汽修专业中职学生的认知结构及其心理特征,我制定了以下的教学目标: 1. 知识目标:识记组成配气机构的气门组及气门传动组的组成,并理解它们的作用。 2. 能力目标:引导和鼓励学生养成多听、多看、多问的学习方法,逐步学会独立思考,理论与实际相结合的能力。 3. 情感态度与价值观目标:引导学生通过对发动机配气机构的认识,树立学习信心,增强对本专业的热爱。 (三)重点,难点的确立及依据 只有掌握了配气机构的构造和作用才有利于接下来对各部分的具体原理及维修的理解,依此确立本节课的重点是掌握配气机构的构造及每部分的作用。本节课的难点是对气门间隙及配气定时的理解,因为这是配气机构维修中涉及的主要方面。在教学中我采用课件演示,实物讲练等方法来落实重点及难点。 二、说学情 现在的职业学校学生学习情绪化较强,对感兴趣的东西学习积极性高,而对内容枯燥的理论则学习效率低。另外,中职生对实践性环节的学习兴趣明显高于理论课程的学习。因此在组织教学过程中必须注意结合学生学到的配气机构的结构和工作原理,通过演练联系实际,加强学生感性认识,在教学过程中,注重培养学生动手能力,并留意不同学生的不同表现,有效运用因材施教,让学生参与教学环节中来,从而提高学生的学习兴趣 三、说教法及依据 秉着以学生为中心,充分发挥学生的自主性和创造性,调动学生学习的积极性的教学的宗旨,在教学中我将采用:创设情境教学法,任务驱动教学法和多媒体与传统教学相结合的方法,采取这样的教学方法,不仅能够使学生带着问题去学习而且可以使教学方法之间形成一个互补的优势,在教学过程当中将这三种方

德国PS电动执行机构说明书

目录 一、用途 (1) 二、型号、规格及主要技术性能 (1) 1、型号、规格 (1) 2、主要技术性能 (1) 三、基本工作原理 (2) 1、系统原理方框图 (2) 2、基本原理 (2) 四、结构说明 (11) 五、电动执行器的安装、校验及维修使用 (11) 1、电动执行器的安装和接线 (11) 2、电动执行器的校验 (12) 3、电动执行器的使用和维护 (15)

一、用途 DAR型电动执行器是DDS—II、III型电动单元组合仪表中的执行单元,它即可与变送单元、调节单元等配套,接受统一的直流信号0~10mA(或4~mA)也可以接受用其他方法输入直流信号0~10mA(或4~mA),并将此输入的直流信号转变成相对应的角位移,自动地操作风门、档板、阀门等,以便完成自动调节之目的,它广泛应用于化工、石油、冶金、矿山、电站、轻工等部门。 DAR型电动执行器是无触点式的,它与DFD型电动操作器配合使用时,可实现自动调节和手动调节,进行安全自动化和半自动化生产。 二、型号、规格及主要技术性能 一、型号、规格 DAR型电动执行器按其输出力矩和出轴每转时间的不同,分以下几种规格: (表一)

二、主要技术性能 1、输入信号0~10毫安(直流)4~20毫安(直流) 2、出轴力矩(见表一) 3、出轴每转时间(见表一) 4、出轴有效位移0~90(转角) 5、输入电阻200欧姆250欧姆 6、输入通道三个 7、死区<=150毫安<=240微安 8、非线性误差<=+2.5% 9、变差<=1.5% 10、纯滞后<=1秒 11、电源电压220伏50赫;380伏50赫 12、稳定性出轴振荡次数不大于3次 13、使用环境 伺服放大器:温度0~+45℃

相关主题
文本预览
相关文档 最新文档